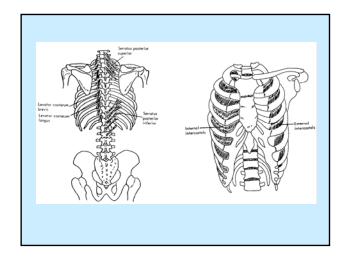
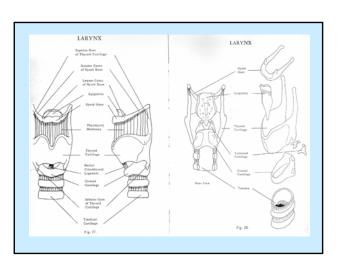
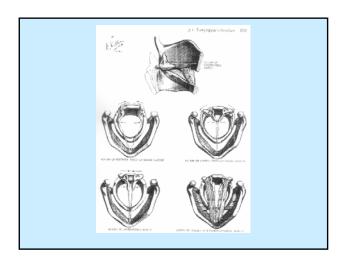

Acoustic Phonetics


David House


Speech physiology and speech acoustics

The lungs and the larynx


- Expiratory respiration generate sound
- trachea *luftstrupen*
- larynx struphuvudet
 - cartilage, muscles and ligaments
 - glottis *röstspringan*
 - vocal folds stämläpparna
 - vocalis muscle, vocal ligament
- epiglottis struplocket

Voice

- Biological function of the larynx
 - Protect the lungs and airway for breathing
 - Stabilize the thorax for exertion
 - Expel foreign objects by coughing
- Phonation and voice source
 - Creation of periodic voiced sounds
 - Vocal folds are brought together, air is blown out through the folds, vibration is created

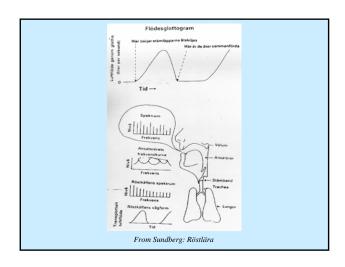
Muscular control of phonation

- Lateral control of the glottis
 - adduction (for protection and voiced sounds)
 - abduction (for breathing and voiceless sounds)
- Longitudinal control of the glottis
 - tension settings of the vocalis muscle
 - control of fundamental frequency (F0)

Voice quality

- Phonation type (lateral tension)
 - Tense (pressed) voice pressad
 Normal (modal) voice modal
 Flow phonation flödig
 Breathy voice läckande
- Vocal intensity
 - Interaction between subglottal lung pressure and lateral (adductive) tension

Voice pitch

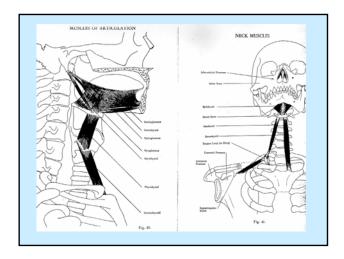

- · Pitch level
 - high-pitched or low-pitched voice (average F0)
- Pitch range
 - large or small
- Register
 - modal
 - falsetto
 - creak knarr

Use of voice in normal speech

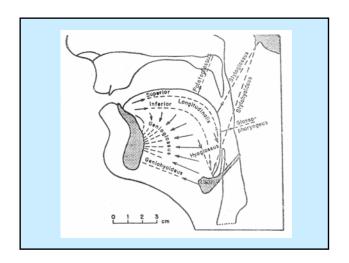
- Boundary signalling
 - vocal intensity greatest at phrase beginnings
 - pitch generally higher at phrase beginning
 - creak as a signal of phrase endings
- · Social marker
 - voice quality as a signal of group identity (dialect)
- Expression of attitude and emotion
 - happy or angry
 - serious or sensual

Source-filter theory

- Voice-source waveform (during phonation)
 - Transglottal airflow measurements
- Spectrum of the voice source
 - Decreases in amplitude with increasing frequency
- Vocal tract resonances
 - Dependent on position of the tongue and lips
- · Spectrum of radiated sound
 - Sum of voice source and vocal tract resonances



Vowels and consonants


- Speech production (phonetics)
 - Free air passage through the pharynx, mouth and the lips = vowel
 - Constricted or closed air passage = consonant
- Function (phonology)
 - Nuclear in the syllable = vowel
 - Marginal in the syllable = consonant
- Exceptions
 - Some voiced consonants (e.g. syllablic **©**n∏*****)
 - Approximants or semi-vowels (e.g. [j] [w])

