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Abstract 
Fundamental frequency (F0) extraction is often used in voice quality analysis. In 
pathological voices with a high degree of instability in F0, it is common for F0 
extraction algorithms to fail. In such cases, the faulty F0 values might spoil the 
possibilities for further data analysis. This paper presents the correlogram, a new 
method of displaying periodicity. The correlogram is based on the waveform 
matching techniques often used in F0 extraction programs, but with no mechanism 
to select an actual F0 value. Instead, several candidates for F0 are shown as dark 
bands. The result is presented as a 3D-plot with time on the x-axis, correlation 
delay inverted to frequency on the y-axis and correlation on the z-axis. The z-axis 
is represented in a gray scale as in a spectrogram. Delays corresponding to integer 
multiples of the period time will receive high correlation, thus resulting in 
candidates at F0, F0/2, F0/3 etc. While the corrlogram adds little to F0 analysis of 
normal voices, it is useful for analysis of pathological voices since it illustrates the 
full complexity of the periodicity in the voice signal. Also, in combination with 
manual tracing, the correlogram can be used for  semi-manual F0 extraction. If so, 
F0 extraction can be performed on many voices that cause problems for 
conventional F0 extractors. To demonstrate the properties of the method it is 
applied to synthetic and natural voices, among them six pathological voices, which 
are characterized by roughness, vocal fry, gratings/scrape, hypofunctional 
breathiness and voice breaks, or combinations of these. 
                                                      
 
 

Introduction  
Fundamental frequency (F0) is a commonly used 
parameter being the main acoustic correlate to 
perceived pitch. In the field of voice quality 
research, F0 extraction is particularly relevant, 
for example for evaluation of pre- and post-
treatment of voice disorders and for measuring 
F0 perturbation. Fundamental frequency extrac-
tion has received a great deal of attention in 
speech and voice research. Several different 
algorithms have been invented (e.g. Hess, 1983; 
Titze & Liang, 1993; Hess, 1995), and the 
algorithms have been applied both to acoustic 
waveforms and to electroglottographic (EGG) 
signals (Rothenberg 1973, Fourcin 1986). 
Examples of such methods are peak picking and 
methods based on spectral or cepstral properties 
of the signal or on waveform matching by 
means of autocorrelation or autodifference (e.g., 
Hess, 1983).  

The waveform matching technique has many 
important advantages. For example, it is 
independent on determination of the instant of 
excitation and has a low sensitivity to noise 
(Titze & Liang, 1993). Also, it can offer several 
estimates of fundamental frequency per period. 
The basic idea of the waveform matching 
technique is to compare the signal in two time 
windows separated by a variable time delay. 
Certain lengths of this time delay will achieve a 
high correlation. These delays correspond to 
multiples of the period time. For example the 
comparison can be realized in terms of a 
correlation function, which is a straightforward 
procedure since few variables are involved. If 
the waveform matching technique is to be used 
for F0 extraction, the F0 extraction algorithm 
must select which peak in the correlation 
function corresponds to the fundamental period 
time. Normal voices rarely cause selection 
problems. However, for dysphonic voices with 
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an unstable period time, different F0 extraction 
algorithms will give different results (Rabinov et 
al., 1995; Karnell et al., 1991). Phonation 
containing bicyclic segments (equivalent to 
period doubling, Titze, 1995) is a typical 
example; most F0 extractors will select a 
fundamental frequency of F0/2 for the bicyclic 
segments. This is in some sense correct since the 
period actually is doubled. However, different 
algorithms require different magnitudes of 
bicyclicity in order to arrive at this result. Hence 
different F0 extraction programs yield different 
results. This is problematic when the extracted 
F0 data are used for deriving perturbation 
measures, such as jitter. For example, in a study 
of vocal fry, Blomgren et al. (1998) reverted to a 
semi-manual extraction method instead of using 
the automatic methods, since their voice samples 
were characterized by a high amount of 
variability. 

