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BOWED INSTRUMENTS CLOSE RELATIVES OF THE SINGING VOICE 
Andrzej Rak.OINSki 

Academy of Music, Warsaw, Poland 

Introduction 

The between stringed rowed instruments and the human voice 
singing may not seem very obvious either to an amateur listener or to 

a researcher in one of the domains in question. However, as we start 
looking at the problem from certain perspectives this similarity becomes 
more and more evident and finally appears as striking. 

In for the common feature in these two kinds of mus in-
struments we should concentrate separately on such problems as the spec
tral characteristic of the source, the filtering action of a transmitting 
system, the specific features of the timbre and the specific character of 
the melodic intonation. Let us briefly review these problems. 

I am 
and a singing 

"These 

bow 
other " 

vibrations 

that someone trying to 
as two musical 

belong to 

the one case and the 

forward 
but this 

between a violin 
.... "",-'-"'"' a serious 

of classification. 
an aerophone. Not 

column of 
mechanical systems: 
vocal cords the 

most of 
of 
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music students would describe differences between the emission of rowed 
and sung tones. As a matter of fact, this is a consequence of some 
controversies inherent in the commonly adopted classification of musical 
instruments. It is beyond the scope of the present lecture to talk arout 
these controversies at large, so let us adopt a slightly different point. 

Let us concentrate our attention on that particular place inside the 
complex musical instrument where the vibrations, induced externally, 
enter into the multi-resonance chain of transmission and transformation. 
Such transmission-transformation chains for the two instruments in ques
tion are the violin b:>dy and the human vocal tract. OUr place of inter

est will be located respectively in the violin bridge and in the larynx, 
just above the vocal folds. We shall call the vibrations that arise in 
these particular places "input vibrations". The medium in which input 
vibrations occur (the air or solid matter) is essential in classifying a 
given instrument as an aerophone or not an aerophone. (E.g., a chorda
phone as in the case of instruments where input vibrations are imposed by 

vibrating chords.) However, as we shall see, this appears not to be 

essential at all if we consider the situation on a somewhat higher level 

of abstraction. 

One of the important features that makes many rowed instruments sound 
so similar to the human voice is the general similarity of spectrum 
envelopes. This fact arises mostly from the basic correspondence in the 
form of the input vibrations in both kinds of instruments. That, in 
turn, is partly due to somewhat similar driving mechanisms (relaxation 
oscillations). Violin bridge vibrations are at the first approximation 
saw-tooth shaped. They have a harmonic spectrum with the envelope falling 
down at the rate of 6 dB per octave. The shape of these input vibrations 
and corresponding spectrum envelope may be to some degree mediated by the 
violinist through changing the place upon the string (e.g., sul tasto or 
sul ponticello), or the force of playing. 

When the violinist places his bow on the string relatively far from 
the bridge, then the vibrations become triangular rather than saw-tooth 
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shaped and the sound is less rich in harmonics. The opposite effect, 
i.e., sound particularly bright and rich in harmonics, may be obtained 
when the row is placed near to the bridge (sul ponticello). The level of 
high harmonics may also be raised by applying greater force to the tow. 

The form of the input vibrations in singing generally implies a spec
trum less rich in harmonics than that of the violin: its average envelope 
falls down with the rate of abt. 12 dB per octave. Here, however, the 
correction is applied to the final product. The radiation of sound from 
the mouth enhances higher parts of the spectrum with the rate of 6 dB per 
octave, so the cumulative effect for the spectral envelope of the ra
diated sound is similar to that of a violin: falling down at the rate of 
6 dB per octave. 

The possibility of changing the shape of input vibrations and conse
quentl y that of their spectrum envelope is much more at the disposal of a 
singer than it is at the disposal of a violinist. This comes naturally 
from the fact that all the driving mechanism in singing belongs to a 
living human body while in violin playing only part of this mechanism, 
namely the right hand of a violinist, contitutes a living structure. 

Transmission transfonnation chain 

There are several groups of instruments in which the transmission
transformation chain does not exist at all or plays only a totally mar
ginal role. These are most idiophones, like a triangle, the tymbals or 
wooden blocks, some aerophones like a mechanical siren or an accordion, 
and some chordophones like a primitive hunters' bow. The input vibra
tions in these instruments should be considered as identical with the 
"output vibrations" or vibrations in the air around the instrument when 
the correction for directional radiation is taken into account. 

In the instruments which concern us during this conference, the 
transmission-transformation chain constitutes their most essential part. 
(In a somewhat trivial manner, let us think of the dollar price of a 
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the voice (vowel quality) and in acquiring a desired level in 
singing (particularly high soprano notes). 

The above differences should not mask the 
instrument and a singing voice as far as the input 
vibrations to the characteristic of the resonance system concerned. 
As a matter of both instruments belong to the same 
"formant-spectrum" or "fixed formant" sound sources, in oppos 
some other groups of which may be as 
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Fig. 4. Spectrum envelopes of 
four tones of a French horn. 

the fundamental frequency changes within a minor third (arout 20%). This 
situation is presented separately for the violin, the singing voice, and 
the horn in Figs. 2, 3, and 4. In these figures numbers of harmonics 
have been taken as a common abscissa scale independently of the funda
mental frequency of a tone, so the frequency scale can be represented 
according to thin broken lines across the figures. Following the ampli
tude maxima of the harmonics in violin and voice tones one can easily 
come to a conclusion about the virtual position of formiDlt frequencies. 

Some of them have been marked on the drawings by thick straight lines. 
It is, however, not possible to find any fixed-frequency formant looking 
at the su"tsequent tones of a horn. The only definite conclusion which can 
be drawn from Fig. 4 is that in this particular part of a horn's scale 
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the second harmonic was always most pronounced in the spectrum. As has 

been mentioned, such a phenomenon is sometimes described as a "moving 
fonnant". 

There is one additional fact which seems to be significant from a 
perceptual point of view and sheds some light at our sense of timbre 
perception. Due to the fixed values of formant frequencies the ampli
tudes of tone harmonics change as the fundamental frequency increases 
according to the semitone musical scale. To evaluate these changes the 
variance of separate harmonics levels was computed and averaged for ten 

I ransrnissioo 

INSTRUMENT 
driving ~ input ~ lransfo~ian ~radiation mechanism vibrations 

chain 

~~ ~ 1 bndqe force 1 
I meChanic) 8. acoustic 

VIOLIN 
n 

I saw - .toothed : [! i!LeQ.. fl!r.ma!!s.J 
[r:i~-_05i1f:! L-~~'!!_c_..J [h.i~JLJ 

1 gl~tal hclses 1 I acoustic I I lungs, I 'lacous 1cl 
[~l:~:h.fl~ .. ·~§..f.~~] SINGING vocal folds 'i!quliialent to si!W 1 r cofieCtiOO; 

VOICE r--- -.-1 [!qgtlll~tJ!. f.O!!~tU Lft!' ra!ia!!'l!1 J 
L tgi!X"-~g! w [ fix:g<[ lti~ti J r ...... ,J r. -~ ~:-j 

[j~:.!f] .. ':\u.'l~~. -LP!f~. 

surface structure -

Fig. 5. Functional similarities and differences 
between a violin and a singing voice. 

lower harmonics in the range of four sul:sequent notes separated by semi
tones from G3 to A3£. The results are: 32 dB2 for a violin, 29 dB2 for a 
singing voice, and 16 dB2 for a French horn. As was to be expected, the 
formant-spectrum instruments reveal much larger step-to-step spectral 
variability than the non-formant-spectrum instruments do. It should be 

noted that tones taken a semitone apart- from the same register of a 
given instrument- are supposed to be practically identical as far as 
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'""-'·=·;;:;~, as may 'be seen their 
harmonics may as much as 18 dB. Consequently, these tones must be 

different. This fact seems to 'be a new 
feature of a human perception mechanism: a 

perception. The perceptually different s belonging to the same 
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the same perceptual phenomenon as the one that we shall observe 

in the following section in the domain. However, before we pass to 
that last let us some the problems at the 
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Fig. 6. "Zones of tolerance" of msical interval 
widths in violin playing measured by 
Garbuzon (after Golachowski and Drobner v 

1953). 

a very simple and modestly instrumented experiment by Nickolai Garburow 
of the Moscow Conservatory (after Golachowski and Drobner, 1953). Garbu
zow had two eminent violinists play and record on the taperecorder the 
Air on G string by Johan Sebastian Bach. 

The fundamental frequencies of all tones were then measured and exact 
frequency distances in cents calculated for all tone successions in the 
melody. This large set of data, taken jointly for both music perform
ances, was next analyzed in terms of maximum deviations occurring in each 
of the twelve within-octave musical intervals. The result of this 
analysis is shown in Fig. 6. 

It appeared that top professional violinists in a recorded performance 
fully accepted by them as correct from the musical point of view, per
formed musical intervals that were mostly neither "natural", nor "Pytha

gorean" nor even tempered, but rather taken "at random" (as it might have 
seemed at the first sight) from a very large range of possible intona
tions. The resulting "zones of tolerance" were really very wide. For 
some intervals they stretched for nearly 100 cents around the tempered 
values. (It is good to remember that the differences between just, Pytha

gorean, and tempered intonation do not exceed 20 cents.) However, the 
intonation here was far from being "random". Later investigations (Rags, 
1960) have shown that there are quite definite rules that govern melodic 
intonation. These rules derive mostly from the harmonic background of 
the melody. They aim at strengthening harmonic tensions. According to 
them the pitch of a leading note is shifted towards its solution, dis-
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sonances lean towards dissolving into consonances, and the major charac

ter of a mode is strengthened through enlarging a major third. 

The above-described situation is typical of a solo melodic perform
ance. It is different when chords are played. In such a case a new 
important factor takes the lead. This factor is the tendency to minimize 

beats between partials of the tones. In such cases "natural" intervals, 
expressed by small integer ratios are often performed. 

Nearly everything that has been said so far about the bowed-string 
intonation may be repeated in reference to singing. A few years ago 

Hagerman and Sundberg (1980) in their work on barbershop-quartet singing 
showed the great precision attained by experienced singers in controlling 
the pitch. This precision, reaching the order of a few cents, does not 
prevent singers from making wide deviations from the average interval 
values. These deviations are, however, scarcely accidental. In most 
cases they reflect a subconscious striving to obtain a given musical 
effect. 

And here we come to an important conclusion. Both rowed instruments 
and the singing voice are given a unique and powerful means of musical 
expression that nearly all other instruments are deprived of. This means 
of musical expression is attained by the absolute freedom of within
interval pitch intonation. It can be used in the way that makes the 
performance of rowed instruments and of singing most impressive and makes 
us believe that these instruments keep the highest position in the king
dom of music. 
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ACOUSTICAL STUDIES OF STRINGED INSTRUMENTS USING STRING RESONANCES 
Colin E. Gough 

Department of Physics, University of Birmingham, Great Britain 

Abstract 
In this paper we briefly outline the way that coupling at the bridge 

between the vibrating string and acoustical resonances of a stringed in
strument strongly influences the vibrational characteristics of the 
string itself. We show that measurement of low amplitude string reso
nances can provide quantitative information about the acoustical proper
ties that determine the tone of an instrument - the position and Q-factor 
of body resonances, the strength of their coupling to the vibrating 
string and even their radiation efficiencies. It will be argued that it 
is important to take such interaction into account in interpreting the 
characteristic vibrational response of any stringed instrument, however 
this is -measured. Examples of string resonances that illustrate the 
importance of the string-body interaction will be shown for the violin, 
celh;) and piano. 'Ihe possible musical significance of large amplitude, 
non-linear, string resonances will also be illustrated. 

Introduction 

In view of the importance of string vibrations in the history and sci
ence of acoustics, it is perhaps surprising that until very recently no 
reliable measurements existed for the response of a string at resonance. 
Indeed, Benade (1976) in his relatively recent book on musical acoustics 
listed a number of anticipated difficulties in making su~ measurements, 
largely associated with the expected narrowness of string resonance and 

the demands that this would make on the stability and resolution of 
measurements. In practice, however, these difficulties appear to have 
been overestimated and in this paper we demonstrate that it is possible 
to measure the resonant response of a string with sufficient accuracy and 
resolution to reveal a number of unexpected, but predictable, features 
that had not previously been reported. 
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We shall now show that the resonant response of a string can provide 

quantitative information about the acoustically important structural 
vibrations of the instrument on which the string is mounted. In particu
lar, measurements of string resonances can give the position of structur
al resonances, their Q-values, their effective masses, their coupling 
directions to the string and even their acoustic efficiencies. In addi
tion to providing such information, measurements of string resonances 
have also helped to illuminate a number of interesting aspects of the 
dynamics of the vibrating string and the acoustically radiating vibra
tions of the body of the instrument to which the strings are coupled via 

the bridge. 

The idea of using string resonances to study the acoustics of the 
violin was suggested by Schelleng's analysis of the interaction of string 

vibrations and the vibrational modes of the body of an instrument in his 

important paper on the theory of the violin treated as an electric cir
cuit (1963). Schelleng used the electrical analogue of a transmission 

line terminated by a series resonant circuit to represent the string and 

coupled mechanical resonator. He showed that, if coupling was suffi
ciently strong, the imaginary component of the mechanical admittance 
(velocity/force) at the bowing point measured as a function of frequency 
would pass through zero three times when the frequencies of the uncoupled 
string and structural resonance were coincident. He proposed that exci
tation of stable vibrations at the outer two zero-crossing frequencies 

was responsible for the characteristic beating associated with the wolf
note on the bowed string. 

Although the excitation of wolf notes is probably rather more compli
cated than suggested by Schelleng's original analysis (see, for example 
the discussion given by Mcintyre and Woodhouse, 1978) the predicted value 
for the critical coupling constant for excitation of the wolf-note was 
shown to be close to the value described from experiments (see also Firth 
and Buchanan, 1973; Gough, 1980). The coupling constant can be expressed 
in terms of the mass m of the vibrating string and the effective mass and 
Q-value, M and Q, of the coupled resonance. 
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Irrespective of the validity of his analysis of the wolf-note problem, 
Schelleng's analysis showed that measurement of the resonant response of 
a string, when tuned to frequencies in the neighbourhood of a coupled 
structural resonance, could in principle provide useful quantitative 
information about the acoustically important modes of the instrument on 
which the string was mounted. 

In this paper we will use a simple mechanical model (described more 
fully in Gough, l98la) to describe the interactions between a string and 
any structural resonance to which the string is coupled via the support
ing bridge. The experimental techniques that we have developed to study 
string resonances will be briefly described and illustrated by measure
ments on both the violin and cello as well as for the piano. We show 
that it is not only the string vibrations that are modified by their 
interaction with the resonances of the body of an instrument but that the 
structural resonances themselves can be appreciably perturbed by their 
interaction with the string. Finally, we show that it is even possible 
to study the radiation loading of structural resonances by measurement of 
string resonances. 

Theory 

Before attempting to analyse the dynamics of a real string on an 
actual musical instrument, it is instructive to consider the simpler 
text-book example of a string terminated at one end by a mass M, see Fig. 
1. We assume that the induced displacement of the terminating mass is 
small, so that to a good approximation the string displacement y along 
its length given by y =a sin kx exp jwt, where k"¥nn::/l for the nth 

mode. The sinusoidally varying transverse component of the 
tension T causes the mass M to vibrate according to the equation 

M z = T sin 9 

The motion of the end-point changes the 

therefore the wavelength at resonance by an amount 

dl/1 = dA/A = z/(1 tan 9) 

nodal 

( 1 ) 

and 

(2) 
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from Eq. (1) and assuming e 

= 

we obtain 

(3) 

l 

where m the mass of the vibrating string, c = wk = (Tl/m) 2 and df/f is 
the fractional change in resonant frequency of the string. 

For a terminating mass the end support moves in anti-phase with the 
transverse force exerted by the string, effectively shortening the effec
tive wavelength and therefore increasing the resonant frequency of the 
string. For a spring-like termination the wavelength is increased and 
the resonant frequency decreased. The two cases are illustrated schema
tically in Fig. 2. 
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The most interesting situations arise when a resonating string is 
coupled to one of the structural modes of an instrument. The motion of 
the end support can then be described by an equation of the form 

MB{ Z.. w • 2 ) T . e 
+ QB Z + WBZ = Sill (4) 

where ~ is the quality-factor of the coupled resonance, MB is its effec-
tive mass at the point of string support and wB resonant frequency. 
We then obtain 

df/f = 1 m . (-) . 
M 

8 (5) 
(nrr) 

For string resonances at frequencies well above the resonant frequency 
of the coupled structural resonance the end support appears mass-like, 
whereas for frequencies below the structural resonance the support is 
spring-like. When the frequencies of string and structural resonance 
coincide, the predicted frequency shift is purely imaginary. This corre
sponds to a damping of the string resonance giving rise to a string 
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resonance with a half-width ldf/fl and quality-factor a8 given by 

(6) 

We would like to take this opportunity to draw attention to an algebraic 
mistake, see Gough {198lb), where in every expression that m appears it 

should be replaced by 2m. 

In all the above expressions for the shifts and broadening of string 
resonances resulting from coupling to structural modes of an instrument, 
it is only the mass of the string that is important. A strong case could 

be made for manufacturers to indicate the mass of a string rather than 
its diameter, as it is largely the mass that will determine the tonal 
quality of a string on a particular instrument. 

On a musical instrument the string can couple to more than one struc
tural resonance and in general one can express the terminating admittance 
{velocity/force) at the point of string support on the bridge as 

A= A 1 + jA" = (7) 

where A' and A" are the resistive and reactive components of the admit
tance. The shift in resonant frequency of the string can then be ex
pressed as 

df/f = 
jz 
_Q(A' + jA") nn: (8) 

where z0 = mc/1 is the characteristic mechanical impedance of the string. 

The measured shift and broadening of a string resonance can therefore 
be used to determine the real and imaginary components of the terminating 
impedance. Although the broadening can be observed directly, any shift 
in resonant frequency of the string has to be measured relative to the 
unshifted value. Fortunately, the directional nature of the coupling at 
the bridge makes the determination of any such shift relatively straight
forward, as we will now show. 
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to the "coupling" direction will not be perturbed and so 
remain unshifted and uribroadened by any interaction with the air and 

main body resonance. If a string is excited in an arbitrary direction, 
two modes of string vibration can therefore be excited, which we 

refer to as the "coupled" and "uncoupled" modes of string vibration. 
resonant frequency of the coupled string resonance can be 

measured to the unshifted resonant frequency of the uncoupled 
mode, as we have illustrated schematically in Fig. 4. 

There are of course complications to our simple model which become 
increasingly important at higher frequencies. In particular, a 

generally be coupled to more than one structural resonance and, if 
these 
tion 

different coupling directions, the modes of string vibra
no longer be linearly polarised but will be elliptically polar-

ised, though in practice the degree of ellipticity is rather small. 
even at low frequencies the "uncoupled" string vibrations 

will be slightly broadened and shifted in frequency by coupling to all 
the structural modes at higher frequencies that involve motion of the 

of support in the "noncoupling" direction. We shall see an 
of this in a later section. 
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Experiment 

Hancock (1975; 1977) was the first to publish meaaurements for the 
resonant response of a sinusoidally excited string on a stringed instru
ment. His initial experiments (1975) were carried out with the electro
magnetically excited violin string in one arm of a sensitive ac-bridge, 
the .out of balance signal being induced by the motion of the metal
covered string in a magnetic field. Subsequently Hancock developed a 
rather more sophisticated technique (1977) based on the Doppler shift of 
laser light reflected from the moving string. In both cases some very 
interesting results were reported but no very clear picture of the essen
tial physics of the vibrating string emerged. 

With the help of two undergraduate students, Chris Baker and Carolyn 
Thair, we developed a rather simple technique for monitoring string 
vibrations (Baker et al, 1980), which is illustrated schematically in 
Fig. 5. Like Hancock, we excite the string electromagnetically by pas
sing an ac-current throuh the wire or metal-covered string and use a 
permanent magnet to produce a localised driving force at a position 
fairly close to the end of the fingerboard. The amplifier delivering 
current to the string is driven by a voltage controlled oscillator (vco), 
which enables us to scan the exciting current slowly through the string 
resonance. 

The induced displacement of the string is monitored by a photo-detec
tor, the shadow of the moving string modulating the current through the 
device. Initially we used a filament lamp for illumination and a Dar
lington photo-detector but we now prefer to use a matched infra-red LED 
and photo-diode because of its faster response (the Radio Spares slotted 
opto-electronic switch is a very convenient commercial device). A phase 
sensitive detector with the frequency from the VOO as reference monitors 
the resulting modulation in current through the detector in phase and in 
phase-quadrature with the current passing through the string. Fbr meas
urements on thin strings, we half-mask the small (~3 mm diameter) active 
area so that one side of the strings shadow lies permanently in the 
masked region. Using such a detector we can measure string displacements 
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The n2 dependence for the higher partials is confirmed but the extra

polated frequencies of the lower partials are considerably higher than 
those measured. The "coupled" string resonances deviate most strongly by 
an amount that depends critically on their position relative to the 
coupled structural resonances. The lowest partials are depressed in 
frequency by the compliance of the point of string support on the bridge, 
which will be different for a force in the "uncoupled" and "coupled" 
directions of the lowest string resonances. This compliance can be con
sidered as the low frequency limit of the admittance arising from all the 
structural resonances of the instrument as expressed by Eq. (7). The 
relatively large amount of uriharmonicity introduced by coupling to the 

body modes will clearly affect the establishment of stable Helmholtz 
vibrations of the bowed string. It would be interesting to compare the 
frequency of vibration of the bowed string with the frequencies of the 
uriharmonic lower partials to see whether the observations could be under
stood in terms of Fletcher's analysis of the non-linear excitation of an 
uriharmonic multimode system (1978). 

The bridge and soundboard of the piano present a rather more rigid 
termination for the string than on the violin. Consequently string 
resonances are less strongly perturbed. Never-...heless, Weinreich (1977) 
has shown that the coupling of strings to the soundboard can play an 
important role in the tuning and production of tone of pairs and triplets 
of strings on the piano. Since, in addition, relatively few measurements 
have been made on the acoustical properties of the piano, we decided to 
investigate the resonances of single strings, with all other strings 
damped, on a 6'10" Steinway Grand piano (Baxandall et al, 1981). For the 
upper octaves we made measurements on individual strings using much the 
same techniques as those described for the violin. However, in the lower 
octaves the damping of the string resonances was so small that our normal 
scanning techniques could not be used. In this range we derived frequen
cy shifts and damping coefficients from the free decay of string vibra
tions using. a Fourier Transform method. 

In Fig. 10 we have plotted the damping of the two string modes ob
served, which we again identify with the "coupled" and "uncoupled" modes 
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of string vibration. The scales are logarithmic and on the left gives 

the width deduced from the stringresonances, r = fs/Os and on the right 
gives the corresponding 60 dB decay times, -c 60 = 6 lnlO Os/ws. 

27·5 55 110 220 L.L.O 
10 

r Hz 

1 

STEINWAY 6'10" GRANO 

880 

A6 

Fig. 10. Damping of coupled and uncoupled 
modes of a single piano strings. 

sec: 

10 

A7 

The uncoupled modes of the lowest string have extremely long decay 
times but radiate very little sound. The stronger damping of the coupled 
mode of string vibrations reflects coupling to the structural resonances 
of the soundboard. There is clear evidence for a strong soundboard 
resonance in the first octave but unambiguous identification of higher 
frequency resonances is not possible because of the semi-tone spacing of 
the string resonances which rapidly becomes larger than the spacing of 
soundboard resonances. 

Fig. 11 shows the corresponding measurements of the difference in 
frequency between the coupled and uncoupled string resonances. Note the 
reversals in sign, which are indicated by the dotted lines through zero 
connecting solid and open circles. The changes in frequency shifts are 
of the same order as the damping widths as anticipated from the general 
form of the terminating admittance, Eq. (7). 

As an example of the way that coupling via the bridge can affect the 
motion of adjacent strings, we show some measurements of the induced 
motion of the centre string of a string triplet when only the outer 
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string mode damped via its coupling to the structural resonance with a 

large Q-value = K2/4 Os· In the small coupling limit the two modes 
remain unshifted in frequency. 

In contrast, when K > 1 the term inside the square root is positive so 
that the two modes have different frequencies but the same damping. The 

normal modes have frequencies on either side of the uncoupled resonant 
frequencies with a splitting such that the difference in their frequen
cies is given by 

f+ - f_ = _1 !2m 
nn: V J\1• 

( 12) 

These are equivalent to the modes of the two pendula referred to above 
with the string and body vibrating in phase (thew_ mode) and in anti
phase (the w+ mode) as represented schematically in Figs. 2a and b. 

I I 

71.0 745 Hz 
. . 
1magmary 

160 170 180 

Fig. 12. Response of centre string 
of an F triplet with only 
the outer string excited. 

f /Hz 
Fig. 13. Splitting of coupled, n=2, 

C-string resonance on a 
cello with a bad wolf-note. 
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Fig. 13 illustrates the magnitude of the splitting of string reso
nances that can occur in practice when the coupling is large. These 
measurements were obtained on a cello with the C-string purposely tuned 
sharp so that its first harmonic coincided with the main body resonance 
known to be responsible for a bad wolf note on this instrument. The two 
broad peaks are the split normal modes of the coupled system with half
widths just half that of the coupled structural resonance (Eq. 12). 
klthough care was taken to excite the string in such a way that only 
resonances in the "coupling" direction were strongly excited, it was not 
possible to eliminate the "uncoupled resonance" lying between them en
tirely because of the slight degree of elipticity referred to earlier. 

The very large shifts in frequency of the string resonances resulting 
from the coupling should be noted. From the known mass of the vibrating 
string and the observed splitting and widths of resonances, it is easy to 
derive values for the frequency of the strongly coupled resonance = 166 
Hz, its Q-value = 23 and its effective mass = 94 g. The direction of 
magnetic field to minimise excitation of the "uncoupled" string reso
nance gives the coupling direction relative to the bowing direction, 
which in this case was almost parallel. 

In practice we have found that any instrument with a wolf note gives a 
double resonance similar to Fig. 13 with the imaginary component of the 
measured admittance passing through zero 3 or 5 times within the region 
of interest (the presence of the "uncoupled" string resonance is respon
sible for 2 of the zero crossings) thereby confirming Schelleng's predic
tion that such a feature could be expected on any instrument that suf
fered from a wolf-note. The condition for 3 zero crossings is that k > 

2 - the coupling has to be sufficiently large to produce a splitting of 
the string resonances larger than their width. 

The split "string resonances" are of course normal modes of the system 

as a whole and could equally well be studied by a direct measurement of, 
say, the vibrations of the top plate of the instrument or of the admit
tance at the point of string support on the bridge. It seems very 
probable that several of the split main body resonances reported from 
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have to be tuned to a slightly higher frequency to make the split reso
nances of equal height again. However, much more interestingly, the 
combined widths of the split resonances are decreased, which implies from 
Eq. 11 that the width of the structural resonance has been decreased by 
the same amount. The Q-value of the main body resonance has been in
creased from about 17 to almost 30. This increase occurs because the 
violin inside the enclosing volume loses none of its energy by acoustic 
radiation, it is only coupled reactively to the non-radiating standing 
waves of the air inside the enclosing volume. This large rise in Q-value 
implies that almost half of the damping of the main body resonance arises 
from direct acoustic radiation, which is a very high value but is in line 
with the much earlier observations of Rohloff (1940) who observed the 
decrease in damping for several violins when placed inside an evacuated 
charriber. 

The effect of evacuating the chamber can be seen in the third measure
ment of Fig. 16. The current passing through the string now leads to 
some heating of the string, which lowers its resonant frequency. How
ever, the main body resonance is lowered by a mudh larger value and can 
now be seen as the small resonance well to the left of the now much 
stronger-"coupled" string resonance. Comparison between the first and 
third set of measurements shows that the reactive component of the normal 
air loading on the body of the instrument increases the frequency of the 
main body resonance by about a quarter of a tone. 

Conclusion 

In this paper we have outlined the theory and practice of string 
resonance spectroscopy as a technique for investigating the acoustically 
important vibrations of stringed instruments. It will be clear that most 
of our work to date has been of an exploratory nature. We now need to 
undertake a rather more systematic application of these techniques to 
study instruments having a range of tonal qualities. Thereby we might 
hope to obtain a clearer indication of the relative importance of the 
various measured properties in relation to the subjective quality of an 
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Abstract 

WHAT THE VIOLIN MARKER WANTS TO KNOW 
Carleen M. Hutchins 

catgut Acoustical Society, Inc. 
lVbntclair, N.J. , USA 

There are two main areas of importance to the violin maker - the 
construction and the adjustments of the violin for the production of fine 
sound and playing qualities. 

The first includes selection and seasoning of wood for top and back 
plates, as well as for blocks, liners and ribs~ the carving of the 
plates, their archings, contours, thicknesses, placement of F-holes, 
purfling groove, rib thicknesses and rib height in relation to the inside 
air modes: how to tune top and back plates with varying wood qualities~ 
effect of varnish and how to compensate ahead of time for these effects. 

The second on how to adjust an instrument for optimum tone includes 
the soundpost - its wood quality, shape and placement: the bridge - its 
wood quality and tuning: the strings - their gross action under the bow, 
tension and balancing. 

Scientific investigations have thrown light on some of these areas, 
others are still being researched; while others are not yet understood. 
Each area will be discussed briefly in light of present knowledge related 
to violin making and its practices and problems. 

The term "scientific investigation" can be broadly construed to mean a 
way of looking at a given phenomenon either natural (such as the cat 
sitting on my paper as I write) or man-made (such as the violin on the 
table before me). Both can be petted and cherished and are capable of 
giving much pleasure when properly handled. Both are extremely compli
cated from a structural as well as a functional point of view, and their 
physical parameters are as yet incompletely understood. 
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III. Plate tuning 

IV. Effects of coatings 

V. Effects of moisture 

A. Wood testing 
I. 

What physical properties of violin top and reck wood, so carefully 
selected by the violin maker, are most important to the sound of a fine 
instrument? Researchers in this area generally agree on five criteria: 
(1) Elasticity both along and across the grain, (2) Shear, (3) Internal 
friction {damping) resulting in dissipation of energy, (4) Density, (5) 
Velocity of sound. 

The most important aspects of elasticity are the values of Young's 
modulus along and across the grain. Young's modulus is a measure of the 
resistance to bending and resistance to stretching of the material, and 
is based on the force applied per unit area as related to the fractional 
change in length produced. 

The shear modulus is a measure of the resistance to distortion such as 
occurs when the top of a very thick book, lying on a flat surface, is 
pushed sideways thus shifting the upper surface with respect to the 
lower. 

Internal friction or damping is a measure of the ratio of energy 
stored to energy dissipated and can be expressed in two ways: (1) by the 
decay time, or the time during which vi~ation persists after excitation 
is cut off. (The violin maker listens for a long decay time in the tap
tone as he tunes a violin plate). (2) by the width of the frequency 
interval within which there is a specific response to continuous excita
tion as frequency is varied about a resonance. Internal friction, damp
ing, is often expressed as the "quality factor" or "Q". Damping is fre
quency dependent, rising slowly as frequency increases, but the members 
given here generally hold good up to about 700 Hz. 
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Density is weight per unit volume and is found by multiplying length, 
width, and thickness of a strip and dividing the product into its weight. 

