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Abstract

In this paper we will compare the statistical models for automatic speech recognition (ASR) and parts-
of-speech tagging (POS-tagging) and try to come up with some hypotheses on how to improve the ASR
model using techniques used in POS-tagging. Experiments with different smoothing algorithms and use of
spoken data as a part of the language model are suggested.

1 Introduction

The two problems discussed in this paper - POS-tagging and ASR - are totally different and it is difficult to
see anything in common between them at all. In spite of this, lots of researchers in the two fields are using
the same basic model. They start from Shannon’s1 noisy channel model and use Bayesian inference to get
a computationally sufficient statistical model. In the ASR case, the noisy data is the sound wave, and the
source data is a sequence of words. For POS-tagging the source data is a sequence of parts-of-speech and
the noisy data the corresponding sequence of words - a bit more unintuitive.

2 Background

In 1996 a research group started to work on a statistical POS-tagger for spoken Swedish. The work was
initially presented in Nivre et al (1996) and the results were promising. The continuation went in two
directions: tuning the tagger for spoken language2, presented in Nivre & Gr̈onqvist 2001, and exploring
and evaluating different smoothing algorithms used in the statistical model, presented in Nivre 2000.

3 Parts-of-speech tagging

To start with, the POS-tagging problem may be formulated as:

argmax t1,...,tnP (t1, . . ., tn|w1, . . ., wn)

Given a sequence of wordsw1, . . ., wn, calculate the most probable sequence of POS-tagst1, . . ., tn. Bay-
esian inversion allow us to rewrite the formula as:

argmax t1,...,tn
P (w1, . . ., wn|t1, . . ., tn)P (t1, . . ., tn)

P (w1, . . ., wn)

The probability is maximized overt1, . . ., tn so the formula may be simplified as follows:

argmax t1,...,tnP (w1, . . ., wn|t1, . . ., tn)P (t1, . . ., tn)
1Claude Elwood Shannon was an electrical engineer and matematician. He died in February 2001.
2the only available tagged training data was written Swedish.
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This is actually impossible to calculate because of the sparse data problem - if n is big, the sequence
of words and POS-tags will not be found in the training data. The Markov assumption for trigram3 and
the assumption that the probability for a word only depends on its tag, may now be used to make an
approximation of the formula that makes it possible to calculate with a reasonable amount of training data:

argmax t1,...,tn

n∏
i=1

P (wi|ti)P (ti|ti−1, ti−2)

Now, the probabilities may be estimated with relative frequencies (MLE4).
The Viterbi algorithm, initially presented i Viterbi 1967 (or a bit easier to read in Dugad 1996), may be

used to do this, but there are still some problems to solve: a lot of data in new data are not present in the
trainig data. We are going to use a trigram based HMM-tagger5 in the following sections. The labels on
each state in the HMM is in this case is a pair of POS-tags and the symbol alphabet is the set of all words.

3.1 Smoothing

Smoothing is needed because some events that we need probabilities for are missing in the training data.
The two types of probabilities:P (wi|ti) called observation likelihood or lexical probabilities for POS-
tagging, andP (ti|ti−1, ti−2) (prior probabilities or contextual probabilities for POS-tagging) are not equal-
ly difficult to estimate. The number of contextual probabilities are bounded by the number of parts-of-
speech which is relatively few, but the lexical probabilities may be almost infinite. So the smoothing is
much more important for the lexical probabilities but the contextual should also be smoothed. Here, some
of the most common methods are briefly described. More details will be found in Nivre 2000.

3.1.1 Additive smoothing

Additive smoothing is the easiest method to implement and probably to understand too. Instead of using the
raw frequencies as with MLE, a constant number of observations are added to the frequency. The reasoning
behind this is that we add unseen events that should have been seen in a bigger set of training data. The
smoothed probability is calculated as:

P (x) = f(x)+k
N+kn , where N is the total number of observations in the training set and n the number of

possible different observations (the size of the sample space), instead of the unsmoothedP (x) = f(x)
N .

Thekn in the formula has to be added to make sure that the sum of the probabilities are still 1. The most
popular choice for the constant isk = 0.5 which is known as Lidstone’s Law6 or Expected Likelihood
Estimation (ELE).

3.1.2 Back-off smoothing

For the events not present in the training data, this method “backs off” to a more general event. Unseen
trigram probabilities may for example be estimated by bigram probabilities.

3.1.3 Linear interpolation

The probabilities will be estimated as a weighted sum of the probabilities for the actual event and more
general events. Trigram probabilities may for example be estimated as a combination of trigram, bigram and
unigram frequencies. The more general events should contribute less, but make sure that all probabilities
are nonzero.

3The probability for a tag-value will only depend on the two tags before, and this probability is also independent of time.
4Maximum Likelihood Estimation, presented in Nivre & Grönqvist 2001
5Hidden Markov Model, see Merialdo 1994
6Lidstone wrote about this in 1920(!) This kind of statistical models must be used for a lot of other things as well.
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3.1.4 Good-Turing smoothing

This method is much more sophisticated. With the frequency distribution for the different events as input,
the expected number of unseen events are calculated and added to the seen frequency. This can be done
using expectation values (Good 1953).

