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Abstract 
Finding the muscle activations during speech production is 
an important part of developing a comprehensive 
biomechanical model of speech production. Although there 
are some direct ways, like Electromyography, for 
measuring muscle activations, these methods usually are 
highly invasive and sometimes not reliable. They are more 
over impossible to use for all muscles. In this study we 
therefore explore an indirect way to estimate tongue 
muscle activations during speech production by combining 
Electromagnetic Articulography (EMA) measurements of 
tongue movements and the inverse modeling in Artisynth. 
With EMA we measure the time-changing 3D positions of 
four sensors attached to the tongue surface for a Swedish 
female subject producing vowel-vowel and vowel-
consonant-vowel (VCV) sequences. The measured sensor 
positions are used as target points for corresponding virtual 

sensors introduced in the tongue model of Artisynth’s 

inverse modelling framework, which computes one 
possible combination of muscle activations that results in 
the observed sequence of tongue articulations. We present 
resynthesized tongue movements in the Artisynth model 
and verify the results by comparing the calculated muscle 
activations with literature. 

Keywords: speech, tongue, muscle activation, 
electromagnetic articulography, biomechanics. 

1. Introduction 

Since speech is the most important tool for human 
communication, understanding the nature of the voice and 
its production mechanism has triggered research for 
centuries. A model of the human voice apparatus has 
numerous applications in different domains, e.g. helping 
clinicians to realize how voice problems arise, and how 

they should be diagnosed and treated. If the model is able 
to simulate generation of natural sounding voices, it could 
further both increase our knowledge of speech production 
and lead to methods to synthesize speech more flexibly. 
This is the aim of the on-going European project 
EUNISON (eunison.eu), which combines biomechanical 
modeling of the voice organs with fluid mechanics 
simulations of the wave propagation in the vocal tract. 

The tongue has a particularly important role in speech 
production, since its position and shape determine the 
acoustic output for a large number of phonemes. Since it is 
hidden from normal view, various methods for 
measurement and visualization have been employed over 
the decades, including X-rays, Magnetic Resonance 
Imaging (MRI), Electromagnetic Articulography (EMA) 
and Electropalatography. The relatively rapid tongue 
movements are however a challenge for the measurement 
techniques. As MRI acquisition times have been decreased 
in recent years, it has been possible to acquire sequences of 
2D images in the mid-sagittal plane. As an alternative, 
EMA is a simpler and faster method for recording tongue 
movements by point-wise tracking of sensors attached to 
the tongue surface  [1] [2] [3]. As the points on the tongue 
cannot move independently because they are connected 
through the tissues and muscles, it is possible to recreate 
the entire tongue deformation using only 3-4 sensor  [4] [5].  

A biomechanical model of tongue, which simulates the 
muscle contractions, can be used to find the entire tongue 
deformation during the speech production based on flesh-
point measures. Gérard et al.  [6] developed a 
biomechanical tongue model that simulates the muscle 
activation effect on the tongue shape by using the finite 
element method (FEM). Fang and et al.  [7] developed a 3D 
tongue model to study the muscle activation and speech 
motor control. In order find muscle activation from 
measures of the tongue movements, an inverse problem 
must be solved, i.e. finding a combination of muscle 
activations that generates the observed tongue shapes. 
Stavness et al. developed an inverse tongue model  [8] in 
which some points on the tongue are defined as targets. By 
assuming that the trajectories of these target points are 
known, the muscle activations are computed so that the 
tongue model follows the trajectories of the target points. 
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After computing the muscle activations, the biomechanical 
model can predict the entire tongue deformation. 

In this paper, we utilize the inverse tongue model in 
Artisynth as a biomechanical model and try to find the 
muscle activations and the entire tongue deformation 
consequently by using EMA data as trajectory for the 
target points. In the rest of this paper, section 2 describes 
the EMA data, section 3 the Artisynth inverse tongue 
model and section 4 the preprocessing of EMA data. 
Simulation results are presented in section 5 and discussed 
in section 6. 

2. EMA data 

We use EMA data of a native female speaker of Swedish 
producing phoneme sequences of vowel-vowel and vowel-
consonant-vowel combinations, such as /ɑ:i:/, /ɑ:u:/, /i:u:/, 
/as:a/ and /ak:a/. 

A Carstens AG500 articulograph  [9] with twelve 
sensors is used to record the 3D position and orientation of 
each of the ears, the corners of the mouth, the upper and 
lower lips, the nose, the lower jaw and four sensors on the 
tongue (c.f. Figure 1). The four sensors on the tongue are 
placed on the surface in the mid-sagittal plane: one near 
the tongue tip, another at the back of the tongue and two 
others at the tongue body evenly spaced between the tip 
and back sensors. The sensors by the ears are used as 
references for compensating for the head movement. 
Although 3D positions and rotations for all twelve sensors 
are available, we use only the 3D positions of the sensors 
on the tongue, as input for the inverse tongue model, in 
this study.  