Velocity of sound in the wood is found by dividing Young's modulus by 

density and taking the square root. One of the desirable characteristics 
of spruce for musical instrument soundboards is its high ratio of stiff
ness to density which is given the term velocity. 

GRAIN OF TEST STRIPS 
SECTION OF SPRUCE TREE 

xylem (wood) 

sap 

longitudinal-vertical 

cross-vertical 

horizontal 

tt::::a:)· i·~·)·,,; ~;·, 'r'·~ ~s-~:?:i:l 

end- vertical-- vertical 

Fig. 1. Log and strips. 

These characteristics are most often measured on small bars or strips 
(Fig. 1) of rectangular cross-section from which something about the 
larger pieces can be inferred. A simple and useful test of various woods 
of interest can be set up by cutting bars of exactly similar dimensions 
and mounting them as a xylophone, a method first suggested by Felix 
Savart in 1830. When the bars are struck, the pitch of the sound and the 
decay time can be heard clearly, enabling frequency and Q comparisons 
with specimens of known suitability. By combining this with the weight 
of the bars, a rough judgement can be formed of the new samples, at least 
for properties along the grain. It is difficult to identify the sounds in 
crossgrain strips by ear. 
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Acoustical testing of wood strips, using electronic methods, has been 
done by a number of researchers, notably Rohloff and Kruger in Germany 
(1938, 1940), Barducci and Pasqualini in Italy (1948), Daniel Haines 
(1979, 1980) at the University of South Carolina and Morton Hutchins 
(1981). Their findings indicate an average ratio of Young's modulus along 
to across the grain of about 15 to l in spruce selected for the tops of 
violins, guitars and piano soundboards, while the maple selected for 
violin backs has a ratio of about 5 to l along to across the grain. 
Measurements of internal friction indicate an average Q for spruce along 
the grain of about 140 and across the grain of 50; for maple along the 
grain of about 80 and across the grain of 50. 

The effect of shear is to cause a slight lowering of all the resonance 
frequencies above the fundamental with the result that they are more 
closely packed, an effect felt about 4 kHz to 5 kHz in softwoods such as 
spruce and cedar much more than in hardwoods such as maple. In crossgrain 
strips shear stiffness as well as Young's modulus is markedly dependent 
on the angle of the grain or reeds. In wood with the reeds at a 45° angle 
to the flat surface, shear modulus is at a maximum, while Young's modulus 
is at a minimum. Through an experiment involving several hundred pieces 
of selected spruce, Haines found a Young's modulus of 15 to l with reeds 
at 90°, but as much as 100 to l with reeds at 45° to the flat surface. 
Since the ratio of Young's modulus along to across the grain in the wood 

selected for top and back violin plates is critical to the tuning of the 
eigenmodes in each plate, this can explain why violin makers always avoid 
wood with reeds at a 45° angle. In slab-cut wood sometimes used for 
backs where the reeds are parallel to the flat surface, the crossgrain 

stiffness is again high. 

B. Wood growth, selection, and cutting 

The vibrational properties of each finished shell-like top and back 
plate are the result of the whole "life story" of that particular piece 
of wood. It begins with the life of a great tree, from the sprouting of 
the seed through its many years of growth in winds and weather until its 
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crown is high arove the ground and its trunk at least two feet in diame
ter. '!hen the tree is ready for the saw and axe of the violin maker, the 
long seasoning process, and the final crafting of the wood into a beauti
ful instrument -- a story that can span as much as 200 years. 

When a violin maker clim"bs up into the high forest areas where the big 

spruce tree with wood sui table for violin tops can still be found, he is 
looking for a tal.l. straight trunk with a cl.ear span of 20 to 30 feet with 

no visible branches. He does this usually in winter, for not only is the 
water content in the wood lower than in the growing season - a desirable 
characteristic - but it is possible to slide the logs down the icy slopes 

from the more inaccessible ridges where the biggest trees have often been 
skipped on previous cuttings. Certain trees are ruled out because of 
at:normal growth characteristics such as a twisted trunk, or a marked lean 
from the vertical which causes undesirable cell growth known as "reaction 
wood", (Fig. 2.) In a given area where all the spruces have grown from 

REACTION WOOD 

SOFTWOOD 

Compression Wood 

Lean 

HARDWOOD 
Tension Wood 

Fig. 2. Reaction wood. 

seedlings at about the same time, it is often possible to assess some of 
their vibrational characteristics by whacking the trunks with an axe as 
high up as one can reach and listening to the sounds ringing through the 
forest. A clear full ring usually indicates that a tree has a straight 
grain without too many big knots from hidden branch butts, as well as 
lack of the twist where the grain spirals somewhat like the stripes of a 
barber pole. A hollow, non-resonant sound can indicate rot the center 
of the trunk. '!he pitch of the sound from one tree to another, as well as 
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the diameter of the trunk of similar species in a given growth area, can 
indicate the of the armual - the higher sound usual
ly the narrower the spacing and vice versa. 

It is possible to make test l:orings straight into the heart of the 
tree with a special device known as an increment l:orer that l:Jrings out a 
1/4 irich diameter core showing the actual pattern and spacing of the 
alternating soft hard areas of so called early and late wood. As a tree 
grows, the single layer of activity dividing cells, known as the cambium, 
between the wood and the l:E.rk, produces new wood cells on one side and 

new l:E.rk cells on the other. Each year these new wood cells form a soft, 
light colored layer of thin-walled wood and a harder, darker layer of 
thick-walled cells over the whole tree - trunk, branches and twigs. In 
the cross-cut section of a tree the ring-like appearance of these succes
sive pairs of hard and soft layers has given them the name annual ------=--

The growth pattern of the cambium is affected by seasonal changes such 
as temperature, hours of sunlight, water supply, and wind as well as the 
mineral content of the soil, not to mention insect infestations and 
forest fires. In the mountains, particularly where the winters are cold 
and the snow accumulates, the trees tend to get a great deal of water in 
the warm sun of the spring thaws that may last into early summer. During 
this time the cambium grows quickly, forming thin-walled cells of roth 
wood and bark in layers whose thickness depends on the supply of water, 
sunlight and temperature. This is called earlywood or springwood. Then in 
the drier, cooler conditions of late summer, fall and winter cambium 
produces tightly packed, thick-walled darker looking cells called late
wood or summerwood. In spruce, these dark and light layers which form 

the grain of the wood are very prominent. 

Violin makers call the latewood or darker segments of the annual rings 
the reeds, and look for spruce that has thin dark reeds with wider, 
light, earlywoad areas between. This criterion is a good indication of 
low density as well as of a high ratio between the stiffness along the 
grain to that across the grain. It is quite possible for the density to 
be too low and the crossgrain flexibility too great. But here again the 
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experienced violin maker has learned to judge these characteristics by 

the appearance and feel of the wood. He also looks for spruce that has 
close, narrow growth rings near the outside of the log, where the tree 
has grown more slowly as it ages, with gradually wider ring spacing 
toward the center. Ideally the spruce for a top plate comes from a tree 
that has not only well-spaced, thin reeds, but straight grain in all 
directions. When such a trunk is cut into proper lengths and split on 
the quarter, as shown in the figure, the grain of the two halves of the 
joined top runs parallel, not only to the center JOln, but also to the 
flat l:ottom surface of the plate, (Fig., 3.) Also when two of the adja-

Fig. 3. Run out. 

cent split-quarter flitches are cut and joined, the closer grain from the 
outside of the tree lies at the center of tl1e plate witll tile gradually 
widening growth rings of tile early more vigorous years opening out toward 
tile flanks. The importance of tllis is shown later. 

Traditionally violin makers discard tile l:ottom six or eigtil feet of a 
spruce trunk because the wood is not uniform in this area. Root damage 
causes changes in cell structure several feet up the trunk. The static 
load of the hugh trunk, as well as the enormous stresses produced as a 
tall tree with a full crown of branches bends and twists in the wind 
alter the character of tile wood. 
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Splitting a log on the quarter not only helps to assure the proper 
grain orientation, but also to detect twists in the growth fibers. The 
tendency of trees to grow with slightly spiral grain creates what is 
known as RUN OUT in the two halves of a violin plate, making it impossi
ble for the fibers of the halves to be oriented parallel in two direc
tions. Run-out tends to change the stiffness characteristics in different 
areas of the finished plate, for on one side the uncut fibers of the arch 
will be longer than those on the opposite side, skewing somewhat the 
bilateral symmetry of the two joined halves. Bilateral symmetry has been 
found to be important in the proper tuning, especially of the top plate 
of a violin. 

Seasoning 

Tradition also indicates that both spruce for violin tops and the 
maple for the backs should be stack-seasoned in a covered outdoor shed 
for some years, the spruce for at least five to ten years and the maple 
somewhat longer. In the past when a violin maker had a supply of selected 
flitches laid down for him 1:Jy his father and then cut a supply of wood 
for his son, the long natural seasoning process did not constitute a real 
problem. Today such traditions are rarely followed. Vvith the increasing 
worldwide demand for seasoned tone wood, the supplies are dwindling 
rapidly. The big trees in Europe are almost gone. Kiln drying of wood 
for violins has long been considered undesirable, particularly if the 
water is drawn out of the cells so rapidly that the cell walls are broken 
down. A violin maker can usually distinguish, 1:Jy the sound and the feel
ing in his fingers, between the crackly shavings of well-seasoned spruce 
and maple and the shavings of kiln dried wood with their dull sound and 
slippery feel. Some makers indicate that it is best to season both the 
spruce and maple for at least fifty years, a judgement which may be 
reinforced by the findings of several wood technologists, who report that 

the ratio of crystalline-to-amorphous areas in the cell structure of wood 
seems to increase as the wood seasons. This concept fits rather nicely 
into violin making traditions, since amorphous material absorbs and loses 
water readily, and crystalline material does not. This could be one 
explanation of why many older instruments are less susceptible to mois-
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ture changes than new ones - and why wood seasoned for many years 
preferred over relatively new wood by most violin makers. Tests to check 
this amorphous-to-crystalline ratio in wood seasoned from 2 to 200 years 
are under way, but definitive results are not yet available. 

Certain CONSTRUCI'IONAL PARAMETERS, well known in good violin making 
have been found to be important and can be explained by analogies to 
scientific principles. The effect of some of these parameters can be 
evaluated by present scientific test methods; while others are still too 
subtle for current technologies to unravel and measure. 

A. Hologram interferometry has shown that the RIBS, (sides) of a violin 
actual bend considerably at certain frequencies. Thin ribs will bend more 
readily under vibration and do not split as easily as thicker ones. Also 
they are easier to shape when building the rib structure. Italian tradi
tion 1Jased on the work of Stradi vari as interpreted by Simone F. Sacconi 
(1962) indicates that violin and viola ribs should be an even 1.0 mm 
thick all around; cello ribs 1.5 mm and bass ribs 2.0 mm. Stradivari 
sometimes even went as thin as 1.3 mm for his cello ribs, reinforcing 
with thin cloth strips glued inside vertically at intervals. 

~· Although there has as yet been no definitive analysis of the consid
erable effects that different ARCHING CONTOURS have on tone qualities, 
test made on several hundred pairs of free plates of all sizes of violin 
family instruments show that smooth, even contours are extremely impor
tant. Uneven, lumpy arches have been found to inhibit the vibrations of 
the normal plate bending modes, even suppressing them entirely at times. 

c. The same is true of PLA.TE GRADUATIONS. This can be observed when 
working with Chladni patterns of free plates where even the smooth arch
ing contours do not result in actively vibrating modes (particularly of 
mode :W-5) if the graduations are uneven and lumpy. (Plate tuning is 
discussed later.) 
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The Chladni pattern method of plate tuning (a technique originated by 

Ernst F.F. Chladni (1809) is intended for use by the skilled violin 
maker. It involves the vibration of free violin (also viola, cello and 
bass) top and back plates by means of sine wave sound of variable fre
quency emitted from a loudspeaker. By observing frequency, shape and 
activity {amplitude) of vibrations of the plates, made visible by motion 
of powder sprinkled on them, ·the experienced luthier can often decide 
where to remove the last half millimeter of wood that will complete his 
instrument. 

The three most prominent, and most useful bending vibrations, or 
modes, in a violin plate are the first, the second and the fifth, which 

in that order of ascending frequency in every violin shaped top and 
back plate. These three mode shapes for a top and back plate are shown in 
Fig. 4 indicating not only the proper placement of the loudspeaker, but 
also of the four soft foam mounting pads. 

Mode ::l:f 1 entails a twisting of the plate, with one corner up and the 
other down. Thus, when a violin maker ho~?s a plate at each end, twisting 
it between his hands to feel its resistance, he is sensing the stiffness 
of mode-:l:f:'l. 

When a maker holds one end of a plate in roth hands with thumbs on top 
and fingers spread out underneath across the wood, squeezing and bending 
it slightly to assess the cross-grain stiffness of first one end and then 
the other, he is comparing tne relative stiffness of mode-:l:f:'2 across the 
two ends. 

When he holds a plate around the two ends in his fingertips and pushes 
down in the middle with his thumbs, he is sensing the stiffness of mode 
~5. The same test can be made holding the plate around the edges and 
gently pressing the top of the arch against a flat surface to feel the 
bending. 

Holding the plate at the midpoint of one end or in the edge of a C
bout and tapping with the soft part of a finger around the upper and 
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D. The effect of the PURFLING GROOVE open and closed. 
We know from engineering principles that a thin edge to a bending 

plate enhances its vibrating potential. In the early 1930s, F.A. Saun
ders observed a fine hair-line crack around the purfling, particularly in 
the upper and lower bouts of instruments that. had been played for many 
years, which would indicate considerable bending around the plate edges. 
Saunders suggested that this loosening of the purfling around the edge 
may well be an important factor in the "playing in" of an instrument, an 
idea confirmed in one of my experimental violas in the 1950s. This ex

the importance of instructions given by Sacconi to set the pur
in its groove evenly and easily (not hammered in tightly) 

constant mm left under the groove, 
around the upper and lower bouts (Sacconi, 1962). 

E. The 

have been marred 
that the are up. 

These rounded reduce considerably the impedance or to the 
airflow and out of the f-holes created by the sharp edges. Arthur H. 
Benade has indicated that the wear from of playing rounds 
off the edges of the finger holes on some wind instruments, such as the 
recorder, giving a more "friendly'' speaking quality (Benade, 1968). Many 
tests on old violins show larger amplitudes for the Helmholtz, or "main 
air" resonance than we find on new violins with sharp edges to their f
tloles. Rounding off the edges of the f-holes somewhat seem to help this, 
though we do not have definitive tests as yet. 

III. 

PLATE TUNING is the most helpful finding so far in aiding the violin 
maker to construct consistently fine sounding instruments with smooth, 
easy playing qualities. This method has been explained in detail in 
SCIENriFIC AMERICAN and the catgut Acoustical Society NEWSLETI'ER (Hut
chins, 1981, 1983). Some excerpts from the latter are included here. 
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90 180 360 

Fig. 4. Chladni patterns in a pair of tree top and back violin shaped 
plates showing the proper placement of soft foam pads (black 
triangles) for mounting rnodes::Ff1, #-2 and.:lf5 as near as possible 
to the dark nodal lines where the black particles are piled up. 
The active areas are white. The large circles show the position 
of the plate over the speaker cone centered at an antinode for 
each mode. 

lower bout edges will activate the sound of mode~l quite clearly, be
cause the holding point is a node and the curves of the upper and lower 
edges are antinodes for that mode. Holding at one of the four points 
where the nodal lines of mode ::I:F'2 intersect the edges and tapping on the 
antinodal area near the midline at either end of the plate activates 
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primarily mode;\:1:'2. Holding at a point along the nearly oval nodal line of 
mode~S and tapping in the center of the plate causes the sound of mode 

.:W5 to predominate. The best holding place for modes# 2 and::W-.5 is, of 
course, where their nodal lines cross, near one end and just off the 
midline. In this situation, tapping in the center will produce primarily 
mode:#'5 and tapping at the mid-line the OpJ;Osite end prima
rily mode:#' 2. 

All the modes, however, contribute in greater or lesser degree to the 
sound heard when the plate is tapped. In a well-tuned plate, particularly 

if the modes are an octave apart, the sounds will be relatively clear and 
easy to distinguish. But if the plate is not well-tuned, 
difficult to differentiate and analyze by ear the pitches 

often 
the sounds 

produced by tapping. This indeterminateness explains in part why violin 
makers are often very subjective in interpreting tap tones, and high
lights the importance of this "Chladni pattern method." By use many 
of the luthier's problems with thickness and stiffness can be visualized 
objectively, and are thus on the way to being solved. 

From 20 years of experimentation in tuning the free pairs of plates of 
over 200 violin family instruments of all sizes, four findings stand out: 

1. Fine sounding instruments, which project in a large hall and have 
smooth easy playing qualities, have resulted when mode.:l:f.S in both top and 

1:ack lie at the same frequency in the range of 360 ·to 370 Hz with mode=i:F2 
an octave below in both; also mode .J:J:: 1 in the top plate an octave below ;\:1:' 2 
giving a harmonic sequence of modes:#-1, ::lf-2 and:#'5 in the top plate. 
Because of structure, the 1:ack plate's mode :#' 1 cannot be adjusted to lie 
an octave below =f:f2 without altering the-#'2 -#5 relationship. 

2. Instruments of good quality have resulted when mode:l:f-5 has a relative
ly large amplitude and its frequency in the top plate lies within a tone 
of the frequency in the back. 

3. Smooth easy playing characteristics have resulted when the frequency 
of mode::!:f:-2 in the top plate lies within 1.4% of that in the back. (1.4% 
is about 5 Hz in violin and viola plates.) 
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4. If mode* 5 lies at the same frequency top and reck, then mode.# 2 
should be adjusted to lie at matching frequencies between top and back 
else a harsh gritty playing quality may result. 

schools of violin making teach different methods of gradu
ating violin plates which can be adapted to the Chladni pattern method. 
The graduation patterns shown here were developed from those indicated b:Y 
Simone A. Sacconi in his book "The Secrets of Stradivari" as we have 
adapted them for plate tuning. 

Thinning the wood in practically any plate area affects all the modes 
to some extent. Also, no two pieces of wood are exactly alike, and have 
different stiffness characteristics. This means that any set of instruc
tions on how to reduce the frequency of mode :#'2 or mode :#'.5 selectively 
must take into account the relative stiffnesses in a given top or back 
plate. The feel of the bending stiffnesses of the plate in one's fingers 
is the best indication of this. 

Fig. 5. Suggested starting thicknesses and tuning process 
of modes# 2 and ::ff 5 for a violin back plate. 

The diagram at the left, Fig. SA, shows approximate thickness for a 
violin back before tuning, using well selected curly maple with fairly 
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high pitched sound. If wood quality is uncertain, it is well to start 

with thicknesses 1/2 to 1 mm greater than these. The long oval pattern 
through the center helps to keep the frequency of mode 4¥2 up. 

The diagram on the right, Fig. 5B, suggests where to thin the plate to 
reduce the frequency of mode# 5 ~ more than mode ;J::!:=2 around. the edge 

area of the upper and lower routs. Thinning the cross hatched ~area 
particularly JUST INSIDE THE CORNERS usually reduces the frequency of 
roth modes::\:f2 and#5. 'Ib lower the frequency of modetf-2 more thantf-5 in 
the back plate we usually start py pulling in the thickness contours -

thinning the 3 mm line to 2.5 mm; the 3.5 line to 3.0, etc. - gradually 

working in toward the center. Also, the elongated shape of the central 
area can be gradually made more circular (arrows), which also helps 
reduce the frequency of mode-#'2 more than :l:f5. 

A 

~~ 

( .,, '·' ~ 

\ /::.\ A , ·r 
}J" \~ 

>_:"-'- --' .. -1 ...... - )) 
' " '•"' ··-----~:{ 

B 

Fig. 6. Suggested starting thicknesses and tuning process 
of rnodes::J::I::2 and#5 for a violin top plate. 

The diagram at the left, Fig. 6A, shows approximate thicknesses for a 
violin top plate before tuning which is finished on the outside with 
purfling installed, f-holes cut and bassbar in. Shaving down the height 
of the bass bar will lower the frequency of mode # 5 without appreciably 
lowering that of mode #2. This happens because the bassbar is in the 
center of the actively bending antinode of mode::!:f5, but lies approximate
ly along a nodal line of mode-#2 where there is almost no bending. 
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Thinning the wood in the cross hatched areas, first in the cres-
cent shapes at the sides of the and lower bouts, then across tl1e 
upper and lower ends will reduce the of both modes#2 and# 

The elongated center area at 4.0 mm 
mode :J:f .2 up. This gives the violin maker 

to help the frequency of 
a chance to lower mode#.2 fre

area inside the dashed lines to quency first by thinning the 
or 3 mm and then shortening if to fue dotted between 

the f-holes 6B. 

to 

The effects of 

that tl1e Chladni pattern method takes 
should be adopted by each maker to 

useful tool tllat has been used sue

IV. 

, a maker 
tone and 

sense and hear 
he 
at 

records 
thick

own 

of 

Application of SEALER AND VARNISH will change the physical dlaracter
istics of each violin plate, adding mass, stiffening the outermost fibers 
of the wood, and increasing damping. Since these changes depend on the 
physical properties of the coatings related to those in the wood, there 
can be no general rules for compensation ahead of time. 

There however, one important effect tllat sealer and varnish usual-
ly have on a top plate, namely to increase the crossgrain stiffness of 
the spruce. Since spruce is about 15 times stiffer along the grain than 
across it, the effect of the coating is to stiffen the crossgrain direc
tion more tllan along the grain. Such stiffening tends to raise the fre-
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quency of mode ;!::f2 as well as to change the contours of mode::l:t 5. The 

modes of the back are affected much less because the wood itself is 
somewhat stiffer. Therefore, if you are using a sealer-varnish combina
tion that adds stiffness, we suggest for violin plates tuning made~2 to 
be 5-8 Hz lower in the top than in the back. Then the stiffening of the 
coatings will tend to raise the made::W2 frequency in the top so that it 
nearly matches that of the back in the finished instrument. 

In the top plate the stiffening effect of the coatings on mode~5 
tends to detune the bassbar. 'Ib offset this, we usually leave the bar 
slightly higher than optimum with the nodal line at the lower right not 

quite up to the right corner. Then when the sealer and varnish are 
completely dry (usually al:out 2 years) the nodal line moves to the cor
ner. See Fig. 7. 

Fig. 7. Effect of varnish seasoning on mode ~5. 
Dry one week (dotted line) - two years 
(solid line) . 

'Ib help offset changes caused by coatings, we have established the 
practice of putting sealer and several coats of varnish on the free 
plates at least a year before final tuning. When the instrument is assem-
bled and ready final varnishing, the so-called "tuning varnish11 

rubbed back almost to the woad. 

v. 

Effects-of-moisture 

All luthiers are well aware of the drastic effects of humidity changes 
not only on finished violins, but also on the woad as it is being fash-
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ioned into instruments. Robert E. Fryxell reported that roth varnished 
and unvarnished violin plates absorbed water slowly over a period of 
months when maintained in an environment of 100% relative humidity. Yet 
after being returned to a dry environment the water loss took place in a 
matter of few hours (Fryxell, 1965). 

This finding has important implications for tl1e violin maker particu
larly when tuning plates. A sudden change to a lower humidity can set up 
stresses in the wood as the outside layers lose moisture quickly. These 
stresses will alter the mode patterns and their frequencies in the free 
plates making proper tuning practically impossible until the entire 
thickness of the wood has adapted to the new ambient. 

o Back 
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> 300 u 
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,60 :::::> ~ Cl 
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0:: 140 Mode 2 
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20 40 &0 so 100 

RELATIVE HUMIDITY ( 0/o) 

Fig. 8. Effect of humidity on the frequency of response 
of mezzo violin plates SUS 108. 

Rex Thompson also reported this in his study of the effect of varia
tions in relative humidity on the frequency response of free violin 
plates, indicating that if plates are tested when moisture is not evenly 
distributed tlrroughout the wood, erroneous reading will be obtained due 
to distortion, Fig. 8. He found tllat the difference between the top and 

ba.ck plates (varnished) did not exceed 5 Hz at the same relative humidity 
in the range between 15% and 79%. However, he found mode #2 quite sensi
tive to humidity changes and suggested tllat a safe procedure would be to 
match mode*2 as closely as possible at a relative humidity of 50% 

(Thompson, 1979). 
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CUrrently a variety of sophisticated testing systems are being applied 

to the violin such as modal analysis, finite element analysis, acoustical 
holography, acoustical spectroscopy and electro-optical studies of the 
violin via string resonances. It will be some time, however, before 
practical applications to violin making can be gleaned from this re
search. 
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Abstract 

THE TONAL QUALITY OF VIOLINS 
Jtirgen Meyer 

Physikalisch-Technische Bundesanstalt 
Braunschweig, BRD 

The tonal quality of violin sounds depends as well on the quality of 
the instruments as on the player's quality. For a critical examination 
of the violin, it is necessary to separate the influffi1ces of the instru
ment and the player as far as it is possible because of the feedback 
between instrument and player. The most important properties of the 
instrument are the resonance characteristics of body and bridge. Several 
measuring methods for getting response curves are compared and methods of 
evaluating these curves are discussed in order to get typical criteria of 
high qualified violins. 

The total radiation for all violins lies in a very narrow range of 
variations, whereas the frequency range of strongest resonances differs 
from violin to violin, especially at lower and medium frequencies. .In 
the higher frequency range, the response curves show a structure like a 
comb-filter, which is important for time-overtone-structure of violin 
sounds. 

The sound quality of a musical instrument depends upon a great number 
of factors. Some of these are acoustic factors to do with the instru
ments' vibration properties and sound radiation. Some, however, are non
acoustical factors which can exert a psychological influence on the 
player. If an instrument does not look beautiful, the player subcon
sciously believes that it must also have a poor sound. If, however, an 
instrument looks as if it had been made by a master, the player believes 
he is playing an instrument of high sound quality: here we probably 
encounter the not very logical idea that every instrument-maker who is 
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able to make something beautiful to the eye is also able to make some

thing beautiful to the ear. 

The consequence of this idea is that the player allows his judgement 
of the instrument's sound quality to be influenced by its appearance and 

that a handsome instrument will inspire him to play better than one which 

is not so well made. This results in the situation that the better
looking instrument actually sounds better to the listener; he does not 
realize that this is due only to the player. Indeed, a concert audience 
seldom judges a player and his instrument objectively: When, for example, 
in a violin concerto with orchestra, a violin could be heard well against 

the orchestra, the listener is often induced to say that the violinist's 
instrument had a strong tone. If, however, the violin could not be heard 
well enough, the typical judgement will be that the violinist's tone is 

weak. 

When we are dealing with the sound quality of violins, it is evidently 
important to try to distinguish between the player's influence on his 
instrument, and the influence of the instrument itself. As regards the 
purely physical aspects, this is quite possible, for the various parame
ters of playing technique by which the player can influence the vibra
tions of the strings are widely known today, and a large number of the 
resonance properties of the instrument which are responsible for the 
radiated sound are also known. It is much more difficult to make a 
distinction between instrument and player in a subjective judgement 
formed by listening to violin music, for even the room can influence this 
judgement. 

But it is just this listening to first-class artists performing in 
concerts that forms our conception of what is judged to be a good or 
beautiful sound. This sound conception has developed over a long period; 
it has been handed down in continuity from teachers to students, even if 
in the process it has been subjected to stylistic changes or changes in 
fashion. However, since great artists have played old Italian violins 
almost exclusively for generations, the memory of particularly beautiful 
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concerts is almost always combined with the memory of the sound of old 
Italian violins. The question of the sound quality of violins therefore 
leads to the question whether these instruments are really superior to 
other violins or whether it is only a matter of the ~sychological effect 
upon the player, resulting :Ln his playing better. This raises two con
crete questions: 

(1) Does the vibration behavior of old Italian violins differ from that 
of other violins? 

(2) Is it possible to imagine sound qualities of a violin making it 
appear superior to an old Italian violin, without its losing the typical 
sound of a violin? 

Tb find an answer to these questions, let us first try to distinguish 
between the influences of the player on his instrument, and those of the 
instrument itself. Let us take the case where the strings are excited to 
vibration by the bow, and let us disregard pizzicato and similar tech
niques. 

As regards the playing technique of the right hand, there are three 
parameters which the player can vary within certain limits. These pa
rameters are the velocity of the bow, the force with which the bow is 
applied to the string, and the l::ow position, i.e. the distance of the l::ow 
from the bridge (Cremer, 1971: 1981; Meyer, 1978; Schelleng, 1973). 

Naturally, the left hand is first and foremost primarily responsible for 
correct intonation, but its influence upon the tone quality should not be 
underestimated. Thus the pressure of the finger against the string is 
important, and the time structure of a tone is influenced by the vibrato. 
Finally, in some cases, the player also has the choice of string on which 
to play a certain note. 

As is generally known, the string - when excited by the l::ow to vibrate 
- always takes the form of a triangle whose vertex runs along the string, 
the amplitude being directly proportional to the speed of the bow. It 
therefore forms an important basis of the dynamics of play. On the 

71 



assumption that the bow speed can be varied between 12 and 120 em/ s, a 

dynamic range of some 20 dB results. It is not, however, always possible 
to reach these limits of speed. Another choice open to the player is the 
b:>w position: the nearer it is to the bridge, the greater the amplitude 
of the string becomes, the bow speed remaining the same. The ratio 
between the minimum and maximum distance from the bridge is 1:9, which 

yields an additional dynamic range of 18 dB (Bradley, 1976). 

On the whole, it should thus be possible to reach a dynamic range of 
38 dB on the violin. In practice, however, this value can be reached only 

with individual notes; in particular in the case of rapid sequences of 

notes, the dynamic range shrinks to some 20 dB, the quality of the 
instrument playing a relatively small part. Fig. 1 shows the dynamic 
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dB 
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Fig. 1. Dynamic range of 5 violins playing scales A3 ... c:r. 
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Lff: maximum sound power level 

Lpp: minimum sound power level 

Iro= averaged level of the response curve between 180 Hz and 1400 Hz 

~: averaged level of the response curve between 1400 Hz and 4500 Hz 



range of five violins playing rapid scales (Meyer and Angster, 1982). On 
the horizontal axis the difference between the average sound pressure 
level in the frequency range of 200 Hz to 1400 Hz and the corresponding 
level between 1400 Hz and 4500 Hz is plotted. These levels have been 
determined on the basis of response curves measured with the strings 
excited artificially. As can be seen, the dynamic range becomes somewhat 
larger when the radiation of the high frequency components is weaker. 

The bow force is particularly important for the playing technique of 
the violinist. In order to produce a continuous variation a minimum bow 
force value is necessary, as otherwise the damping losses cannot be 
compensated. The greater the losses, i.e., 

the higher the lxJw speed, 
the nearer the lxJw position to the bridge, 
the thicker the string, 
the smaller the pressure of the finger on the string, 
and the more energy the instrument takes fran the string, 
the higher this minimum value must be. 

On the other hand, the bow force must not exceed a definite maximum 
value, because otherwise tl1e frictional force would be too great at the 
moment when the string detaches from the bow. If tllis maximum value is 
exceeded, the sound will show statistical variations and audible noise 
components. The bow force with which it is possible to produce sound is 
thus restricted to a field as is shown in Fig. 2 (Meyer, 1978). On the 
horizontal axis the distance between the bow position and the bridge is 
plotted, whereas the vertical axis represents the bow force. The diagram 
is valid for constant bow speed. As can be seen, the playing range 
narrows towards the bridge and the needed bow force clearly increases. 