4 Speech recognition

Basically the model is the same for ASR as for POS-tagging, but the statistical model is much more dif-
ficult to estimate, so even more tricks are needed. As for POS-tagging, the prior probabilities (called lan-
guage model in ASR) are the easiest to estimate, but the set of them are not bounded. Instead of being
based on sequences of parts-of-speech they are sequences of words and the probabilities are on the form:
P (wi|wi−1, wi−2). Huge text corpora (hundreds of millions of running words) are used to make it possible
to find enough of the word triples7 in the training data but still, most of the triples are missing, and the
smoothing has to be really effective. The observation likelihood (called acoustic model) are probabilities
for a sound waveform segment depending on a phone and of course this can not be done with MLE - exactly
the same sound segments as recorded are never present in the training data. Instead this has to be done by
solving several problems (Jurafsky & Martin p 241):

• The sound wave has to be segmented. This may be done by slicing it up into frames of 10-20 milli-
seconds.

• Each segment is transformed into spectral features (energy levels in different frequency intervals)

• A neural net will give probabilities for each phone given the spectral features.

Together with prior probabilities for sequences of phones it is now possible to build a Markov chain.
Now it is possible to use a HMM with phones both in the states and as observed symbols, and toget-

her with the Viterbi algorithm we will get probabilities for different phone sequences the most probable
sequence of phones given a sound waveform. Not exactly what we wanted but a step in the right direction.
The problem is reduced to: find the most probable word sequence given a sequence of phones which is
much easier to solve.

4.1 Decoding

One way to do this is to calculate pronunciation networks for every possible input word, and connect them
to each other using bigram probabilities for words. This will give an automaton with states for each phone.
There will be several states for each phone because they are present in several pronunciation networks. The
best path through this big automaton may be found by the Viterbi algorithm, but there is a problem: it will
find the best sequence of phones - not the best sequence of words! Maybe this does not matter, the best
sequence of phones is probably at least a good sequence of words, but there is another big disadvantage,
much more important for ASR than for POS-tagging:8 Viterbi will not give an N-best list or a lattice. In
Jurafsky & Martin p 251 two ways to solve this are presented below. Maybe a third way to solve it could
be to build more complicated HMM:s with more than one phone in each state, to be able to get rid of the
limitation that the Markov assumption gives us.

4.1.1 Modifying the Viterbi algorithm

One way to be able to find the best word sequence instead of the best sequence of phones is to modify
the Viterbi algorith to give an N-best list of phone sequences, keeping the probability, and then use a word

7Triples or pairs are used depending on the size of the training data
8If you get the wrong POS sequence, most of the tags are probably right, but in the ASR case the meanings other sequences

often are totally different, and hopefully the right word sequence may be found among the N best when comparing with the expected
utterances. Especially if the domain is complex, so called word lattices are useful. They may contain a lot more different possible
paths than N-best lists.
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based trigram language model to assign new probabilities. Then the acoustic probability and the language
model based may be combined to get a new score for each word sequence, giving a new N-best list.

4.1.2 The A* decored

Another way is to use the stack decoder, also called A* decoder because it is based on the A* search
algorithm. It does work in a totally different way than the Viterbi algorithm and it will always give us the
word sequence with the best probability. It works with a priority queue of utterance starts with probabilities,
and a function that is able to estimate the probability for the rest of the utterance. A detailed description is
found in Jurafsky & Martin p 254. The difficulty is to define this function (often called h*) and to make a
good so called fast match function, that gives a list of the most probable next words. The A* decoder works
in a best-first manner.

5 Possible improvements

There are a lot of weaknesses in the ASR systems that are not solved by changing the statistical models
statically, for example the bad performance in noisy environments or the recognition of different speakers.
Maybe more sophisticated neural nets for the phone recognition could improve this. If the neurons recog-
nized the different phones on the basis of speaker independent features in some way, if possible, it could
probably work better.

5.1 Prosodic data

Prosodic data, like questional intonation or stressed words for new information or answers, may be used
to improve speech recognition in a dialogue context, but probably it should come in a later stage of the
dialogue system. If the recognizer returns lattices or N-best lists it is possible to do so. On the other hand,
if the different modules are implemented in a language with lazy behaviour (for example Haskell) a list of
possible utterances may be passed to the next stage of the dialogue system, the different utterances will be
considered by the interpreter module and when an utterance is good enough, the rest of the N-best list will
not even be calculated at all.

5.2 Smoothing

The smoothing algorithms used in ASR are the same as in POS-tagging. We have not seen any comparisons
between them for the ASR task, but in Nivre 2000 the best results for the contextual probabilities were
reached by additive smoothing - the simplest available method. This could be the case for ASR too, but one
can not be sure before trying it out.

5.3 Different training data

The language model for ASR uses a lot of written language data. Depending on what kind of speech
the system is supposed to recognize, this may be bad. The training data should be of the same kind as
the recognized data, so for dictating novels or newspaper articles the current training data used may be
optimal, but if we want a recognizer for natural spontaneous spoken dialogue9 , it would of course be
better to have natural spontaneous spoken dialogues as training data. The amount needed is as mentioned
huge, and too expensive to collect, but in combination with the written data, smoothed together with back-
off or Linear interpolation smoothing, it may work. Hopefully the small vocabulary used in most parts
of spoken dialogue in dialogue systems could be covered by existing spoken language corpora. It would
definitely be worth a try.

9As we want for our dialogue systems
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