The problems outlined above do not originate 
from the waveform-matching algorithm but 
rather from the selection mechanism. Because 
fundamental frequency is defined as the inverse 
of period time, no F0 exists if the signal is not 
perfectly repetitive, strictly speaking. Therefore, 
especially for pathological voices, there will be 
cases when the task of extracting a single F0 is 
ill-defined or unrealistic. In such cases, an 
improved description of the perturbation itself 
may be more relevant. 

In this paper, we present a display showing 
the raw correlation functions in a three-
dimensional graph. We propose the term 
correlogram for these displays. The result is a 
picture reflecting periodicity characteristics of a 
voice rather than an extracted F0 curve. The 
correlogram is free from a selection mechanism, 
leaving to the user to select the F0 value or to 
what extent F0 extraction is at all appropriate. 
This type of display should be particularly 
useful for voices where F0 selections are 
difficult, that is, all voices with a high amount of 
F0 perturbation. The method is tested on 
synthetic signals and natural voices and 
compared with other methods. 

Descriptions of selected perceptual voice 
terms 
In the case of pathological voices, information 
about periodicity or lack of periodicity is 
particularly relevant. Many attempts have been 
made to correlate F0 perturbation characteristics 
with perceptual features. Such correlates are 

interesting, since a complete understanding of 
the relationship between perception and 
acoustics would allow objective measurements 
of voice qualities. In the following, some per-
ceptual terms frequently used for pathological 
voices are reviewed together with the typically 
associated F0 extraction problems.  

Creaky voice, vocal fry and pulsed 
phonation. These terms appear to be associated 
either with low pitch and a prolonged glottal 
closed phase or by a complex pattern of glottal 
excitations, giving rise to subharmonics (Titze, 
1995; Laver, 1980; Ladefoged, 1988; Hammar-
berg & Gauffin, 1995). 

Roughness. This term also appears to be 
associated with period time perturbation. 
However the term appears mostly, but not 
always, to be linked to a more random per-
urbation than what is commonly associated with 
the multi-cyclic type of vocal fry. The term is 
also sometimes associated with low-frequency 
noise (Hammarberg & Gauffin, 1995; De Krom, 
1995; Titze, 1995; Ishiki et al., 1969; 
Hillenbrand, 1988; Omori et al., 1997; Imaizumi 
1986).  

Gratings/scrape is a term mainly used in 
Sweden (Swedish: skrap). The term is often 
translated to “high-frequency roughness” 
(Hammarberg & Gauffin, 1995). 

Breathiness is caused by soft or incomplete 
closure of the glottis and is often associated with 
high-frequency noise. Breathy voice can be 
produced in both hypo- and hyperfunctional 
laryngeal settings, which give rise to two 
different types of breathiness. These modes of 
phonation correlate strongly to a high or low 
relative level of the fundamental, respectively 
(Titze, 1995; Hammarberg & Gauffin, 1995; 
Hammarberg, 1986).  

Voice breaks, vocal breaks or register breaks 
occurs when the vocal folds suddenly switches 
from one mode of vibration to another, for 
example between modal and falsetto register 
(Sundberg, 1987; Hammarberg, 1986; Švec & 
Pešák, 1994). 

Most of the above voice qualities present 
problems for F0 extraction. The complex-
patterns of glottal excitation that often are 
associated with vocal fry or gratings/scrape, 
typically cause octave leaps in the F0 curve, 
while pulsed phonation in principle can produce 
a smooth, continuous curve. Roughness, when 
associated with a random distribution of period 
time, mostly generates an unstable F0 curve, but 
also, different F0 algorithms tend to yield 
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different F0 values. Most programs generally 
handle breathy voices successfully since they 
contain little F0 perturbation, but for certain 
algorithms, particularly if event-based, a high 
noise level can cause errors. F0 extractors 
generally succeed in tracking the F0 in voice 
breaks. All these problems with F0 extraction in 
pathological voices are unfortunate since the F0 
perturbation appears to represent an important 
characteristic of such voices (Hillenbrand, 1988; 
Gauffin et al, 1995). Hence, alternative methods 
for displaying periodicity variation should be 
useful in the analysis of pathological voices.  