The audio files of the utterances were synchronously 
recorded with sensor positions.  

 

 
Figure 1. Midsaggital (x-z) view of the EMA data during 

/ak:a/ for the 12 sensor: (1-2) ears, (3) nose, (4, 5, 6, 8) tongue, 
(9) jaw, (7 and 10) lip corners, (11) upper lip and (12) lower 

lip. 

3. Artisynth Inverse Tongue Model 

Artisynth is a 3D biomechanical simulation environment, 
which allows the physical simulations of anatomical 
structures  [10]. In this paper, we utilize the 3D finite 
element tongue model developed by Stavenes et al.  [8]. In 
this model, eleven muscles control the tongue deformation, 
namely genioglossus (GG), styloglossus (SG), geniohyoid 
(GH), mylohyoid (MH), hyoglossus (HG), verticalis (V), 
transversus (T), inferior longitudinal (IL) and superior 
longitudinal (SL). The genioglossus was further divided 
into anterior (GGa), middle (GGm) and posterior (GGp). 
The placement and fibre directions of these eleven muscles 
are illustrated in Figure 2. In the tongue model the user can 
on the one hand change the muscle activations and observe 
the tongue deformation or movement. On the other, it is 
also possible to assign the trajectories of a number of 
markers on the tongue surface and let the model follow 
these trajectories optimally, by combining the activation of 
the different muscles so that the difference between the 
marker and target positions are minimized.  

 

    

   

   

  
Figure 2. Placement and fibre directions in the tongue model 
of the muscles (in order from top left) genioglossus posterior 

(GGp), genioglossus middle (GGm), genioglossus anterior 
(GGa), styloglossus (SG), geniohyoid (GH), mylohyoid (MH), 

hyoglossus (HG), verticalis (V), transversus (TRANS), 
inferior longitudinal (IL) and superior longitudinal (SL). 
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4. Data Preprocessing 

Since EMA measurements are noisy and have spurious 
measurement errors (see for example sensor 5 in Figure 1), 
a moving average filter is used to smooth the sensors 
movement. This filter averages the five previous samples 
in each time step.  

Furthermore, we need to consider that the EMA data 
has been collected for one subject and the tongue model 
has been created from another subject. Therefore, another 
preprocessing of EMA data is required to compensate for 
the differences between the tongue sizes and shapes of the 
two subjects. To do this, the average of the EMA data 
during the silent period of the corresponding audio file is 
computed, assuming that these averages indicate the sensor 
positions when the tongue is in rest position. Then, these 
positions are mapped onto the mid-sagittal plane of the 
tongue model in Artisynth, so that the experimental set-up 
in the EMA data acquisition is replicated in the tongue 
model. Each EMA sensor is represented by a virtual sensor 
in the tongue model, with distances between sensors 
preserved (c.f. Figure 3). The computation of the 
positioning for each sensor is not automatic and needs user 
interaction. This is done only one time for each sensor; and 
once it is computed, the EMA data are updated to the new 
coordination system.  

The transformed EMA data is imported to Artisynth to 
run the simulation of the inverse tongue model. Initial 
attempts revealed that the span of the original tongue data 
was too large to be handled by the model, causing the 
simulations to become unstable and stop. Investigations 
revealed that this was caused by one muscle being 
saturated for a long time when the model tried to reach the 
target position. To avoid the instability in simulations, the 
span of the tongue movement was decreased to 70% of the 
original data. This scaling was determined experimentally 
based on muscle activation levels, and a future, more 
elaborate study should instead set the scaling based on 
differences in articulatory space for the subject measured 
with EMA and that used for the tongue model. 

 
 

 
Figure 3. Virtual sensor positions on Artisynth tongue model 

5. Results 

We exemplify the results obtained with the /ak:a/ 
utterance. First, we consider the target and model positions 
to determine how well the Artisynth inverse tongue model 
follows the target trajectory. We then consider the muscle 
activation used to create the trajectories. In the following 
discussion and figures, X, Y, and Z directions correspond 
to the coronal, sagittal and transverse planes, respectively. 

