
Monophonic Music Recognition

Per Weijnitz

Speech Technology 5p

per.weijnitz@gslt.hum.gu.se

5th March 2003

Abstract

This report describes an experimental monophonic music recognition

system, carried out as an exercise in signal processing and recognition. It

does not involve any ground-breaking new methods, but rather techniques

well-known from the area of speech recognition. The method and the

system are described and evaluated, and compared to other work in the

field.

1 Introduction

This report describes an experiment with the goal of evaluating a hypothetical
method for recognising monophonic music in wave files. A piece of music is
monophonic if the maximum number of notes played at the same time is one.
The hypothetical method can briefly be described as follows. Combining several
basic, well known techniques used in the field of speech recognition, it should
be possible to convert a number of recorded pieces of music into a suitable
representation, and store in a database. Given an unknown piece of recorded
music, it should then be possible to find the song most similar to it from the
collection of songs in the database. There are two sub tasks involved. The first
is to distinguish noise and silence from a tone, and determining a tone’s pitch.
The second is to perform recognition.

An experimental system was built, and a small set of testing material was col-
lected consisting of whistling. The evaluation will show the abilities to recognise
songs in the database and reject songs not in the database. The results will be
compared to similar systems’ results.

This kind of work belongs to the field of music information retrieval, MIR. A
number of projects have been published that address monophonic music recog-
nition, but it seems like most, if not all, have been trained on perfect data.
Perfect, in the sense that it was either converted from MIDI songs1 or taken

1Musical Instrument Digital Interface, a widely accepted standard for music communication

1

from existing databases of symbolic music representations. This work will be
trained on the same kind of waveform data that will be used in the recogni-
tion process. In case the conversion from the input waveform to the symbolic
representation is not perfect, this implies a decreased probability of successful
recognition since there may be errors in the database.

This work involves the practical application of a number of techniques that are
central in speech recognition, which makes it a task suitable for an introductory
course in speech technology. Being familiar with and able to use such methods
seems important in order to do further research in this field. The techniques in-
clude discrete Fourier transformation and edit distance. Additional techniques
were deployed to handle various problematic issues, such as handling noisy sig-
nals and far-from-perfect music.

Given the limited time allocated to this assignment, it is necessary to set some
limitations on its extent. It will only be tested with short songs or parts of songs
like refrains. Primarily, it will not try to recognise parts of songs, which means
it will only try to map unknown input to whole songs in the memory. It will
not be a real time tool and only do batch operations. No effort will be put into
optimisation. Finally, it will not involve recognition of the type of the sound
source.

The next section is an introduction to existing work and to the characteristic
problems involved in music recognition. The following section describes the
method and the experimental test system. Finally, there is an evaluation and a
discussion including future work.

2 Background

In this section I will present some related work, followed by an introduction to
the terminology and how tone recognition differs from voice recognition.

The Tuneserver is a closely related project ([Prechelt and Typke, 2001]) and
software system. It recognises a musical tune whistled by the user, finds it in
a database, and returns its name. It is one of several systems that use a com-
mon music representation, proposed by Parsons ([Parsons, 1975]), which don’t
use the absolute tone values but only the direction of the melody 2. Duration
and rhythm are also ignored. The article mentions a similar project, Query
by Humming ([Ghias et al., 1995]), which uses autocorrelation instead of spec-
trum analysis like the Tuneserver. The MELody inDEX, system was designed
to retrieve melodies from a database on the basis of a few notes input sung
into a microphone[McNab et al., 1997]. Its pitch determination algorithm finds
repeating pitch periods in the waveform without performing spectrum analysis.
A Pitch Determination Algorithm, PDA, is responsible for finding the correct
pitch of a tone (see [Liljencrants, 1997], p16-18).

and representation.
2An example: C4, E4, G4, C4 would be represented by Up, Up, Up, Down.

2

2.1 Sinus Tone vs. Voice

Here, a tone is defined as a signal with a single fundamental pitch. I will not
deal with overtones, but assume that it is possible to establish the fundamental
pitch by the technique described below. A voice is generally producing a sound
that is more complex than a single sinus tone. According to the source-filter
theory, the voice can be perceived as having a glottal sound producing source
due to vibrations of the vocal chords as the air stream from the lungs passes
through the larynx. The vocal tract performs filtering and the sound radiates
from the nostrils and the lips.