The influence of the bow force on the sound consists in the fact tllat 
with increasing force the peaks of the triangular vibration of the string 
and, thus, also the peaks of the mode of vibration with respect to time 
become sharper, whereas they are clearly rounded when the force is re
duced. This means that the overtone level of vibration increases with 
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increasing bow force. In Fig. 2 this tendency is indicated. by the shading 
of the area of play being the lighter, the higher the bow force. In 

sui 
pontl· 
cello 

brldge end ol flnQdrboiard 

bow position~ 

Fig. 2. Connection of bow position, bow force and timbre 
in case of constant bow velocity. 

particular, in connection with the choice of the bow position, the bow 
force gives the player some opportunity to influence the timbre. This 
influence is, however, restricted by the fact that the basic mode of the 
string's vibration must always remain a more or less rounded sawtooth 
vibration. 

Two examples will illustrate this: Fig. 3 shows three sound spectra of 
a violin for A3 ~ all of them are played with the same bow position. In 
the upper diagram bow force and bow speed. are high; a strong sound with 
overtones of up to some 6000 Hz is produced. In the middle diagram the 
bow force is the same, but the speed. is lower than in the upper diagram. 
The envelo~ of the upper diagram has been taken for comparison. It can 
be seen that on the whole the amplitudes of the individual partials have 
become smaller. For the upper partials, however, this weakening is not 
greater than in the range of the lower partials. In the lower diagram 
the force is red.uced but the bow speed remains the same. The result is a 
weakening of the upper partials, the amplitude of the lower partials 
remains unaltered. 
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Fig. 3. Spectra of violin sounds, note A3, constant bow position, 
but different bow forces (p) and velocities (v). 

Fig. 4 shows three sound spectra of a violin for the note A4 . In the 
lower diagram the bow position is as near to the bridge as possible in 
order to achieve a strong sound rich in overtones. In the diagram in the 
middle, the bow position is near to the finger board; the speed is more 
or less maintained and the bow force is adapted to the speed. The con
sequence is a lowering of the spectrum which is largely independent of 
the frequency; according to the bow position, at about 1/5 of the string 
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Fig. 4. Spectra of violin sounds, note A4 , different bow 
positions (~) and dynamics (p and f). 

length, there are, however, gaps at the 6th, 11th, and 16th partial. 
When a piano is played at low speed with the same point of contact and 
with corresponding force (upper diagram), a weak sound poor in overtones 
is produced. 
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The influence of the string on the timbre is illustrated by Fig. 5 

(Meyer and Angster, 1982). It represents the sound power spectra of As 

100 

dB 

90 

f 80 

L:ff 
70 

60 

50 
250 500 1000 2000 4000 6000Hz 

Fig. 5. Sound power spectra of the violin sound A5 
played in ff on different strings. 

played once each on the E-string, on the A-string, and on the D-string. 

The measurements were carried out in a reverberation room so that the 
sound radiation of the instrument could be recorded in all directions. 
Because of the third-octave band filters used, the upper overtones are 
combined in third-octave bands. It is a remarkable feature of the meas
urement result that the fundamental and the octave partial change by only 
approx. 1 dB at the transition to the neighbouring string. In the case 
of the upper partials the D-string and the A-string differ by 3 to 5 dB 
whereas the E-string is stronger by approx. 15 dB, which gives the tone a 
completely different sound character. This must not, however, obscure 
the fact that the choice of string does not usually lie within the 
player's discretion but results from the musical context and from the 
requirements of the playing technique. 

To what extent the sound power spectra can vary between different 
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violins is shown in Fig. 6 which represents the spectra for A3 and ~ 
which were each played on 5 violins, the dynamic level being the strong-

100.------------------------------------------. 

Fig. 6. Sound power spectra of 5 violins played in ff. The shadow 
area marks the spectn:n:n of an old Italian violin. 

est fortissimo possible which could be played. When considering the 
results for A3, it is conspicuous that the differences between the vio
lins are greater for the lower partials up to 1000 Hz than for the upper 
partials. Here the different resonance properties of the individual 
instruments become apparent. Furthermore, the ratio between the funda
mental tone and the octave partial is almost equal for all violins, 
whereas the spectra run together in confusion at higher frequencies. 

Among the five violins was an old Italian violin~ the area below the 
pertaining spectra has been shaded. As can be seen, the spectrum of A3 
is situated at a very high level: only in the 1000Hz third as well as 
above 4000 Hz is it surpassed by other instruments. With the exception 
of the fundamental, the spectrum for ~ is situated at the lower edge of 
the variation range. For the rest, the individual violins differ for~ 
more or less to the same extent as for the lower A3• It is conspicuous 
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that the fundamental which is always the strongest partial in ~ shows 
more or less the same intensity as the octave partial in the spectra for 
A3, which here is always the strongest partial. 

A rather good general idea of the sound power radiated by a violin is 
obtained when measuring the spectra for scales which are played rapidly 
over a greater range. Tb allow the results of several instruments to be 

compiled in one figure, an exact representation of the frequency depend
ence must, however, be dispensed with. In order to be able to make a 

1200 

Hz 

1000 

900 
violin: 

fs 800 

80 90 dB 100 

Lw-

Fig. 7. Dynamic range of 5 violins. 

f : first order momentum frequency of the third-octave band spectra 
s 

L : linear sound power level w 

distinction with respect to the timbre, it is advisable to determine the 
first order momentum of the energy distribution from the sound power 
spectra; for each spectrum a first order momentum frequency is then 
obtained (Angster and Meyer, 1983). TOgether with the linear sound power 
level, this frequency is represented in Fig. 7 for five violins. The 
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ends of the straight line represent the measurement values for pp and ff. 

The higher the measuring points for a violin in this diagram, the 
clearer the timbre of the instrument. The (old Italian) instrument "E" 
is conspicuous cy its particularly deep timbre. For all violins the rise 
of the first order momentum frequency from pp to ff is apparent. For 
most of the violins this rise is somewhat more than a whole-tone step. 
For instrument "C" which shows the highest first order momentum frequency 
in the pp, the rise is particularly flat. For instrument "D" it comprises 
more than a fourth; the timbre dependence of the dynamics is thus partic
ularly strong for this instrument. 

When evaluating the results of these examples, it can clearly be seen 
that the player's influence upon the sound spectrum is relatively small; 
it is restricted in the main to the steepness of the slope of the enve
lope towards high frequencies. Both the frequency-related energy distri
bution on the whole and the fine structure of the partial spectrum depend 
to a large extent upon the resonance properties of the instrument; added 
to this is the fact that the playable dynamic range, too, is influenced 
by the resonance properties. If several violinists each play on several 
instruments, the spectra produced by the various violinists on the same 
instrument are much more similar than the spectra produced by one violin
ist on the various instruments. 

Nevertheless, there are professional violinists who only require of a 
violin that it should be loud, as they themselves can "produce" the 
beauty of the tone. And it is well known that a violin played by a good 
violinist has a better sound than when played by a bad violinist, even if 
both of them play "correctly". It obViously follows that the sound spec
tra and, thus, the frequency-related energy distribution do not alone 
constitute the quality of a violin's tone. Correct intonation assumed, 
qualitative differences between various players have a strong effect on 
the time-dependent fine structure of the sound. This applies both to the 
intonation and to the subsequent development of the tone. A rapid move
ment of the finger into the final position immediately creates a defined 
end for the vibrating string and avoids an additional damping during the 
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investigations on the sound quality of violins are at present being 
carried out in Germany. One method dates back to the work of w. Lotter
moser in the Physikalisch-Technische Bundesanstalt in Braunschweig which 
was taken up some 25 years ago (Lottermoser and Meyer, 1968; Meyer, 
1982). The other method was developed in the last few years by H. 
Dlinnwald at the Institute for Technical Acoustics of the Rheinisch
vvestfalische Technische Hochschule in Aachen (Di.innwald, 1982; 1983). In 
both cases the basic principle consists in the recording of the resonance 
behavior of body and bridge with unchanging excitation, and in the inter
pretation of the differences between the curves obtained - in particular 
in comparison with the results obtained with old Italian violins. 

In Braunschweig the excitation of violins is still produced with an 
electro-dynamic system made by Messrs. Ling Dynamic Systems Ltd. This 
system has a small vibrating needle which is laterally pressed into the 
bridge near the upper left corner. Thus the direction of vibration of 
the needle corresponds to the direction with which the force of the 
vibrating string acts upon the bridge. The electro-dynamic system is 
driven by a sliding sinusoidal current at constant voltage. 

This measuring set-up is installed in an anechoic chamber. In con
trast to earlier investigations, six microphones are arranged around the 
instrument to compensate the influence of the directivity on sound radia
tion. They are always placed at a distance of 1m from the belly of the 
violin. Each microphone is connected to its own amplifier; the rectified 
voltage output of these amplifiers is coupled in a mean-value forming 
network so that the phase relationship of the sound waves at the individ
ual microphones has no influence on the resonance curve. 

As an example, Fig. 8 shows the resonance curves of three violins 
recorded with the method described. At first sight, there is a very 
strong resemblance between the three curves. This is not surprising, for 
in principle, the listener will recognize each of these instruments as a 
typical violin even if he perceives differences in the tonal quality. 
Upon closer consideration, however, it is noticeable that the curves 
differ clearly both with respect to the frequency position and strength 
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Fig. 8. Response curves of 3 violins. 
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1723 

"Jules Falk" 

ludwig Aschauer 

1958 

maker 
unknown 

of the individual resonances in the lower frequency range and with re
spect to the distribution of the resonance groups at higher frequencies. 
In this connection the relatively even course of the curves, due to the 
use of the six microphones, should be noted. Curves which are plotted 
with only one microphone show a great number of deep crevasses above 
al:::out 1000 Hz. 

Particular importance is attached to the frequency position of the two 
lowest resonances, the first being due to the cavity and the second to 
plate vibrations. In Fig. 2 it can be seen that in the case of the 
Stradivari violin, the cavity is tuned particularly deep and that the 
following resonance forms the highest point of the whole curve, this 
resonance, too, being tuned very low. 'lb show that these are properties 
typical of old Italian violins, Fig. 9 shows the tuning of the lowest 
resonances of some 100 violins. As can be seen, the measuring points for 
the old Italian violins are situated almost without exception in the 
lower quarter of the range of scattering where they are, however, dis
tributed over the whole width. The violins made b¥ Stradivari and Guar
neri del Gesu are concentrated at the lower corner on the left-hand 
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ready show such a poor workmanship that it can easily be seen that the 
instrument cannot be an original Stradivari violin. In other cases it is 
much more difficult to distinguish a fake from the original. Fig. ll 
shows the mean level values for the 315 Hz third-octave band and the 400 
Hz third-octave band for six genuine Stradivari violins and for 14 fakes. 
This diagram clearly shows the difference with respect to the vibration 
behavior in the frequency range mentioned. 
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Fig. 11 • Averaged level of the response curves of original 
Stradivarius violins and of falsifications. 

As can be seen in Fig. 8, the first group of plate resonances is 
followed by a gap which in its turn is followed by another group of 
strong resonances. By the latter a second maximum is produced in the 
series of the mean level values for the third-octave band but in the case 
of some violins it already appears in the 630 Hz third-octave band. This 
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frequency distribution is shown in Fig. 12 together with the position of 
the first maximum: In the left-hand half there are the instruments with 
the first maximum in the 315 Hz third-octave bcmd and in the right-hand 
half, those with the maximum in the 400 Hz third-octave bcmd. The lower 
half of the diagram contains the instruments with the second maximum in 
the 630 Hz third-octave bcmd and the upper half those with the maximum in 
the 800 Hz third-octave band. 
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Fig. 12. Frequency distribution of the third-octave 
bands containing maximl.ID1 levels . 

It can be seen that the old Italian violins have a second maximum both 
in the 630Hz and in the 800Hz third-octave band. If it appears in the 
630 Hz third-octave band, it will almost always be connected with a first 
maximum at 315 Hz. The 400 Hz/630 Hz combination is mainly shown by 
violins whose sound is not so good. Like most of the other violins, the 
older French violins show the 400 Hz/ 800 Hz combination. 

The level of this second maximum is also important. It is of particu
lar interest when relating it to the level in the 315 Hz third-octave 
band, which has already proved to be essential for the characterization 
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del Gesu violins as well as of the instruments Stradivari made in his 
later years is higher both in the 1000 Hz range and in the 4000 Hz range 
than almost all other old Italian violins, whiCh constitutes the particu
lar brilliance of these instruments. 

Dlinnwald's excitation system is based on the objective that the force 
transmitted by the system to the bridge should be independent of the 
frequency and that it should not represent an additional mass load for 
the instrument. This is achieved by the use of a copper wire only 0.3 mm 
tl1ick as the vibrating element. This wire runs tl1rough two air gaps of a 
strong permanent magnet which are arranged at a distance of some millime
ters from each other, the magne~s field of force being perpendicular to 
the wire. Through this wire passes a sinusoidal current producing a 
force which acts perpendicular to the wire and perpendicular to the 
magnetic field. With the free-lying part between the air gaps of the 
magnet, the wire is in contact with the string edge of the bridge near 
the upper corner. 'Ib avoid intrinsic resonances, the wire passes not only 
through the excitation system proper but also through two small tubes 
filled with a highly viscous grease. 

The measurement is carried out in an anechoic chamber with a reflect
ing floor. Both the violin with the excitation system and the microphone 
are arranged close to the floor. The microphone is installed at an angle 
of 45° to the belly (bass-bar side) at a distance of 3 m. The frequency 
curves of the violins are recorded with a dynamic range of 25 dB. 

Fig. 14 shows some typical measurement results obtained with this 
method. In each section, the curves of ten instruments with similar 
acoustic properties are plotted one above the other. As can clearly be 
seen in particular in the upper section, the curves consist of three 
individual resonances at low frequencies and a close sequence of resonan
ces at high frequencies. The lowest of the individual resonances is the 
Helmholtz resonance: the two following peaks which are particularly 
pronounced are due to vibrations of the violin body. While the frequency 
of the Helmholtz resonance of the individual instruments varies only 
slightly, the body resonances show somewhat more pronounced differences. 
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The essential differences between the three groups of violins repre

sented are, however, to be found in the frequency range above 700 Hz. 
The older Italian violins show an increase in level up to a maximum of 
some 2500 Hz, followed 'by a more or less symmetrical drop of the ·curve. 

B.. C" r----;, -+,, -1 

1300 4000 6400 

10 Italian 
violins 

10 master 
violins 

--~ 

10 factory-made 
.violins 

Hz ,_ 
Fig. 14. Besponse curves of different violins (Dl:innwald) . 

In contrast· to this, in the case of the new master violins, the frequency 
range from 700 Hz to more than 5000 Hz is filled rather uniformly with 
resonances, whereas the factory-made violins already show a maximum at 
1200 Hz and decrease strongly towards the high frequencies. 

In the meantime about 350 violins have been tested according to the 
method described. A representation of the results in a diagram presup-
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poses that some numerical value criteria are derived from the curve to 
describe the quality. Two such criteria are shown in Fig. 15 for all 
violins: On the horizontal axis the scattering of the level differences 
is shown, which appear in the sound spectra (calculated tone by tone) 
between components in the range between 650 Hz and 1300 Hz and components 
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Fig. 15. Intensity ratio of the frequency ranges B and C 
(see Fig. 14) and the scattering of the levels 
in lower frequency ranges (see text) (OOnnwald). 

in the range between 1300 Hz and 2600 Hz. A slight scattering means that 
the individual resonances in the frequency ranges stated lie harmonically 
to one another. Tb the ear, the effect of the relatively strong partials 
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in the range from 650 Hz to 1300 Hz is reduced by correspondingly strong 
components between 1300 and 2600 Hz, for- as can be seen in the upper 
section of Fig. 14 - too strong sound components between 650 Hz and 1300 
Hz seem to be disadvantageous for the sound impression. 

On the vertical axis in Fig. the intensity ratio between the compo-
nents from 1300 Hz to 4000 Hz and the components from 4000 Hz to 6400 Hz 
is plotted. This intensity ratio seems to be closely connected with the 
clarity of sound. 'Ib show the distribution of the measurement results 
for various groups of violins, Fig. 15 is subdivided into three sections. 
Each of them contains the results of all violins, but the results of the 
violins up to a definite year of manufacture have been emphasized. Thus 
the upper picture shows an accumulation of the old violins until 1760 in 
the upper left-hand zone of the range of scattering; this range which is 
obviously typical of old violins is separated from the rest by a straight 
line. When considering the violins up to 1800, we see tnat this line is 
already clearly exceed~ and the instruments made before 1900 cover the 
whole range of scattering. 

An interesting result is obtained when considering the frequency 
distribution perpendicular to this dividing line (Fig. 16). Three char-
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acteristic curves are obtained for the cumulative frequency of the vio
lins from various periods. The curves for the instruments made after 
1800 and for the factory-made violins show a more or less Gaussian dis
tribution, i.e., starting from a medium quality, there is a scattering 
which decreases towards a higher and a lower quality, corresponding more 
or less to a random distribution. In the case of the group of violins 
made before 1760, values for the worst instruments are not available, and 
the curve therefore no longer represents a Gaussian distribution. The 
reason for this is not easily ascertainable, though Dlinnwald puts forward 
three possible explanations: 

(1) In the course of the last 200 years, only the good instruments have 
been preserved and handed down to posterity. 

(2) The old violin-makers sold only the good instruments and destroyed 
the bad ones. 

( 3) The violin-makers were able to improve inferior instruments by sub
sequently working on them until the desired quality was obtained. 

In a comparison of the resonance curves obtained with the two differ
ent methods, at first the differences are not visible at a glance. This 
is due to (Lottermoser and Meyer, 1968: and Meyer, 1982; Dlinnwald, 1982; 
1983) several reasons: above all, of course, the difference in the kind 
of excitation but also the differences in the distance and the number of 
microphones and the scale on which the level is represented are responsi
ble. Fig. 17 shows the two curves for one violin. In both cases, first 
the cavity resonance is distinguished which is somewhat more pronounced 
in the lower curve. Two other resonances follow, which in the lower curve 
are to be found at somewhat higher frequencies than in the upper diagram. 
Towards the high frequencies a great number of individual resonances 
follow which in their fine structure are difficult to assign in the two 
curves; the envelope in the upper picture shows a shift of the maxima 
towards the lower frequencies. 

The influence of the excitation system's mass on ti1e resonance curves 
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has been investigated by Dlinnwald. Fig. 18 shows the curves of an in
strument when different additional masses act upon the bridge. It can 
easily be seen that the envelope in the lowest curve which represents the 
normal condition has its maximum at al:::out 2000 Hz. With increasing mass 
this maximum is shifted towards the lower frequencies, the frequency 
position of the individual resonances remaining almost unchanged. 

As has been mentioned at the beginning, the basic principle of both 
methods is based on the fact that all instruments are always examined 
according to the same method and that the results are compared with one 
another. The differences of the curves obtained with the different 
methods should not therefore be overrated, though a certain degree of 
caution is necessary when interpreting the optimum energy distribution in 
the low frequency range. 

The far more balanced course of the upper curve at high frequencies is 
due to the fact that the resonances lying increasingly closer together 
overlap one another. These resonances result in different directional 
characteristics at neighboring frequencies; this has the effect of chang

ing above all the direction of the minima in the directivity diagrams. 
The deep valley in the lower curve should therefore be interpreted to 
mean that only little energy is radiated in the direction of the micro
phone at the respective frequency, whereas there is a strong sound radia
tion in other directions. 

The distinct subdivision of the curve plotted with only one microphone 
has a certain resemblance to a comb filter curve, although there are 
different widths between the valleys in the individual frequency ranges, 
which is in contrast to the usual comb filter. In dependence upon the 
slope steepness, frequency movements of the partials result in amplitude 
modulations as known from the comb filter, and thus give the sound a 
particular characteristic. As is generally known, in the case of natural 
sounds, comb filters result in a certain hardness of timbre which is felt 
to be unpleasant. In the case of the violin a moderate change of the 
spectrum produced by the string is quite desirable, as the sound then 
gains in incisiveness. 
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When we consider that the energy distribution at lower frequencies can 

mould the spectra of individual tones but not the overall character of an 
instrument, it is obvious that essential quality criteria are to be found 
in the range of very high frequencies and are therefore associated with 
the comb filter effect mentioned. In this connection the change of the 
internal damping of the wood with time can play an important part. As is 
shown in Fig. 19, the internal damping of the belly wood decreases during 
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Fig. 19. Internal damping of vvood of different age (Ftacnik) . 

the first few decades in the whole frequency range and increases again 
above about 2000 Hz after more than a century (Ptacnik, 1953). This 
increase in damping would effect a flattening of the comb filter flanks, 
which would result in a reduction of the sharpness of the sound. vlith 
this theory it is quite possible to explain the "mellowness" of sound 
for which old violins are praised. 

It is also conceivable that a good player can adapt his playing tech
nique to the comb filter effect in different instruments. If the very 
high frequencies are modulated too strongly by the vibrato, he can reduce 
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Al:stract 

VIOLIN RADIATIVITY: CONCEPTS AND MEASURE1>1ENTS 
Gabriel Weinreich 

University of Michigan, Ann Arror, MI, USA 
and 

IRCAM, 31, rue Saint Merri, Paris, France 

If we define the "violin corpus" as that physical system which inter
poses between the vibrating string and the ultimately produced acoustic 
radiation field, and if we assume that its action is to a great degree 
linear, then the performance of the system should be completely specified 
by two quantities: the admittance presented to the string at its termi
nation, and the "radiativity", that is. the sound field produced per unit 
force exerted by the string on the bridge. Each quantity is, of course, 
a complex function of frequency, and involves two degrees of freedom 
corresponding to the possible polarizations of the string. In addition, 
the radiativity must, in principle, couple to an infinite number of 
degrees of freedom corresponding to some convenient parametrization of 
the rad~ation field. 

By concentration our attention on the radiativity we do not imply 
that the bridge admittance is unimportant. Since it determines the 
response of the string to the bow it must have a major effect on the 
"feel" of the instrument as perceived by the player. Nonetheless, even 
here the radiativity must play a role since the feedback to the player 
is, to some degree at least, acoustic. 

At low frequencies, where the wavelength of the sound is comparable 
to, or greater than, the size of the violin, the radiativity is conveni
ently defined in terms of the radiative multipole moments. For the 
monopole radiativity, for example, we imagine a small pulsating sphere as 
the source of the sound, and specify the equivalent radial air flux 
corresponding to unit force applied to the bridge. At higher frequen
cies, where the different pa:rts of the corpus become radiatively inde
pendent of each other, an absolute definition that does not depend on 
incidental idiosyncracies of the experiment setup involves some serious 
problems. 

This paper will discuss some aspects of radiativity from a theoretical 
point of view, as well as present data on measured absolute radiativities 
of a number of violins of varied quality. 
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Method of measurement 

In our experimental arrangement, the violin rests horizontally on 
three small foam rumber supports in a semi-anechoic chamber. A stereo 
phonograph cartridge is mounted so that the tip of its stylus touches the 
bridge between the A and D strings. The incoming field is generated by a 

number of loudspeakers whose individual radiation fields have been pre
viously ascertained, so that we know with what amplitudes and phases they 
have to be superposed at each frequency to produce the desired angular 

characteristics. This superposition is not in fact performed acoustical

ly; rather, the response of the violin is measured with each spreaker 

separately, and the superposition is done by the computer. 

Because of the linearity of the system -- which, for our circum
stances, has been verified with considerable precision -- we can measure 
the radiativity simultaneously at a large number of frequencies by using 
a stimulus in which the corresponding frequencies are contained. For 

example, a pulse train at a 1 Hz repetition rate contains all frequencies 

which are multiples of 1 Hz, limited at the upper end by the width of the 
pulses. This is, however, the worst possible signal to use in practice 
because its instantaneous power is concentrated in a very small part of 
the cycle. To avoid overloading the apparatus during the pulse, its 

amplitude would have to be kept very low, resulting in an abominable 
overall signal-to-noise ratio. A random "white-noise" signal is much 
better in this respect, b.lt still not optimum; as always, one does better 
by careful signal design than by a throw of dice. 

We use a specially constructed signal which contains equal amplitudes 
of all integer frequencies from 190 Hz to 3000 Hz, with phases selected 
so as to minimize power fluctuations in the course of its one-second 

cycle. It is generatred by an LSI-11/23 computer which repetitively 
reads a table of 8192 values, at a sampling interval of 122 microseconds, 

into a D/A converter and synchronously samples and digitizes the return

ing signal from the phonograph cartridge. After the one-second cycle has 

been traversed for each permutation of loudspeaker and cartridge channel, 

the results are Fourier-analyzed and normalized to previously measured 
sound amplitudes at each of the 2811 frequencies. 

102 



Low-frequency model 

Before looking at experimental data, we give a short discussion of the 
expected behavior of a violin, especially at relatively low frequencies. 

For this purpose we imagine first that the violin is a closed shell 
without any f-holes, and that its volume can be made to change by a force 
applied to the bridge. We may think of this volume change, when divided 

by the applied force amplitude, as the monopole radiativity. Now at low 

frequencies the volume change will be static, that is, determined entire
ly by the elastic properties of the shell, so that the radiativity will 
be independent of frequency. As the frequency is raised, the shell's 

inertial properties enter, so that the amplitude of motion increases, 

leading ultimately to a resonance which we can roughly identify with the 
"main lxxly resonance" of violin lore. .Al:x>ve this frequency, the volume 

change will have the opposite phase relative to the applied force, so 
that the radiati vi ty will change its sign. This behavior is shown sche
matically in Fig. 1. (We neglect dissipation in this discussion, since 
it has not effect on the general argument.) 

If we now add f-holes to our mode, it is easily seen that at very low 

frequencies, where the air behaves as an imcompressible fluid, the change 

in volume of the shell will be exactly compensated by the volume of air 
which emerges from the f-holes, just as the overall volume of a tube of 
toothpaste is not affected when the tube is squeezed. Thus the monopole 
radiativity must vanish at freqilencies small compared to the Helmholtz 
frequency. As the Helmholtz frequency is approached, the inertia of the 
air begins to exert its influence, so that the volume motion of the air 

becomes larger than that of the shell (assuming that the Helmholtz fre

quency is lower than the main l:x:xly resonance, which is the case in actual 

violins). In this regime the monopole radiativity thus has the opposite 

sign from the "static" one characteristic of the shell alone .. It van
ishes at low frequencies in proportion to the square of the frequency, 

becomes large at the Helmholtz frequency, then again changes sign and 
joins to the "static" response of the shell. This behavior is shown in 

Fig. 2. 

It is important to note that, unlike the monopole radiati vi ty, the 
dipole radiativity remains finite as the frequency goes to zero, since 
the "toothpaste behavior" does not preclude an overall displacement of 
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that the instrument is less sensitive by almost 20 dB to forces in the 

"wrong" direction than it is to forces in the "right" direction. 

In these measurements, we always leave the open strings undamped. The 
common practice of damping the strings so as to "eliminate their in
fluence" is questionable in that one can never eliminate a normal mode, 

only displace it: hence, a damped string may masquerade as a broad l:xJdy 
mode mode at an unexpected. position. In Fig. 3, by constrast, one clear
ly distinguishes the string resonances by their sharpness: the D-string 
fundamental at 293 Hz, the G-string second harmonic at 392 Hz, the A

string fundamental at 440Hz, and so on. On the other hand, since the 

measurements are made via the principle of reciprocity, the radiativity 

must then be interpreted as the multipole moment produced per unit force 
applied to the bridge by an agent external to the strings, which is not, 
of course, correct. In fact, however, the impedance presented by a 
string to the bridge is very low except very near to a string resonance. 

Thus, if we are interested, for example, in sounds produced on the A
string, we can take Fig. 3 at face value except at frequencies very close 

to 440 Hz and its harmonics, where the curve is to be corrected by 
smoothing it out so as to eliminate the sharp resonance. 

The phase scale ranges from + 180° at the top of the phase graph to 

-180° at the bottom. As we mentioned, these graphs are based on a 

definition of the monopole moment as a volume velocity rather than the 
volume amplitude itself. Hence, the "static" behavior we discussed 
earlier, in which the shell response to an applied force is governed only 
by its elasticity, is here characterized by a phase of -90° rather 
than 0°. We see this "static" behavior in the range from arout 320 Hz to 

about 450 Hz. The region around 280 Hz is the Helmholtz resonance, 
associated with a phase reversal; at lower frequencies the radiativity 

phase is "antistatic", as the motion of the toothpaste exceeds that of 

the tube. Ab:::>ve 450 Hz we enter a cluster of resonances which together 

comprise th~ "main l:xJdy resonance". In traversing this region, the phase 
again changes by 180 °, as the behavior of the shell begins to be gov

erned by inertia rather than elasticity. 
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Figs. 4-6 show monopole radiativities, in the range from 200 to 4000 

Hz, of the following instruments: 

Fig. 4: 
Fig. 5: 
Fig. 6: 

Vuillaume .# 2390 ( 1862) ; 
Hutchins :f!:- SUS296; 

"lARK" , a cheap Chinese violin. 

One may note that, superficially at least, all instruments of more or 

less "normal" construction show a great deal of similarity in their 

radiativities. It must be emphasized that the vertical scale of the 

graphs, althogh not explicitly labeled, is the same in all of them, That 

there were not greater differences in the overall level of radiativity 

for instruments of varying quality was something of a surprise. 

If, on the other hand, one deviates from the "normal" construction, 
radical differences immediately appear. Thus Fig. 7 is a violin with a 

brass "practice mute" on the bridge, and Fig. 8 is a "sixteenth-size" 

instrument. Finally, Fig. 9 is the radiativity of one of Carleen Hut

chins' "mezzo" violins. This instrument, a member of the "New Violin 

Octet", has the normal string length and tuning, but is built with a 

larger plate area and narrower ribs. The consequent emphasis of the low

frequency resonances in the radiativity is clear. 

200 400 600 

Fig. 4 

800 1000 Hz 200 400 600 800 1000 Hz 

Fig. 5 
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INPUT ADMITTANCES AND SOUND RADIATION OF FOUR VIOLINS 
J. Alonso Moral 

Dept. of Speech Ccmnunication and Music Acoustics, K.TH, Stockholm 

Atstract 
Four violins were selected to study input admittance and sound radia

tion. The study was conducted to obtain answers to two questions: 
1} How many positions and directions of the input admittance measures are 

needed to achieve the most essential information of the vibration 
properties? and 

2)Is it possible to predict the radiation level with the input admit
tance known? 
The results show that the input admittance outside the G-string and 

perpendicularly to the top plate is the most informative. Furthermore, 
they show that the ratio of radiation to input admittance is considerably 
higher at the Helmholtz resonance than at the following single reso
nances but considerably lower in the range of the main bridge resonance 
and above. 

The radiation of the violins is for low frequencies insensitive to the 
direction but for high frequencies strongly dependent of the direction. 
The radiation is stronger perpendicular to the top plate than perpendicu
lar to the back plate and, furthermore, it is stronger "along" the violin 
than "across" it. 

The radiation effectivity varies from a violin to another; thus the 
radiation level cannot be predicted better than 3 dB from the input 
admittance curve. The results indicate that violins with higher input 
admittance level have a higher radiation level but a lower ratio of 
radiation to input admittance. 

