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The term ������������	
���
����������������� is in this paper used as a comprehensive 
term for processing systems aimed at automatically converting speech to some non-
speech higher level (i.e. meaningful, linguistically or otherwise) representation.  

The aim of this paper is to discuss how the integrated use of more linguistic 
knowledge can facilitate efficiency and accuracy of high level automatic speech 
processing. Some examples of work in this field are briefly presented and discussed. 
Further, the main concern of this paper is not the practical methods associated with high 
level speech processing, but rather what types of linguistic and phonetic knowledge can 
be used in speech processing and for what purposes. In short, one could say that this 
paper focuses mainly on ���
 rather than on ���. 

There are basically two different high level automatic speech processing paradigms, 
represented by �	
���
�� ������ ������
��� (ASR) systems and �	
���
�� ������
	�����
������ (ASU) systems, respectively. The two types of speech processing systems 
can be said to reflect different paradigms in the sense that they have fundamentally 
different system-internal assumptions about what speech is. This will be discussed more 
extensively in section 2 of this paper. 

There are many ASR systems for commercial use and/or research and development 
purposes. These systems are used e.g. for automatic dictation, in dialogue systems and 
for voice control in handicap aids. To the extent ASU is used (e.g. in dialogue systems), 
it is mostly as a linguistic interpretation back-end extension of an ASR system and not as 
an integrated perception/interpretation system. 

The paper is organised in the following way: first, the two paradigms for high level 
speech processing (represented by ASR and ASU, respectively) are presented and their 
theoretical difference discussed. Then, the reminder of the paper is devoted to discussing 
the integration of high level linguistic and phonetic-prosodic information into high level 
automatic speech processing systems. 
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As mentioned, there are two main paradigms in automatic speech processing, differing 
mainly in the system-internal assumption about what speech is. That is, we have two 
paradigms for how to define �����. The paradigm defining speech in ASR systems is 
concerned with the linguistic code and views speech simply as a sequence of units. The 
paradigm defining speech in ASU systems is concerned with the meaning conveyed by 
the speech signal and views the speech signal as a carrier of a message. Thus, an ASR 
system and an ASU system have – at least from a linguist’s point of view – very different 
goals. An ASR system is to produce a written text as output from spoken language input 
and does not take on the task of unravelling the message conveyed by the speech signal 
and its context. An ASU system, on the other hand, is focused on extracting the user’s 
intentions and finding the user’s intended meaning by ��
�����
��� spoken utterances. In 
this interpretation process, determining the exact word sequences in utterances is not 
necessarily important. Although often treated as such in practice, ASU is thus not a mere 
elaboration of ASR, but should be seen as something inherently different. 
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The units to be recognised in ASR are typically words as represented in a lexicon. State-
of-the-art ASR systems typically take speaker-independent spontaneous speech as input 
and are set to recognise a large number of word units (tens of thousands for speaker 
adaptive systems and up to around thousand for non-adaptive systems) present in the 
system’s lexicon. Automatic speech recognition systems are not concerned with the 
“meaning” of the spoken utterances it processes and performance measures depend on 
the share of correctly recognised words, not considering if the words are important for 
the general semantic meaning of an utterance/a series of utterances. 

There are a number of prototypical practical approaches to automatic speech 
recognition. These are commonly grouped into four types: template-based approaches, 
knowledge-based approaches, stochastic approaches (mainly using hidden markov 
models, HMMs, and Viterbi type search algorithms) and connectionist approaches (using 
artificial neural networks). Stochastic models using HMMs are predominant in state-of-
the-art commercial systems (cf. e.g. Blomberg & Elenius, 2000; Waibel & Lee, 1990). 