Figure 1: Spectrograms of singing, whistling and a sinus tone.

This figure shows that the sound produced by the voice can be more complex
than the sound of a whistling, which in turn is more complex than a sinus tone.
Although the whistle in this example is quite clean, it often happens that the
tone is scrambled by the friction sound of the wind passing the lips. A computer
generated sinus tone has the potential of being the cleanest of the three, as it
does not contain the noise that is present in analogue sounds. The sampling
quality, in terms of amplitude quantisation and sampling frequency, is crucial
to the noise level and the sound quality of any sampled sound.

In speech recognition, the number of parameters needed to describe a voice
is higher than merely a pitch. Apart from the pitch of the voice, additional
parameters are needed to describe the filtering, formants F1-F4. Dealing with
a monophonic signal, only one parameter is needed to capture pitch. For more
complex processing, where more information than pure pitch is needed, more
parameters are needed even for monophonic signals.

In this assignment only whistling has been used, which is relatively uncompli-
cated. Other instruments have characteristics that may make them less suited
for the described method.

Speech recognition and music recognition share a number of difficulties. In
speech, there are no clear boundaries, neither on the phone level nor on the
word level. In a piece of music produced by whistling, this is often the case
too. There is vibrato and continuous glides between notes. Distinguishing noise
from the instrument is the same kind of problem as distinguishing noise from
a voice. The noise may come from various sources, like room acoustics, other

3

sound sources, bandwidth limitations of the sound channel, radio static and
reverberation to mention a few. Errors in music performance, like being out of
tune or continuously changing key can be thought of as a kind of counter part
to speech disfluencies.

2.2 Characteristic Problems

The monophonic music recognition task involves a number of problems:

1. Separating the tone from noise. The instrument itself can emit sounds that
are not tones. Whistling produces a fricative sound when the air passes
the lips. Background room noise and room acoustics can also contribute
to the noise level. The quality of the microphone, the position of the
sound source, and the quality of the analogue to digital conversion are
also of importance. If spectrum analysis is used, and as long as the noise
does not have a higher power at some frequency than the tone has, it will
not confuse the pitch determinator. Noise can confuse the preprocessor
that attempts to find the start of the signal by measuring the input wave’s
amplitude. If the noise is stronger than the preprocessor’s threshold value,
it will pass that stage as a tone.

2. Separating the tone from silence. Especially if a piece of music has a
sequence of notes of the same key, it is important to be able to make out
the silence in between them. Otherwise it will overlap with a piece of
music that has the same note, but with a long duration. This problem
can be handled by threshold values, on both the amplitude and the power
at different stages in the process.

3. Classifying frequencies into distinct notes. A related problem is if the
musician systematically plays a few percent off the exact frequencies, for
example with a guitar that is in tune with itself, but not with a tuning
fork.

4. A song in the database may have been played in one key and in one tempo,
and the candidate song to be recognised may be played in another key and
another tempo. This is related to the way the music is finally represented.
The most direct way would be to simply store either absolute frequencies,
or the tones they represent. This would however lead to problems when
there is a difference in key. Parsons’ code does not have this problem, since
it only represents whether a note is above, the same or below the previous
note. Downie and Nelson use intervals instead, which represent the relative
direction and distance between every note ([Downie and Nelson, 2000]).

5. Errors in the performance of a piece of music. Just like there exist speech
disfluencies, there exist errors in music performed by humans. Extra
pauses, wrong/extra/missing notes etc. Improvisation is not an error,
but it certainly makes things harder.

4

3 The Experiment

In this section I will describe the hypothesis and the experiment. The hypothesis
to be evaluated is that it is possible to use a number of techniques from the
speech technology domain to perform monophonic music recognition on the basis
of wave files. The system was implemented as modules connected in a standard
UNIX pipe, where the first module either takes its input from a microphone or
a wave file. The languages C and Perl were used.

The following terms will be used in this section:

• Sampling rate. The number of samples that is used per second. The
sampling rate sets a limit on tones’ maximum frequency. The Nyquist
frequency is the bandwidth of a sampled signal, and is equal to half the
sampling rate of that signal. It is the highest frequency that can be rep-
resented unambiguously. Higher frequencies are aliased.