1. Introduction 

The input admittance curve is easy to measure and summarizes the 
vibration properties in an illustrative way. Furthermore, by means of a 
reciprocal method the radiation properties can be studied. 
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5. Conclusions 

The questions in the introduction were answered by the results in the 
following way: 

1) With the admittance at the position 2 only, we can get the essential 
information about the vibrational properties of the violin. 

2) The average of the radiation level for the six directions, can be 

predicted within ±3 dB with the input admittance at position 2 known. 

In addition the following was found: 

1) The input admittance at the different positions gives a good informa
tion for the identification and characterization of the resonances. 

2) The sound radiation is rather insensitive to the direction for low 

frequencies but very sensitive on th~_direction for high frequencies. 
At high frequencies, the radiation is stronger perpendicular to the 
top plate than to the back plate and stronger along the violin than 
across it. 

3) The ratio sound radiation to input admittance was used as a measure of 
the radiation effectivity. Thereby it was found that the Helmholtz's 
resonance is a much more effective sound radiator than the other 
resonances. The radiation effectivity is especially low in the range 
of frequencies of the bridge resonance. 
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STUDY YOUR BOWING TECHNIQUE!* 
Anders G. Askenfel t 

Dept. of Speech Cormunication and Music Acoustics, KTH, Stockholm 

Al::stract 
A simple equipment which makes it possible to simultaneously register 

the motion of the row and the downward force on the string exerted by the 
player ("row pressure") under normal playing conditions is presented. 
Some preliminary registrations of various rowing gestures are included. 

Introduction 

Players of bowed instruments exert a subtle control of the sound 
source of the instrument, controlling the strings with the left hand and 

the row with the right. As regards the control of the row, three parame
ters are of primary interest, (l) the motion of the row transverse to the 
strings, (2) the force which the player exerts when pressing the bow 
against the strings, and (3) the distance from the bridge to the contact 
position of the bow. The equipment described in the following makes it 
possible to measure the first two of these parameters during playing, 
essentially without interfering with normal playing conditions. 

The following introductory section illuminates the importance of the 
string player's ability to control and coordinate the three parameters 
mentioned, the variation of these parameters during play being essential
ly unaddressed in violin research previously. 

* This article will also be published in the Quarterly Progress and 

Status Report l/1984, Dept. of Speech Communication & Music Acoustics, 
Royal Inst. of Technology, Stockholm (in print). 
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The bow and the string 

The normal excitation tool of the instruments of the violin family is 
the bow. The string is set into vibration as the bow is moved across the 
string. A sharp, propagating corner is formed on the string in an 
interactive slip-stick process between bow and string. The corner circu

lates on the lensshaped envelope of the vibrating string, with an period 
determined 1:ly the fundamental frequency of the note played. 

Musically, the motion pattern of the bow is of great importance in the 

performance of string music, e.g., in phrasing, the motion often being 

carefully addressed by the composer in the score. Physically, the momen
tary velocity of the bow is one of the player's chief controls of loud
ness, the excursion of the string being directionally proportional to the 
bow velocity. The other available control of loudness is the distance 
from the bowing point to the bridge, the transverse excursion of the 

being inversely proportional to this distance 

According to the basic Helmholtz model of string motion, the row force 
does not influence the vibrations of the string as long as the 
force between bow and string is high enough to the 
process of the under the bow. However, as 
players, the bow force does effect the vibrations of the 
increased bow force giving a more brilliant and carrying tone. As 
by Cremer (1981), a higher bow force than minimum leads to a 
of the corner of the during the passage 
the corner being rounded off at the reflections at the s 
tions, mainly at the bridge. This gives a boost of the 
with increasing bow force, an effect also to 
decreasing the distance between the bow and the bridge. However, 
later strategy accompanied by the increase loudness earlier men-
tioned. 

In the fol~owing the (1) be 
bow motion although the motion takes place 
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of the bow. This is in order to avoid misunderstandings as the string 
often is used as a direction of reference in studies of the violin. As 

regards parameter (2) the correct term bow force will be used instead of 
the customary term "bow pressure".** 

Method 

Bow motion 

The instantaneous transverse position of the bow was measured by means 
of the Wheatstone-bridge principle, Fig 1. A thin resistance wire was 

amongst the bow hairs. This wire divided in two parts by the 
, the of the of these two depending on the 

transverse the bow. The two the wire make up one 
branch of a Wheatstone the other branch consisting of one 
and one allowing for 

With the midpoint of the bow resting on the 
l:::alance. When the bow moved away from this 

the from the 
s When the bow 

deflected away 

is in 
is gener
bow. The 

not contact 
no 

between and transverse bow 

may even use 
are made on the bow. 

** It would be desirable that the correct term "bow 

with 

be used 
consistently in presentations, as a force and not a 
force per area which being measured. The reason for the 
ance of the term "row pressure" would be that the player has good reasons 
to associate to pressure, as he actually presses the bow against the 
string. 
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Fig. 1 . Sketch of the equipment used for the simultaneous registration of 
bow motion, bow force, and pitch. The sensor for the transverse 
bow position is a thin resistance wire inserted among the bow 
hairs. This wire is divided into two parts by the string, the 
two wireparts constituting one branch of a Wheatstone bridge. The 
sensors for the bow force are four strain gauges mounted on thin 
bronze strips through which the bow hair is fastened to the bow. 
The strain gauges are connected in another Wheatstone bridge. The 
pitch is registered by an accelerometer sensing the vibrations of 
the violin body. All three signals are recorded on an ink writer. 

the use of this prepared bow is the moderate use of rosin in order to 
avoid intermittent electrical <.."'ntact between bow and string. 

Bow force 

The instantaneous bow force exerted by the player was registered by 
the use of another Wheatstone bridge. The bow hair was cut at the frog 
and the tip and thin strips of phosphorus bronze were glued to the bow 
hair in roth ends. The row hair was refastened to the row via these metal 
strips. Four strain gauges were glued to the strips, one on each side, 
and connected in a Wheatstone bridge. \fuen the player presses the bow 
against the string, the metal strips bend and the bridge generates a 
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voltage proportional to the bow force. This signal is recorded on the 
same paper as the row motion. 

The output voltage is essentially a linear function of the bow force, 
Fig. 2. The only deviations occur when using very high bow forces near 
the tip, a combination not used in normal playing. 

The preparations of the bow described above did not change the normal 
playing conditions to any appreciable extent, according to professional 
violin players. For example, the total weight and the distribution of 
the weight along the bow are essentially unaltered. The most marked 
difference when using this prepared bow is the shortening of the accessi
ble bow length by a couple of centimeters, corresponding to less than 10% 
of the original length. The reduced length of the 'bow was 0.58 m. 

127 



Examples of registrations 

The transverse bow motion and the bow force were registered on paper 
together with other parameters of interest, in these experiments pitch or 
acceleration level in the top plate of the instrument. The pitch and 
acceleration were measured with the aid of an accelerometer fastened to 

the violin top plate close to the bridge on the the bass bar side. The 
acceleration level was used as an estimate of the excitation of the 
instrument. Some examples of registrations are shown in Figs. 3-8, 
displaying different manners of bowing as performed by two professional 
players. 

Typical values of bow force observed during the experiments were 
between 0.5 and l N.*** The lowest bow force which still produced a 
steady tone was approximately 0.15 N. A bow force of 1.5 Nand above is 
to be considered as high. 

Typical values of bow velocity were between 0.6 and 1.3 m/s. The 
lowest velocity which still produces a steady tone was approximately 0.04 
m/s, one full bow stroke lasting about 15 s. The highest bow velocity 
observed was almost 3 m/s, this high value being reached in sforzandi 
during closing chords of a movement. 

The first example of registrations, Fig. 3, pertains to a rising one 
octave G-major scale starting on the low G-string. The scale is played 
legato, detache and staccato, respectively. The differences between 
these types of bowing are clearly demonstrated in the figure. 

The next figure, Fig. 4, shows a sforzando in two different versions, 
a short version with the bow leaving the string immediately after a rapid 
bow stroke, and a longer with the bow resting on the string throughout 

*** The force unit 1 N (Newton) corresponds to the weight of 100 g within 
an error of less than 2 %. 
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Fig. 3. Registrations of pitch, bow force, and transverse bow position. 
The example played is a G-major scale in one octave strating 
from the low G-string, legato (top) , detache (middle) , and 
staccato (bottom) . 

the bowstroke. Note the differences in the excitation of the instrument 
as displayed by the acceleration level curves. The long version consists 
of two portions with different decay slopes, emanating from a correspond
ing division of the bow stroke in two portions with a high and a slower 
velocity, respectively. 
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Fig. 4 . Registrations of acceleration level, bJw force, and bow position. 
The example played is a sforzando in two different versions, short 
(left) and long (right). 

The registration in Fig. 5 illustrates a crescendo - diminuendo made 
both the normal way, i.e., upbow- downbow, and also the opposite way, 
downrow - uprow. Note the coordination of increase in row force with the 
increase in bow velocity, i.e., the force increases as the slope of the 
bow position curve increases. These gestures requires a careful planning 
by the player as regards the consumption of bow length, in order to 
achieve a large dynamic span. In this example the span in acceleration 
level is approximately 25 dB in both versions. 

An example of an usual accompaniment in Mozart-style music is dis
played in Fig. 6, showing groups of notes played spiccato (eight-notes) 
and saltelato (sixteenth-notes). Note that the player increases the bow 
velocity in crescendo by lengthening the bow strokes, the time for a 
stroke being constant. A matching increase in bow force accompanies the 
increase in bow velocity. 

The regi:=;tration in Fig. 7 illustrates the typical accompaniment of 
Vienna-waltz, showing the after-beats played by the second violins. The 
bar is divided asymmetrically, the time lengths from onset to onset 
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Fig. 5. Registrations of a crescendo - diminuendo played upbow 
- downbow (top) and downbow - upbow (bottom). The same 
signals as in Fig. 4. 
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Fig. 6. Example of a Mozart-style accompaniment spiccato 
(top) and sal tellato (bottom) during crescendo -
diminuendo. The same signals as in Fig. 4. 
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Fig. 7. E>canple of a Vienna-waltz 'accarpanjrnent. The bar is sub<Uvined aS)'1111l€!trically. 
see text. The same siqnals as ln Fig. 4. 

Fig. 7. Example of a Vienna-waltz accompaniment. The bar is subdivided 
asymnetrically, see text. The same signals as in Fig. 4. 

between beats 2-3 occupying 38% of the duration of a bar, leaving 62% for 
the remaining ,two beats (cf., Bengtsson and Gabrielsson, 1983). The 
timing in the first bar deviates from the following bars, indicating that 
the player adapts to the rhythm gradually. 

The last example, Fig 8, shows the opening of the first movement of 
Beethoven's violin concerto played in two different versions. The player 

was instructed to render one tender and one aggressive performance, 
respectively, maintaining an identical tempo and approximately the same 
loudness. As seen in the figure, the aggressive version is characterized 
by a higher mean bow force as well as more rapid changes in the force. 
Also, the player changes the bowing pattern between the versions, appar
ently in order to afford a faster bowing. The turning points of tht! bow 
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Fig. 8. Registrations of the opening of Beethoven's Violin Concerto 
played in two versions, tender (broken lines) and aggressive 
(full lines). The last tone in the second bar has been short
ened by a couple of millimeters in the tender version, in order 
to compensate for a little lengthening of this note. The fol
lowing half is shifted the same distance to the left as in
dicated by the short dotted vertical line. The same signals as 
in Fig. 3. 

are made a little sharper in the aggressive version, and at one occasion 
the player lifts the row from the string in order to give an extra stress 
to the following note, starting this note with a sudden increase in bow 
force. 

Concluding remarks 

This last example is perhaps the most interesting application of the 
equipment described, g1v1ng insight into the bowing gestures used in 
playing music in different moods 

As indicated in Fig. 8, the level of physical activity in bowing is 
higher in the aggressive version than in the tender version. Interest-

134 



ingly, similar differences have been revealed between other motion pat
terns performed under different emotions. For example, Clynes (e.g., 
1983), in the studies of human touch expression, found the emotions 
"hate" and "anger" to be characterized by a stronger touch and, in par
ticular, more abrupt changes in the movements, as compared to the emo
tions "love" and "reverence". The significance of the changes in the 
signals apparent both in the touch experiments as well in the registra
tions in this study, suggest that the derivatives of the parameters 
registered will offer informative contributions in a continued study of 
rowing gestures, the derivatives emphasizing the changes in the signals 
(Askenfelt and Sjolin, 1980). 

The results presented in the this study show that the method is capa
ble of visualizing and discriminating well between the intangible differ
ences in bowing patterns associated with differing performances. Further
more, the method does not disturb the player in his performance to any 
appreciable extent. These features imply that the equipment offers means 

to examine the art of the playing of bowed instruments more thoroughly in 
the future. Hopefully, such a study will give insight into the code used 
by musicians in order to convey the emotional atmosphere of a piece of 
music. 

AcknOINledgements 

The author is indebted to violinists Semmy Lazaroff and Bertil Orsin 
for their kind assistance in the experiments. 

References 
Askenfelt A. & Sjolin A..: ''Voice analysis in depressed patients: 
Rate of change of fundamental frequency related to mental state", 
STL-QPSR 2-3/1980, pp. 71-84. 

Bengtsson I. & Gabrielsson A.(l983) :"Analysis and synthesis of 
musical rhythm.", in Studies of Music Performance, 
Publications issued by the Royal Swedish Academy of Music, No.39, Stockholm. 

135 



Clynes M. (1983): "Expressive microstructure in music.", 

in Studies of Music Performance, 
Publications issue<l by the Royal Swe<lish Academy of Music, No.39, Stockholm. 

Cremer L. (1981): Physik der Geige, s. Hirzel Verlag, Stuttgart. 

136 



PIANO TOUCH, HAMMER ACriON AND STRING MOTION 
A. Askenfelt and E. Jansson 

Dept. of Speech Communication and Music Acoustics, KTH, Stockholm 

Al::stract 
In this paper we present experimental data on the timing of parts in 

the grand piano action and on the interaction hammer-string, together 
with a first interpretation of these data. 

Timing in the piano action 

Let us start with a brief description of the grand piano action, cf. 
Fig. 1. With the key in its upper position the hammer rests via its 

Fig. 1 • The grand piano action. 

roller on the level carriage and body. The lever body rests on the 
capstan screw which is joined with the key. When the key is pressed, the 
entire lever body moves upwards and the jack takes over the support of 

the hammer roller. The hammer and the lever body move upwards together 
until the lower end of the jack touches the escapement dolly. Now the 
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The jack pushes the roller until the jack hits the escapement dolly. 

Soon the hammer with roller lifts from the jack and the hammer 
strikes the string. The pushing force on the hammer roller was estimated 
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Fig. 2. Timing in the grand piano action (top) and key velocity (bottom) , 
see text. The key was struck with force from above. 

by measuring the resistance between roller and jack, which was covered 
with graphite. In this way, we found that the pushing force rapidly 
reaches a constant high value after which it suddenly is turned off 

before the hammer strikes the string. This turning-off point is set by 

the adjustment of the escapement dolly. 
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String vibrations and hammer-string interaction 

Let us look how the string vibrations differ between different 
strings, see Fig. 3. The string velocity was measured by applying a 
magnetic field across the string at a certain point and by recording the 
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Fig. 3. String displacement versus time for a bass note (top), 
a middle register note (middle) , and a treble note 
(bottom). The period time is marked with T and the 
hammer-string contact duration with tc. 



induced voltage from the string vibrations. The corresponding 
displacement was obtained by a simple integration. The curve at the top 

in Fig. 3 shows string displacement versus time for C2=65 Hz, the middle 
one is the corresponding curve for C4=262 Hz, and at the bottom is 

C7=2093 Hz. Note that the waveforms are quite different. The displace

ment curve for C2 consists of two pulses followed by a long portion of 
zero displacement. For the middle C, C4, there is just a short portion 
of zero displacement and for the high C there is none. 

The hammer-string contact durations are marked in Fig. 3 by tc· 
The hammer-string contact durations are long for the lowest note, approx
imately 4 ms, and short for the highest note, l ms. In spite of the long 
string-hammer contact duration in ms at the lowest note, we obtain a 
relative duration of only 20% of a period time for this tone, which can 
be expanded to approximately 30% by extremely soft touch. For the middle 
C, the hammer-string contact time varies between a half and a full pe

riod, and for the high C, the contact time is between one and 2.5 pe
riods. This means that we obtain an inefficient excitation of the C2-

note because of a too short excitation pulse and an inefficient excita
tion of the C7-note because of a too long excitation pulse. Middle C is 

fairly efficiently excited, the starting pulse being half a period. 

Note that the C2-note is well described by traveling pulses, while the 

high C7 rather is a standing wave. The duration of the displacement 
pulses is closely related to the hammer-string contact duration. 

The influence of the hammer weight and shape on the hammer-string 
interaction was investigated by changing hammers between the keys. The 

middle C, C4, was fitted with the original hammer, a heavy bass hammer, 
and a light treble hammer. As expected, we obtained a longer than normal 

contact duration with the bass hammer and a shorter than normal with the 
treble hammer. The pulse shapes on the string also changed depending on 
the size and hardness of the hammer. The treble hammer, for example, was 
not only lighter but also harder and more pointed than the normal hammer. 
The shape of the string vibrations did not look very different for dif
ferent hammers but the sounds they produced were indeed quite different. 
Especially the treble hammer produced a very different sound, reminding 
somewhat of a harpsichord. 
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Let us look a little closer at the hammer-string contact. At the 
hammer towards the bridge, the velocity signal consisted of one broad 
pulse during the hammer-string contact duration but on the opposite side 
of the hammer towards the agraffe there were four short humps. The fre
quency of these humps turned out to be independent of the hammer proper-

• This fact proves that the frequency is determined by the short 
string length between hammer and agraffe. This phenomenon is also illus
trated in Fig. 4. The upper diagram shows the velocity of the string and 
the lower the hammer acceleration. The recording positions for the two 
signals are shown in the lower half of the figure. The string velocity 
and hammer acceleration actually recorded are marked with full lines. 
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Fig. 4. String velocity at A and hammer acceleration, see text. 
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TRACKING "ENCLOSED AIR-PLATE" COUPLING WITH INTERIOR GAS EXCHANGE 
G. Bissinger and C.M. Hutchins* 

Abstract 

East Carolina University, Greenville, NC, USA 
*Montclair, NJ, USA 

By interchanging the interior air in a violin with co2 and CC1 2F2 
gases it was possible to drop the air mode frequencies py factors of .81 
and .49, respectively. It was found that certain plate vibrations, as 
measured with accelerometers at various places, "track" these shifts in 
internal gas oscillations. These tests are strong indicators that air 
mode oscillations can effectively force ~jgnificant plate oscillations in 
the region of the air mode resonance frequencies, and create uncertainty 
about the assignment of "air", "wood" and "top plate" character to some 
of the lower resonances of the violin. 

The proper identification of the character of a particular vibrational 
mode in a string instrument is a difficult task due to the complex manner 
in which the instrument vibrates. It is also an important task since the 
scaling of string instrument dimensions, such as was done to create the 
violin octet (Hutchins, 1962), is based on an interpretation of the 
character of these vibrational modes. Recently we have been investigat
ing how effectively the interior gas oscillations force plate motions in 
the violin (Bissinger and Hutchins, 1983) py interchanging the interior 
air (molecular weight = 29) with co2 (MW = 44). 'lb extend these investi
gations further we have here added CC12F2 (MW = 120). These gas exchanges 
shift all the "enclosed air" resonances lower in frequency py a constant 
factor which varies with the square root of the molecular weight. For 
the gases used here the factor is 0.81 (Co2 ) and 0.49 (CC12F2 ). 

Using an acoustic driver placed off-center inside the lower bout, we 
have observed the top plate response, via accelerometers attached to 
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various parts of the top plate of the violin, to gauge wha·t effect this 

gas exchange has on the frequency and amplitude of peaks in the top plate 
response curve. Also, a probe microphone placed in the lower bout, on 
the side opposite to the acoustic driver, was used to monitor interior 
gas oscillations. The various exchange gases, all heavier than air, were 
slowly passed into the instrument to ma~ntain a nearly pure interior gas 

by displacement. Gas loss or mixing through the f-holes, associated with 
certain oscillatory modes of the interior gas (particularly those that 
have an antinode at the f-holes, such as the AO), was generally easily 
made up with a relatively small gas flow. Initial gas flow was adjusted 
until the Al mode fell at the proper frequency relative to that measured 

with air inside the instrument cavity. Normally there was a small devia
tion above the expected frequency for the AO mode due to the mass plug in 
the f-hole being a mixture of air and interchange gas; this deviation was 

larger for heavier gases. 

Data was collected on a standard violin (SUS-::!:f-180) as well as on a 
long pattern .Stradivarius copy (SUS#:-280), a mezzo-violin (SUS ::l:fl59) and 

a 16" viola (SUS:#-213) and within expected variations all showed the same 
general behaviors. Here we will present only the data for SUS;:!}l80, 
which was suspended horizontally with thin rubber bands from a massive 
metal fixture, with the gas feed, miniature pickup microphone, and acous
tic driver inserted through the f-holes. The acoustic driver was con
nected to a swept-frequency sine wave generator linked to a strip chart 
recorder that was used to collect the internal microphone output and the 
accelerometer output at three different positions versus frequency of the 
driving signal. The accelerometer was placed in each of three positions 
successively, viz., in the middle of the upper bout to the left of the 
fingerboard (bass bar side), at the bridge (centered between the two 
feet) and on the left in the middle of the lower bout. Except for the 
accelerometer, all devices were unmoved during gas interchange for the 
duration of the measurements. Further experimental details can be found 
in Bissinge.r and Hutchins (1983). 

To analyze the data we started with known modes and frequencies for 
the A0-A7 internal air oscillations in a violin-shaped cavity from the 
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work of Jansson (1973r 1977). The frequencies of the two lowest modes, AD 
and Al, which were unambiguous in the resonance spectra for SUS#180, were 
used to normalize this instrument's air mode frequencies to those deter
mined by Jansson for another instrument. With this normalization factor 
and the frequencies of the A2-A7 modes it was possible to predict the 

frequencies of the A0-A7 modes for the co2 and CC12F2 gas interchanges in 
this particular violin. 
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Fig. 1 • Transducer output (solid line - microphone in lower bout, dotted 
line - bridge accelerometer, cross-hatched region - maximum range 
of accelerometer readings) versus acoustic driver frequency for 
air, co2 , and cc1 2F2 interior gases. Small arrows indicate the 
predicted positions for interior gas resonance frequencies ascal
culated from Jansson (1973; 1977) for each exchange gas. 

Our experimental results are presented in Fig. 1 for SUS#180 with 
interchange of co2 and CC12F2 with air. Included in the figure are marks 
that indicate the original (normalized to SUS*l80) air mode frequencies 
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for air and the predicted frequencies for the co2 and CC1 2F2 resonance 
peaks. It is obvious from the figure that strong plate vibrations are 
associated with some of the strong interior gas oscillations, particular
ly so for the AO, Al, and A2 modes. On the other hand, certain of the 
interior gas modes do not appear to force significant plate vibrations. 
With such a restricted sample of plate motion as we have here it is 
difficult to directly associate plate motions with nodal-antinodal pat
terns of the interior gas modes. However the accelerometer readings for 
plate motion associated with AO and Al modes have relative magnitudes at 
the three positions quite similar to the respective pressure variations 
in these modes for all three interior gases, while the CC12F2 resonance 
spectrum shows good agreement for the A2 mode also. With the large 
number of closely spaced resonance peaks at frequencies above 700 Hz (air 
case) it is quite difficult to make an unambiguous assignment to individ
ual peaks in this region. Since the A2 mode occurs about 1000-1100 Hz 
(air) and about 800-900 Hz (co2), only for the CC1 2F2 case does the 
frequency drop into a relatively uncluttered portion of the resonance 
spectrum. 

The investigation outlined above, although just in its initial stages, 
has made it clear that, at least in some cases, the plates of the instru
ment act as compliant surfaces, capable of being set easily into motion 
by internal gas pressure oscillations. How significant this compliant 
motion is in terms of the overall acoustic output of the instrument is 
not clear. In the case of the AO mode, interchanging the interior air 
with C02 has been shown to affect the acoustic output of the violin 
(Bissinger and Hutchins, 1983). How much of the acoustic output of a 
violin at the AO mode frequency is associated with compliant plate motion 
and how much with the gas sloshing back and forth through the f-holes is 
not known. Further work on these same questions is necessary to clarify 
the connection between effective "enclosed air-plate" coupling and effec
tive radiation of acoustic energy. 
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AN OSCILLATOR MODEL FOR ANALYSIS OF GUITAR SOUND PRESSURE RESPONSE 
OVe Christensen 

The Panum Institute, University of Copenhagen, Denmark 

Al::stract 
We investigate sound pressure response of classical guitars in the 

region of frequencies up to 6-800 Hz. In this range, the response spec
trum is characterized by resonance peaks corresponding to vibrational 
modes of the top plate. We model guitar response as a superposition of 
contributions from single resonances. Each resonance is modelled as a 
harmonic oscillator, moving a piston and acting as a simple monopole 
radiator. We find that this simple model adequately describes guitar 
responses up to 6-800Hz. Theoretical fits to response curves make it 
possible to determine for each resonance (oscillator) the ratio A/m 
(piston area to oscillator mass). The net sound radiated from the oscil
lator is proportional to this ratio. Data for five good classical gui
tars are presented. The implication of this work is, that guitar re
sponses up to 6-800 Hz can be characterized by three parameters for four 
to six resonances instead of by raw data points. 

Introduction 

The sound radiated from the guitar is mainly generated by the vibrat

ing top plate. One way to characterize a guitar is by measuring the 
sound pressure response for a sinusoidal constant-force excitation, usu

ally applied to the bridge. The sound pressure response shows well
defined resonance peaks at frequencies from approx. 100 Hz up to al::out 6-
800 Hz, depending on the individual instrument. Hologram-interferometric 

studies of the top plate have shown (Jansson, 1971) that the resonances 
correspond to characteristic modes of vibration of the top plate. For 

the lower resonances, the top plate vibrates in modes with few nodal 
lines as shown in Fig. 1. At higher frequencies, the sound pressure 
response from many overlapping resonances forms a 'resonance continuum' 

(Caldersmith, 1981) with a multitude of peaks and antiresonances. At 
these frequencies, the top plate vibrates in increasingly smaller sub

divisions. 
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Fig. 1 . The vibrational configurations of the four lowest 
top plate modes found in most classical guitars. 
Typical resonance frequencies are 200, 300, 400, 
and 500-550 Hz. Contours of the same vibrational 
amplitude are indicated. The relative direction 
of vibration (up/down) is indicated with plus and 
minus. The second resonance in the figure is a 
pure dipole. The third and fourth resonances con
tain both monopole and multipole radiation. 

The purpose of this paper is to give an understanding of guitar sound 
pressure response in the region of frequencies up to 6-800 Hz where the 
response is characterized by resonance peaks. 

\\Je shall assume here, that each vibratory mode can be represented as a 
simple harmonic oscillator. The lowest top-plate mode is a pure monopole 
source of radiation. Modes with more nodal lines in general produce roth 
multipole and net monopole radiation. Since multipole radiation is 
inefficient at lower frequencies, we only consider the monopole part of 
the radiation from each oscillator. 
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We a simplified model of guitar response at frequencies up to 
6-800 Hz. The theoretical concepts employed are the harmonic oscillator 
combined with the sound pressure response from a simple monopole source 
of acous radiation. We explore to which extent the frequency re
sponse from a classic guitar can be described by a superposition of 
responses from harmonic oscillators, each of which acts as a simple 
source of monopole radiation. Each oscillator is characterized 1:Jy 

resonance frequency and Q-factor together with the ratio of its effective 
area to effective mass as seen from the driving point. 

The harmonic oscillator 
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the motion is also sinusoidal and the above equation can be solved for 

the oscillator velocity u 

u= F iW 

m (W 2 -w 2) +iYw 
0 

( 1 ) 

Here, the resonance frequency f 0 is given by w
0

=2Ttf
0

, w
0 

2=k/m andY 
equals R/m. In terms of the Q-factor Y =2rrfofQ. 

The moving piston acts as a source of monopole radiation. At a dis

tance r from the source, the magnitude of sound pressure is given by 

iWp 
P = - 4n: r uA (2) 

where p is the density of air (1.205 kg/m3). The variation of phase with 

distance from the source is not important for the present purpose. Using 
the piston velocity from Eq. (1) we obtain for the sound pressure: 

(3) 

At a given distance, the sound pressure is proportional to the ratio of 
piston area to mass A/m. The last factor accounts for the frequency 
variation. The pressure is positive for f«f

0 
and negative for f»f

0
• 

For low frequencies, the magnitude of the sound pressure is proportional 
to f2 whereas at high frequencies, the response becomes constant, propor
tional to A/m. 

The real guitar 

The guitar is a vibratory system characterized by many resonances. 
The lowest resonances typical for most classic guitars are shown in Fig. 
1. In the measurements presented here, the guitar was excited by a 
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constant force transducer at the center of the bridge. Each of the 
resonances may be characterized by an effective piston area and an effec

tive mass. For the more complicated vibrational configurations as, for 
instance, modes no. 3 and 4 in Fig. 1, some parts of the top plate move 
180 degrees out of phase with the point of excitation. In such cases, 
the effective monopole piston area is defined as the area which, when 
moving with the velocity of the point of excitation, produces the actual 
net volume displacement of the source. Mathematically speaking, this 
relation may be formulated as: 

Ai llexc = J ui (x,y) da 

guitar face 

(4) 

where ui (x,y) is the velocity of the point (x,y) of the guitar top plate 

for the i'th resonance and where uexc is the velocity at the point of 
excitation. 

It follows that the effective piston area can be negative, i.e., that 
the net volume displacement takes place at a phase opposite to that of 
the point of excitation. Indeed we shall show tl1at the great variability 
in guitar response curves for different guitars is due to various combi
nations of positive and negative piston areas. 

The effective mass of a particular mode depends upon the position of 
the exciter. If the exciter is placed close to a nodal line, the effec
tive mass of that mode becomes large. The ratio A/m may therefore change 
drastically when the point of excitation is changed. 

The sound pressure from the i'th resonance is a function of Ai/mi, 
f 0 i, and Qi, i.e., p = p(f,Ai/mi,foi' Qi). Therefore the total sound 
pressure from the guitar - not counting multipole radiation - is given as 

Ptot(f) = L p(f, Aj_/mi, foi• Qi) 

i 
(5) 

Since the contribution from one oscillator grows as f 2 and reaches a 
constant level above resonance, it follows that at any frequency f, the 
sound pressure is mainly determined by oscillators for which f0i~f. In 
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fitting a series of oscillators to describe a measured sound pressure 
response, one can start by the oscillator, then the second 
oscillator etc. because the contribution from oscillators at higher 
frequencies is marginal due to the f2-dependence of response below reso
nance. 

Theoretical 

In the following we give some theoretical examples on sound 
pressure response curves from the superpos of two and 
three oscillators. The resonance, at t.he lowest re-
presents the top plate mode of the guitar which corresponds to the 
second resonance of the The ratio of the 
area to mass has been chosen to be largest for this resonance, in accord
ance with the experimental findings presented later. 