As mentioned, ASR systems typically use very simple language models, in which 
language is seen merely as a statistically constrained set of strings of words. The 
probability of a word being situated at a certain position in a string of words is dependent 
on the ��� preceding words in the string. A typical language model is the 
������ model. 
In a trigram model, ��� (cf. e.g. Jelinek, 1999). Taking more words into consideration 
generally does not improve recognition accuracy very much, but does increase the 
processing load significantly. The probabilities used by the trigram models are derived 
through training on a corpus and adjusted with the use of smoothing techniques to handle 
words not found in the training data. 
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Trigram models are statistically rather than linguistically motivated1, although they 
of course catch regularities in syntax, semantics and pragmatics – especially for 
languages with relatively fixed word order (cf. e.g. Jelinek, 1991). The trigram models 
thus do their work quite well, although more linguistic knowledge is being implemented 
in ASR systems to improve accuracy and processing time.  
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A widely used approach to ASU is to extract the meaning of a spoken utterance in a post-
processing stage after an initial ASR component has done its job. However, much 
information that can be used to decrease errors in pure word determination can come 
from higher level linguistic and pragmalinguistic knowledge. This suggests that applying 
word recognition and message interpretation in sequence is not optimal. 

Also, even if a front-end ASR component correctly converts the speech signal into 
text, much information is lost since meaning is largely represented in fundamentally 
different ways in text and in speech. Text is usually more formal and more “literal” and 
thus very much dependent on lexical and grammatical means of conveying information. 
Speech has more dimensions of coding the information, e.g. the opportunity of using 
prosody (and gestures, in face-to-face communication), deictic expressions etc. A speaker 
also normally has access to immediate feedback and is thus less dependent on formal 
aspects such as using specific terms and “correct” and full sentences; if the listener has 
understood the message, there is no point in elaborating. Anyone who has tried to read 
transcribed spoken conversations knows that such texts are not always easy to 
understand. This is due to the different situations in which the two language media are 
used. Text is typically non-direct and monological, while speech is direct, dialogical and 
has access to situational context. 

The output of an ASU system is some sort of semantic representation of the 
speaker’s spoken message. However, this representation is only a formal semantic 
representation strongly correlated with linguistic units, i.e. a “literal”, language based 
semantic representation. Representations of multi-purpose utterances, fuzzy-purpose 
utterances (e.g. utterances from strictly social speech where the content is not as 
important as the fact that there �� communication) and utterances where “reading between 
the lines” is necessary to get the meaning are not possible using such solutions to 
semantic representation. This although the kind of utterances just described constitute the 
larger part of everyday speech. On the other hand, applications are usually not 
constructed for social small-talk (although polite phrases and such will have to be 

                                                 
1It can be argued that human language knowledge is based on statistics derived from exposure to language. 

As an extension of this view, one could argue that the best way to teach a machine to analyse language is to 
let it learn from data. In principle, I agree with this view. However, it does not mean that linguistic 
knowledge (or “metalinguistic” knowledge, i.e. the knowledge possessed by the linguist rather than the 
language user) cannot be useful when accomplishing this task. 
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recognised as “litter”) and the speech input can be assumed to have a reasonably literal 
meaning, provided that the speaker uses the system in a serious manner. 

The semantic representation output from an ASU system is typically used to execute 
a query or a command in a dialogue system or as input to a natural language generator in 
an automatic speech translation system. In a dialogue system, the semantic representation 
can also be used to facilitate the subsequent interaction with the user. 

ASU systems are generally not evaluated in terms of correctly recognised words 
(although the ASU system may produce a written text representation of the input 
utterance at some stage of processing). Instead, ASU systems can be evaluated in terms 
of the share of correctly executed commands or queries or correct translations (for ASU 
components implemented in specific applications) or in terms of the share of correct 
semantic representations as judged by humans. 
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To illustrate the importance of higher level linguistic information in the interpretation of 
a spoken message, let us consider human speech interpretation for a while. It is 
reasonable to assume that a person – when listening to speech under normal 
circumstances – has the main goal of determining the meaning of an utterance or a series 
of utterances and only under very special circumstances to determine the exact word 
sequences the utterance consists of. It is, further, much easier to determine which 
sequence of words is uttered if you already have some idea about what the meaning of 
the utterance “should” be. The situational and linguistic/pragmalinguistic context usually 
provides a good basis to form hypotheses at general and more specific levels about what 
the speaker is going to say. Also, it is much easier to determine the phoneme status of a 
segment of speech if you know the word or word sequence in which the segment 
occurred (or if you have a ����
����� about what the word/sequence is). In fact, a speech 
segment cannot be said to have a phoneme status outside the context of some meaningful 
utterance (note that even a one-phoneme utterance is associated with a lot of pragmatic 
information such as world knowledge and situation context). 