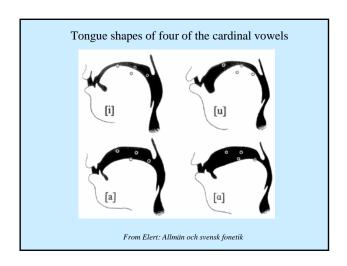
The vocal tract

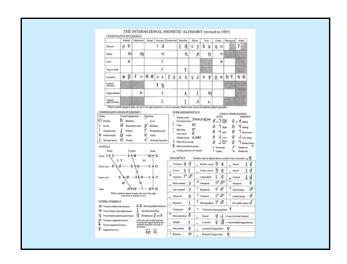
- Throat, (svalget): pharynx, faryngal
- Oral cavity, (munhålan): os, oral
- Nasal cavity, (näshålan): nasus, nasal

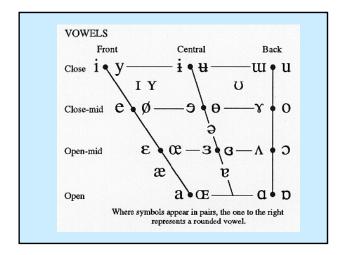
Vowel articulation

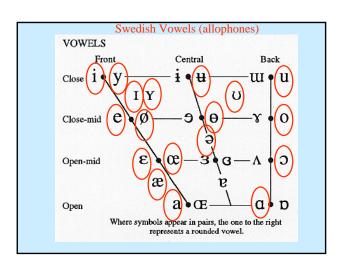
- · Cardinal vowels
 - Reference vowels
 - Four corner vowels form the corners of the vowel chart
- Descriptive terminology
 - Close-open (high-low)

Front-back


sluten-öppen främre-bakre

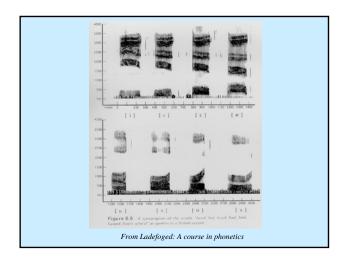

Unrounded-rounded

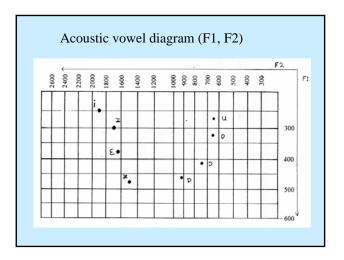

orundad-rundad

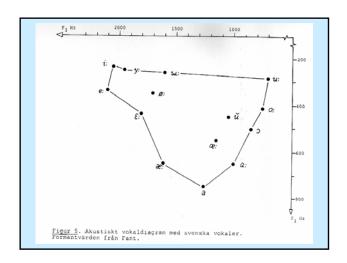

- Oral-nasal (e.g. French)

oral-nasal

Långa vokaler		Korta vokaler	
fonetiskt tecken	nyckelord	fonetiskt tecken	nyckelord
[a:]	mat	[a]	matt
[e:]	vet	[e]	vett, året
[i:]	vit	[1]	vitt
[u:]	bo	[v]	bott
[ա։] el. [ա	I] hus	[e]	hund
[y:]	byt	[Y]	bytt
[o:]	gå	[c]	gått
[ε:]	säl	[ε]	vätt
[æ:]	här	[æ]	kärr
[ø:]	hö	[ø [†]]	höst
[œ:]	hör	[œ]	förr


Phonological features


- Binary features for vowels
 - e.g.
 - <u>+</u> high
 - <u>+</u> low
 - <u>+</u> back
 - ± round
- · Feature matrix
 - Feature specification for each phoneme


Vokalfonem			förträngningens läge			
A. Svenska			1	främre		
	tungkroppens	högt	i	У	ы	u
	läge	mellan	e	ø		0
		lågt	3			a
			orun- dade	utrun- inrundade dade		
			läpp	läppartikulation		
B. Finsk	a					1 Sae
B. Finsk	a		förti	ängnin		
B. Finsk	tungkroppens	högt	förti	ängnin		läge bakre u
B. Finsk		högt mellan	förti	ängnin ämre		bakre
B. Finsk	tungkroppens		fört: fr	ängnin ämre Y		bakre u
B. Finsk	tungkroppens	mellan	fört: fr i	ängnin ämre Y ø		bakre u o

Vowel acoustics

- Spectrogram
 - Narrow band spectrogram
 - Wide band spectrogram
- Formants (F1, F2, F3, F4)
- Acoustic vowel diagram (F1, F2)
- Formant transitions

Consonant articulation

- · Voiceless or voiced
 - fortis or lenis
 - aspirated or unaspirated
- Manner of articulation
 - How is the sound produced?
- Place of articulation
 - Where is the constriction or closure located?