The two-oscillator case 

The contribution to sound pressure from a resonance is below 
resonance and above resonance. Thus, for two resonances with 
the same sign of the ton area, the contributions of the 
tend to cancel each other between resonances, to an 
between the two resonances, as shown in Fig. 2. The antiresonance occurs 
close to the cross-over frequency of the response curves. 
Above the highest resonance the two modes vibrate in there-

each other. 

have the of the 
resonances of both 

same here. resonance, the 
from the two tend to make them and an 

occurs close to the cross-over 
the two of 
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response when the second piston area is nega-
tive. The sound pressure at a 
distanceof 1 m with an force of 1 N. 

the 
there 

area and 

no 
of the first one is 

after the second resonance. Such a case 
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Fig. 3. S01.md pressure resi_X)nse from three super:f_X)sed 
oscillators. The oscillators have resonance 
frequencies at 200, 400, and 600 Hz. The Q
factors of all oscillators are 30 and the Aim
ratios of the oscillators are 6, 1 and 1 cm2 /g. 
The four response curves represent situations 
with different combinations of the signs of the 
three piston areas, as indicated above each 
resonance peak. The sound pressure is calculated 
at a distance of 1 m with an exciting force of 1 N. 

two first resonances act roughly as one piston, since the response of an 
oscillator approaches a constant level at frequencies well above reso
nance. The structure around the third resonance is, thus, again ex
plained by the position of the antiresonance. 

The situation represented by the top curve in Fig. 3 has - to the 
author's knowledge- never been seen in a guitar. The situation in the 
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second curve from the top is found in guitars with a pronounced second 
resonance, cf. Fig. l. The three peaks in the curve represent then the 
first, second, and third top plate modes. The third curve from the top 
represents a rather undesirable situation in which two antiresonances 
fall in-between two neighbouring resonances and create a region of poor 
acoustical response. 'Ihe rottom curve shows a situation found in guitars 
with a second top-plate resonance which not is excited when the exciter 
is positioned at the center nodal line of this mode, see Fig. 1. The 
resonances in this curve correspond to the first, third, and fourth top 
plate modes in most classic guitars. 

Thus, many qualitative features of guitar response curves may be 
understood from this simple model of superimposed harmonic oscillators. 
The variability of response curves is brought al:X>ut by the combinations 
of different signs of piston area of the individual resonances. 

Experimental details 

Measurements 

The sound pressure response curves for the five guitars studied here 
were measured as described earlier {Christensen and Vistisen, 1980) in an 

anechoic chamber. 
guitar top plate. 

The sound pressure level was measured 2 m al:X>ve the 
The exciting force of approximately 0.2 N was applied 

to the center of the bridge. Response curves for the five guitars are 
shown in Fig. 4. In order to facilitate comparisons with theoretical 
calculations, the sound pressure response curves were scaled to represent 
values at 1 m distance from the guitar for an exciting force of lN. 

The instruments 

The guitars used in this study were all handcrafted instruments with 
spruce top plates. All guitars have rosewood back and sides with the 
exception of no. 3, which has cypress back and sides. Further details of 
the instruments are listed below. 
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Ramirez: The 
below the soundhole 
s no. 4.952, 1971. 

transverse bar 
down on the 

Ibanez: This 

bracing as described 

a Japanese version of a Ramirez 

3) Taurus: Traditional Torres 

4) Contreras: Flamenco 
ca. 1977. 

with 

serial no. 56, 1967. 

Torres 

thin plate about the 
no. 224, , 1978. 

Results and discussion 

curves from harmonic oscillators were 
response curves as shown Fig. 

were the 

the resonances and. the 
the best fit of the 
as judged from a of these curves. 

The calculated response curves 
measured responses. The data used 
L 

In , there a 
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died. 
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Fig. 4. Comparison between measured sound pressure responses 
and calculated ones for five guitars. Thin lines are 
calculated responses and heavy lines are experimental 
ones. All curves are scaled to apply for an exciting 
force of 1 N at a distance of 1 m from the guitar top 
plate. The oscillator parameters used in the calcula
tion are shO'wn in Table 1 . 
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Table 1 . Oscillator parameters used in calculating 
the theoretical response curves in Fig. 4. 

Guitar 

1 :Ramirez 

2:Ibanez 

3:Taurus 

4:Contreras 

5:Romanillos 

-

fo 
(Hz) 

200 
257 
410 
506 
627 

208 
282 
405 
572 
770 

220 
285 
415 
498 
559 
650 

216 
310 
395 
495 

187 
522 
610 

Q 

25 
25 
30 
40 
30 

25 
35 
20 
50 
40 

25 
15 
40 
70 
60 
20 

12 
15 
25 
40 

15 
30 
50 

A/m 

(cm2 /g) 

10. 
4. 

-1.2 
-1.0 
-1.0 

7. 
1.5 

-1.5 
-1.0 
-2.0 

7.5 
-0.8 
-0.6 
-0.25 
-0.4 
-0.8 

9.0 
-1. 
-1.5 
-1.0 

14.0 
-3.0 
-0.5 

top-plate 

mode 

1 
2 
3 
4 
? 

1 
2 
3 
4 
? 

1 
2 
3 
4 
? 
? 

1 
2 
3 
4 

1 
4 
? 



below 150 Hz because the structure of the two first resonances - at 
approximately 100 and 200 Hz - has already been explained quantitatively 
as a result of a coupling between the Helmholtz and first top plate 
resonances (Christensen and Vistisen, 1980). Only the highest of these 
resonances is taken into account because the aim of this work is to test 
if response curves may be fitted to the superposed oscillator model 
rather than to give a detailed account of the nature of each resonance. 

Above 600-800 Hz it was not possible to fit the sound pressure re
sponse by superposed oscillators. At these 'high' frequencies there is 
no structure characteristic of resonances. It is known from hologram
interferometric studies (Jansson, 1971; Firth, 1977) that resonances at 
high frequencies still may be characterized by simple geometric patterns, 
as the ones in Fig. 1, but with an increasing number of nodal lines on 
the guitar top plate. The net monopole radiation from such resonances 
decreases while at the same time multipole radiation becomes more effi
cient. Caldersmith (1981) has characterized this region of guitar re
sponse as a 'resonance continuum' with a strong directional dependence of 
the radiated sound. 

In contrast, the region of frequencies studied here {up to 6-800Hz) 
is characterized by strong sources of net monopole radiation - air 'pump
ing' modes - with little directional dependence. 

Table 1 gives a list of the parameters used in the fitting to the 
measured response curves. Each resonance is given a tentative assignment 
to a corresponding top plate mode. Such an assignment is based on the 
author's investigation of the mode structure at resonance of many gui
tars. No such specific assignment was undertaken of these instruments. 
For the low-order top plate modes assigned here, there is little doubt of 
the correctness of the assignment which follows the one observed in a 
number of hologram-interferometric studies (Jansson, 1971; Firth, 1977; 
Schwab, 1975). 

Oomments to Table 1 

The first top-plate mode at around 200 Hz has piston area to mass 
ratios ranging from 7 to 14 cm2/g. These values are slightly higher than 

the ones found from an analysis of the two lowest resonances (Christensen 
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and Vistisen, 1980) because we have not accounted for the Helmholtz 
resonance. The A/m-ratio for the first top-plate mode is almost one 
order of m~gnitude larger than for the higher resonances. The contribu
tion to sound pressure from one oscillator approaches a constant at high 
frequencies. Therefore, the magnitude of the A/m-ratio for the first 
top-plate mode is important for the behaviour at high frequencies too. 

If (A/m) 1 is reduced by a factor of two, the sound pressure level is 
reduced by arout 3 dB between the higher resonances. The sound pressure 
level between the resonances is rather important. The partials of a tone 
which fall in-between the resonances have a longer sustain, because the 

energy of the vibrating string is drained very fast in the vicinity of 
the resonances. 

The second top-plate mode at 260-310 Hz usually a pure dipole 
guitars with a symmetrical bracing (see Fig. 1) but can be turned 
a strong monopole source the bracing is nonsymmetrical. 
and 4 haVE:! symmetrical bracing accordingly, we find that the 
top-plate mode characterized by a rather small negative 
a poor Q-factor, probably because this mode very close 
center nodal line. As seen from 4, this mode rather ins 

no. 3 
second 

and 
to the 

cant and no. 3 and 4 it has only been accounted for because 
it gives a small 'cosmetic' improvement of the fit to the measured re
sponse. On the contrary, guitars no. 1 and 2 with nonsymmetrical 
show a strong monopole contribution from the second top-p.Lat.e 
relatively large positive A/m-ratio and a fairly high Q-factor. 

The third mode occurs close to 400 Hz and cou-
pled to tl1e half-wave longitudinal resonance the 
instruments studied, this resonance had a negative A/m-ratio. 
also the case for all of the resonances. A reason 
for this is, that for the modes, most of the takes 
place at the outer lobes of the top plate because the center made 

by the presence of the bridge. 

The fourth top-plate resonance can be in stu-
died. It occurs at 500 to 570 Hz. For all but one it was 
possible to identify at least one additional resonance at higher frequen
cies before the sound pressure response approaches a resonance continuum 
with no characterstic resonance peaks. 
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In conclus we find that the first four top-plate resonances ac-
count for the sound pressure response up to about 600 Hz. In addition, 
there might be higher air-pumping resonances up to about 800 Hz. At 
still higher frequencies - in the 'resonance continuum' - it is not 
possible to fit guitar sound pressures by' the present model. 

Conclusion 

The purpose of this paper was to explain the sound pressure response 
curves for the classical guitar. This aim has been reached to the extent 
that we now have a qualitative understanding of response curves. The 
simple principles outlined in the sections on 'the two-oscillator case' 
and 'the three-oscillator case' show that the behavior between resonances 
can be from an understanding of the harmonic oscillator 
The very different behavior obtained between the resonances 
and 3) is due to the of the s and the 
tudes areas 
related to the 

modes and are, 
modes. 

we have shown that response curves may be ac
counted for up to 6-800 Hz responses from 

nances. 

we have 

to a resonance 
obtained between measured 

in the response curve. 
curves and model 

that the response up to 6-800 Hz by 
the 

that most of the 
cal energy in of classical 

200 to 800 It 
the radiated acous-

tical energy, 
progress 

dominated by radiation from monopole sources. Further 
may, thus, be achieved 

methods to tune the to provide good responses at the first four 

top modes. 

Understanding sound pressure response curves have some implications: 
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It is much easier to characterize a guitar by the parameters some 
four to six harmonic oscillators than by the frequency response 
curves. This is particularly useful in comparing different instru
ments because the subjective impression of quality may be correlated 
to oscillator parameters. One can in this way gain an understanding 
of the physical characteristics that are desirable from a subjective 
impression of instrument quality. 

It is interesting to note that in principle the mode frequencies and 
vibration amplitudes of a given top plate may be computed theoretically 
(Schwab, 1976). Except for Q-factors, such a computation could give 

information al:out the A/m-ratios and resonance frequencies for a given 

top-plate design. The present model could then be used to calculate the 
sound pressure response curve. This would be particularly fruitful if 

one at the same time had a subjective quality evaluation based on oscil

lator parameters. 
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ON THE ACOUSTICS OF THE CONCERT' HARP'S SOUNDBOARD AND SOUNDBOX 
I.M. Firth and A.J. Bell 

University of St. Andrevvs , St. Andrevvs , Fife, Scotland 

Al:::stract 
The complete concert harp soundboard comprises of the actual tapering 

spruce plate with two central beech "supporting" bars and two spruce 
''harmonic" bars placed on either side. Measurements will be presented to 
show how the dimensions of the plates affect the primary resonances. For 
the free plate, families of planar and tortional modes can be distin
guished. With the plate clamped to the soundrox the modes are monopole, 
dipole etc. and their exact shape and frequency can l::e influenced by' the 
dimensions of the roard. 

The acoustics of the harp is a relatively new field of research. 

Firth produced the first paper in 1977; though his work was on the 

clarsach, the small harp native to Scotland. It has only been since 1981 
that the concert harp has been studied {Bell, 1981). 

There are four main parts to the concert harp (Fig. 1) - the soundrox, 

the string arm, the forepillar and the base. This model, the Salvi "Or
chestra" harp, has forty-six strings ranging in pitch from 34 Hz to 3136 

Hz. The pedals in the base are part of the tuning mechanism. Depressing 

one moves a complex system of rods inside the forepillar and the string 

arm. The rods twist studded brass plates onto particular strings thereby' 
shortening its vibrating length and raising its pitch. Two discs to each 

string ensure that any string's pitch can be raised by one or two semi
tones. This flexibility enables the harp to be tuned to any chromatic 
key (Rensch, 1969). 

The soundbox should be considered like a guitar or violin body. There 
is a series of taught strings vibrating into a flexible soundboard, 

fastened to a fairl¥ rigid box that encloses an air volume. There are 

apertures in the soundbox; these are at the rear of the box; their 

original purpose was to help to string the instrument- they do, however, 
act as Helmholtz resonators. 
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tuning discs 

/tringarm 

base 
-tuning pedals 

• 1 • Main parts of the concert harp. 

The soundboard is usually of European spruce (Picea Excelsis) quarter
sawn with the wood grain running across the board (Fig. 2). The front of 
the board has a thin veneer, again of spruce. The board narrows from the 
bass end to the treble, it also thins in the same direction. 
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Fig. 2. The harp soundboard. Typical dimensions are 

length 136 em 
width (at bass) 44 em 
width (at treble) 12 em 

thickness (at bass) 12 rmn 
thickness (at treble) 2 rmn 

There are two central bars on the board; these are made from beech 
wood. On the front is the cover bar, while on the back the larger 

ba.r. 

There are two other bars on this side of the board; these are 

bars. These are small, light and positioned on 
the bar. bear little of the tens 
We will return to effect on the later. 

We should our acoustical by cons the free sound-
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FREE SOUNDBOARD 

TRANSVERSE WAVES DUO DIMENSIONAL WAVES 

Fig. 3. Chladni patterns of free unbarred tree soundboard plate. 

board's vibration characteristics. Fig. 3 shows some Chladni patterns 
for the unbarred plate. At the lowest frequencies the board bends only 
along one direction so the nodal lines are across the board. As a group 
these are referred to as the transverse modes. At higher frequencies the 
vibrations are along and across the board and the net effects are these 
round nodal patterns, which become more complex with increasing fre
quency. 
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10 '1 11 

Fig. 4. Chladni patterns of free soundboard plate 
with central bars - torsional modes. 
The frequencies are at the modes 
no. 1 65 Hz; no. 5 210 Hz; no. 9 341 Hz; 
no. 2 102 Hz; no. 6 245 Hz; no. 10 380 Hz; 
no. 3 135 Hz; no. 7 277 Hz; no. 11 422 Hz; 
no. 4 176 Hz; no. 8 310 Hz; no. 12 457 Hz. 

With the central bars fitted to the soundboard the resonant patterns 
change (Fig. 4). This is one important group of resonances, called the 
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torsional modes, all a nodal line at the 
resonances on the barred soundooard thirteen of them are 

torsional. An important point is that these resonances are harmonic. 
This can be seen more clearly we consider a graph of resonant 
cy against resonance number7 the line joining these points straight 
(Fig. 5). 

ORCHESTRA HARP: BARRED SOUND BOARD 

FREQUENCY (Hz.) TORSIONAL WAVES 

400 

so 

2 3 4 s 6 7 8 9 10 11 12 

MODE NUMBER 

Fig. 5. Resonance frequencies of barred soundboard - torsional modes. 
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Apart from the modes there are other of resonances 
The occurs on low frequencies and are a 

of the transverse modes, which we have seen 'before on the unbarred 
board and the tors modes. The next group of show reso
nances with vibration both along and across the board~ the central bars 

fl OliOO:IfHSJONAlWIW[S 2 LAHRALNOOfS 

( OlJOO!HEN$1();AL WAVfS 3 LATfRN-NllJE'i 

,' \ , I 
I ' 
~ I ' 

) I 

Fig. 6. Chladni patterns of free soundboard plate with 
central bars - transverse mode. Frequencies are 
A: 122 Hz, 227 Hz, 267 Hz 
B: 200 Hz, 285 Hz, 366 Hz, 410 Hz 
C: 505 Hz, 655 Hz, 527 Hz 
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being at a position of antinode. With increasing frequency the vibration 

across the board "creeps" up the soundboard. This last row of 
shows resonances with three nodal lines across the board. 

The next is to attach the soundboard onto the soundbox. 

SOUND BOARD AND SOUNDBOX 

2 3 4 5 6 

Fig. 7. Chladni patterns of soundboard on soundbox. 

7 

shows the resonant modes of the fixed soundboard~ its edges are almost 
nodal and we have a series ·of diaphragmatic resonant patterns. 

These Chladni patterns serve as a useful introduction to harp acous

tics but the results are limited. The next stage is to determine the 

harp's input admittance. 

In Fig. 8 we see our equipment set up to do this. The soundboard has 
been clamped to a heavy wooden jig to simulate the effects of being 
fitted to the soundrox. The shaker with an impedance head are fixed to a 
slide on this heavy, sand-filled, iron bar and can be moved along the 
length of the soundboard. Using the signal generator and compressor 

circuits of the Heterodyne analyser (B+K2010) we can ensure a constant 

174 



. 8 Experimental equipment for recording of admittance. 

excitation force as the shaker is swept through a frequency range. As we 
sweep, the board's velocity is measured and recorded, in a digital form, 
on a High resolution frequency analyser (B+K2033). Any number of admit
tance measurements can be transferred to a computer for storage and 
processing (B&K, 1980). Normally the shaker is positioned on the central 
bar of the soundboard. By conducting twenty of these tests one can 
determine the soundboard' s admittance along its length. 

In order to present our data in a simple clear form we have found that 
the best method is in the form of a contour map (Fig. 9): the Y-component 
of the map is in position along the soundboard from bass at the lower end 
to treble at the top. The X-component is frequency from 50 Hz to 500 Hz, 
and the .contour lines link points with the same admittance value (in dB). 
The first, second, third, fourth and part of the fifth soundboard reso
nances can be clearly seen as ranges of well-defined peaks on the admit
tance plot. 

175 



eo~~~~~~~~~~MM~nm,~rT~~~TT~ 

treble e.nd 

] 
B 
""0 c 
:::J 
0 
Vl 

15 

10 

5 

bass end 

50 10 0 150 alO 250 300 350 400 450 500 
Frequency (Hz ) 

. 9. An example of admittance contour maps an 
orchestra soundboard. 110 dB = 1 s/kg. 

the and two techniques used to we 
should go on to discuss some of our experiments. These deal with the 
effect the of the soundboard have on the resonant 

When the was was 
from the bass end to the treble. We wanted to 

resonant of the soundboard as the 
ness was 
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We began with an almost uniformly thick soundboard and conducted 
admittance tests as the board's thickness was gradually tapered~ the 
results are shown in Fig. 10. By considering the last contour map first, 
one can see the characteristic resonant patterns of a normal soundboard 
with its edges held. But in the first admittance map the pattern is 
quite different. Resonances occur, rut each occurs at only one partie-

100 200 300 400 
Frequency 1Hz I 

1 0. Results of thickness tapering experiments. 
Admittance contour maps at stage 1 = 12 rnm over, 
stage 2 = 12 mm (bass) tapering to 9 rnm (treble), 
stage 3 = 12 rnm tapering to 5 rnm, and stage 4 = 
12 mm tapering to 2 rnm. 
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ular position and frequency. For example, the lower three 

of the fourth resonance, which can be seen quite 
clearly on the final plot, are invisible on the first. To exaggerate 

this change one could say that the soundboard changes from vibrating like 

a stiff l:::Jar to vibrating like an elastic membrane. 

PeU to trO!I,lh heigt(dBl 

TAPERING EXPERIMENT 

4th ""-'1dboard resont:lfl(l! 
antinodes 

2 
Tapering stage 

3 4 

4 

Fig. 11 . 'Ihickness tapering experiment. Peak to Trough 
heights of antinodes of 4th soundboard resonance 
against tapering stage. Tapering stages 1 through 4. 

One way of representing this emergence is to plot the peak to trough 
height of one of the resonance antinodes. Here is such a plot for the 
fourth soundboard resonance (Fig. 11). Initially the lowest three anti
nodes have a Peak to Trough height of zero; they cannot be seen. But as 

the board's thickness is tapered, the antinodes emerge and the Peak to 
Trough heights can be measured. In a similar experiment to this we 
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wanted to discover how the soundl:oard' s resonances were dependent on the 

l:oard' s We began with a very soundl:oard - its thickness had 
the usual tapering and took admittance measurements as it was narrowed. 

12 shows the initial size of the soundboard, and the final s ; a 

Fig. 12. Width of experimental soundl:oard, initial 
(70 em at t.he bass and 38 em at the treble) 
and final (36 em at the bass and 4 em at the 
treble) and a normal soundl:oard. 

normal soundboard is also shown for comparison. Some of the admittance 
plots are shown in Fig. 13. With the very wide l:oard the resonances are 
situated at the low frequency end of the map. Narrowing the toard makes 

and the resonant frequencies increase; we gain a l:oard with a 
wide frequency distribution of resonances. This distribution can be shown 
on a graph of resonant frequency against soundl:oard width (Fig. 14). The 
fourth resonance's frequency increases more than the first resonance; the 

result is a wide distribution of resonances. On the harp with its wide 
string pitch range, a wide frequency distribution of resonances an 
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1)0 ;oo 
Frequen:yl Hz) 

STAGE 5 STAGE 7 

. 13. Soundboard with narrowing oV1no,~, 
Admittance contour maps at 

There a as to how far one can narrow the board as 
becomes too just two em than a normal 
soundboard the resonant i-J0.'-'-<~.1.. becomes that of a bar. 

To conclude, we should return to the ect of the bars 
15). These two show the resonant formats without and then 
the bars fitted to the board. Two small can be 

seen. The bars have added to the board so the resonant fre-
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Ptol of resonant frequency against wKJth 

3th . 

• 14. 

s about a The other 

resonance does not extend so far the 
treble end of the board. can be seen the dB 

the extends from 4 - 15 in the second it 
extends from 4 - 12. these effects are small and one 

the harmonic bars are on the soundl::::oard. 

One could be that had no veneer and the boards 

the wood bars may thus pre-
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Soundboord without harmonic bars 

treble end 

bass end 

100 200 310 400 9)0 
Frequency (Hz) 

treble end 

bass end 

Fig. 15. The effect of the harmonic bars on soundboard admittance. 
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In paper we have 
research to date. vJork is 

and also on the air resonances 
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SOME ANALYSES OF VIOLA TONE 
s. Fredin, G. Hammel, J .A. Strain, P.D. 'Ibwnsend, and L. Wilzen 

School of Mathematical and Physical Sciences, University of Sussex 
Brighton, Sussex, England 

Al:Etract 
use of a mechanical bowing system and a spectrum analyser the 

harmonic content of notes from several violins and violas have been 
recorded. Variations in harmonic content were noted under changing corldi

of tow speed, tow pressure, tow position and fundamental. A compa
of loudness curves and harmonic content was particularly instruc

and in several cases dips in the loudness curves were correlated to 
power atsorption by sympathetic excitation of untowed strings via 
harmonics of and towed note. 

Introduction 

of an instrument there is a In analys of the tone 
problem of how to generate the sound, toth in a reproducible fashion and 

a manner which of the normal playing 

a wave source coupled to a viola can be done mechan-

and because of the simplicity of the exci-

the measured response may be readily However, 

under normal playing conditions the slip-stick action of the tow 

a more complex motion which feeds a wide range of harmonic fre-
the instrument. Since the of these 

depend on bowing conditions such as pressure, bow 
rosin etc. the real tone quality of a may not be 
well represented by the laboratory excitation with sine waves. 

To minimise this difficulty we use an automatic bowing with a 
bow driven at constant speed and controlled in position and bow 

on the s by pressing with a rubber 

The apparatus is in a small room which has 

on the walls and ceiling to reduce extraneous sounds. Micro
phone detection gives reprodubible signals and no resonances associated 

with the room or framework have been noted. 
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from the microphone are analysed by a spectrum and 
played a series of notes on a 

record can be presented as an isometric 
the intensity versus the content of each note that was 
(e.g., . 1). One can visually appreciate some of the more 
features in the of the instrument. .For example the fundamental 

186 

the strongest harmonic for the lower and higher notes but in the 

1.1 

Relative · 7 

Intensity 
.s 

Fig. 1. An intensity plot of the harmonics for a series of 
notes played on a viola (L) made by D. Mills. The 

on the A string covers the region from A4 
(400 Hz) to F~ (740 Hz). 



middle range near c~ (554 Hz) the fundamental is suppressed. An alter

native presentation is in the form of a contour map of the isometric 
projection (Fig. 2). The areas of strong and weak response are clearly 
delineated as are the relative intensities of the harmonics. Additional
ly some lower frequency sound appears for the higher notes which not 

obviously a sub-harmonic but appears, in this case, near 375 Hz. 

Finger Position on A String 
-~---L----~L~ L ___ I 

Fig. 2. A contour map of data shovm in Fig. 1 . 
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555 

650 

3. Hannonic analyses for the signals of notes 
at 440, 555 and 650Hz (i.e. near A4 , c~ and E5). 
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kHz 

MILLS 
VIOLA l 

Fig. 4. Isometric plots of notes played on the Mills viola 
showing in between up 

down bow strokes. 

One may 
3 describes 
Hz. In 

the simple harmonic content of a note and 

a fixed 

on 
loudness and 
made but these do not have 

As 

(i) 
( 

( 

(iv) 

of the data 

Differences from bow 

The of changing string 
A test of the cavity resonance for 

Examples of weak harmonics 
other 

of 440, 555 and 650 
at 

caution as the 

range of notes are 

loudness have been 
loudness range used. 

to power transfer to 
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Results 

4 a of for the same in which 
one set of data were recorded for up bow strokes and one set for down 
rows There an obvious the relative of the 
harmonics between the two halves of the 

contribute to this as the results were s with the bow reversed. 
dependence of the bow stroke on viola tone is not unexpected 

as the instrument highly with central differ-
ences of a sound post and bass :tar. Musically the are small but 

detectable. The example indicates a feature which is not mesurable by 

the wave excitation methods 

For work a 20 inch viola was made by Mr. D. Mills of Hove in 

Sussex to the C.A.s. Although had a strong and tone 
on the lower three s of C, G and D the original A s was 

weak. 

in finding sui table 

and 
but gut, 

There was an improvement both in total 
new A For comparison the intens 

are shown . 5a and 5b for the 

As 

that the new 

tion from the other 3 

Also note that 

s at 220Hz. 
in the fundamental 
noise. 

has 
as well. 

both cases the A s 

the A 

more 

this 

for the A 
da Gamba. 
from the 

of the 4 open 

and revised set of 

but it is 

altered the sound 

somes 

a 
with lower frequency 

) In the design of the large C.A.s. viola the intent was to place 

resonances near the D and G frequencies. Indeed the big 
viola seems to fulfill this design. A test of the cavity resonance was 

to monitor the total power emitted as a function of the fingered note and 
with the power curve for the viola with the cavity damped 

.......... '-~"'- foam filling of the f hole.s. Fig. 6 shows a major drop in the 
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Fig. 7. Hannonic content of notes from the Mills (L) viola. 
On the right hand side is shown the total power re
corded for each note. 

resonance at this frequency near 200Hz. The back and front free plate 
resonances of 110, 193 and 108, 214 (modes 2 and 5) gave an instrument 
with maxima in total power as shown in Fig. 6. 

By contrast, the normal size Mills violas have a moderate power emis
sion at lower frequencies but as one can see from Fig. 7 there is very 
little power in the fundamental of low notes from the C string (e.g., at 
131 Hz). Indeed the fundamental is only important for notes above A3 , 

which close to the air resonance of the instrument. Fig. 7 has 
contour lines which are somewhat distorted compared with those of Fig. 2. 
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to 

resonance near 225 Hz("" 

curve at 235 Hz. One consequence of 
a of 222 Hz was rowed. 

for each s (e.g., as shown in 

notes 

the the 

is a shoulder in the resonance 
this resonance was noted when 
The recorded showed a 

at 200, 222 and 236 Hz. 

7 for a standard size viola C 

curve can be related to 

content shown by the contour plots and one is 
aware that not all the to emission fundamen-

tals. the contour there are frequencies 
no matter harmonic or fundamental 

Such to harmonics of the other undamped 
strings and the weakness most pronounced when harmonics of two 
coincide. For example, with the viola A string (Fig. 2) there are lines 

of weakness at 587, 1173, 1564 and 2347 which correspond to harmonics of 

the other Table I the possible coincidences of harmonics 
of the C, D and G strings with notes generated on the As and 

immediately apparent that these select the contour dips of Fig. 2. 

lar features are apparent for the contour plots of other strings. To 
test this explanation we have remeasured the viola response 
the C, D and G s damped with a s of foam threaded through the 
strings. 

Surprisingly this did not change the major features of the contour map 
but on closer inspection the dips at frequencies listed above were seen 
to be more pronounced. our interpretation is that initially there is a 
loss of sound by power transfer through the matching 
of the bowed and open strings. Some of this lost energy 
the open strings but once they are damped this secondary source in

hibited, hence damping open strings further reduces the total sound level 
at these critical frequencies. 
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1 Coincident open 
Note that interaction of the open 
G) will interfere most strongly with notes 
the other string (e.g. A) when several harmonics co-
incide. Frequencies in Hz have been from a tem-
pered scale. 

c string G string D string A string 

( 131) ( 196) (294) {440} 

393 392 

588 588 

786 784 

882 880 

1178 1176 1176 

1568 1568 

1764 1764 1760 

1961 1960 

2368 2352 2352 

2640 2640 

Surrmary 

Acoustic measurements of towed instruments are inevitably very complex 
because of the wide range of parameters which control the sound. The 

present attempts to limit the number of variables are encouraging as at 
least a few of the features of the harmonic content and instrument loud

ness are interpretable, although the present work limited to a 
diagnostic role. 

It is a to mention the enthusiasm and stimulation of discus-
s with Dr. P.J. Chandler and we are most fortunate to have had the 
violas made for us by rV!r. D. Mills who is both a icist and a highly 

skilled instrument maker. 
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ACOUSTIC RESONANT SCATTERING - A POSSIBLE NEW METHOD 
FOR STUDYING MUSICAL INSTRUMENTS 

Colin Gough 
Dept. of Physics, University of Binningham, England 

Al::stract 
An account will be given of some preliminary experiments in which we 

have measured the sound re-radiated by musical instruments when they are 
themselves excited by sound. When the frequency of incident sound is 
such that an acoustically important resonance is excited, the intensity 
of re-radiated sound is large and is determined by the acoustic radiation 
efficiency of the excited mode. In principle, therefore, such measure
ments can provide valuable information on the parameters that charac
terise an instrument's tone. The method has been tested using Helmholtz 
resonators and preliminary work has begun using violins of various quali
ty. In these measurements the violin is suspended in an anechoic chamber 
and the sound field is monitored using a single microphone as the sound 
produced by a single loudspeaker is swept in frequency over a rang of 
interest. Although a complete analysis would require a more sophisti
cated experimental arrangement, it is hoped that the strong acoustic 
resonances from the open-strings and their harmonics will provide useful 
information about the radiation efficiency of the violin as a function of 
frequency, and hence help to characterise the quality of instruments. 

liJeinreich (1983) has recently described a very powerful technique for 
studying the acoustics of the violin, in which the various resonances of 
the instrument are excited by a carefully characterised sound field. In 
addition to providing the usual spectroscopic information on the posi

tions and widths of the acoustically important vibrational modes of an 
instrument, the directionality and magnitude of sound radiated by such 
modes are also obtained. In this paper we outline a variant of this 

technique in which we measure the sound re-radiated by an instrument when 

it is acoustically excited. From such measurements absolute values for 
the acoustic efficiency, E, of resonantly excited modes can be derived. 
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We the stored 
energy ultimately converted useful sound radiation. The tonal 
quality of an instrument will clearly be strongly influenced by the 
acoustic efficiency of the various structural resonances excited under 
normal playing conditions. 