Method 
The correlogram is based on the correlation 
between two time windows of the signal (Figure 
1). It displays the correlation in a novel manner 
in terms of a graph showing several such 
correlation functions, displayed in a gray scale 
similar to the Fourier transforms in a spectro-
gram. The method has been implemented by the 
first author (SG) as a program module of the 
Soundswell Signal Workstation software 
(Hitech Development AB, Sweden). 
    Different waveform matching functions can 
be used. In this paper we have selected to use 
the Pearson correlation coefficient:  
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or, in computational form 
 

where xj is the j:th sample, m is the starting 
sample number, n is the delay separating the 
starting points of the windows and w is the 
window width. This function is normalized, so 
the result will be restricted to the range –1 ≤ rm,n 
≤ 1. When the delay n corresponds to one or 
several fundamental periods, a maximum will 
occur in the correlation coefficient. This is true, 
regardless of where in the fundamental period 
the starting point of the window is located, so 
there is no need to determine the point of 
excitation.  

Note that the use of the Pearson correlation 
coefficient rather than a simple cross-correlation 
is advantageous since only the Pearson 
alternative is insensitive to a DC component of 
the signal. A DC component adds an increase of 
the cross-correlation, since the voice signal 
becomes relatively smaller, as the DC 
component increases. Such an increase would be 
irrelevant in periodicity analysis. 

For each time value along the x-axis a 
correlation coefficient is calculated with a 
starting sample m corresponding to the time 
coordinate of the x-axis. This correlation 
coefficient is calculated for different delays n, 
along the y-axis. The correlation, rm,n in this 
point, is displayed along a gray scale, with black 
corresponding to rm,n=1 and white for rm,n≤0. If 
the signal is perfectly periodic with a period 
time T0, the correlogram will show a set of 
horizontal black bands, representing different 
candidates for the fundamental period time C1, 
C2, C3…, at delays n corresponding to T0, 2T0, 
3T0…. (Figure 1, middle panel). 

Correlograms can also be presented with an 
inverted y-axis, thus showing frequency rather 
than time. In this case F0 candidates, C1, C2, 
C3… will appear at F0, F0/2, F0/3 and so on 
(Figure 1, lower panel). Both these represen-
tations have certain advantages. In a time 
correlogram, the candidates Cn appear as 
horizontal stripes that are equidistant. It also 
shows more salient  high-order  candidates.  In a 
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Figure 1. The upper panel shows how the two correlation windows are applied to a perfectly periodic 
signal (100 Hz sawtooth wave, formant filter at 1000 Hz, bandwidth 100 Hz). Middle and lower panels 
show the resulting time and frequency correlogram.  
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frequency correlogram, the strip density is 
greater at lower than at higher frequencies, but 
on the other hand, it is more clearly related to 
pitch. The selection of delay representation is a 
matter of choice, but since periodicity is mostly 
expressed as fundamental frequency, rather than 
fundamental period time, the frequency repre-
sentation seems intuitively more appropriate. 

The length of the correlation window, w, will 
affect the appearance of the correlogram. A 
shorter window gives better resolution in time, 

but may also show the first formant in terms of 
side bands surrounding each candidate. 
Normally, a frame length of about one funda-
mental period is appropriate. An interesting 
possibility is to let the window length vary as 
the correlation delay varies, such that the 
window length is equal to the delay. With this 
procedure the window length is automatically 
adjusted to an appropriate value as fundamental 
frequency varies. The procedure is com-
putationally less efficient, however, especially if 

Figure 2.  The correlogram used for semi-manual F0 extraction. The first candidate was traced
manually (upper panel) and the computer program then extracted the F0 value within the traces that
corresponded to the highest correlation (lower panel). Note the absence of octave leaps during the
bicyclic segment at 1-1.5 s. 
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correlations are calculated for frequencies close 
to 0 Hz. 

For practical reasons, the correlograms show 
r raised to the power of γ for values of r>0. 
Higher values of γ make the middle levels of 
gray brighter, and vice versa, see below; γ = 4 
has been found to be an appropriate value.  