Manner of articulation

• Fricatives frikativor (spiranter)

• Stops, plosives klusiler, explosivor

aspiration

- unreleased

– affricates (stop + fricative) affrikator

Liquids

 likvidor
 laterals
 trills

 tremulanter (vibranter)

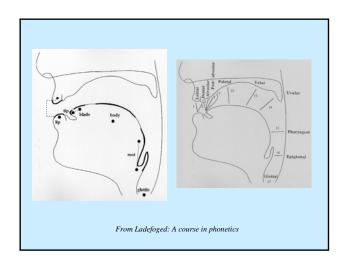
• Nasals nasaler

The tongue: lingua

• Tongue tip: apex, apikal

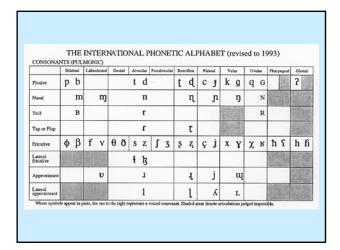
• Tongue blade: *predorsum*, *predorsal* (also *corona*, *coronal*)

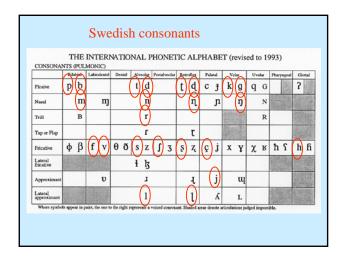
• Tongue back: dorsum, dorsal

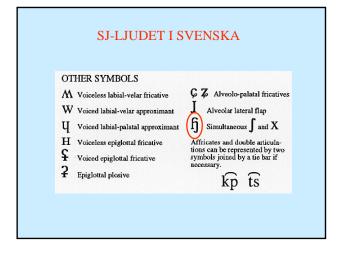

• Tongue root: radix

The palate

- Alveolar ridge (tandvallen) : alveoli, alveolar
- Hard palate (hårda gommen): *palatum*, *palatal*
- Soft palate (mjuka gommen): velum, velar
- Uvula (tungspenen): uvula, uvular

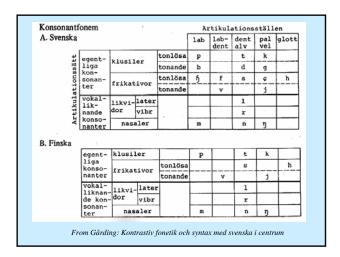

The teeth and lips


- teeth: dentes, dental
- lips: labia, labial
 - rounded labialised
 - unrounded delabialised



Place of articulation (IPA)

- Bilabial
- Labiodental
- Dental
- Alveolar
- Postalveolar
- Retroflex
- Palatal
- Velar
- Uvular
- Pharyngeal
- Glottal (laryngeal)



Phonological features

- +consonant
- <u>+</u>sonorant
- <u>+</u>obstruent
- <u>+</u>anterior
- +coronal
- <u>+</u>continuant
- <u>+</u>voice

physiology, psychoacoustics and speech perception

Consonant acoustics (1)

- Fricatives
 - Noise frequency
 - Formant transitions in adjoining vowels
- Stops
 - Occlusion phase (silence)
 - Plosive release
 - Aspiration
 - Formant transitions in adjoining vowels

Consonant acoustics (2)

- Liquids
 - Laterals
 - Formants similar to vowels, lower intensity
 - · Formant transitions
 - Trills
 - · Quickly repeated stops
 - Short vowel-like pulses
 - Formant transitions

Consonant acoustics (3)

- Nasals
 - Vowel-like with lower intensity
 - Nasal resonances (nasal formants)
 - Formant transitions in adjoining vowels

Prosody

- Suprasegmental speech characteristics
 - Temporal relationships
 - Stress patterns
 - Speech rhythm
 - Intonation
- Functions of prosody
 - Lend prominence (emphasize, de-emphasize)
 - Grouping function (combine, separate)

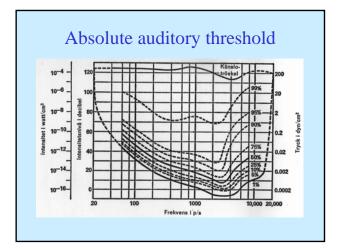
Prosodic categories

- Stress (syllable)
 - Speech rhythm, alternating stressed-unstressed
- Word accent (word)
 - accent I (acute), accent II (grave)
- Focus (phrase accent)
 - Emphasis, contrastive emphasis
- Juncture (phrase, utterance)
 - Boundary signals and connective signals