 0 1
SAMPLE

 0 1
SAMPLE

A
M
P

A
M
P

1

−1 −1

1

Figure 2: The curves denote the analogue wave to be sampled. The dotted line
marks valid sample values. In the left case, the wave frequency is exactly half
the sampling rate, and the samples will properly describe the wave. In the right
case, the wave frequency is higher than half the sampling rate, which results in
samples that do not reflect the tone.

• Sample blocks. The continuous stream of samples, each representing
1/(sample rate) seconds, is divided into blocks that will be the small-
est time unit the program will work with. A 0.1s sample block consists
of 0.1*(sample rate) samples etc. Tone changes within a block will be
lost, unless they continue on to the following block.

• Power. The pitch determination algorithm computes a power spectrum
for each sample block. The power spectrum shows the signal’s energy for
every frequency (see further [Liljencrants, 1997]).

• Threshold value. In this report, a threshold value is a limit between low
and high values, typically used to separate noise from potentially interest-
ing input. The threshold values in this system are expressed in percent,
which means the data are normalised before the discrimination takes place.

This is an overview that describes how the process works:

5

Preprocess Spectral
Analysis

Postprocess

Absolute tones to
relative shifts

Parametrisation Remove peaks

Figure 3: The base process.

This base process is the starting point for both the building of the database of
known songs, and the music recognition. In both cases, an additional module is
appended to the base process. Each step is described in detail below.

Preprocessing. The preprocessor takes raw samples as input and tries to
determine where the music starts and stops. There can be noisy silence including
clicks and static before and after the music. Noise like clicks is not removed by
threshold values on amplitude or power, since it can be quite strong. The idea is
to identify very short transients in the amplitude, where silence goes to a short
loud sound, followed by silence. The start and end of the music is recognised by
a loud, not so short sound bordering to a stretch of silence which is connected to
either the start or end of the sample stream. The required degree of loudness and
the minimum length are determined by threshold values. Once the preprocessor
has determined what part of the stream is music, it normalises its volume before
sending it on to the next module.

Spectral Analysis. The spectral analysis is part of the pitch determination
algorithm. It divides the input stream into sample blocks. For each block, a
fundamental pitch is determined. This is done by computing a power spectrum
for each block (see further [Pickover, 1990]). A power spectrum uses a discrete
Fourier transform to sum up, for each sample in the block, the energy at certain
frequencies. The frequency with the highest energy is selected as the dominant
pitch. It is possible but not necessary to compute the power for all discrete fre-
quencies that the human ear can register. The frequencies used by the program
are the frequencies of octave 4 to 8, twelve notes in each (C4, C#4, D4, D#4

etc). The program also has a resolution parameter which makes it possible to
divide each of these steps into smaller steps. In case the tones are around 50%
off a clean note, rounding errors might occur.

Postprocessing. Before determining that there is a tone at a certain pitch
in the block, all blocks’ powers are normalised. This is done by determining
the maximum power of the melody, and converting each power to its percent
of the maximum. This is to make it easier to use threshold values that are not
absolute for what is silence and what is a tone. Furthermore, the postprocessor
repeats the work of the preprocessor, in order to capture any mistake that was

6

made there. It will determine the start and the end of the music by locating
the place where initial silence is changed into tones of at least a minimal length
and power.

Parametrisation. Finally, the array of powers are compared to the silence
threshold, and the result is sent to the next module. For powers below the
threshold, a symbol representing silence is sent, and for the others, the index
(scaled according to the resolution parameter) of the note representing the dom-
inant pitch is selected.

Peak Removal. A certain kind of noise can result in quick but large tran-
sients, looking like 43, silence, 45, 189, 41, This can happen when
the whistler accidently has blown into the microphone, or something has gotten
in contact with the microphone. These are replaced by silence, as that results
in a smaller penalty in the recognition process. There is always a risk that
something is removed that was done intentionally by the musician, but it seems
quite unusual with seemingly random notes several octaves above or below the
surrounding notes’ octaves.

Absolute Tones to Relative Shifts. In order not to be dependent on certain
keys, the absolute tone numbers are changed into relative steps. This is done
by, for each note, taking the direction and distance to the previous note. The
first note is 0. For example, 44, 46, 42 is represented by 0 2, -4, which is
also the representation for the same note sequence transposed to other keys, like
45, 47, 43 or 32, 34, 30. The difference between this and Parsons’ code is
that here the distance is included too, not just the direction.