The correlogram allows semi-manual extrac-
tion of F0. In this case the user restricts the range 
of allowed F0 values to the range around a 
candidate (Figure 2). The software then extracts 
the frequency corresponding to the highest 
correlation within this range. The manual 
control allows the user to select the appropriate 
candidate, thus eliminating the risk that an 
automatic algorithm selects a faulty candidate 
and placing the responsibility on the user. 

Applications 

Synthesized signals 
The properties of the correlogram analysis 
method can be efficiently demonstrated by 
applying it to synthesized sound, since the 
properties of such sounds are well-defined while 
natural voices mostly contain combinations of 
acoustic properties in unknown magnitudes. All 
synthesized sound files were generated using a 
sampling rate of 16 kHz.  

Figure 3 illustrates side bands and the effect 
of the chosen value of γ. The signal was created 
using a 100 Hz saw-tooth waveform that was 
fed through a formant filter with a fixed 
bandwidth of 100Hz and a resonance frequency, 
F1, increasing from 0 to 1000 Hz during the 10 s 
long sound file. In the left panels (γ=1) a 

Figure 3. Illustration of side bands. The signal was a 100 Hz saw-tooth wave passed through a
formant filter in which the formant frequency was increased from 0 to 1000 Hz (bandwidth = 100
Hz). The side bands are prominent with γ=1 (left panels) but become considerably suppressed by
γ=4 (right panels). 
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segment of a secondary periodicity of 5 ms / 200 
Hz appears at 2 s, when F1 equals 200 Hz. As F1 
is increased, this secondary periodicity shifts 
and new periodicities appear. The amplitude of 
the side bands increase when F1 coincides with a 
partial. Eventually, the secondary periodicities 
form continuous side bands around the candi-
dates. If γ is increased to 4 (right panels) the side 
bands are suppressed such that the candidates 
can more easily be differentiated from the side 
bands. The candidates also appear narrower. 

Figure 4 illustrates the effects of window 
length, w, on the frequency correlogram. The 
signal was a saw-tooth wave of 100 Hz, 
frequency modulated ±10% at 10 Hz and fed 
through a formant filter of 1000 Hz, bandwidth 
100 Hz. For w=5 ms (upper left panel) 
candidates are present at all times, while the side 
bands are intermittent. Time resolution is good.  
For w=10 ms (upper right panel) the side bands 
are attenuated and time resolution is still good 
due to the similarity between T0 and window 
length. For w=20 ms (lower left panel) the 
candidates fade at rapid frequency transitions 

due to poor time resolution, while the side bands 
are well suppressed. A window length equal to 
correlation delay n (e.g., 10 ms at n corre-
sponding to 100 Hz and 20 ms at n corre-
sponding to 50 Hz etc.) yields a high time 
resolution, visible, intermittent side bands at 
high frequencies, but low time resolution and no 
side bands at low frequencies (bottom right 
panel). This is illustrated in terms of the steps in 
C2 overlap and extend over longer time than 
those pertaining to C1. As seen in the figure, a 
window length approximating T0 appears 
appropriate. In cases of completely unknown T0, 
however, a window length equal to correlation 
delay might be preferable. In this case, C1 will 
always be analyzed with a window of length T0. 

Figure 5 illustrates the effect of spectral tilt 
on side bands. The signal, F0 = 100 Hz, was 
created by adding sinusoids according to a 
spectral tilt, which was continuously varied at a 
constant rate from 0 to –18 dB/octave over an 18 
s long sound file. This signal was fed through a 
formant filter at 1000 Hz, bandwidth 100 Hz. It 
can  be  expected  that  strong  harmonics  in the 