Acoustic features of prosody

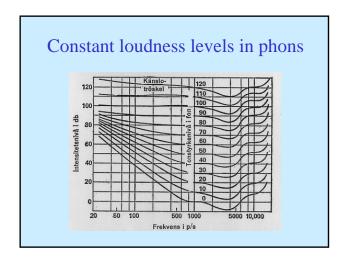
- Time (quantity)
- Fundamental frequency (F0) (pitch, intonation)
- Intensity (loudness)

References

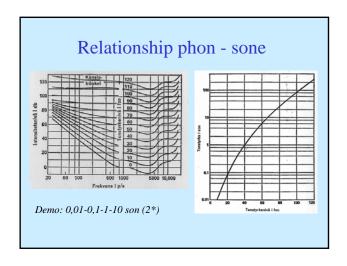

- Elert, Claes-Christian (1995) Allmän och svensk fonetik. Norstedts Förlag, Stockholm
- Ladefoged, Peter (1982) A course in phonetics. Harcourt Brace Jovanovich, New York
- Laver, John (1994) Principles of phonetics. Cambridge University Press, Cambridge
- Sundberg, Johan (1986) Röstlära. Proprius, Stockholm

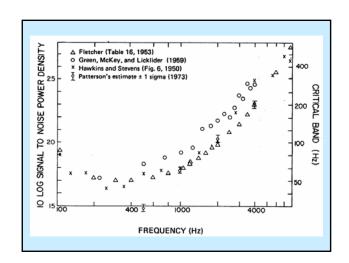
Psychoacoustics and speech perception

David House


Hearing acuity

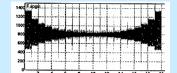
- Sensitive for sounds from 20 to 20 000 Hz
- Greatest sensitivity between 1000-6000 Hz
- Non-linear perception of frequency intervals
 - E.g. octaves
 - 100Hz 200Hz 400Hz 800Hz 1600Hz
 - 100Hz 800Hz perceived as a large difference
 - 3100Hz 3800 Hz perceived as a small difference

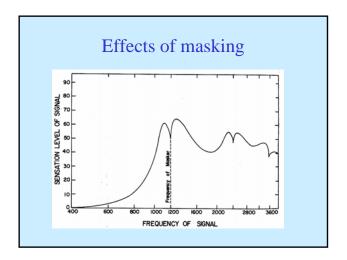

Demo: SPL (Sound pressure level) dB

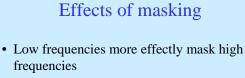

- Decreasing noise levels
 - 6 dB steps, 10 steps, 2*
 - 3 dB steps, 15 steps, 2*
 - 1 dB steps, 20 steps, 2*

Demo: SPL and loudness (phons)

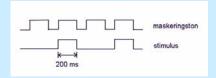
- 1) 50-100-200-400-800-1600-3200-6400 Hz
 - 1a: constant SPL 40 dB, 2*
 - 1b: constant 40 phons, 2*
- 2) 125-250-500-1000-2000-4000-8000 Hz
 - Decreases by 5dB in 10 steps at each freq.
 - Count how many steps you hear at each frequency

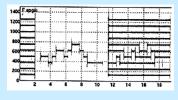



Critical bands

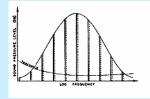

- Bandwidth increases with frequency
 - 200 Hz (critical bandwidth 50 Hz)
 - 800 Hz (critical bandwidth 80 Hz)
 - 3200 Hz (critical bandwidth 200 Hz)

Critical bands demo


- Fm=200 Hz (critical bandwidth 50 Hz)
 - B= 300,204,141,99,70,49,35,25,17,12 Hz
- Fm=800 Hz (critical bandwidth 80 Hz)
 - B=816,566,396,279,197,139,98,69,49,35 Hz
- Fm=3200 Hz (critical bandwidth 200 Hz)
 - B=2263,1585,1115,786,555,392,277,196,139,98 Hz



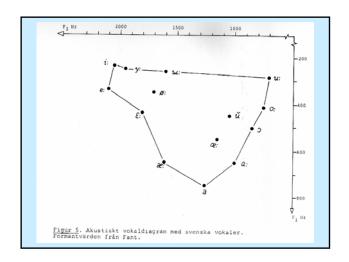
- Demo: how many steps can you hear?
 - a) masking tone 1200 Hz, stimulus 2000 Hz
 - b) masking tone 2000 Hz, stimulus 1200 Hz