The piece of music is now represented by a sequence of shifts, each representing
the number of seconds of the size of the sample block, which can be around 0.1s.
This opens for encoding both pitch and duration in the database. However, due
to time limitations, this experiment only covers encoding of pitch. It would be
an interesting task for the future to include duration in the representation.

Sequences of the same tone are collapsed in order to decrease the amount of data.
The recognition uses an type of edit distance that does not punish differences
in length of sequences of the same symbol, but having less data decreases the
memory consumption and speeds up the process.

Song Database. The data is now ready to be stored, along with its originat-
ing file name for identification. The format is:

|’’filename’’ length0,tone0 length1,tone1 length2,tone2 ...

An example:

|"gubben noa" 3,0 3,0 3,0 3,4 3,-2 ...

7

Recognition. Recognition is done by computing the edit distance between
the input sequence and all reference sequences in the database. This involves
computing the local distances. By a small modification to the standard way
of doing this, the method was adapted to data that is not merely equal or not
equal, which is the case when comparing characters of strings. The notes are
expressed as relative shifts, which means we rather want to capture the grade
of difference than merely 0 or 1 depending on whether characters match or not.
The local distance between two notes is defined as abs(n1 - n2), eg abs(3 -

3) = 0, abs(-2 - -3) = 1. The global distance compensates for speed dif-
ferences between the reference and the candidate. This has both advantages
and disadvantages. The advantage is that you don’t need to know the tempo in
which the reference music was played, when you record music to be recognised.
The disadvantage is that you loose important information like tone duration and
pause duration. However, for small to medium size collections of songs, this can
still work. If the songs are in a genre that are using a limited set of tones, the
problem of overlaps increases, and could lead to worse performance. When the
global distances have been computed for all reference songs, they are ranked by
lowest distance and if the best match is below an acceptance threshold value, the
system will consider it recognised as a song in the database. If the best match
is worse than the acceptance threshold, it is considered to be an unknown piece
of music.

A few additional programs were made to help in the process. A visualisation tool
was made which draws a spectrogram with the selected pitch marked out, along
with the determined beginning and end of the music. This helped in manual
tuning of the parameters. A second tool using distributed computing was made
for brute force tuning of parameters. As the number of tuning parameters
increased, it helped in finding some successful configurations.

4 Evaluation

The hardware used was an IBM ThinkPad T23. The built-in microphone is not
optimal, but I assumed it would be sufficiently accurate for this experiment.
The same assumption was made for the built-in audio controller 3. The sampler
program was set to 16 bit at a rate of 16000 times/sec. The Nyquist frequency
is 8kHz which is sufficient for our purposes.

The evaluation of the system will consist of training the system with 13 pieces
of music, each in two recorded versions. It should preferably have been trained
more rigorously, but there was no time. Then 26 candidates, all separately
recorded, will be run through the system. 13 of these are songs that the system
has been trained with and should recognise, and 13 are songs that the system has
not been trained with. This way, it will be possible to tell the ability to recognise
songs in the database, and the ability to reject songs not in the database.

3Intel Corp. 82801CA/CAM AC’97 Audio (rev 1)

8

There are obvious flaws in this evaluation. The number of songs is very low,
with more songs the results would be more reliable. Preferably there should have
been more than one person producing the whistled samples, a system like this
should be whistler independent and potential problems associated with different
persons will not be revealed. The three different versions of the songs in the
database, two training versions and one evaluation version, were sampled at
different times without intention of matching key and tempo.

Precision: 45%
Recall: 38%

Table 1: The ability to recognise songs in the database. The precision is cal-
culated as # of accepted relevant songs / # of accepted songs = 5/11 and the
recall is calculated as # of accepted relevant songs / # of relevant songs = 5/13.

Precision: 73%
Recall: 84%

Table 2: The ability to reject songs not in the database. The precision is
calculated as # of rejected relevant songs / # rejected songs = 11/15 and the
recall is calculated as # of rejected relevant songs / # relevant songs = 11/13
(relevant means that which should be rejected).