Figure 4. The effects of window length: 5 ms, 10 ms, 20 ms, and variable (upper left, upper right,
lower left, and lower right panel, respectively). The signal was a 100 Hz saw-tooth wave, frequency
modulated at 10 Hz, ±10 % (formant filter at 1000 Hz, bandwidth 100 Hz).   
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Figure 5. The effect of spectral tilt on side bands. The source signal was created by additive synthesis. 
The spectral tilt was varied from 0dB/octave at 0 s, to –18dB/octave at 18 s. The source signal was fed 
through a formant filter at 1000 Hz, bandwidth 100 Hz. 
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formant region will add extra periodicities that 
are visible in the correlogram. Correspondingly, 
if the signal only contains the fundamental, this 
is the only periodicity that will be visible. These 
effects can be seen in the figure; a tilt of 0 
dB/octave (t=0 s) produces pronounced side 
bands. The absolute width of the candidates is 
largely determined by the distance between the 
candidate and the side band. This distance is a 
direct function of F1, and thus the candidate 
width is largely determined by F1. In other 
terms, the relative width is determined by F1/F0. 
At about -10 dB/octave (t=10 s), candidates 
grow wide and have no visible side bands. At 
-18dB/octave (t=18 s) the signal is dominated by 
the fundamental, the absolute width is mainly 
determined by F0, and thus the relative width is 
nearly independent of both F0 and F1. The 
width’s dependance of F1 can also be seen in 
figure 3, where the candidates become narrower 
for higher values of F1. It should be noted that it 
is not the increasing spectral tilt per se that 
makes the side bands fade away, but rather the 
fact that the level of the partial at the formant is 
reduced. As a rule of thumb, side bands appear 
if the spectral level at the first formant is near or 
above the level of the fundamental. However, 
this is also slightly dependent on the chosen 
value of γ. 

Figure 6 illustrates the effect of adding noise 
to a periodic signal. At 0 s, the signal, F0 = 100 
Hz, is a saw-tooth waveform, and at 10 s it 
consists of white noise only. This signal was fed 
through a 1000 Hz formant filter, bandwidth 100 
Hz. The levels of the saw-tooth waveform and 
the noise were matched, so that the output level 
of the formant filter was equal at the start and 
end of the sound file. This means that the 
harmonics-to-noise ratio (HNR) was infinite at 0 
s, 1 (0 dB) at 5 s and 0 at 10 s. The effect of the 
noise on the correlogram is noticeable at about 2 
s, corresponding to a HNR of 4 (12 dB). At 
about 5 s, or HNR=1 (0 dB), the candidates 
more or less disappear, the only visible 
periodicity appearing at 1 ms and created by the 
F1 at 1000 Hz. 

Figure 7 compares time and frequency corre-
lograms of synthesized saw-tooth waveforms 
that contain bicyclic F0 or amplitude variation; 
this can be seen as a special case of jitter or 
shimmer. In the jitter case, the period time 
(mean 10ms) was varied every other period, 
starting at 0% and ending at ±10%. The jitter 
(left panels) can be seen as an F0 fluctuation, the 
first candidate C1 splitting into two “stripes” that 

reach 91 to 111 Hz at the end of the frequency 
correlogram and 11 to 9 ms at the end of the 
time correlogram. In the shimmer case (right 
panels), the amplitude of the periods was varied 
every other period. The magnitude of the 
shimmer varies from 0% at the start to ±100% at 
the end, that is, at the end, every second period 
has an amplitude of zero, while the intermediate 
periods have an amplitude twice the original. In 
this case, the first candidate also shows an 
oscillating pattern, distinct however, from that 
characterizing jitter. The odd-order candidates 
gradually fade as the shimmer quantity in-
creases. The shimmer magnitude is seen less 
clearly than the jitter magnitude since the former 
is reflected in terms of the gray scale while the 
latter is represented by the position along the y-
axis. 

Figure 8 compares time and frequency corre-
lograms of synthesized saw-tooth waveforms 
that contain random F0 or amplitude variation; 
these represent other types of jitter and shimmer. 
In the jitter case, the period time (mean 10ms) 
was randomly distributed within ±10%. The 
jitter (left panels) can be seen as a random F0 
fluctuation, the first candidate C1 fluctuating in 
the range 91 to 111 Hz in the frequency corre-
logram and 11 to 9 ms in the time correlogram. 
In the shimmer case (right panels), the ampliude 
of each period was varied randomly. The magni-
tude of changes was 100%, in other words, the 
amplitude was randomly distributed between 
zero and full scale. In this case, the first candi-
date also shows a fluctuating pattern, again 
distinct from that characterizing jitter.  