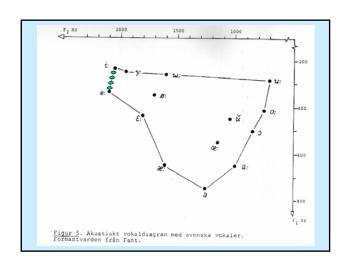

Holistic vs. analytic listening

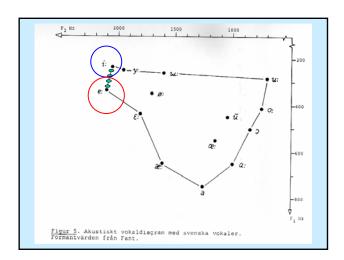
- Demo 1: audible harmonics (1-5)
- Demo 2: melody with harmonics
- Demo 3: vowels and audible formants

Circularity in pitch

- R N Shepard
- J-C Risset
- J Liljencrants

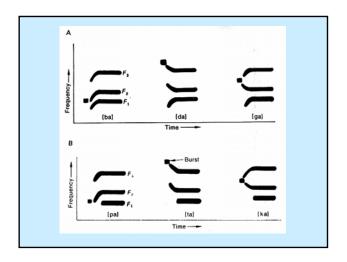

http://asa.aip.org/sound.html

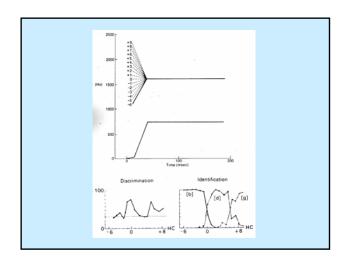

Perception of vowels

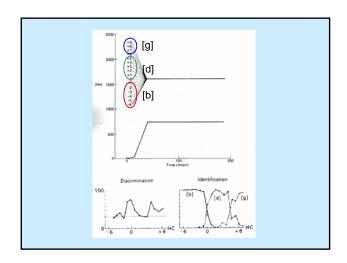

- Formants (general relationship acousticsarticulation)
 - F1: information on jaw opening
 - higher F1= more open
 - F2: information on front-back
 - higher F2=more front
 - F3: information on lip rounding
 - lower F3=more rounded

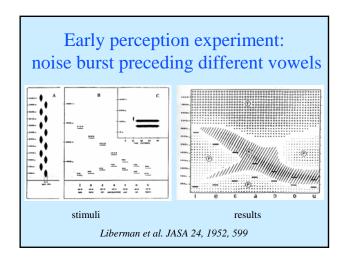
Perception of vowels

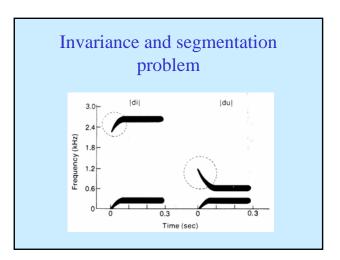
- Identification
 - Perceive which vowel is pronounced
- Discrimination
 - Hear that two vowel sounds are different
- Categorical perception
 - Difficult to discriminate within a category
 - Easy to discriminate between categories




Perception of stops


- Frequency of the burst release
 - Provides information on place of articulation
- Formant transitions in adjoining vowels
 - Also information on place of articulation
- Voiced occlusion or aspiration
 - Provides information on manner of articulation




Perception of stops

- Early experiments with speech synthesis
 - Formant transitions alone were sufficient to identify place of articulation (ba-da-ga)
 - Identification and discrimination of stops
- Categorical perception of stops
 - Difficult to discriminate within a category
 - Easy to discriminate between categories

Invariance and segmentation problem

- The same phoneme has different cues in different contexts, e.g. F2-transitions for [di] [du].
- · Where are the segment boundaries?
- Problem is a result of coarticulation
- Problem has inspired the classic perception theories

Classic theories of speech perception

- Invariance theory
 - The acoustic signal is the most important (invariant)
- · Motor theory
 - Speaker's nerve impulses for speech motor control are calculated by the brain by analysing the acoustic signal.
 - Articulation is the most important
- · Direct perception
 - The speaker's articulatory movements are directly perceived by the listener

Cognitive theories

- Top-down speech processing
 - Expectation and linguistic knowledge set the frame
 - Incoming words are compared to hypotheses
- Bottom-up processing
 - Acoustic signal is transferred to words
 - Message formed from words

Psycholinguistics

- · The mental lexicon
- "Top-down" perception and context
 - experiments with filtered speech
 - experiments with phoneme detection (e.g. [s])
 - "They had been up all night and needed to sleep"
 - "They didn't know if they would be able to sleep"

Speech acquisition theories

- Innate
 - Possible psychophysical limits
 - e.g. the number of vowels that can be discriminated
- · Acquired
 - Language-specific categories
 - Several high, front vowels in Swedish: language categories develop making use of psychophysical limits
 - One high front vowel in Japanese: category differences are lost