 

(a)    

 (b)  

(c)  

Figure 4. Position of target and model for the four sensors in 
the (a) X-, (b) Y- and (c) Z-directions 
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5.1 Target and Model position 

Figure 4 compares the four target and corresponding model 
positions in three different directions. It is apparent from 
Figure 4 (a) and (c) that the model is able to follow the 
target points with good accuracy in the midsagittal plane 
(X- and Z-directions) during the initial and final /a/ (up to 
1.2 s and after 1.6 s). During /k:/, at time 1.2-1.6 s, the 
model recreates the same midsagittal movement, but the 
error increases. This could be caused by two different 
factors. Firstly, as the tongue moves to articulate the 
occlusion in /k:/, the velocity increases and the model may 
have more difficulties following the targets, even if the 
velocity is not substantially larger than during the /a/. 
Secondly, system latency may introduce a delay in 
decreasing the prediction error for larger position changes: 
in general, the model trajectory is slightly smoother than 
the input. The performance for more varied phonetic input 
and the cause of the increase in prediction error will be 
investigated further in future studies.  

Figure 4 (c) shows that the model completely fails to 
follow the target positions in the lateral (Y-direction). The 
span of target position in the Y-direction is however less 
than 2 mm, and investigations of the four target positions 
indicate that the variations are often in opposite directions: 
when one target point moves to the right, another moves to 
the left. It is apparent that the tongue model structure 
cannot account for this kind of skew movements in the Y-
direction.  

Since lateral tongue movements have little impact on 
the acoustic output, it may indeed be reasonable to discard 
these small variations in the Y-direction and perform the 
inversion solely in the midsagittal plane, using X- and Z-
data.  

A video of resynthesized tongue movements is available 
in EUNISON YouTube channel  [11]. 

5.2 Muscle activation 

Figure 5 depicts the audio waveform, sensors position 
error and muscle activation for utterance /ak:a/, where the 
sensors position error is the Euclidean distance between 
the target and model in 3D coordinates. According to 
figure 5, none of the muscles is active during the initial 
silent period and the tongue is in rest position. The muscle 
activations then start slightly before the acoustic output. 
The most active muscles during the production of the 
vowel /a/ are GGA and STY. When the tongue is moved to 
articulate /k:/ at 1.2 s, these muscles relax, and GGP 
becomes the most active, briefly seconded by TRANS. 
During the final /a/ the GGP activity goes down, and GGA 
becomes active again, but with weaker activation. It can be 
noted that slight muscle activation persists after the 
production of the final /a/, but this is natural, since the 
utterance was extracted from a longer sequence of vowel-
consonant-vowel combinations.  

We have compared muscle activation for the phoneme 
sequences /ɑ:i:/, /ɑ:u:/, /i:u:/ and /ak:a/, and even if it is not  

Table 1. Muscle activation, in order of importance, found by 
the Artisynth model in a pre-study  [11], compared to 

literature references. Matches indicated in bold. 

 Artisynth inversion Literature sources 
/a:/ GGa, GGm, SL, SG, 

HG 
HG, GGa  [13] or 
SG  [7] 

/i:/ GGp, IL, MH GGp, MH and 
GGa  [13] 

/u:/ GGp, SG, GGa, MH SG, GGp, GGa, HG, 
MH  [13] 

 
possible to claim that the inversion procedure has 
determined the actual muscle activation used by the 
subject, the results nevertheless appear plausible. In a pre-
study [12] to this paper, the second author compared the 
dominating muscles in the Artisynth model for the cardinal 
vowels with previous studies, and found a general good 
correspondence, as summarized in Table 1. 

In general most of the muscles, which could be 
expected to be active, based on earlier studies  [7] [13], were 
also activated in the inversion, even if the order of 
importance differed to some extent, and some mismatches 
were found. This could be due to differences between 
speakers and corpora, and not necessarily to unexpected 
behaviour of the inversion model.  

6. Conclusions and Discussion 

In this preliminary work, we present our simulations and 
observations of studying muscle activation using the 
biomechanical tongue model in Artisynth in combination 
with EMA data. This study indicates that this combination 
could be used as a powerful tool for phonetic research, 
since the tongue movements observed in the EMA 
measurements can, to a large extent, be replicated with the 
model, by activating muscles in a plausible manner. The 
study has further identified several issues for future 
studies, such as increased prediction error for more rapid 
tongue movements and the effect of speaker differences in 
articulatory space. It should further be noted that the 
present study focuses solely on tongue movements and 
disregards movements of the jaw. Since it is possible to 
perfectly produce the studied sequences with a fixed jaw 
(c.f. bite-block experiments, e.g.  [14]), the current results 
do have bearing on natural speech production. Future 
studies should nevertheless include the jaw and instead 
consider the tongue movements that are independent of the 
jaw. 
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Figure 5. Audio waveform, sensors position errors and muscle activations for utterance /aka/ 
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