Although the time correlogram is directly 
linked to the waveform matching function, we 
shall henceforth focus on frequency correlo-
grams.  

Natural voices 
Some examples of correlograms and narrow 
band spectrograms of pathological voices are 
presented in Figures 9-15. All these figures 
concern examples of voices that may cause 
difficulties for F0 tracking programs. The diffi-
culties are due to ambiguity about whether F0 is 
represented by C1 or by C2 (Figures 9, 10 and 
11), due to a high noise level and unstable C1 
(Figures 12, 13 and 14), or due to the well-
excited first formant, which makes the side 
bands hard to differentiate from C1 (Figure 15). 

For describing the voices, the terminology 
proposed  by  Hammarberg  and  Gauffin (1995) 
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Figure 6. The effect of adding white noise. At 0 s, the source signal consists of a sawtooth wave only, 
and at 10 s of white noise only. The source signal was passed through a formant filter at 1000 Hz, 
bandwidth 100 Hz.
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Figure 7. Examples of bicyclic F0  (left panels) and amplitude variation (right panels) in sawtooth
waveforms. F0 and amplitude variations increased from 0 to 10% and from 0 to 100%,
respectively. 

 

Figure 8. Examples of random F0  (left panels) and random amplitude variation (right panels) in
sawtooth waveforms. F0 and amplitude variations was 10% and from 0 to 100%, respectively. 
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was used; all voice examples except one (Figure 
15) were taken from Hammarberg’s library of 
pathological voices. The voice samples had been 
rated by groups of 6 to 14 voice clinicians 
(speech language pathologists and phonia-
tricians) using the Stockholm Voice Evaluation 
Approach (SVEA) assessment protocols 
(Hammarberg 1986; 2000). These examples 
have been found useful in teaching as archetypes 
of various perceived voice properties, as in each 
example a particular voice quality is dominant 
over others. However, since all natural voices 
are perceptually multi-dimensional (Kreiman et 
al., 1994; 1996), each example still represents 
more than one single perceptual feature. This 
well-known fact makes direct mapping of 
acoustic to perceptual features difficult. 

Figure 9 presents the voice of a man, age 41, 
who was diagnosed with chronic laryngitis and 
whose voice quality was characterized as rough. 
This example shows short (about 100 ms) bursts 
of bicyclicity starting at 0, 0.2 and 0.45 s. 
Widening of the candidates can be seen at 0.1-
0.2 s, 0.6-0.7 s, and 0.85-1 s. The two former 
cases of widening are probably due to the low 
amplitude of the overtones in the signal, and the 
last is probably due to a low first formant. 
Figure 10 presents the voice of a man, age 32, 
who was diagnosed with incomplete voice 
mutation and whose voice quality was 
characterized as a mixture between vocal fry and 
gratings/scrape. This example contains 
bicyclicity throughout most of its duration. 
Figure 11 presents the voice of a man, age 29, 
who was diagnosed with a benign tumor, 
perceived as having gratings/scrape only.  

These examples all show short (100 ms) 
bursts of bicyclicity and the only obvious 
difference among them is the F0 at which they 
occur. In Figure 10 there also is a longer (about 
250 ms) bicyclic sequence. Careful inspection of 
the spectrograms (lower panel) reveals sub-
harmonics coinciding with the bicyclic segments 
in the correlograms but with poorer time 
resolution. The subharmonics could be visua-
lized more clearly in the spectrogram if a 
narrower bandwidth had been chosen. This 
would, however have further deteriorated the 
time resolution.  

Figure 12 presents the voice of a man, age 
50, who was diagnosed with paralytic dys-
phonia, and whose voice quality was charac-
terized by hypofunctional breathiness with 
roughness. The voice produces wide and 
unstable candidates. As sometimes also found in 

rough voices, an instant of bicyclicity occurs, 
near t=0.7 s. However, the corresponding 
subharmonics in the spectrogram (lower panel) 
are not easily spotted, probably due to the short 
duration of the bicyclicity.  