Although the resonant scattering of electromagnetic waves is a widely 
used and powerful spectroscopic technique in atomic and nuclear physics, 
we are not aware of any spectroscopic applications of resonant scattering 
in acoustics. We therefore decided to undertake this preliminary in

vestigation to test the practicality and validity of the technique by 

making a series of measurements on a set of Helmholtz resonators for 
which the radiation efficiency can be evaluated independently. In this 
paper we briefly outline the theoretical badkground of the experiment and 
describe the results obtained for the Helmholtz resonators. We then 
give a couple of examples of the kind of measurements that might usefully 

be made on the violin. 

The theory for the absorption and re-radiation of sound by an acous
tically excited mechanical resonator is given by Rayleigh (1945). As

suming that the resonator acts as a monopole source of sound and is small 
in comparison with the acoustic wavelength, A., the energy absorbed and 

re-radiated at resonance is equal to the energy flux of the incident, 

uniform sound wave crossing an area A.2jrr. At a distance d from the 

resonator the pressure of the scattered wave, Ps, as a fraction of the 

incident sound pressure, P0 , is therefore given by A./2rrd. 

This simple, yet remarkable, result shows that, at a given distance, 
the amplitude of scattered sound is independent of the size of the scat
tering object and depends only on the acoustic wavelength. It also 

independent of the nature of the resonantly excited rnechanical system -
it could be the oscillating air column of a wind instrument or the 
cavity, string or structural resonance of a stringed instrument. It does 
assume, however, that the damping of the resonating system by acoustic 

radiation alone. If there are additional viscous or internal friction 
losses the mechanical resonances will not be so s 
pressure of the scattered wave will therefore 

E, defined arove, so that 
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ef-
can in 

A schematic is shown in 
The measurements were made in an anechoic chamber of modest 

was used as the source of 
range of 

the 

2 m microphone at ·a 

tance of between .25 m and 1 m from the source of re-
radiat.ed sound. 

loudspeaker 

microphone 

1. arrangement to measure sound. 
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205 
I 

210 
I 

215Hz 

Fig. 2. Typical measurements showing the components of 
pressure in phase and phase quadrature before 
and after scattering object (a milk-bottle) is 
placed in position. 

The microphone receives sound direct from the loudspeaker in addition 

to any sound re-radiated by the scattering object. To distinguish between 
the direct and re-radiated sound we have to measure the components of 

the sound pressure in-phase and in phase quadrature with the output of 
the VCO both before and after the scattering object is placed in posi

tion. A typical set of measurements for our "standard musical instru
ment" - a milk bottle - is shown in Fig. 2. The distances and, there
fore, relative phases have been adjusted to give difference signals with 
the familiar absorption and dispersion curves of a simple resonator. 

We measure the sound pressure at the position of the scattering object 
before the resonator is placed in position so that we can normalise the 

re-radiated sound pressure to the incident sound pressure. In Fig. 3 we 
show some normalised measurements for the scattering amplitude as a 
function of scattering distance, d, plotted in such a way to allow com

with Eq. (1}. The predicted inverse dependence on distance is 
confirmed and a value for the radiation efficiency of order 20% is ob
tained for the milk bottle. 

200 



.. . . 
.... 

0-2r-----..,.--------""""' ., 
: ' 

..... 

Helmholtz 
Resonator 

d = 25cm 

..... 
v, ...... ,. ·-........... 

·-.·~.,..,.lllll"b.,_ ............ . ........... 

Fig. 3. Output from microcomputer-input signals, 
re-radiation pressure amplitude and phase. 

As an independent check on the validity of this method for determining 
radiation efficiencies, we undertook a series of measurements on a col
lection of Holmholtz resonators used in the earlier years of this century 
for scientific measurements. For radiation damping alone, the Q-value, 

. . 1 t-3 
QR,; of a Helmholtz resonator of volume V 1.s gJ.ven by QR = ~ v (Ray-
leigh, 1945). The measured Q-value, QM' will be reduced .fiy additional 
viscous and thermal damping. We can, therefore, make an independent 
determination of the radiation efficiency of a Helmholtz resonator simply 

comparing the measured Q-value with the radiation limited value, E = 
QM/QR. Weinreich has pointed out that for an optimally designed Helm
holtz resonator viscous losses will equal those from so that 
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Fig. 4. Scattering amplitude as a function of scattering distance. 

when thermal losses are included the acoustic efficiency of a Helmholtz 
resonator will always be less than 50%. 

Fig. 4 shows an example of measureements made with the aid of a small 
microcomputer, which records data via an 8-bit A/D converter and performs 
the necessary algebra to display the amplitude of the scatteed sound as a 
function of frequency. From such measurements it is straightforward to 
derive Q-values, which can be used to derive values for the radiation 
efficiency, as described above. In the following table we compare 
values of radiation efficiencies obtained from measurements of the ampli
tude of resonantly re-radiated sound and from Q-values. 

Frequency 192 256 320 440 512 576 640 704 768 

E: scatt. .39 .30 .27 .39 .39 .35 .48 .37 .48 

E Q-val. .40 .25 . 19 .33 .38 .41 .39 .39 .55 
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With one exception, these values are consistent with Weinreich's (private 

communication) prediction that the acoustic efficiency of a Helmholtz 

resonator will always be less than 50%. The general level of agreement 

between these two quite independent determinations of radiation efficien
cies encourages us to believe that acoustic resonant scattering could 

indeed provide reliable values for the acoustic efficiency of resonant 
modes in systems for which no independent theoretical estimate of the 
natural line widths (radiation limited) can be obtained - as, for exam
ple, the structural modes of vibration of the violin. 

In the acoustically important range of the violin it is never a very 

good approximation to assume that the size of the violin is much less 

than the acoustic wavelength involved in exciting structural resonances. 

Consequently, even in the absence of excited resonances, the violin will 
scatter a significant amount of the incident sound giving a background 
signal that will vary slowly with frequency. Moreover, the sound ra
diated by the violin will also include non-negligible contributions from 

dipole and higher-order components, which will complicate the interpreta
tion of any measurements. Nevertheless, it seemed worthwile to investi
gate the resonantly scattered radiation from a violin, if for no other 

reason than to test the limitations of this technique for locating re
sonances and for detennining their radiation efficiencies. 

In an attempt to overcome the background problem of non-resonantly 

scattered radiation arising from the finite size of the violin, we meas
ure the difference in scattered radiation with the violin first in its 
natural state and then modified in some way to remove the resonant modes 

of interest. The difference between such measurements gives information 
on the resonant modes that have been removed, with contributions from 

non-resonantly scattered radiation and radiation from unchanged reso
nances automatically subtracted from the result. Fig. 5 shows the dif
ference in scattered sound from a Vuillaume violin before and after its 
strings were damped, its f-holes covered and its table heavily loaded, 
which removes the air and main mechanical resonances from the frequency 
range of interest. The measured difference should, therefore, provide 

information on the principal acoustic resonances of the violin with any 
non-resonant background scattering automatically subtracted. A number of 
resonances of the strings, air and structure can be identified from 
these measurements. In future we anticipate measuring the difference in 

203 



0·15 -----------~-----

0 

Vuillaume 
d = 50cm 

• 0 

200 300 400 500 Hz 

Fig. 5. Resonant scattering from a Vuillaume violin (see text) . 

scattering between violins in natural playing state and a 

no internal resonances to avoid 
the instrument being studied. 

If this can be shown 

be useful for 

if such measurements turn out to be 

the the method 
free 
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Fig. 6. Resonant scattering from strings of violin 

compared with scattering from milk-bottle. 

Fig. 6 shows measurements of the difference in before and 
the ~~~~" strings were The difference 

sound scattered from the 
the has 

other resonances of the instrument. 

the solli1d scattered our standard 
resonance is much narrower, the 

almost the same 
the 

alone - we 
effect on any of the 

of the scattered sound is 

referred to 

The 

a measure of the 
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radiation efficiency of the instrument as a whole at this frequency 

(i.e., 20%), which will in general involve interference effects between 
the various resonant modes of the instrument excited. For the D-string 
resonance it is probalby only the air resonance that is strongly excited. 

It should be emphasised that all the measurements reported here are of 

a very preliminary nature and will be repeated with higher accuracy { 12-
bit resolution) and better frequency resolution in the near future. 
However, we are already encouraed by these preliminary measurements and 

believe that acoustic resonance ·spectroscopy is a technique that should 

be investigated further, as it can, in principle provide rather inter

esting spectroscopic information that would be difficult to determine by 
other methods. 

Resonances 
Rayleigh, J.vv.S. (1945): The Theory of Sound, Voll, 1894; reprinted by 
Dover, New York, 1945. 

Weinreich, G. , private ccmnunication. 

vveinreich, G. (1983): ''Violin radiativity: Concepts and measurements", 
invited paper to SMAC 1983, Stockholm; to be publ. in the Proc., Vol. 
II. 
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Atstract 

CHARACTERISTICS OF DYNAMIC POSSIBILITIES OF SOUND 
IN CONTEMPORARY BOWED INSTRUMENTS 

Helena Harajda 
Acoustics Department of Experimental Physics Institute 

Pedagogical University (WSP), Zielona G6ra 
Union of Luthery Masters (ZPAL), Warsaw, Poland 

aim of the research has been to determine how the dynamic charac
teristics of the sound of the contemporary master bowed instruments are 
formed. A group of features subjectively felt as changes in the volume, 
connected with forming and the shape of the change in the intensity 
level, has been chosen. The following points have been taken into con
sideration: 1. the dynamic range, 2. the carrying of sound in respect 
to volume, 3. the leveling of volume (the difference of intensity level 
in the transition from one sound to another in the stable conditions of 
excitement), 4. the efficiency of achieving the optimum sound volume. 
The instruments tested were the violins of normal size submitted to the 
6th International H. Weiniawski Violinmakers' Competition in Poznan, 
violins and cellos of 3/4 size submitted to the Polish National Wide 
Violinmakers' Competition as well as violas and cellos of normal size 
manufactured by Polish luthiers included in the prize-winning group of 
the International Luthiery Competition in Cremona. Measured characteris
tics have been compared with the subjective sound evaluation. 

Introduction 

Contemporary bowed instruments come from factories or are made by 
amateur violin makers and highly qualified violin making artists. The 

sound quality of instruments produced both in factories and by amateur 
violin makers happens to be, to a large extent, casual. In the artists' 

workshops, instruments are manufactured with great competence where mate
rial properties resulting in the sound quality as well as the awareness 
of the sound quality required by concert artists are taken into account. 
In Poland, these violin making artists are properly educated in music 
schools where they get thoroughly acquainted with acoustics. The instru
ments which are presented at competitions for violin makers and are 
highly evaluated by a jury are classified as masterly instruments. The 
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acoustical parameters that characterize their sound are within the estab

lished requirements of the sound model (Harajda, 1976). It may thus be 
assumed that statistical limits of variations in these parameters mark 
the impassable zones within which the qualities of the sound model in 

masterly instruments can vary. 

Aim ·and method 

The purpose of this study is the analytic presentation of dynamic 
characteristics of sound in contemporary bowed instruments which are 

classified at competitions for violin makers as masterly instruments. 

They happen to differ a lot in size. 

The basic measures of the group of violin instruments under considera

tion are presented in Table 1. 

Research has been carried out to analyze the variations of those 
properties of sound in rowed instruments which are generally acknowledged 
by specialists on violin making to be essential (Leonhardt, 1969). They 
often become the core of subjective aural evaluation since they affect 
the intensity level of sound. These properties are as follows: 

l) the intensity level of sound, 
2) the dynamic range fran "p" to "f", 

3) the range of carrying the sound intensity, 

4) the equality of intensity level while passing from one tone to the 

other on the same strings; and the equality of sound level between 
different strings, 

5) the capability of proper attaining the maximum intensity level of 
sound for a given sound corresponding to the optimum sound volume. 

The natural way of exciting the sound has been used, 
mechanic or electromagnetic means of sound excitation 

the use 
with the 

same force - indispensable in some investigations on properties of 

the bulk the instrument - does not guarantee the presentation 
optimum sound possibilities of the instrument as a result of the scheme 
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Table 1 • Measures of violin instruments entering for 
the 6th Wieniawski International Competition 
for Violin Makers in Poznan. 

mean limits of standard 
Measure value changeability deviations 

in rrrn in rrrn in rrrn 

length 357 352 - 363 2.09 

width SI 208 204 - 213 2.18 
SII 168 161 173 2.13 
"FF" 110 106 - 118 2.35 

height "FF" 61.5 58.0- 66.5 1.64 
BI 31 29 - 33 0.80 
BII 30 28 32 0.80 

BI -BTI 1.0 0 - 2.5 0.64 

coefficient of 
changeability 

ill% 

0.59 

1.05 
1.27 
2.14 

2.68 
2.67 
2.67 

64.00 

"violinist - row - instrument". Proper rowing allows to treat each case 
an individual way. A good and properly trained violinist is capable 

any sound with such accuracy so as to retain the statistical 
of parameters determining the detailed infrastructure of a 
For violin teachers and violin makers such are 
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An example of changes in the detailed structure during tonal stability 

is shown in 'rable 2. 

210 

Table 2. Fragment of detailed structure of a violin 
tone during stability of the fundamental. 

1 tone g (392Hz) for case 86 

t (rns) AO (dB) 

1600 I· 
I 

1625 

1650 

1675 

1700 

1725 

1750 

1775 

1800 

!. 
! 

* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
·* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 
* 86 

* 85 
* 85 
* 85 
* 85 
* 85 
* 85 
* 86 
* 86 

* 85 
* 85 
* 85 
* 85 
* 85 
* 85 
* 85 

! . 

! 
! 

FO (Hz) 

* 388.34 
* 388.34 
* 388.34 
* 392.15 
* 388.34 
* 392.15 
* 392.15 
* 392.15 
* 392.15 
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While recording, the conditions under which the instruments were 
evaluated at competitions for violin makers were retained (Harajda, 
1980). The recording took place in a good chamber concert hall (Fig. 1), 

where the distri'bution of sound volume was uniform. The sound was record
ed at two places, half a meter and four meters from the sound source. 

The performers were violinists fran Poznan Academy of Music. 
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V=378 m3 
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Fig. 1. Scheme of placing the 
measurement points. 

Research material 

Investigated were the sound properties of those instruments of stand
ard size which in competitions for violin makers were specified as good 
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as well as the sound properties of instruments of 3/4 presented 
at a violin makers" competition (Table 3). 

212 

Table 3· Instruments under investigation. 

Instrument 

Violin 

Viola 

Cello 

Violin 

Cello 

Size 

standard 

standard 

standard 

2. 

3/4 

3/4 

A 
[dB ] 

i 

Number 

81 

3 

5 

30 

3 

e% 
0~ 

T 

l 
I 

Event 

6th International H. Wieniawski Violin-
makers Competition, Poznaii., Poland 1981 

International Competition for 
Violin Makers, Cremona, 1982 

All-Poland z. Szulz Competition 
for Violin Makers, Poznan, 
1979 

r >T 
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Isolated tones { 6 times each), a 
formed (Table 4) . 

and short melodies were per-

The dynamics of playing was specified as , "mf", and . The 

of the instruments was controlled all the time. By means of com
monly used electroacoustical equipment, an oscillographlc analysis was 
carried out. 

Results 

The intensity level of basic tones for violin, viola, and cello is 
presented in Fig. 2. 

Measured at a short distance /I/ from the source, the mean values and 
limits have been marked. The largest variations of mean values 

have been found for violin. Worth mentioning is also the fact that 

variations in the level of sound intensity among the different violin 

are remarkably similar, quite unlike the other rowed instruments 

The upper undergoes most changes. 

The present research supports the results obtained in investigations 
out previously (Harajda, 1976), to testify that the inten-

level is not the very property to determine in the sound quality of 
instrument (Fig. 3). 

to the from the sound source 

shown For of standard 
for all scale tones; for the other 

been for each 

range for the same group of 

are remarkable. 

a violin at the for 
of the tones allow 

criterion of 
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Table 4. Test material 

Instrument 

Violin 

Viola 

Cello 

Violin 

Cello 

[dB] 
100 

90 

'E ao 
<( 

70 

3 s~ 

)-1 

~ '-1 

I II 
,A' 

Size 

standard 

standard 

standard 

3/4 

3/4 

ll 
11 

1·1. 
........ 

-4 

. 
• !.. 

I II I 

"8" j,c· 

Musical material 
isolated tones scale/melody 

1 1 2 g,.d ,a ,e ,e 4 g to a 2 $Cale 1 (a =400 Hz) 

1 1 3 melody c,g,d ,a ,c g-e-a-g 
1 1 1 1 II g -e -a -g 
3 3 3 3 II g -e -a -g 

C,G,d,a,e 3 melody 

1 1 4 4 scale g,d ,a ,e g e 

C,a,e 3 c 2 scale c 

1 J g a 

!t -- r.,. 
I o-- --

_ _, -

li - _ _, 
·-< 

II I II I II I II I II I II I II 
.. A'' ,B • .. c ,,A'l c· 

" 
Fig. 3. Sound intensity levels (A mf [dB]) in 3 I 4-violins for three 

groups of quality (A,B,C) at the two measurement ]X)ints (I,II). 

214 



Fig. 4. 
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Dynamic range (At-1\·) of isolated sounds (letters corresponding 
to the played notes} and melodies (M) for violins (S) , violas (A) , 
and cellos (W) at measurement point I. 

In the group of the violins of the 3/4 size, a correlation between the 
place won by the instrument and the dynamic range was evident in the 
highest tones only at the distance of four meters from the sound source 
(Fig. 5). 

The range of carrying the sound in the instruments under consideration 
evaluated in a small chamber concert hall was satisfactory. The decline 
in the intensity level for violins of standard size amounted to ca 5 dB. 
The instruments for children proved to be of a lesser carrying sound 
range. In individual cases there are great differences in carrying sound 
range, till 15 dB (Fig. 6). 

In the group of instruments for children, when the intensity level 
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Fig. 5. Dynamic range (Acl\.) of 3/4-violins for three groups of 
quality (A,B,C) at the t'WO measurement points (I,II) and 
the tones g, a1, and e4. 
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Fig. 7. Changes of sound intensity level (f and p) at the t'WO measurement 
points in 3/4-cellos of different quality (A,B) for the marked 
single tones. 

declined with the growing distance, the instruments were low evaluated, 

particularly evident in the cello sound {Fig. 7). 

'l'he difference of the intensity level when passing from one tone to 

the other on the same string is lowest for the standardized violin and 

amounts, on the average, to 4~6 dB (Fig. 8). 

Individual differences are, however, high. The tones of the 3/4-

violins are less uniform (5-10 dB). In the group of cello instruments, 
since the number of investigated instruments was rather small, the re
sults are presented for each instrument separately. Along with the 

growth of this instrument size, the possibility to attain a uniform 

sound proves to be more difficult. 

The possibilities to attain a sound equality on different strings of 

both the violin and the cello (of the s 3/4) are more limited, as 

to the sounds performed on the same string. The high level of 
sound equability is to be found in violas and cellos of standard size; 

217 



[dB] 

10 
U') 

<( 

<I 

5 

I 

0 

0 

0 0 0 

0 
0 0 

)l 0 

.... 
-

0 

(). 

0 

• 4'4 
o4J4 --

0 
0 0 

0 
co Ell 

0 0 0 

ooeo 
G 8 EM 
1111 -· 

C G d a 
w 

Fig. B. Equality of somd intensity level (6As) within the same strings 
of violins (S), violas (A), and cellos (W). 
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Fig. 9 . Equality of the sound intensity level (6AQ) for all 
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the differences in the intensity level among sounds produced on different 
strings are lower than 5 dB (Fig. 9). 

A characteristic property for particular instruments is the way in 
which the changes in the intensity level of sound occur when, after 

excitation that recurs several times, the sound tends to attain its 

------

Fig. 10. Changes of sound intensity level while trying to 
attain the optimum sound volume (6 bow movements). 
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optimum volume. We can come across some instruments which, after the 

first tow movement, attain the optimum level of sound intensity as well 
as such instruments in which that level is attained after several at

tempts at sound excitation (Fig. 10). 

The differences of that kind is to be found almost exclusively when 

the dynamics of playing is that of 11p 11 and "mf". The sounds performed 
with the strength of "f", in 85 per cent, attain the maximum amplitude 
almost at once. There is no correlation between the place won by the 

instrument at the competition and the speed with which the optimum level 

of the sound volume is formed. Some violinists appreciate those instru
ments in which the excitation comes easier while others prefer such 

instruments which make a certain resistance to the excitation. 

Conclusions 

The results of the investigation presented in this paper on the char
acteristic properties of played tones and in particular their intensity 
levels allow us to establish the limits for permissible variations. To 

be contained within those limits gives a chance for an instrument to be 
classified as one of high quality, although the quality cannot be assured 
in this way apart from the above mentioned properties, some other fea

tures determine in the quality as well. The fall outside the established 

limits is closely related to the lowering of the instrument quality. The 
dynamic range and the range of carrying the sound are the parameters with 

a strong bearing on the instrument quality. 

In the group of violas and cellos the equality 

level between the strings is high enough, while the violins are 

characterized by great differences in that level. Within the 
tones on the same the equality for the violin may amount 
to the value of 2 dB, and for the remaining types of bowed 
to 6 dB. 
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The property to make differences among particular towed instruments 

, no doubt, the easiness to attain a full sound volume, especially when 
the dynamics is that of "p". It does not mean, however, that this 

property should be considered as the very criterion of the quality of the 

instrument because the violinists are not uniform in their opinions on 
whether, and to what extent, this is or is not a positive characteristic 
of the instrument. 
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THE l1"UNCI'ION OF THE VIOLIN BODY -- \tJHAT Tiill PHYSICIST DOES Nai' KNOW! 
Erik v. Jansson 

Department of Speech Communication and Music Acoust1cs, KTH 

AlE tract 
The physicist needs measures that are reproducible and interpretable 

for his investigations. To investigate the function of the violin, these 
measures must be calibrated regarding their importance and sensitivity 
for the violin as musical instrument. In our investigations we have 
adopted the input admittance as method, i.e., the resulting velocity for 
a given force as function of freuqency. Thereby we can measure fre
quencies, Q-factors, and "driving levels" of the resonances of the violin 
body, i.e., acoustical fundamental measures possible to interprete. A 
first calibration of these measures suggests that the peak level of three 
resonances at approximately 400, 500, and 700 are most important for 
the quality. Experiments show that these resonances are somewhat sensi
tive to properties of the chinrest and to the holding of the violin. The 
"vibration patterns" of the three resonances show rather interesting 
similarities of the second and the fifth mode of the free plates. There
fore, we are presently investigating relations between these properties 
of the free plates and of the assembled instrument. 

We feel that we are working with measures with a fair reproducibility, 
with meaningful interpretation, and with a first calibration of their 
importance. It is not known, however, why the physical measures are 
important (a confirmation of the importance is needed), and what the 
physical scale of sensitivity is (the necessary resolution for measure
ments). This confirmed and sufficiently detailed calibration must be 
related to wanted spectral and temporal properties of played tones. The 
calibration is necessary for systematic investigations of, for instance, 
where in the production chain the important properties are set and how 
much can they be readjusted. 

(The investigations are conducted together with J. Alonso Moral and 
carleen Hutchins.) 

Introduction 

The physicist needs measures that are reproducible for his inves
tigations. The measures must be possible to interpret in physically 
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meaningful terms. To investigate the function of the violin as a musical 

instrument, the measures must be calibrated. To begin with, a qualita
tive calibration is necessary, i.e., which measures are the important 
ones for the musical quality of a violin. Secondly, a quantitative cali
bration of the important measures is necessary, i.e., how sensitive is 
the musical quality to the magnitude of the different important measures? 

In this my paper I shall point out what I know and what I do not know. 
The material for the presentation is taken from investigations in coope-

ration with Jesus Alonso Moral and Carleen Hutchins. 

LEFT RIGHT 

Fig. 1. Positions and directions for 
recording of input admittance. 

Reproducibility of Measurements 

At KTH we have adopted a method of recording the input admittance. 
Thereby, we record the resulting velocity from a force of constant magni
tude but with slowly increasing frequency, l. We have selected two 

as standard for measurements, roth with the force applied on 

and in perpendicular to the The 
position outside the , i.e., at the bassbar side, and the 

second outside the E-string, at the sound post side. 
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A result of such a recording of input admittance is shown for driving 

at the bassbar side. The input admittance curve is reproducible with a 
fair accuracy. Below l kHz it is reproduced within ±l dB, if reasonable 
care is taken in the setting up. For higher frequencies, say from 1kHz 
to 5 kHz, it is somewhat less good. Great care is needed in the attach

ment of the driving-recording transducer, otherwise large discrepancies 
may occur around 2 kHz. 

w 
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<( 

_J 

I- w 
::::> > Q_ LlJ 
z _J 

0.1 
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0.5 

CONCERT VIOLIN 

1 

FREQUENCY {kHz l 

5 

Fig. 2. An example of an input admittance curve. 

Interpretation of the Input Admittance CUrve 

10 

The input admittance curve can be interpreted in physically meaningful 

terms. The peaks represent a mapping of the resonances, i.e., the acous
tical bricks of which the violin is built. The four peaks labelled AO, 
Tl, C3, and C4 correspond to four resonances, eigenmodes, whose typical 
vibration patterns are known. The fifth peak F has yet to be explained. 
From the diagram the frequencies, the width, and the height (the level) 

of the peaks can be measured. Thus, measures are obtained of resonance 
frequencies, Q-factors, and "driving level". It should be pointed out 

225 



that it is the peaks that are the meaningful measures. Between 1 and 5 

kHz there is a broad hill with its maximum at 2.5 kHz. This hill is 
introduced by properties of the bridge, but seems to be supplemented by 

the top plate construction, i.e., cutting the centrum of the top plate 

free from the edges by means of the f-holes (the hill is somewhat influ
enced by the mass of the driving transducer, approximately l g). 

Qualitative calibration of Measures 

An analysis of 24 violins of different musical qualities suggests that 

the levels of the peaks Tl, C3, and C4 are the most important for the 

tonal quality of the violin (Alonso Moral and Jansson, 1982). Further
more, the bridge properties are important. A confinnatlon of this cali
bration is, however, badly needed, as we do not know why these measures 

should be important. An analysis by synthesis procedure seems to be the 

best approach to really solve this problem. 

Naturally, even less is known about the sensitivity scale, i.e., we 

are far off from being able to give quantitative calibrations of the 
important acoustical measures of a violin. Again, this seems to be best 
solved by an analysis by synthesis procedure. But by starting from the 
hypothesis that the five peaks AO, C2, Tl, C3, and C4 and the "bridge
hill" maximum are the important measures, we can attack the problem. 

Identification of Resonance Peaks 

The frequencies of the lowest resonance peaks give a fairly safe 
indication for a correct labelling of peaks. This is exemplified in Fig. 
3. The three horizontal bars marked "4", along the lowest line, mark the 
range of resonances for four violins. The resonances were identified by 

means of optical redordings of their vibration patterns. The "24 bar
line" and the "6 bar-line" mark ranges of interpreted Tl, C3, and C4 

resonances for 24 and 6 new violins. The peaks are in this case assumed 

to fall in the same order as for the "4-violins". Thereby, it is found 
that the ranges of the three resonances are approximately the same -- a 
good old Italian violin, the crosses, falls within the same ranges. Ob

serve that there is hardly any overlap between the ranges of the Tl and 
the C3 resonances. 
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4 violins 420-475 Hz 490-580 Hz 600-770 Hz 

Fig. 3. Frequency ranges of resonance peaks. 

Sensitivity of Properties to External Perturbations 

As indicated, the calibration needs to be set by some kind of analysis 
by synthesis procedure. The sensitivity of the violin to external per

turbations may, however, give an idea of magnitudes at least. Further
more, it will give the accuracy with which the real properties of a 
violin can be determined. That should open ways to determine the sensiti

vity calibration by playing the violin under different conditions. 

Influence of Chinrest 

Let us start to look at the influence of the chinrest. This is demon
strated in Fig. 4. Along the horizontal axis the five investigated peaks 
and the "bridge hill" are marked AO, C2, Tl, C3, C4, and BRIDGE. The 
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Fig. 4. Frequency (left) and level ranges (right) of resonance 
peaks. The arrows from the dots mark the shift of the 
mean by removal of chinrest. 

left vertical bar of each pair marks the frequency range in percent, 
i.e., the frequency variations of the peak. The mean value is marked 
with a dot on the middle of the bar. The right bar of each pair marks in 
the same way the level variations and mean values of each peak in dB. The 
arrows pointing from the mean values (the dots) mark the shift of the 

mean values by the studied perturbation. 

This first case shows the effect of removing the chinrest of the 

violin. The recordings were made with approximately free boundaries, 
i.e., the violin was hung in the standard way carleen Hutchins uses. The 
removal of the chinrest gives small but significant changes of the peak 

measures. The classification "small" is used as the average shifts are 
considerably smaller than half the variation width in measures, i.e., the 

average shift is well within the ranges of variations. Different peaks, 

resonances, are somewhat differently influenced. The average frequency 

shift is 2%, i.e., a fifth of the 10% frequency variation range. The 

average level shift is 2 dB and the range of level variations 8 dB. 
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Damping of Strings 

An important question is: Can the strings ~damped during measure
ments to remove the influence of string resonances'? It is easily seen 

that the damping of strings gives rather small perturbations of the 
properties, Fig. 5. The average frequency sr.tift is 0.5% and the average 

level shift l dB. Without string damping, three double peaks give inter
pretation difficulties. The influence of the string damping is small 
compared with that of the chinrest, for instance. 
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Ow 
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AO 

damping of STRINGS 
(average 5 violins) 

-

(2 T1 (3 
RESONANCES 

BRIDGE 

Fig. 5. As for Fig. 4. but the shift of average 
by damping of strings. 

Holding of the Violin 

The holding of the violin in playing is likely to perturb the measures 
obtained with free boundaries. The recorded perturbations of holding for 
one violin is shown in Fig. 6. The groups of three bars display frequen
cy measures (left), level measures (middle}, and Q-factor measures (the 
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20 holding of VIOLIN 
( 1 violin "Camurat" rel 24 violins) 

AO (2 T1 C3 C4 BRIDGE 
RESONANCES 

Fig. 6. Frequency (left) 1 level (middle) 1 and Q-fastor ranges 
of resonance peaks. The arrows from the dots mark the 
shift of the mean from free to holding of the violin. 

right bar calculated as level measures in dB). The frequency shifts are 
small (-1.5% on the average), but the level and Q-factor shifts are 

large. The decrease in level and Q-factor is on the average 50% with the 

small shifts of the "bridge hill" excluded. This indicates that the 
holding of the violin causes mainly losses. The losses measured with 

free boundaries are likely to give a large underestimation of the losses 
for the violin under playing conditions. 