In a similar way as humans use high level linguistic knowledge, such knowledge can 
also facilitate automatic speech processing. Local knowledge that can be derived from 
the signal (e.g. conveyed by prosody) can be used directly in interpreting the speech 
signal to reduce the search space and perplexity and thus increase both processing speed 
and accuracy. Higher level semantic and pragmatic knowledge can be accumulated over 
a discourse and be used for top-down perplexity reduction in the further processing of 
speech input. 

The introduction of linguistic knowledge in a system is often conceived of as hand-
typed rules of different sorts. Here, however, what is meant by linguistic knowledge is 
rather a specification of ���
 to do and not necessarily ��� to do it. That is, linguistic 
knowledge can be used to specify the goals of a system although it does not determine 
exactly how to achieve these goals. Phonetic and linguistic knowledge at a low level is 
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used in all ASR and ASU systems in order to reduce linguistically unimportant 
variability and to hypothesise word strings in a more efficient manner. Low level 
linguistic knowledge (in some sense) can be said to be used already at the signal pre-
processing level for input signal quantisation. However, there is much more linguistic 
knowledge than phonetic/ phonotactic detail and syntax. Below, some examples of work 
on integrating high level linguistic and phonetic-prosodic knowledge into high level 
automatic speech processing systems are presented and discussed. 
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As mentioned, linguistic knowledge is often used at the back end of a speech recogniser 
to correct errors. However, there are systems that use high-level linguistic knowledge 
sources for top-down (hypothesisation) purposes (cf. e.g. Young et al., 1989; Young, 
1990).  

Young et al. (1989) describe a dialogue system which uses semantics, pragmatics, 
dialogue information and user domain knowledge to predict what the user is likely to say 
next. The predictions are used to compile grammars specific for the predicted input, prior 
to the speech processing stage. This both increases accuracy and shortens processing time 
when the predictions are correct. The predictions are made at several levels of specificity. 
The most specific predictions are checked first. If the speech input does not match any 
utterance allowed by the most specific prediction-based grammar (i.e., matching scores 
fall beneath a threshold value), the system re-processes the signal using a less specific 
grammar. Since the more general grammar allows more alternative utterances, the search 
space and perplexity is larger and processing time increases at the same time as accuracy 
decreases. However, the system can still handle unexpected input. Eventually – if no 
good-enough match is found – the system reaches a stage of prediction constraints which 
is identical to the constraints of the full possible grammar of the system. All dialogue 
considerations are thus ignored at this stage. 

The system’s predictions are based on dialogue considerations such as user goals, 
user plans and dialogue foci. The grammars used are semantic network grammars. These 
have constraints depending on semantic meaningfulness as well as on syntactic well-
formedness when allowing or disallowing a certain utterance hypothesis. The 
dynamically produced prediction-specific semantic grammars use only a subpart of the 
system lexicon. The grammars are attached to hierarchical goal trees (reflecting tentative 
intended goals for – i.e., purposes of – the utterance) with subgoals as nodes and domain 
concepts as leafs. The domain concepts are the concepts that can be involved in trying to 
achieve the subgoal of the node. These concepts are the objects that the system is able to 
talk about and attributes associated with the objects. The domain concepts are not 
independent objects but represented in a structure that enables inheritance and multiple 
relations between objects. A user model is used to relate different goal nodes to each 
other using knowledge about what the user knows and is presently able to infer. Each 
domain concept leaf has a pre-compiled semantic network grammar attached to it. The 
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grammar of each domain concept is thus pre-compiled, while the full grammar associated 
with the goal tree is dynamically composed from the part-grammars. The semantic net 
grammars have word categories as end nodes. A normal HMM-based speech recogniser 
with phonemes and words as recognition units – constrained by the grammar given by 
the current level of specificity at the current dialogue stage – is used to produce scores 
for the match between the speech input and allowed utterances under the given 
constraints. 

The domain concepts and their relations, the possible dialogue goals and the 
semantic network grammars used in the system were all compiled by hand. The 
possibility to compile these components by hand is clearly dependent on a very limited 
domain. For larger domains, automatic methods for doing this will have to be developed. 
The task of defining a system of high level knowledge becomes increasingly difficult the 
less constrained the domain. That is, there is not only an exponential growth in labour as 
more concepts are added. The complexity of the relations also increases. For the extreme 
case of an unconstrained domain, it is simply not possible to use a framework like that 
described in Young et al. (1989), irrespective of the access to automatic methods. 
However, unconstrained domain speech understanding would require true artificial 
intelligence, which seems to be a long way into the future and is not within the scope of 
this paper. 