Figure 13 presents the voice of a man, age 
40, who was diagnosed with paralytic dys-
phonia; the voice was characterized by hypo-
functional breathiness. In the narrow-band 
spectrogram only few harmonics except the 
fundamental are visible. The correlogram shows 
wide candidates and no bicyclicity.  

Figure 14 presents the voice of a woman, age 
75, who was diagnosed with paralytic dysphonia 
which shows repeated voice breaks between 
falsetto and modal register with a high degree of 
instability (Hammarberg, 1986). C1 suddenly 
disappears at t=0.5 s and 1.35 s as the voice 
switches from falsetto to modal.  

Finally, Figure 15 presents the voice of an 
opera singer. Side bands are prominent, indi-
cating a well-excited first formant. As also can 
be seen in the spectrogram, the singer apparently 
tuned F1 to either two or three times F0, such 
that either the second or third partial coincides 
with F1. This strategy increases the sound 
pressure level, which is an important ability in 
operatic singing.  

Discussion 
Since F0 fluctuation plays an important role in 
many different pathological voice qualities, F0 
extraction would be one way to study such voice 
qualities. Unfortunately, F0 extraction applied to 
voices with a high degree of F0 perturbation 
presents problems that are not easily solved. The 
most typical example is bicyclic voice, where F0 
extractors tend to yield F0/2. Since the transition 
from normal phonation to bicyclicity can be 
gradual, although without a pitch glide, an F0 
extraction algorithm must determine when to 
switch from displaying F0 to displaying F0/2. 
Such switching results in an octave leap. In the 
correlogram, this problem is circumvented by 
eliminating the selection mechanism and 
displaying raw correlation functions in a three-
dimensional graph. Hence, the correlogram can 
describe highly perturbed voices, even when the 
value of F0 is far from obvious.  

The appropriateness of extracting F0 from 
pathological voices can sometimes be ques-
tioned. Pathological voices often show large 
period-to-period variation, and since the signal 
is not  exactly  repetitive,  no  strict  period  time 
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Figure 9. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by roughness. Bicyclic segments appear around 0.05, 0.25 and 0.5 s. At 
about 0.8 s, there is a lack of periodicity due to the voiceless consonant /t/. 
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Figure 10. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by vocal fry and gratings/scrape. Bicyclic segments appear around 0.25 
s, at 0.5-0.75 s and at 0.8-0.95 s. 
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Figure 11. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by gratings/scrape. Bicyclic segments appear around 0.05s, 0.35 s and 
0.5 s and also with less magnitude around 0.2 s and 0.8 s. Note the abnormally high F0. 
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Figure 12. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by hypofunctional breathiness with roughness. The candidates all are 
unstable and wide, and a short instance of bicyclicity can be seen at around 0.7 s. 
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Figure 13. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by hypofunctional breathiness. All candidates are wide due to the 
dominant fundamental. The segment between 1.0 and 1.7 s represent silence. 
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Figure 14. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of speech. 
The voice was characterized by repeated register breaks. At 0.4 s and 1.35 s the voice switched from 
falsetto to modal. The noise between 0.7 and 0.9 s is inhalatory stridor. 

 
 



 19

 
 

Figure 15. Waveform (top), correlogram (middle) and narrow band spectrogram (bottom) of singing, 
operatic style. Prominent side bands can be seen either at two or three times F0 due to a well-excited 
first formant. 
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exists; or, an ambiguity exists with regard to F0. 
For such voices, it appears appropriate not to 
enforce an F0 selection, but rather to display the 
correlation functions, as in a correlogram. In 
some cases a perceptual evaluation of pitch may 
also be a worthwhile alternative. 

The interpretation of a correlogram requires 
some care, however. While the F0 candidates 
appear as dark horizontal bands, there can also 
be side bands, which originate from formant 
ringings of high amplitudes and are thus not to 
be considered as candidates. Side bands appear 
when an overtone coincides with a formant and 
can mostly be identified from their relatively 
less dark appearance (i.e. low correlation). In 
some cases, such as when F1 is twice F0, the 
distinction between side bands and candidates 
can be less clear. 