Without Strings and Bridge 

A natural question is: How much are the measured properties influenced 

by the stringing and its accessoirs? The differences between measure
ments with and without strings, bridge etc. are given in Fig. 7. The 
measurements were made on top of the bridge at tl1e bass bar side and at 
the position of the corresponding bridge foot without bridge. The fre
quency shifts are small, on the average l% except for the 7% of the C4 
resonance. The level shifts are moderate, say -3 dB for the AO, C2, and 
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RESONANCES 

BRIDGE 

Fig. 7. 'As for Fig. 4 but shift of the mean 
by removal of strings and bridge. 

Tl resonances and + 3 dB for the C3 and C4 resonances. The level decrc;ase 
is large for the "bridge-hill", -13 dB. The large shift is interpreted to 

prove that the influence of the first bridge resonance is large in this 

frequency region. 

Conclusions of Accuracy and Sensitivity 

We have found that the standard way of recording properties, i.e., 
with free boundaries, gives a reasonable approximation of the violin in 
playing except for a large underestimation of losses. Damping of strings 
gives minor influence; the losses increase approximately 1 dB and the 

resonance frequencies shift 0.5%. The chinrest gives a somewhat larger 
influence; an average decrease of 2% and 2 dB respectively. The holding 

for playing gives a 6 dB (50% decrease in level and Q-factors). Knowledge 
of the perturbations seems to open ways to systematically change the 

231 



acoustical properties and compare those with changes in musical qualities 

of a violin. Thereby, one should first aim at a qualitative calibration, 
i.e., which properties are the most important ones, and, secondly, aim at 
a quantitative calibrations, i.e., how sensitive is the tonal quality of 
the violin to variations in the physical properties. 

There seems to be a large uncertainty on needed accuracy in measure
ments. A high accuracy is generally wanted but the chinrest and, es
pecially, the holding change properties of a violin considerably. Fur

thermore, if the high levels of the Tl, C3, and C4 are favorable, why do 

the players hold the violin the way they do? Or perhaps the holding is 

not as disastrous as our measurements imply? 

Free Plates and Assembled Violins 

Another point of great interest is that of the maker: How do you make 
a high quality violin? As we do not know for sure what properties the 
high quality violin should have, there are naturally some difficulties 

for the physicist to specify how to make such a one. But again, starting 
from a hypothesis what the properties should be, a problem is defined and 
can be attacked. Let us assume that the resonances Tl, C3, and C4 are the 

important ones. The problem that can be attcked is: How do we achieve 
these resonances and how can they be adjusted? This is equivalent to 

attacking the question of calibration. 

The vibration modes, i.e., the vibration patterns, look typically as 
sketched in the upper row of Fig. 8. Mode Tl has its main vibrations 
between the f-holes, and two curved vertical nodal lines. Mode C3 has 
similar nodal lines, but the main vibrations are at the edges and the 
plates move in phase. Typical vibration patterns of free violin plates 

are shown in the lower row. The free plate vibration pattern reflects the 

stiffness-mass distribution of the plates. These vibration patterns, the 

second and the fifth eigenmodes of free violin plates, show astonishing 

similarities with those of the assembled violin. The arrows between the 

vibration patterns of the lower row and those of the upper row indicate, 

how the vibration patterns of the free plates can be combined into those 

232 



1 (3 (4 

no 2 no 5 
Fig. 8. Vibration patterns of assembled (upper row) and 

free (lower row) violin plates. Thin lines mark 
equal vibration lines and (-.-.-) mark nodal lines. 

of the assembled violin. The assembling of the violin , however, a 
rather large change of boundaries and we can not assume that slightly 

free modes are transformed the modes of the assemb-
led violin. The similarities can not be assumed to be more than 
accidental without further evidence. As a matter of from a physic-
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Fig. 9. Variations of levels and frequencies at resonance of 
three modes of assembled violins (upper diagram) and 
of two modes of free plates (lower diagram) . 

al standpoint, the perturbations in the assembling are so large that the 

presented properties of the free plates cannot fully predict the pre

sented properties of the assembled violin. 

Frequencies and Levels at Resonance 

In order to study relations between free plates and assembled violins, 

we have started a larger investigation. In one part, we are collecting 
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Fig. 10. Variations of levels and frequencies at resonance of three 
modes of assembled model violins (upper diagram) and of two 
modes of the corresponding free plates (lower diagram). 

data on violins under construction. Our first interest is to find the 
typical properties and their range of variations. Presently, we have a 
too limited number of violins for general conclusions, but let me use our 
present results to point out possible relations. 

In the lower frame of Fig. 9, the ranges of variations are sketched 
for levels and frequencies at resonances of some free top and back 
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plates. In the upper frame the same data are sketched for 25 assembled 

violins. 

In a second part, we are modelling properties into violins. In the 

first step of the laboratory experiments, Alonso Moral in cooperation 
with carleen Hutchins made a pilot test to measure relations between free 

plates and assembled violins. The plates were selected to contain three 
top plates and three back plates one normal, one flexible, and one stiff 
as given by their resonance frequencies, Fig. 10 lower frame. A compari

son of the lower parts of Figs. 10 and 11 shows that the range of fre

quency variations is well covered by the six selected plates. The level 

variations are also well covered (absolute levels cannot be compared 

because of different ways of measuring). The vibration levels of the 
fifth mode are somewhat astonishing though, the flexible plate gives 

lower vibration level than the normal (this may reflect the maker's way 

of working to find the best compromize). 

The interesting question is: Does the range of variations covered for 
the free plates result in a covered range for the assembled violins? A 

comparison of the upper parts of Figs.9 and 10 shows that the frequency 
ranges are reasonably well covered. The cros::;es are close for the case 

of normal-normal plates. The variations of vibration levels with the six 
plates are, however, smaller. Thus, it seems that we must include addi

tional parameters to cover the full range of vibration levels. 

Another interesting question is: Does the top or the back plate give a 
dominating influence on any of the modes of the assembled violin? By 
looking at the upper part of the last figure, we find that only in the 
case of the Tl mode, there is a clear dominance for one mode, the top 
plate mode. This is especially true for the frequencies. An intriguing 

point is that the levels for the different combinations tend to be the 
opposite for the Tl and the C4 modes. 

Oorrelation of Eigenfrequencies Free and Assembled Plate ~bdes 

An even more detailed question for the maker is: Does a specific mode 
of the back or the top plate give a dominating influence on a specific 
mode of the assembled violin? As a very preliminary test of possible 
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relations, the correlation was calculated between the resonance 

cies of modes l, 2, and 5 of the free plates and the Tl, C3, and C4 modes 
of the assembled violins, see Table I. The results suggest that the top 

plate modes are most important for the assembled Tl-mode, but the back 
plate modes are most important for C3 and C4. Somewhat surprisingly the 
correlations also suggest that the free plate modes no 1 of both the top 

and the back plate are the most important. Only the free back plate mode 
no 5 has a large correlation with the C3-mode. Whether the surprising 
result is "accidental" or significant remains to prove with a larger and 

more representative number of violins. 

Table I. Correlations between the resonance frequencies of the free 
plate modes and the modes of the assembled violins (6 violins). 

ASSEHBLED VIOLIN MODES 

T1 C3 C4 
FREE PLATE MODES 

no. 1 'Ibp/Back .79/-.42 .29/.98 .63/.91 

no. 2 'Ibp/Back .47/ .14 .49/.42 .49/.71 

no. g 'Ibp/Back .25/-.47 .51/.95 .63/.75 

Conclusions on Free and Assembled Plates 

Our first analysis of experiments on free plates and assembled violins 
indicates that we really cannot explain very much, i.e., we can obtain 
reproducible measures but we can hardly give even a qualitative calibra
tion of their importance. We can monitor frequencies in the assembled 

violins, but presently not levels. Possibly, this can be done by includ
ing all measures, such as a separation in Q-factors and the vibration 

patterns. But that we do not know. So let me end with a question: Is it 

only the complexity of the violin that hides the solution of the physical 
problem or does our investigations not include the parameters of major 

importance? 

Reference 
Alonso Moral, J. and Jansson, E.V. (1982): "Input admittance, Eigenmodes 
and quality of violins", STL-QPSR 2-3/1982, PP• 60-75. 
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EVIDENCE OF BRIDGE AND SOUNDBOARD CONTRIBUTIONS 
'IO KEYBOARD INHARMONICITY 

cary Karp 
SMS-Musikmuseet 

Stockholm, Sweden 

The "stiff string" equation as given by Shankland, Coltrnan, Morse and 

others allows the calculation of the partial frequencies of vibration of 
a string as functions of several of its physical parameters, including 
t.he conditions at its end supports. Many authors report observations 
made on the strings of the contemporary piano to be in good agreement 

with values calculated assuming the strings to be hinged at their sup

ports. In the present study one modern grand piano, two harpsichords, 
and one early 19th-century wooden frame grand piano were examined. The 

modern piano and one of the harpsichords behaved as expected on the basis 
of results reported in the literature. The other two instruments yielded 

inharmonicity data which could not be explained at all satisfactorily in 

terms of string stiffness. The deviations from expected values were 
large and of clear musical significance. Severely limiting the motion of 
the bridges and soundboards of all four instruments brought medsured 

values into good agreement with values calculated assuming the strings to 

be clamped at their supports. There is reason to believe that the dif

ferences between the two pairs of instruments may be explained in terms 

of the rotation of the bridges about their longitudinal axes. 

The fundamental frequency of vibration of a string under tension 
between rigid supports can be calculated to a satisfactory degree of 
accuracy as a function of the string's length, diameter, density, and the 
stress applied to it. Since, however, no string is perfectly flexible 

higher partial frequencies of vibration will not be integral multiples of 
the fundamental frequency. In order to calculate higher partials addi
tional parameters must be considered. The most commonly used algebraic 
"stiff string" equation uses the parameters listed above and allows for 
string stiffness by using its modulus of elasiticty. The equation con-
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terms to allow explicit solution in the two cases where the 

string is either clamped or hinged at roth its supports. 

Several authors have investigated modern pianos and have shown that 

the positions of its inharmonic partials are generally in good agreement 
with values calculated assuming the strings to be hinged at their sup

ports. The conclusion drawn has been that it would appear likely that 
piano strings, indeed, are hinged at their supports and that piano in
harmonicity can be explained solely in terms of string stiffness. 

Since the bridge on a piano soundboard is obviously not a rigid sup

port, the present study was intended to determine the effect of eliminat
ing the motion of the bridge and soundboard at the point of string 

support. Although it did not prove possible to eliminate all such mo
tion, substantial reductions were effected. Fig. l shows a clear fre

quency shift for all partials on a modern piano string when bridge motion 
was reduced. On the basis of this and other similar ol::servations it may 

be suggested that the strings of a modern piano are clamped at their 

supports, and that bridge and soundboard motion shift all partial fre

quencies to positions very near those predicted by calculations assuming 

the strings to be hinged at their supports. Keyboard inharmonicity can, 
therefore, not be explained solely in terms of string stiffness. 

On an 1811 wooden frame grand piano what presumably were tridge and 
soundboard effects generated the data given in Fig. 2. Here it is 
clearly seen that inharmonicity is negative for a large number of lower 
partials, rendering the stiff string equation virtually inapplicable in 
this case. The implications of this negative inharmonicity for the 

subjective experience of sound quality and pitch cannot be ignored. On 

another string on the same instrument (data given in Fig. 3) inharmonici

ty is held quite close to zero for most of the lower partials. It would 
appear possible that certain aspects of bridge and soundboard design can 

deliberately be utilized to reduce the effects of string inharmonicity, 
and that the attempt to do so may cause partial frequencies to lie below 
strictly harmonic positions. 

Two were also examined. One was a modern factory built 
thick 

modern than any 

240 



90 

80 

70 

60 

50 

V) 40 
1-
z: 

z: 30 

>-
~ 20 
u 

z: 
0 

~ 10 
<( 

::r: 
z: 
~ 0 

------------- -----------------

+ HINGED 
+ 

+ 

PARTIAL NUMBER 

Fig. 1. + MEASURED VALUES WITH NORMAL BRIDGE AND SOUNDBOARD MOTION 

MEASURED VALUES WITH REDUCED BRIDGE AND SOUNDBOARD MOTION 
SoLID cuRvEs = CALCULATED VALUEs 

The other was patterned after an 18th century prototype. In analogy to 
the modern piano, the inharmonic behavior of the first harpsichord ap
peared to be explainable in terms of hinged stiff strings, although 
reduction of bridge and soundboard motion revealed the strings to be 
clamped. The second harpsichord behaved similarly to the wcx:rlen frame 
piano, displaying roth "zero" and negative inharmonicity. Immobilizing 
the bridge on this instrument also caused predictable clamped string 
behavior. (The nature of the older piano precluded the mechanical action 
necessary to make similar conclusive measurements on it.) 
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The two pairs of instruments, "old" and "modern", differ in that the 

former display design features which clearly reduce the net effects of 
inharmonicity. Although no direct evidence was found which enables this 

to be related to makers' intent, the following observations may still be 

of interest: The soundboards of the modern instruments are thick and 

flat, whereas on the older instruments they are thin, much less rigid, 

and inclined to "dish" at the bridge. The motion of the bridges on the 
modern instruments could be reduced simply by loading them from ab::>ve and 
below perpendicular to the plane of the soundboard. On the older type 
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harpsichord it was also necessary to prevent the bridge from twisting 
forward. Clear evidence of longitudinal modes of vibration was found 
only in the sound spectrum of this instrument. 

It would, therefore, seem possible that the difference between the 

inharmonic behavior of modem and older strung keyl::oard instruments may 
correlate to the lack of preoccupation with producing absolutely flat 
soundboards which appears to characterize earlier schools of keyboard 
making. The student of modern piano design who speculates about the 

possibility of reducing inharmonicity may benefit from a study of older 
types of pianos and other strung keyl::oard instruments. 
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A NEW IDENTil''ICATION EXPRESSION OF HELMHOLTZIAN WAVES 
AND THEIR FORMATION MECHANISM 
Masao Kondo and Hidemi Kul:x:>ta 

Gakushuin University, 'Ibkyo, Japan 

On finding the fact that there are always coexisting on a string the 
plural number of Helmholtzian waves instead of a single wave, two new 
concepts are introduced for understanding the "Helmholtz Motion". One is 
an identification expression of Helmholtzian waves in terms of accelera
tion, and the other is a special reference frame of the laminar flow 
type. 

(1) The former is found to be very useful, especially when one deals 
with the plural number of Helmholtzian waves coexisting on a string, and 
the same expression is also applied, without any alteration, to a simple 
bend travelling on a string. Here the introduction of the latter frame 
serves to convince us that the simple travelling bends and the Helm
holtzian waves are physically the same. 

(2) In the bowing process, each "stick" or each "slip" makes a pair 
of small bends on a string at the bowing point, which start their travel 
toward ends at which they reflect back. All these pairs of bends which 
are generated successively in the course of bowing are integrated on the 
limited length of the string; some are summed up to larger bends, some 
remain separately as small bends, and some in other ways. The results of 
integration are largely influenced by the location of the bowing point as 
well as by the bowing speed and the bowing force. 

The integrated state being reduced by the inherent damping makes the 
whole motion of a bowed string, in which, of course, a single Helm
holtzian wave is predominantly observed in normal playing. 

245 



Introduction 

One stream of our study has been the observation of bowed strings with 
anamorphic cameras and a bowing machine of the endless belt type. Al
though a number of results have been reported piece by piece at ICA 

conferences since 1968 (*), the structure of the bowed strings has not 

been understood completely until now. 

The key for solving this problem is the finding of the fact that there 
are always -- yes! always -- a number of Helmholtzian waves coexisting on 

a string, both clockwise and counterclockwise, strong and weak, each with 
its own phase difference(**). In order to describe and underst.and such 
string movements, we have needed a new identification symbol or expres
sion for a Helmholtzian wave. 

The typical wave motion generated by bowing a string has a specific 
shape and a specific velocity distribution, which are designated as a 
"Helmholtzian wave" (in a limited sense) and a "Raman wave", respective
ly. These two kinds of waves are essential and (seem to be) enough to 
understand the kinematics of a single Helmhol tzian wave. But when we 
have to deal with a number of Helmholtzian waves existing simultaneously 
on a string, another new wave concept becomes a powerful tool in order to 
understand the situation, that is, the "Acceleration wave". 

(*) 

(**) 
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zian waves on a bowed String" (which shows the possible number of Helm
holtzian waves coexisting on a bowed string. This number depends on the 
bowing position.) 



The experiences of treating many examples with the aid of this accele

ration wave have led us to understand the build-up mechanism of the wave 
motion of a string generated by the bowing action. 

PART I. A NE\IiJ IDENTIFICATION EXPRESSION OF HELMHOLTZIAN WAVES 

Helffiholtzian Waves - clockwise and counterclockwise 

(a) and (a') in Fig. 1 represent the snapshots of a string which is in 
"Helmholtz motion". The string shape consists of two straight lines 
connected at P where it makes a bend. The bend travels with the propaga
tion velocity of transverse waves along two parabolic curves successive
ly, thus making round trips between the two fixed ends. Whether this 
round trip is clockwise or counterclockwise is not known from the snap
shots, because (a) and (a') look just the same. Suppose that we assume 
the motion in (a) to be clockwise and the motion in (a') to be counter
clockwise, and indicate this by the thin arrows. 

(b) and (b') in Fig. 1 express the velocity distributions of the 
moving strings (a) and (a') respectively. It is an important property of 
this type of motion that the velocity of the string element jumps an 
equal amount wherever a bend passes through the element. 

The two kinds of diagrams mentioned above are essential and seem to be 
enough to understand the kinematics of a single Helmholtzian wave. By 

partially differentiating with time the velocities of the string elements 
in (b) and (b'), one gets the acceleration distribution along the whole 
length of the string as seen in (c) and (c'). At the bend, the accelera
tion has a definite non-zero value (with positive or negative sign), but 
elsewhere on the string the acceleration is zero. We will call the point 
which expresses the non-zero definite value of acceleration at a bend the 
"acceleration point". As the height of the acceleration point does not 
change when it moves with the bend, the locus of the acceleration point 
describes the four sides of a rectangle (shown by dotted lines in (c) and 
(c')); it moves along the upper and lower sides at the speed of the bend. 
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(-) or ( +--) shows a llfiOVing direction. 

( t ) or ( ft ) shows the direction of acceleration. 

Fig. 1. 
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Expressing the height, the location, and the direction of motion of 
the acceleration point identifies a particular Helmholtzian wave. Tb see 
the time change of a Helmholtzian wave, it is convenient to draw a graph 
of its inherent acceleration point with coordinates (x,t), as in (d) and 

(d'). By adding to the path of the acceleration point a thick arrow 
which shows t.he sense of acceleration, (d) and (d') of Fig. 1 become 

complete, in that they tell us also the rotational modes of the bend. As 

a thick arrow changes its sign at both fixed ends of the string, we can 
conclude the following: 

dx 
'Ihe passage dt > 

dx 
and dt < 

dx 
the passage dt > 

dx 
and dt < 

0 with~} 
0 with 1J' 

:::1] 
means the clockwise round trip 

of the bend, and 

means the counterclockwise round trip 

of the bend 

If we combine (c) and (d), we get a three dimensional model of the 
passage of the acceleration point, as shown in Fig. 2, where the thick 
arrows are no longer necessary. 

The simplicity of the passage of the acceleration point -- always 
straight and parallel to the x-t plane -- makes this diagram very useful, 
especially when a number of Helmholtzian waves are coexisting on a 
string. 

"Stick" bends and "slip" bends 

'Ihe interaction between bow and string consists of a "stick" duration 
and a "slip" duration, during the "slip" duration, it is hoped that the 
string is as much free as possible from the bow. In the following we 
assume that no friction exists during a "slip" duration. At the moment 
of transition both from "slip" to "stick" and "stick" to "slip" (i.e., at 
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the beginning and at the release of the "stick"), the string element at 
the contact point receives a transverse shock of minus and plus signs, 
respectively. These transverse shocks generate on the string a pair of 
bends which start their travels toward ends. 

In Fig. 3, a long string is stretched along the x-axis, and is bowed 
in the (-y) direction at P

0
• At the stick point P

0
, twin bends +B and -B 

are born; and +B travels as +B1-;..+B2--"'" ... +B~+Bn+r"'"···=to the right, 
and -B as -Br-;..-B2_. ... -Bn-"' -=to the left. When the contact point 
of the string and the bow comes to the point Pn, the string has moved 
down to the position given by the dashed line (-Bn)(Pn)(+Bn); the whole 
depression is moving downward at the same speed as that of the bow. Now, 
release the bow at this moment, by any means; another pair of bends 

-B'n+l and +B'n+l are born, and they proceed in opposite directions. Let 
us call the bends generated at the beginning of "stick" stick bends, and 
the ones at the release of "stick" slip bends. Stick bends and slip 
bends have opposite shapes; one is convex, the other concave in this 
figure. The string element at a stick bend (+B or -B) has a downward 
acceleration ( {Jr) and the one at a slip bend (+B' or -B') an upward 
acceleration ( 11' ) , and all the other parts of the string have no accele
ration at all. These bends propagate to both sides with the wave veloci
ty of the string, keeping their shapes unaltered if both damping and 
dispersion are negligible. 

Focussing our attention on these bends, and disregarding the shape and 
the velocity of the string, we can draw a (x,t) diagram of bends as in 
Fig. 4. Here, ± tane = : = propagation velocity of the bend. 

Bends and Helmholtzian waves 

Now we will see how the propagation of . the bends examined above leads 
to the bends of the Helmhol tzian waves. 

(1) Shape Relation: The upper right half of Fig. 3 is shown magni
fied in Fig. S(a), where Q is the right fixed end of the string and P is 
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the bowing point moving downward with a uniform speed. If the string 

motion of (a) is seen from the reference frame (b), the string motion 
appears as (c) which we recognize as a Helmholtzian wave. The frame (b) 

is a special reference frame in which the whole area is moving in the -y 
direction with uniform speed as in a laminar flow. 

The above discussion is safely applied to the real phenomena when 
range of y small compared to the length PQ. The propagation of a bend 
is composed of two components, one a laminar flow motion, the other a 
Helmholtzian wave. 

(2) Velocity Relation: Fig. 6 shows the velocity relation, which is 
simpler than the shape relation and more easily understood. 

(3) Acceleration Relation: As the laminar flow reference frame has 

no acceleration, the acceleration relation becomes very simple; it tells 
us that a "bend" and a "Helmholtzian wave" are just the same when seen 
through the window of acceleration (Fig. 7). So the acceleration points 
discussed in the first section of Part I are the identifications of both 
"Helmholtzian waves" and the newly born "stick and slip" bends. 

PARI' II. FORMATION MECHANISM OF HElMHOLTZ IAN WAVES 

Passages of "stick" and "slip" bends 

When a string has a limited length L and "stick" continues for a while 

(Fig. 8), each stick bend reflects back at a fixed end and also again at 
the contact point of the string and the bow. The contact point acts just 
as a fixed end, as long as the bow holds the string firmly. Thus twin 
bends make two different zigzag passages, depending upon the distances 
the bends have to pass between two successive reflections. 

Fig. 9 shows the case in which the release of stick occurs at PR {at 
time tR). Here the twin "slip" bends are born and they follow the dashed 
lines, while the former "stick" bends follow the solid lines. The four 
waves have no obstacles between two fixed ends. 
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Trigger to release "stick" 

Next we consider the problem: "What is the trigger to release the 
"stick"?" 

Fig. lO(a) shows the stroboscopic shapes of a bowed string, in its 
"stick" duration. The string is stretched between x=O and L, and is 
bowed downward at P (i.e., in the -y direction). This drawing of the 
string in a (x,y) frame corresponds to Fig. 8 where the movements of the 
two stick bends are shown in a (x,t) frame. (The scale of x is just half 
of that in Fig. lO(a).) Dashed lines are the parts of the string moving 
downward with the same speed ( ~) as that of the bow, and thick solid 
lines are the parts at rest. It should be noticed that the angle of the 
bend under the bow does not change continuously, but decreases stepwise 
every time when a stick bend arrives there. 

This angle determines the pulling force of the bow. To see the step
wise Change of this angle, it is convenient to divide the angle into two 
components; the left component is the angle between the bow and the left 
part of the string, and the right component the angle between the bow and 
the right part of the string. The pulling force FL due to the left 

component is schematically shown in (c) and the pulling force FR due to 
the right component is shown in (b), and the total pulling force FL+FR is 
also shown in (b). 

If the frictional force between bow and string is a. the slip occurs at 
the [L-2] step, and in case of ~ at the [R-1] step, and in case of v at 
the [L-3] step, as shown at (b) in Fig. 10. 

In this example, the bowing point is at 2/7 L from the left end. By 
changing the bowing point, a player can bring the [L] step and the [R] 
step the same location, thus getting a double size step whidh will give 
him larger tolerance of bowing forces than a single size step can give. 
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Surrmation of stick bends and slip bends 

Take a simple example in which the bowing is performed at a point 1/3 
L from the left end, and see how bends add together. Every column of 
Fig. 11 is a (x,t) diagram; the horizontal line is the length of the 
string L and time axis is vertically downward. At the point 1 of the 
first column, the first "stick" begins, which sends twin bends to both 
sides. At time 2/3 T after the point 1, these bends meet again at the 
bowing point, and make a force rise of double size which is likely to 
exceed the frictional force between the bow and the string. Suppose a 
"slip" does occur at this moment. The moment is the point 1 of the 
second column, from where a twin slip bends spring out for both sides. 
The left bound bend follows the passage of solid lines, between the left 
and right ends (for five times in the figure). The right bound bend 
follows a more complicated passage of dashed lines, as shown. 

When the left bound bend comes back for the first time to the bowing 
point, the second "stick" occurs at a time which corresponds to the point 
2 of the first column. Then the same sequence as that of the first 
follows and the second "slip" occurs. The third column shows the pas
sages of the twin slip bends continuing for four periods; for the left 
bound bend solid lines are used as before, and for the right bound bend 
chain lines are used to be distinguished from the second column. 

Adding the second and third columns together, we get the fourth col
umn. It is interesting to see the left-bound bends generated both at 1 
and 2 coincide in the same passage, while right-bound bends generated at 
1 and 2 help each other to make the complete two zigzag courses equally 
spaced between the doubled zigzag course of the left-bound bends. 

Examing the fourth column more deeply seems to be suggestive to under
stand the building-up process of the multiple Helmholtzian waves on a 
string. Look at the points surrounded by small squares along the bowing 
line where slip-bends come from both sides and meet under the bow and 

259 



Fig.11. 
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reflect back to their own sides. As the bends have the opposite signs, 
they cancel their effect of reflection if they are of an equal magnitude. 
Consequently, these simultaneous reflections have no influence on the bow 
and the string. This situation is equivalent to the one in which each 
bend coming from both sides passes straight and freely to the other side 
through the bowing point, without giving any influence to the bowing 
action. 

Finally, when we add the first column to the fourth, we get the 
complete wave motion of the string generated by two successive units of 
"stick" and "slip" disregarding the damping. Here, of course, the wave 
motion of the string is expressed in terms of "acceleration symbol". 

Although the work is still in progress, we have found that applying 
this method to several cases with different bowing positions has led to 
plausible and reasonable results, and we expect this method will clarify 
the building up of waves and the long-range order of the cycles, and also 
reveal many complicated cases corresponding to the performances of real 
bowing. 
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Al:stract 

AUTOMATIC TRANSCRIPI'ION OF POLYPHONIC MUSIC 
BY LINEAR PREDICTIVE ANALYSIS 

J. E. Philipp 
Institut fUr Phonetik, Universitat KDln, BRD 

A FORTRAN program has been designed which performs automatic transcrip
tion of polyphonic music by means of bandpass filtering with a digital 
polyphase filterbank and subsequent LPC analysis. Frequency resolution 
is a quartertone for sounds stationary for times > 50 ms. 

The Problem: Resolution 

The notation of recorded music is a fundamental task in ethnomusicolo
gical research. The 'traditional' method of listening to the music and 

trying one's best at writing it into the western system of staff lines 

can be very cumbersome. Therefore many attempts have been made to design 

devices or programs for automatic transcription. ~vith monophonic music, 
such efforts have been fairly successful. This has been demonstrated by 

the early Grlitzmacher-Lottermoser ''Ibnhonenschreiber' (1937), the Serger 

'Melograph' (1974), and the Askenfelt 'Trio Detector' (1976) and a host 
of algorithms designed for speech processing applications. Polyphonic 
music analysis has been tried by several authors (Moorer, 1977; Piszczal
ski and Galler, 1977; 'Ibve et al., 1967) by means of Fourier and adaptive 
bandpass filtering technqiues. One of the main problems in this approach 
arises from musical sounds being stationary often for no longer than 50 
ms. Such a time window is insufficient for discrimination of spectral 
lines less than 20 Hz apart. So half-tone intervals below e' ( ~ 330 Hz) 

will not be resolved. 

Linear Predictive analysis can in principle do much better. Unlike 

LPC speech analysis, however, which involves modelling the few resonances 
of the vocal tract only, polyphonic music analysis requires tl1e represen
tation of each partial by a pair of zeros of the predictor polynomial. 
The generally large number of partials in the relevant frequency range 
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from 0 to 2500Hz leads to predictor orders too high to render possible 

application of LPC analysis to the signal directly. Therefore, prepara

tory bandpass filtering is a necessity. 

The Realized Approach to a Solution: Polyphase Filter'barik. + LPC 

To test the applicability of LPC to polyphonic music analysis, a 

program for automatic transcription has been designed which processes the 

digitized music signal (12 bit, rate 8kHz) according to the following 

scheme: 

1. 'bancpass-filteri..."1a by means of a Polyphase filter'barik. (channel width 
260 Hz, lowpass channel width 125 Hz) with a simultaneous rate 
reduction to 1 kHz; 

2. LPCanalysis of the channel signals in portions of 40 samples, 
corresponding to 40 ms-frames overlapping by 20 ms; each frame may 
contain up to 9 partials; 

3. elimination of spurious results by canparison of successive frames; 

4. display of detected partials in a semilog frequency-vs-time print
plot with superimposed staff lines. 

The digital Polyphase network used consists of 4 groups and 8 recur

sive subfilters with a subsequent 32-point FFT. The subfilters are 

derived from an elliptical prototype lowpass filter of order 6 by means 

of the closed solution for the subfilter transfer functions given by Vary 
(1979), who also pointed out how to elegantly reduce the sample rate by 

integer fractions of the number of filter channels. The protytpe lowpass 

filter (passband edge 125 Hz, stopband att. 50 dB) has been designed with 

the aid of several modules of Dehner's 'Ibredi' -program (1979). 

The channel outputs are fed into an LPC routine, where proper choice 

of predictor order plays a crucial part. Orders less than the number of 
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complex exponentials needed to represent the signal will merge partials, 

orders higher will split them. Therefore, the number of predictor coef
ficients is adapted to each analysis frame as follows. 20 predictor 
equations with 18 coefficients are set up, using 40 samples. The system 

of equations is recursively solved by means of Householder transforma
tions; the n-th transformation yields a system of equations from which 

that predictor of order n can be determined which minimizes the squared 

prediction error summed over the 20 primary equations. If this error 
drops below some empirical threshold, the recursion is stopped. Let n 
be the predictor order thus obtained. vfuenever n is less than the maxi

mum of 18, which is usually the case, the system of predictor equations 
is reformulated as a system of 40-n equations with n coefficients, which 
in turn is solved by n Householder transformations. Thus a predictor 
minimizing the prediction error over 40-n > 20 equations is obtained, 
which contributes to the achieved spectral resolution. 