The matching in the system described by Young et al. (1989) is made on the word 
level with the language model as a front-end connecting meaning representations to word 
sequences. However, with the help of prosodic cues, the matching between input and 
hypothesised utterances could be done (at least in part) on a higher level and the higher 
level linguistic knowledge would thus truly integrated into the speech processing system. 
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Prosodic information is typically not used in commercial ASR/ASU systems. However, 
much progress has been made in the last few years in making use of prosodic information 
in experimental systems. Prosody has been used for different purposes and at different 
levels of analysis. Waibel (1987), for example, shows that prosodic knowledge sources 
(syllable duration, the relations between the duration of voiceless and vocalic segments  
and the syllable duration, word intensity patterns and word stress patterns) conveys much 
additional information for word hypothesisation (in relation to segmental phonetic 
knowledge sources).   
 Further, Lee et al. (2001) have used prosody at a higher level to localise prosodic 
phrase boundaries prior to word hypothesisation. The detection of prosodic phrase 
boundaries is useful since many phonological rules – especially for coarticulation – are 
constrained to work within a prosodic phrase. Correct prosodic boundary detection can 
thus be used to increase word recognition accuracy. Also, the use of prosodic boundary 
information can reduce the search space (cf. Lee et al. 2001). 
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Shriberg & Stolcke (2001) present a list of applications for which they have used 
macro-level and word-level prosody. These applications include sentence segmentation, 
disfluency detection, topic segmentation, modelling of turn-taking including different 
types of overlapping speech and also word recognition (like Waibel, 1987). For deriving 
prosodic features, they used a framework that learns “raw” prosodic features (durational 
and pitch-based) from speech data with aligned phonetic transcriptions. The learning 
procedure does thus not utilise any a priori phonological prosodic categories (such as e.g. 
dialogue acts and phrase boundaries). Such categories are instead derived from the 
learned “raw” classes.  

As a final example of the use of prosodic information in speech processing systems, 
prosody is widely used in the Verbmobil speech-to-speech translation system (Wahlser, 
2000; Niemann et al., 1997; Hess et al., 1996). The areas in which prosody is used as an 
information source in Verbmobil are parsing (Kompe et al., 1997), exclusion of 
erroneous semantic representations, dialogue act segmentation and classification 
(Warnke et al., 1997) as well as translation, generation and speech synthesis (which are 
areas outside the scope of this paper).  

The type of prosodic information most widely used in Verbmobil is information 
associated with clause boundaries. Such information is used both for parsing and for 

dialogue processing (Niemann et al., 1997). In addition to boundary detection on the 

macrosyntactic level, Hess et al. (1996) also mention the use of prosodic information in 
disambiguation at many levels (semantic and pragmatic disambiguation, sentence mood 
determination, compound versus non-compound disambiguation) and search space 
reduction, e.g. through the use of stress patterns (at the word level). 

In the Verbmobil prosodic module, prosodic information is derived from the speech 
independently from word hypothesisation. Word hypothesis information and prosodic 
information are then combined before decisions about word sequences are made. Prosody 
is thus treated as a knowledge source independent from segmental phonetic information. 
Further, prosody is seen as additional side information (Hess et al., 1996).  

Since prosodic phrase boundaries are correlated with syntactic boundaries, macro-
level prosodic bottom-up information can be used in combination with higher level top-
down linguistic information. This is, however, not done in any systematic way in the 
systems just described. 
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Two paradigms for high level automatic speech processing, differing in their view of 
what speech is, have been presented. Automatic speech recognition and automatic speech 
understanding systems have been compared to illustrate the difference between the 
paradigms. The benefits of using more linguistic and phonetic knowledge in high level 
automatic speech processing have been discussed. Some literature showing that such 
knowledge can indeed increase accuracy and reduce search space in ASR and ASU 
systems have been presented. It has been argued that it is not optimal to use different 



 8

knowledge sources independently and that there is a need for integrating knowledge 
sources in the automatic interpretation of spoken language. 
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