It is somewhat difficult to compare these results to other systems’ results. First,
because the other systems I have found return a list of songs as an answer
whereas this system selects one song only. Second, the other systems have not
been trained on the same kind of input as this system. Instead of using a
sound wave, other systems tend to use existing symbolic representations that
are 100% correct. The Super MBOX is a system using autocorrelation for
pitch determination and a dynamic time warp measure for tempo differences. It
reports a top-20 success rate, meaning the correct song is in a list of the 20 best
matches, of 75% based on a database containing 13000 songs and a test material
of 2000 sound clips ([Jang et al., 2001]). It is not clear how that evaluation deals
with songs not known to the system. The Tuneserver reports that the system
returns the correct song somewhere in a top-40 list 77% of the attempts, and in
44% the best match was correct. This excludes attempts with songs not known
to the system. For my system, the corresponding rate is 38%.

The system was not constructed with speed in mind, and has not been optimised.
Recognition is very slow, the test run above of matching 26 songs to a database
trained with 26 samples took around 13 minutes on a 1GHz, 256MB RAM
computer.

9

5 Conclusion

The task in this experiment was to see whether a proposed method consisting
of combining several basic speech recognition techniques could be a successful
way of performing monophonic music recognition. An experimental system was
built and tested using sampled whistling for training and recognition. The pitch
determination was based on spectral analysis. The symbolic representation of
songs were integer shifts representing direction and distance to the previous
note. The recogniser computes the global distance, using the standard way
except for the way local distance is computed. This has the advantage of not
being sensitive to tempo differences, but it also means that duration is lost.
This makes the music recognition somewhat primitive. A drawback with the
current system is that it will not be able to match parts of songs, as any input
is mapped to the entire songs in the database.

The evaluation, despite the flaws mentioned, indicate that it is possibly not too
far behind the other systems. The only comparable rate found was the recall
of Tuneserver, 44% and the recall of this system, 38%. This may not mean
anything however, as the evaluation of the Tuneserver is much more detailed and
exhaustive than this report’s evaluation which only included a small number of
tests. This system was constructed in a very short time as a course assignment,
and it is expected to perform worse than bigger systems.

5.1 Future Work

There are many things that could be improved.

• It should be possible to include tone duration as a relative unit, simply by
analysing the song after the relativisation step, and determine the existing
length of tone sequences. They could then be normalised. If duration is a
relative unit, it could be integrated in the distance table.

• For music that is systematically out of tune by a certain percent, the pro-
gram could recognise this before parametrisation, and compensate. This
could improve parametrisation, especially if the tones are around 50% out
of tune.

• Other ways of doing recognition should be evaluated. HMMs and Viterbi
are successfully used in speech recognition, and could work well here too.

The system and whistling data is available for download at
http://stp.ling.uu.se/~perweij/gslt/kurs/speech/.

10

References

[Downie and Nelson, 2000] Downie, S. and Nelson, M. (2000). Evaluation of
a simple and effective music information retrieval method. In Proceedings
of the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 73–80. ACM Press.

[Ghias et al., 1995] Ghias, A., Logan, J., Chamberlin, D., and Smith, B. C.
(1995). Query by humming: musical information retrieval in an audio
database. In Proceedings of the third ACM international conference on Mul-
timedia, pages 231–236. ACM Press.

[Jang et al., 2001] Jang, J.-S. R., Lee, H.-R., and Chen, J.-C. (2001). Super
mbox: an efficient/effective content-based music retrieval system. In Pro-
ceedings of the ninth ACM international conference on Multimedia, pages
636–637. ACM Press.

[Liljencrants, 1997] Liljencrants, J. (1997). Speech signal processing. Handbook
of Phonetic Science.

[McNab et al., 1997] McNab, R. J., Lloyd, A., Smith, D. B., and Ian, H. (1997).
D-lib magazine: The new zealand digital library melody index. World Wide
Web. http://www.dlib.org/dlib/may97/meldex/05witten.html.

[Parsons, 1975] Parsons, D. (1975). The directory of tunes and musical themes.

[Pickover, 1990] Pickover, C. A. (1990). Computers, Pattern, Chaos and
Beauty. St. Martin’s press, Inc.

[Prechelt and Typke, 2001] Prechelt, L. and Typke, R. (2001). An interface
for melody input. ACM Transactions on Computer-Human Interaction
(TOCHI), 8(2):133–149.

11

