A prominent linguistic segment is a segment which is pronounced to stand out of its context.

Acoustic Prominence has strong visual correlates: facial gestures are strong indicators of prominence, e.g. they can indicate prominence when speech is noisy.

Questions:
- Can we detect prominence in real-time from the speech signal so to produce its facial correlates in visual speech synchrony applications?
- Does acoustic prominence aids speech perception? can only facial gestures aid speech perception instead of their acoustic correlates?
- When and how shall we animate the face to trigger the perception of prominence? and would this influence the human-likeness and the face reading behavior of subjects?

SynFace, a speech driven facial animation system, uses only the phonetic sequence from speech. For the use in SynFace: detect relative prominence in real-time over phonetic segments:

Method:
Estimate vowel prominence using prosodic parameters (vowel duration, pitch, loudness)
Over a window, place a gesture over the vowel which has the highest estimated prominence

If acoustic prominence enhances speech comprehension, can gestures synchronized with it have the same effect?

Setup:
Degrade the acoustic signal using a noise excited vocoder.
Support the acoustic signal by a lip-synchronized talking head
Measure speech intelligibility change when different gestures are applied to the face at different controlled timing.

12 Subjects are used in the experiment, the subject listens to a vocoded, semantically complete sentence and writes down what they perceive.
6 different visual stimulus were used.

The percentage of time spent on the eyes, mouth and the rest of the face in the two conditions.

Gaze behavior
Face without gestures
Face with Gestures

The distribution (Boxplot) of the recognition rate per sentence over the different visual variants

Questionnaires Results
The percentage of time spent on the eyes, mouth and the rest of the face in the two conditions.