

Speech recognition and speaker verification

Speech recognition

- Speech-to-Text
- International status: Good performance in controlled environments
- Problems:
 - Noise (background, line)
 - Speaker variation
 - Pronunciation variation, accents, dialects
 - Sentence patterns and ways of expression
- Need for robust speech recognition

Speech recognition

- Complexity (and performance) depends on:
 - Speech mode
 - Isolated utterances continuous speech
 - Speaker mode
 - Speaker trained speaker independent speaker adaptive
 - Vocabulary (size and content)
 - Naturalness
 - Read speech/dictation
 - Spontaneous, natural speech
 - Noise environment

Intra-speaker variability

- Speaking rate and timing variability
- Speaking style
 - Read (careful) vs. spontaneous (casual)
 - Formal vs informal
 - Emontional state influences speech (neutral, happy, angry, afraid ...)
 - Environment influences speech Lombard effect
- Co-articulation
 - Phonetic context influences pronunciation

Inter-speaker variability

- Differences in physiology
 - E.g. vocal tract length
- Voice quality differences
 - Age, creakiness, nasality
- Accent/dialect variations
- Sociolinguistic variations
- Individual speaking characteristics

Inter-speaker variability

Environmental influence

- Background noise
 - Traffic, office equipment, factory noise, doors and bells
- Transmission noise and channel distortion in telecommunications
- Room reverberation
- Microphone characteristics

Some important ASR types

- Dictation
 - Transcription of speech
 - Continuous speech, large vocabulary
 - Can be speaker trained
 - All recognition errors are in principle equally important
- Command and control
 - Short commands (one word or short sentence)
 - Limited vocabulary
 - Translation of spoken utterance to an action
- Speech understanding, dialogue systems
 - Literal transcription unimportant, capturing relevant meaning paramount
 - Key words/phrases contain the relevant information
 - Semantic processing, NLP

Different types require different design criteria!

Speech recognition performance

Correct: I constantly make severe new errors

Recognized: I count to make several _ errors

- Error types:
 - Substitutions (S)
 - Deletions (D)
 - Insertions (I)
- Percent correct = 100*(N-D-S)/N
 - Where N is the number of words in the (correct) sentence
- Percent accuracy = 100*(N-D-S-I)/N
- Word error rate = 100*(D+S+I)/N

Speech recognition - performance

Task	Type	Vocabulary	WER
Connected digits	Read	10	<0.3%
Air traffic information	Spontaneous	2.500	2%
Wall Street Journal	Read	64.000	7%
Radio news	Mixed	64.000	30%
"Call home"	Conversational	10.000	50%

Source: IEEE Spectrum, Jan. 1997

Outline

- Feature extraction
- Template matching and dynamic programming
- Hidden Markov Models for speech recognition
- Adaptation
- Speaker verification