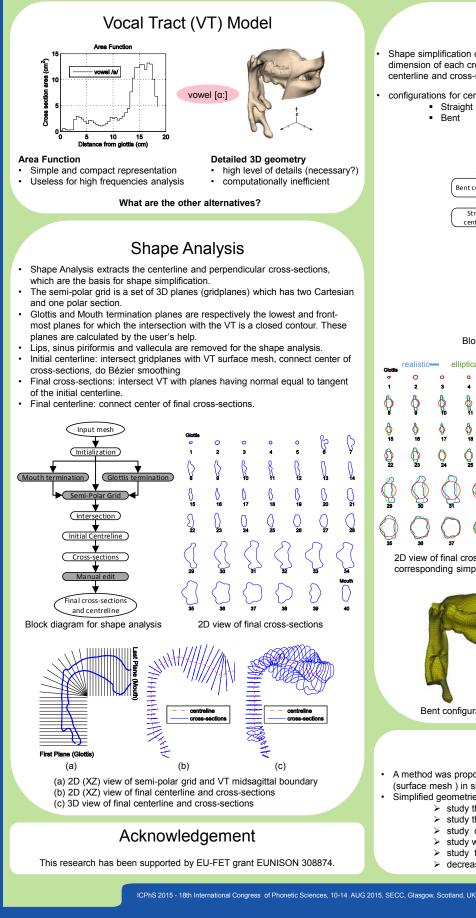
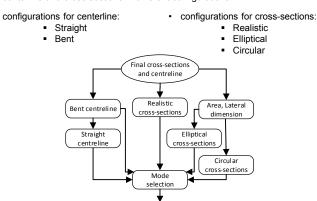


Simplification of Vocal Tract Shapes With Different Levels of Detail

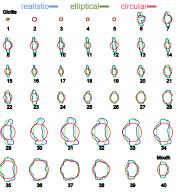

Saeed Dabbaghchian¹, Marc Arnela², Olov Engwall¹

¹Department of Speech, Music, and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden ²GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Catalonia

eunison

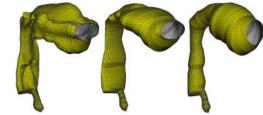

aSalle

saeedd@kth.se, marnela@salleurl.edu, engwall@kth.se


Shape Simplification

Shape simplification calculates the angle, center, area, length, and lateral dimension of each cross-section. This information is used to regenerate centerline and cross-sections in different configurations.

Surface mesh generation Simplified VT


Block diagram for shape simplification

Straight configurations, from up to down: realistic, elliptical, circular

2D view of final cross-sections and corresponding simplifications

Bent configurations, from left to right: realistic, elliptical, circular

Conclusion

A method was proposed and implemented to regenerate the VT geometry (surface mesh) in simplified versions with different levels of detail.

- Simplified geometries may be used to
 - study the acoustic effects of simplification
 - study the acoustic properties in physical replicas \triangleright
 - study dynamic sounds such as diphthongs
 - study wave equation using multimodal methods study the acoustic effects of geometrical perturbation
 - \triangleright decrease the computational cost