The presence of side bands can also be used 
as an indication of a high positive level 
difference between the first formant (L1) and the 
fundamental (L0). Hence, the presence of side 
bands may indicate a sonorous or pressed voice 
with a well-excited first formant. On the other 
hand, a low or negative L1-L0 difference has 
been shown to be related to hypofunctional 
breathiness (Hammarberg 1986). In the correlo-
gram this would correspond to a wide candidate. 
It must be kept in mind, however, that the 
candidate width also depends on the formant 
frequencies.  

A correlogram is a time-domain analysis 
tool. This means that it does not directly display 
spectral properties, such as harmonics, which 
would require a Fourier transform. It should be 
noted that the candidates have no direct 
connection to the harmonics of the signal. It is 
true that C1 corresponds to the first harmonic, 
H1, but the presence of C2 does not necessarily 
indicate the presence of a subharmonic. How-
ever, the combined occurrence of a constant C2 
and a varying C1 would indicate bicyclicity, and 
a constant C3 and a varying C2 and C1 
tricyclicity, etc. These characteristics indicate 
the presence of subharmonics, although the sub-
harmonics per se are not visualized in a correlo-
gram. 

Compared to the narrow-band spectrogram, 
the correlogram shows a better time-resolution, 
due to the shorter time windows needed. For 
instance, to display a narrow-band spectrogram 
with visible subharmonics, the length of the time 
window must correspond to several fundamental 
periods, whereas in the correlogram, the time 
windows typically are as short as one 

fundamental period. The short time windows 
have the effect that the correlogram can 
visualize short bursts of bicyclicity that would 
not be easily seen in a narrow-band spectro-
gram. 

The correlogram has also been used for 
extraction of F0 from violin playing (Gleiser et 
al 1999) by means of manual tracing. In these 
experiments, the violin player was accompanied 
by piano playing, which however was 
suppressed by placing the microphone on the 
violin bridge. Violin sound typically presents 
difficulties in F0 extraction. However, the 
correlogram method was surprisingly successful 
and showed a remarkable insensitivity to the 
piano sound. In this study, the vibrato rate was 
also extracted in a second step, by performing 
correlogram analysis and tracing on the 
extracted oscillating F0 curve. 

The computation of a correlogram is 
generally more computationally intensive than 
the computation of a spectrogram. However, 
with the increasing power of computers, the 
computation speed is less of a problem. For 
example, every correlogram presented above 
required less than 3 seconds computing time on 
a 1700 MHz Pentium 4 system running 
Windows 2000. 

These initial applications suggest that the 
correlogram is useful for future work for 
refining, revising and standardizing the relations 
between acoustical voice characteristics and 
perceived voice quality parameters. Correlo-
grams should be useful also for the training ofan 
analytic listening to voice qualities. Presenting 
images of the perturbation of voices together 
with the sounds seems a valuable opportunity 
that may pave the way to a better agreement on 
the meaning of voice terms across the voice 
community. 

The correlogram illustrates the periodicity of 
the waveform in a robust way, since it lacks the 
selection mechanism of F0 extractors. It 
illustrates differences between periodic and 
random period-to-period variations. The robust-
ness of the correlogram should make it a 
particularly valuable tool for periodicity analysis 
in such cases of pathologic speech where 
standard F0 extraction methods fail or where 
they present ambiguous results. 

Conclusions 
Correlation functions have previously been used 
to extract F0 information from voice signals, 
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automatically selecting a single value to 
represent F0, sometimes even in ambiguous 
cases. The correlogram method presented here 
shows the raw correlation functions. In cases of 
periodic or quasi-periodic phonation, such as in 
some pathological voices, it displays several F0 
candidates, and leaves the user to select one by 
tracing, if appropriate. In some cases of quasi-
periodic phonation, the correlogram illustrates 
the type of aperiodicity, differentiating signal 
characteristics such as multi-cyclic or random 
perturbations, typically associated with vocal fry 
or roughness. It should be worthwhile to test the 
correlogram in cases of quasi-periodic signals 
where traditional F0 tracking methods fail.  
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