Frequencies and damping factors are computed by rooting the predictor 

polynomials with the aid of the IMSL routine ZRPOLY; finally, amplitudes 
of the spectral components are computed by least-squares-fitting the 

model signal consisting of the sum of n damped complex exponentials to 

the original bandpass frame. 

Spurious 'lines' are eliminated by: 

a. discarding all lines weaker than -40 dB (0 dB - max. single-tone ADC 
drive level), and 

b. discFl.rn.ing all those lines which do not appear in at least two over
lapping frames (modulo slight frequency differences). 

The Results 

The overall performance of the procedure is characterized by a fre

quency resolution of a quarter tone for stationary sounds, provided the 
intensities of the components are of about the same order of magnitude. 
Attacks can lead to frequency errors up to a quarter tone, and of course 
no means exist for separating coincident partials as, for example, the 
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fundamental of c' and the first harmonic of c" sounding together in the 
example given in Fig. 1. 

So far, the program has been tested with music for piano, violin 

(monophonic), wind ensemble, and choir (2 part..s), respectively. As could 
be expected, the greatest practical problem turned out to be the confus

ing diversity of partials in the printouts. Another problem arises from 

the amount of computation time needed: 5 minutes are used by the CYBER 

76 at the computation center of the University of KOln to analyze 10 s of 
music, while the same task on the PDP 11/10 of the Phonetics Department 
takes a whole night. 
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Abstract 

FAST DECAY OF LONGITUDINAL VIBRATIONS IN VIOLIN STRINGS 
M.P. Rafferty and A.R. Lee* 

University College, Cardiff, Wales, Great Britain 

Measurements have been made of the decay rates of longitudinal vibra
tions in violin strings excited by bowing. Using photoelectric devices 
these vibrations are detected from the rocking motion of the top of tl1e 
bridge in two orthogonal directions. It is found that the longitudinal 
oscillations decay with rates of'"'-'500 dB/sec. In contrast, the trans
verse vibrations excited by plucking the violin string are found to have 
much slower decay rates of""' 50 dB/ sec. 

Introduction 

The vibrations normally excited in violins are predominantly trans
verse. Both 'arco' and 'pizzicato' playing create transverse vibrations 
which are coupled to the violin body through the rocking action of the 
bridge and finally radiated as sound. In the case of the longitudinal 
and torsional modes, it is usually assumed that such oscillations are of 
only minor importance compared to the transverse modes and that they do 
not couple strongly to the violin body. We have undertaken our initial 
work on the longitudinal vibrations (Lee and Rafferty, 1983) in order to 
locate the frequencies of these modes. Here we present measurements of 
the decay rates of such modes to gain insight into their possible impor
tance in the transient regions of violin tones. 

Indirect excitations and 'squeaks' 

Longitudinal oscillations in violin strings can be divided into two 
categories. Indirect excitations (Benade, 1976) are second order oscil-

*On leave from Physics Dept., La Trobe University, Victoria, Australia 
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lations produced when a string vibrates with large transverse amplitude. 
They arise as a result of changes in tension along the string and have a 
frequency of twice that of the 'source' transverse modes (Morse and 
Ingard, 1968). Such oscillations are always present in normal violin 
tones but will not be discussed here. Our measurements are made on the 
second type of oscillation or 'squeak'. These pure longitudinal oscilla-
tions can be excited by bowing along the string. (They are occasionally 
excited accidentally during normal violin playing but do not form a part 
of standard violin technique!) 

Experiment 

We monitor the motion of the bridge-top using photoelectric devices 
which are attached to the fingerboard. These devices consist of an 
infrared source facing a photosensitive receiver. A small light plastic 
flag is stuck to the top of the bridge to intercept the infrared beam as 
shown in Fig. 1. As the flag moves in and out, the output from the 
device varies in proportion to the displacement. We record the electri
cal signals on tape and later feed them to a PDPll computer via an 
antialiasing filter and ADC at sampling rates of up to 40.000 Hz. The 
stored wave forms are then either displayed in a time domain form or 

l 
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Fig. 1. 
Experimental arrangement for 
rronitoring the rrotion of the 
bridge-top. 
(a) Side view. 
(b) 'Ibp view. 



Fourier transformed into a spectrum in the frequency domain. The photo
electric devices are arranged to monitor the motion of the bridge-top in 
two orthogonal directions which are shown in Fig. 2. Our two chosen 

TBM 
Coupled Directioo 

Soundpost 

Fig. 2. The two orthogonal directions of monitoring the 
motion of the bridge-top. (a) Longitudinal bridge 
motion (LBM) and (b) Transverse bridge motion (TBM). 

directions are those of the longitudinal bridge motion (LBM) which is 
perpendicular to the plane of the bridge, and of the transverse bridge 
motion (TBM) which is perpendicular to the violin belly. The LBM detec
tor is mounted between the G and D strings and the TBM detector is 
mounted on the outside edge of the bridge adjacent to the G string. Fig. 
3 shows a photograph of the apparatus mounted on the instrument in which 
the plastic flags are just visible. 

Fig. 3. Photograph of the photoelectric detectors 
mounted on the instrument. 
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Results and discussion 

In Fig. 4(a) we show the waveform detected in the longitudinal direc
tion for pure longitudinal excitation on the open D string. Its Fourier 
spectrum shown in Fig. 4(b) has two components at 2617 Hz and 5234 Hz. 
Fig. 5 shows how these two components decay with time. The first partial 
decays at a rate of rv 500 dB/ sec whilst the second partial decays at ""300 

CD 
"0 

I 

...J 
w 

~ 
~ z 
\:2 
(jJ 

272 

FREQUENCY ( kHz) TIME (ms) 
10 

Fig. 4. (a) Waveform of a longitudinal excitation produced 
on the open D string. 
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(b) Corresponding Fourier spectrum. 

Fig. 5. The decay of the longitudinal excitation on the 
D string shown in Fig. 4. 
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dB/ sec. In comparison, Fig. 6 shows the decay of a pizzicato tone played 
normally on the open G string. Here the decay of the first seven par-
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Fig. 6. The decay of partials 1 to 7 for a normally 
played pizzicato note on the G string. 
(a) shows the LBM recorded simultaneously 
with (b) , the TBM. 

tials of the transverse modes obtained by taking successive FE'T' s is 
plotted. Figs. 6(a) and 6(b) are simultaneous recordings of the LBM and 
TBM respectively during one pizzicato note. In both the LBM and TBM 
directions, the decay rates are rv 30-80 dB/ sec which are much slower than 
those found for the longitudinal excitations. Although the signal levels 
are not normalised, the seventh partial (frequency 1365 Hz) has a some
what higher initial level in the LBM direction than in the TBM direction 
and decays with a rate of"-' 2000 dB/ sec. Since the frequency of the 
fundamental of the longitudinal series for the G string is 1347 Hz, this 
may be due to excitation of the longitudinal mode in the initial tran
sient. 
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Conclusion 

Our measurements of the decay rates of longitudinal excitations in 
violin strings indicate that should these modes be excited in normal 
violin tones, we might only expect them to last roughly 100 msec into the 
initial transient. We have found some evidence for excitation of these 
modes in pizzicato tones but not in bowed tones. We now plan more 
controlled experiments using single frequency excitation in order to 
assess the coupling between the longitudinal direction of bridge motion 
and the body of the instrument. This should lead to a better understand
ing of the contributions of indirect excitations to the structure of 
normal violin tones. 
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A.l:stract 

JITI'ER IN VIOLIN TONES 
Rudolf A. Rasch 

Institute of Musicology, University of Utrecht 
Utrecht, the Netherlands 

Musical tones like those of the singing voice and the stringed instru
ments are not a sequence of exactly repeated waveforms with constant 
frequency, amplitude, and spectrum. Instead, the mentioned characteris
tics are constantly varying. Frequency variations can be classified as 
jitter (random variation from period-to-period), vibrato (periodic varia
tions with a frequency of 4-7 Hz), and tense (slow, long-term varia
tions). We have investigated a number of musical tones as to these 
features and will present the results of various types of measurements, 
like period-to-period-times-differences, standard deviation of periods, 
autocorrelation of periods, etc. Special attention will be paid to the 
consequences of these frequency variations for the building-up of beats 
in mistuned consonant intervals of musical tones and the significance of 
all this for the frequency intonation of musical tones. 

Introduction 

In general, frequency variations are always present in musical tones 
which, as a rule, pretend to realize a single frequency value indicated 
by the pitch of the note in the score. These frequency variations can be 
grouped into three categories: (1) trend (slow, gradual changes of fre
quency), (2) vibrato (periodical frequency variations with a frequency of 
5 to 6 Hz and a depth of 1 to 5%), and (3) jitter, to be defined as 
small-scale period-to-period fluctuations with a random or pseudo-random 
character. The vibrato of musical tones has been studied extensively, 
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beginning with Seashore (1932: later important studies include those by 

Fletcher and Sanders, 1967; Sundberg, 1972 and Klein and Hartmann, 1979), 

but this is not the case with jitter. Jitter has been studied in connec
tion with pathological speech (i.a., Lieberman, 1963) and from the point 
of view of hearing theory (La., Pollack, 1968 and Cardozo and Ritsma, 
1968). Only a few studies are available that deal with the jitter of 

musical tones, and they are concerned with the tones of stringed instru
ments only: Cardozo and Van Noorden, 1968 (cello), Cremer, 1973 (violin), 
and Mcintyre et al., 1981 (violin). Still, jitter is present in all 
musical tones, often in significant amounts. We studied the jitter of 
several types of musical instruments. Results concerning the singing 

voice will be presented elsewhere (Rasch, 1983}. On this occasion, focus 
will be upon the jitter in violin tones. 

Jitter (sj) will be quantified here as the standard deviation of 
period durations (sp) when there is no vibrato or trend: 

in which Pi is the duration of the i-th period, p the mean period dura
tion, and n the number of periods. This measure can be made more mean
ingful in a musical context by interpreting the standard deviation as a 
musical interval which can be expressed in cents: 

J = 1200 log2 (1 + sj/p) cents, 

which measure we will use throughout this paper. J will be called the 
amount of jitter. 

When there is no vibrato or trend, the above given measure can be 

calculated directly from measured period durations. When also vibrato 
and/ or trend are present, the situation is a bit more complicated. It 

can be shown that the amount of jitter (sj, now defined as the standard 
deviation of period durations as far as due to jitter) can be derived 

from the variances of period durations (s~) and of period difference 
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times ( sd~ in the following way: 

s· = J r. - r 
J v 

in which r j and rv are the autocorrelations of period durations due to 
jitter and vibrato/jitter, respectively. For a vibrato, this autocor

relation equals cos ( 2rcfv/ f), in which fv is the vibrato frequency and f 
the mean signal frequency. When vibrato/trend is sufficiently slow com
pared to the period durations and the variance due to these factors is 
not too large, then the amount of jitter is well approximated by: 

sj - 2 - 2r. ' 
J 

which means that, when rj can be assumed to be constant, jitter is about 
proportional to the standard deviation of the time differences of succes

sive periods. Fbr violin tones, rj seems to be about zero for the lowest 
octave and in the order of magnitude of -0.5 for the higher octaves. 

Measurement procedure 

For the measurement of jitter, we needed accurate measurements of 
single period durations. Violin tones were played in a low-reverberation 
room. From the microphone signal the fundamental component was filtered 
out and fed to a Schmitt trigger that produced pulses at every positive 
zero crossing. The onset times of the pulses were measured by a 10 MHz 
clock and stored in computer memory. Further analyses were done with 
help of computer programs. Diagrams with instantaneous frequency (as the 
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reciprocal of period duration) could be plotted on a graphic terminal 
(see Fig. 1). 

n u m b e r o f p e r i o d s 

Ai+ on D-& tring 

f • 443.7 Hz J "" 7. 7 cu 

430L_ _ __j __ ......L.--..I..----'----' 

A4 on D-string 

f • 439.8 Rz J • 7.5 cts 

A4 on A-string 

300 400 

t 'i ~~> e ( m s e c ) 

Fig. 1 • Frequency-per-period as a function of time, for three 
A4 tones played on a violin. The dashed horizontal 
line is the mean frequency, J is the amount of jitter. 
The vibrato has a depth of about 18 cents. 

Results and discussion 

The results of the measurements of the amounts of jitter in a number 
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of tones played by a professional violinist are presented in Fig. 2. 
First of is clear that the amount of jitter differs from note to 
note, but there is no general trend of frequency dependence. Non-vibrato 
and vibrato tones show about the same amounts of jitter. The open G
string had a fundamental that was too weak for reliable measurements. 
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Fig. 2. AmOunt of jitter for several played notes on the violin. 
The amounts indicated are means of two to five measure
ments of 1 sec from repeatedly played notes. When there 
are two bars for the same note, the left one is for the 
notes senza vibrato, the right one for the notes con 
vibrato. 

With some reservations, three minima can be discerned in the jitter
against-frequency curve, viz., at D4, C5, and G5. These minima could 
have to do with some of the major resonances of the violin, viz., the 
main air resonance (D4), the main wood resonance ( C5), and a second wood 
resonance ( G5). I want to propose here the hypothesis that the differ
ences shown have to do with the mutual coupling between the strings, as 
primary oscillators, and the sounding lx:ldy (top plate, air cavity) of the 
violin, as resonators. That this coupling must exist, is evident from 
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the observation that not only the strings can drive the top plate, but 
also a string can be driven by the top plate when it is vibrating with 
the resonance frequency of the string. When an oscillator is driven by 
another one, the phase lag {] of its oscillation relative to the driver's 

is most simply given by cot{]= Q(f1 /fo- fo/f1 }, in which Q refers to 
the damping of the driven oscillator, f 0 to the signal frequency of the 
driving oscillator, and f 1 to the resonance frequency of the driven 
oscillator. Now, when an oscillator is driven at its resonance frequen
cy, its phase lag is a quarter of a cycle. But the phase lag of the 
feedback oscillation in the driver is again a quarter of a cycle, adding 
up to a phase lag a half a cycle. When the damping of driving and driven 

systems is sufficiently unequal, the feedback oscillation will not have 
any other effect than a slight attenuation. However, when an oscillator 
is driven with another than its resonance frequency, its phase lag will 
be less, or more, than a quarter cycle, so that the feedback oscillation 
will be less, or more, than half a cycle behind the primary oscillation. 
It seems plausible that the phase conflict between original and returning 
wave can cause small phase instabilities which become, as a matter of 
fact, apparent in the sounding signal as small frequency instabilities, 
or, in other words, jitter. These instabilities should be stronger the 
further away the resonator is driven from its own resonance frequency, so 
that one expects minimal jitter at the resonances of tl1e violin body. 

For the singing voice, we found the same relation between jitter and 
the separation between signal and resonance frequency (Rasch, 1983). 

As part of the measurements of period durations and the calculations 
of statistical measures based on these durations, we calculated autocor
relation functions of period durations, for a lag of one to six periods. 
These functions show very typical alternations of positive maxima and 
negative minima, which were per note highly reproducible (see Fig. 3). 
For A4 and higher notes, the first minimum is ab::mt -0.5 at a lag of one 
period, followed by a maximum of about +0.5 at a lag of two to four 
periods. These autocorrelation patterns point to a compensatory process: 
longer periods are followed by shorter ones and vice versa witll a rough 
periodicity of a few periods. This is in line with our feedback hypothe-
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lag (period.~>) 

Fig. 3. Autocorrelation as a function of the lag, measured in 
periods. The functions inserted in the diagrams for 
several vibrato tones indicate the autocorrelation of 
an 'ideal' vibrato tone, without any jitter. The auto
correlation function of the D4 vibrato tone is almost 
equal to such a cosine. For G5 and BS, it is almost 
one even for a lag of 6 periods. 

sis. The returning oscillation causes a small phase shift in the primary 
oscillation but, since the frequency of the primary oscillation is domi
nated by the characteristics of the string, this shift has to be compen
sated at one time, earlier or later. That the autocorrelation patterns 
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have to do 

most 
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fferent. The 

followed 
or six . This may have to do with 

resonance here is the main air resonance, 
tones pass wood resonances. The F4 has an 

Other 

relation 

The 

the 
seems 

showed autocor-

tone. The 

tone, the was the of 

vibrato tone from the pure 
of a rather stable 

Our measured amounts of jitter are than the ones ro ..... r.,r 

et al. ( , but they oo:rn:sJ:::on,d more or less to the observa
and Cremer (1973). As already tions of Cardozo and Van Noorden ( 1968) 

indicated by Mcintyre, their small observed amounts of jitter may be due 
to the fact that they used the bridge-force wave form, while we as well 
as the other authors mentioned used the microphone signal of radiated 

sound. It is quite possible that a part of the jitter does not in 
the strings but somewhere in the resonating system of the violins, e.g., 
the bridge-to-top-plate transfer. Since it is our intention to comple
ment our physical measurements with psychophysical experiments on the 

perception of jitter (and vibrato), we prefer the measurements from 

radiated sound even when there is jitter from different origins contami
nated in it. 
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Conclusions 

The data presented about the amounts of jitter present in violin tones 
must be seen as preliminary. However, they are encouraging further re
search. Jitter is a noisy phenomenon, which can vary with player, playing 

mode, frequency, employed string, but also with attention and concentra
tion, fitness and fatigue, exercise and mood, so that really smooth, nice 
data should never be expected. However, jitter seems to be a rather 

fundamental property of musical sounds in general and as such it deserves 
to be investigated into detail. In part it may be caused by the imper

fections of systems which produce musical tones, but the coupling between 

'oscillator' and 'resonator' may well be an important origin of jitter as 

well. These couplings typically occur in all acoustical musical instru
ments as that jitter should be expected to be present about everywhere. 
It may well be one of the features of tones that makes possible a dis
tinction between the dead sounds of electronic frequency generators and 

the live sounds of musical instruments. 
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Abstract 

THE ADJUS'IMENT OF MODE FREQUENCIES IN GUITARS: 
A STUDY BY MEANS OF HOLOGRAPHIC INTERFEROMETRY 

AND FINITE ELEMENT ANALYSIS 
B.E. Richardson and G.W. Roberts 

University College, cardiff, Wales, UK 

The tone quality of a guitar is largely governed by tl1e normal modes 
of vibration of tlle b:xly, tlle coupling between tlle strings and the b:xly, 
and the initial excitation of tlle strings. We have made physical meas
urements on guitars to establish tlle influence of tllese parameters on tlle 
tone and playing qualities of tlle instrument. 

Introduction 

The tone quality of a guitar is largely governed by the modes of 
vibration of tlle b:xly, tlle coupling between the strings and tlle b:xly, and 

tlle initial excitation of tlle strings. We have made physical measurements 
on guitars to establish tlle influence of tllese parameters on tlle tone and 

playing qualities of tlle instrument. 

We have used holographic interferometry, speckle interferometry and 
acoustic measurements to perform mode analysis on completed guitars and 
on guitars at various stages of construction. These studies have identi
fied tlle important stages of guitar· construction and tlle typical frequen
cy position of modes, and they have led us to propose a new criterion of 
resonance placement for the guitar which we believe would provide good 
playing qualities and an even tone in tlle instrument's lowest two octaves 
(Richardson and Taylor, 1983). 
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Mode frequencies may "be adjusted by means of variations in parameters 
such as the thickness of the plates, the strutting design, the choice of 
wood (variation in the density and elasticity of the wood), and the shape 
of the plates. We are currently using finite element analysis to investi
gate how these parameters may "be used to control the mode frequencies in 
roth free and fixed plates. OUr main aims of the work are: (a) to estab

lish any relationships between mode frequencies and q-values of the lx>dy 
of the guitar and its sound quality, and (b) to investigate how the maker 
can adjust the plates to produce an instrument of the desired quality. 

Experiments on completed guitars 

Mode analysis involves the measurement of the resonant frequency, q

value and amplitude distribution (the geometrical distribution of the 
vibrational amplitude) of each mode. We have used holographic interfero

metry, speckle interferometry and acoustical measurements to determine 

these three quantities (for details of the methods, see Jansson, 197li 

Vest, 1979). We present results made on one guitar, which incorporates 
the general characteristics of all the guitars we have investigated. 

Figs. 1 to 3 show time-averaged interferograms of the modes of vibra
tion of a guitar (Guitar BRll}. Note that the instrument was clamped by 
the neck only so that the body was completely free. The instrument was 
excited electromagnetically at a single frequency from an audio oscil
lator. The frequency of excitation was varied and individual modes were 
identified by means of speckle interferometry and then recorded hologra

phically. We measured resonance frequencies and Q-values using an accele
rometer attached to the plate. In some cases it was necessary to use two 

drivers so that combination modes could be eliminated (Stetson and Tay
lor, 1971); the positions of the drivers can be seen in each interfere
gram. In the following discussions we have categorised modes as T(m,n) or 
B(m,n) by counting half-waves across each plate (m) and half-waves along 
each plate (n) i top-plate modes and back-plate modes are distinguished by 
the letters T and B. 
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a) 106Hz (Q= 45) 

364Hz (Q= 31) 
380Hz 

C) 256Hz (Q= 24) 

216Hz (Q= 60) 

431 Hz (Q= 20} 
413Hz 

307 Hz (Q= 33) 

Slides free to vibrate 

230Hz (Q= ) 

392 Hz (Q= 22) 

283Hz 
Slides immobilised 

Fig. 1. Time-averaged holographic interferograms of coupled modes of a 
guitar (Guitar BR11). The resonant frequencies and Q-values of 
each mode are shown below the interferograms. 

(a) Low-frequency resonance triplet; coupling between the top 
plate, the back plate and the air cavity (Helmholtz resonance). 

(b) Resonance doublet; coupling between the T ( 1 , 2) mode 
and the first internal air mode (A1). 

(c) Resonance doublet; coupling between the B ( 1 , 2) mode and a 
structural element, possibly the sides or the neck. 
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Fig. la shows the action of Guitar BRll in its low-frequency range. 

Coupling between the fundamental modes of the top and reck plates and the 
l:ody cavity form a coupled resonance system which displays three reso
nances. At the lowest resonance the plates move in phase (with respect to 
the centre of the l:ody) so that the whole l:ody swells and contracts. This 
mode of vibration is often referred to as the 'air resonance' (AO). At 

the middle resonance the plates move out of phase. The nodal lines, the 
brightest fringes in the interferograms, are inset on both plates indi
cating that the edges of the plate are in. motion; the whole body is 
vibrating rather like a thick, freely-supported plate. At the upper 
resonance the plates again vibrate in phase, but this phase relationship 

is sometimes affected by coupling to other plate modes. The back-plate 
motion at this resonance (not shown) was similar to that at the lowest 
resonance. In most guitars the middle resonance is the strongest, but in 
this instrument the velocity of the top plate in its antinodal region at 
the middle resonance was about five times greater than at the other two 
resonances. The back plate was more active than the top plate at all 
three resonances. However, we have investigated one guitar (Guitar BR9) 
in which the upper resonance of this triplet was the most dominant 
(Richardson, 1982). Recent research (Dickens, 1981) has shown that this 
action is obtained by tuning the (decoupled) fundamental back-plate mode 
to a lower frequency than the (decoupled) fundamental top-plate mode. 
Guitar BR9 was preferred by some players, though it is not clear whether 
the improved playing qualities arose as a direct result of the relative 
tuning of the plates. 

The plates sometimes couple to other air modes. Fig. lb shows the 
effect of coupling between one of the higher top-plate modes and an 
internal air mode which involves air being exchanged between the upper 
and lower bouts (Jansson, 1977). The doublet frequencies were modified by 

filling the l:ody with carbon dioxide rather than air. We isolated the air 
mode itself by immobilising the l:ody with sand regs. This coupling seems 
to be desirable because it raised the position of the nodal line, which, 
for this mode, usually lies on a line across the bridge saddle. As the 
nodal line moves up the body, coupling of transverse string motion to 
this mode enhanced. 
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656 Hz (Q= 82)' 695Hz (Q= ) 810Hz (Q= 60) 1012Hz (Q= 67) 

Fig. 3. Time-averaged holographic interferograms of back-plate modes 
of a guitar (Guitar BR11). The resonant frequencies and Q
values of each mode are shown below the interferograms. 
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Resonances can be split because of coupling to structural motion. The 
resonance doublet shown in Fig. lc is thought to be the result of cou
pling between a back-plate mode and motion of tl1e sides or tlle neck; tlle 
splitting is eliminated when tlle sides are immobilised. 

Figs. 2 and 3 show higher modes of Guitar BRll. Our experiments have 
shown that there is little coupling between the top and back plates or 
between the plates' and higher-frequency internal air modes, and we tllere
fore feel justified in referring to tllese modes as 'plate' modes. Most of 
the higher top-plate modes have nodal lines at the periphery of the 
plate, and the lower cross strut (located just below tlle soundhole) tends 
to inhibit motion of the plate in that region. On the back plate, the 
cross struts (three in all) tend to act as the localisation of either 
nodes or antinodes. The back plate does not always have a node at the 
periphery of the plate, and modifications to the sides would probably 
affect tlle frequencies of tllese modes. 

Only the lowest two or three back-plate modes have an appreciable 
affect on tlle response of tlle instrument when it is driven from tlle top 
plate. However, tlle presence of tllis 'resonant system' in tl1e sound field 
of tlle vibrating top plate modifies tlle sound radiation from tlle instru
ment. Back-plate motion can be seen tllrough tlle soundhole in some of tlle 
interferograms of the top-plate modes. 

Experiments on inoamplete guitars 

We have made measurements,on free guitar plates (using Chladni pat
tems) and on instruments at various stages of construction. The most 
important changes in mode shapes and frequencies occur when the plates 
are fixed to tlle sides and when tlle bridge is added. Fig. 4 shows tllat 
the addition of the bindings, fret board, strings or polish had little 
affect on the frequencies of the top-plate modes, but tlle addition of the 
bridge increased tlle frequencies of some of tlle modes by more than 50%. 
The addition of tlle bridge mainly affected the frequencies of T(n,l)-type 
modes for n>2. The frequencies of tlle T(l,l) and T(2,1) modes were not 
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1---0--os-oo-o---o---o ------1 Fixod Plate 

I \ \ I\ I ., \ fl.ll 18,11 19,11 

:-f=HJII~===L_~LQ~_::::::~ 
~--r--r7-. ~rrrn-,-o-r\. ·Bridge 

~--,--,.,--n-r--1-,-o-,--,-r-r-~0-4 ~:::, 000 

f----0--0-o--o--o-J-- -o-1--o---o--o-o---o---j CompletPd 
A. 11,1X1,11 11,1\11,11, 13,11 1~.1\14.1~ 12,1115,11 11,1 16,1114,21 15,11 

~'--~--~--~--~--L-~---L--~--~--L-~---
0 IJ-1 M O·l 0<4 0•5 0·6 0-7 O·B 0·9 1-0 1-1 1·1 

Frequency f kHz 

Fig. 4. A mapping of the top-plate-mode frequencies of a guitar 
(Guitar BR9) during its construction. The T(1 ,2) mode 

was split by coupling to the A1 internal air mode. There 
were two T(4,1) modes as found in Guitar BR11 (see Fig. 2). 

4'!9Hz.m 
1,0 

666Hz. JU 
1,0 

-1,0 

Fig. 5. Time-averated holographic interferograms of two top-plate 
modes before and after the addition of the bridge (Guitar 
BR9) • The graphs show the bending experienced by the top 
plate along a line drawn across the bridge saddle. 
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two modes. 

The an 
and the maker 

modes. 5 

alterations to the 

other must be 

could be used to tune the modes to one another. 

element 

element may be used 
to predict the the normal 
modes of complex vibrating structures (Zienkiewicz, 1977). the 

and of the structure need be known. We are 

using a commercially-available finite element package called ASAS, 
we run on the Computers' at the Rutherford and Appleton I.arorato-

Didcot, England (computing facilities are provided b¥ the 
and Engineering Research Council of Great Britain). 

At present, we are modelling only the top plate of the The 
absence of the air activity, back or sides means that neither the low
frequency resonance triplet (see Fig. la) nor any other plate-internal 
air mode interactions (e.g., Fig. lb) will be predicted. If required, the 
low-frequency response could be obtained from one of the many analytical 
models now available for predicting the low-frequency resonance triplet 
(e.g., Christensen, 1982), in which typical data could be substituted for 
the fundamental back-plate resonance and for the Helmholtz air resonance. 
Similar models could be developed to describe the other types of 
plate coupling. The method allows us to have only one of three roundary 
conditions: 'free', 'fixed' or 'hinged'. Because nearly all top-plate 
modes have a nodal line at the periphery of the plate and because the 
bending in this region has zero slope (Fig. 5), we chose the 'fixed' 
roundary to model the top plate of the completed instrument. Comparisons 

292 



"between the and for 

and show that this 
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we can 
the 

modes of the free instrument. 

The structure to be the 

a mesh a number of elements 

~Struts 

~~BJ Bottom Block and 
L Neck Extension 

50 1001Ml 

Fig. 6. Finite element mesh of a guitar plate, built to a design by 
Romanillos (1979). The soft-spring supports eliminate rigid
body modes of the free plate. For the calculation of the 
fixed-plate modes, the plate was fixed at its edges, the bot
tom block and the neck extension. 
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problem is then fonnulated in tenus of a system of equations which can be 

produced one element at a time within a computer to give approximations 
to the shapes and frequencies of the vibrational modes. The accuracy of 
the predictions can be increased by using a finer mesh, but the mesh 
shown here was found to be sufficiently fine for the frequency range 
presented. 

vve encountered two major problems, both of which we solved by a proc
ess of trial and error. Firstly, we had to use 'thick-plate theory' 
rather than 'thin-plate theory'. The fonner requires an additional two 

shear moduli, the effects of which are known to be important only at high 

frequencies. Secondly, we had to model the cross struts and fan struts 
using stacked plate elements rather than using 'beam' elements. We have 
not been able to obtain information about the assumptions used in fonnu
lating the finite element package and we cannot, therefore, assess the 
origin of these problems. We do not know whether the use of other finite 
element packages would involve similar problems. OUr solution to these 
problems are perfectly valid, but both involve an increase in computing 
time. 

In order to ensure that the finite element predictions were correct, 
we modelled an actual plate for which we had experimental data of mode 
frequencies and shapes. Material properties used for the calculations are 

shown in Table 1. The finished plate was 2.9 mm thick. All struts were 
made from quarter-sawn spruce and were 5 mm wide. Cross struts were 14 mm 
high (maximum) and fan struts were 4 or 5 mm high (maximum), and both 
were shaped according to conventional guitar-making principles (McLeod 
and Welford, 1971). The free plate was modelled at various stages of 
construction from the flat board to the finished plate. Strut arching and 
cross-sectional shapes were included in the final set. Finally, the 
theoretical predictions of the fixed-plate modes were compared with those 
of the real plate fixed to the sides. Figs. 7 and 8 show the computed 
modes of the free and fixed plate. The amplitude distributions of the 
modes are shown in the fonn of 'contour' plots. We have not yet modelled 
the plate including the bridge, though we intend to do so in the near 
future. However, the plate we were modelling was the one used in the 
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Fig. 7. 

Table 1. Material properties of the quarter-cut spruce 

plate and spruce strutting used in the finite 

element model. The following conventions are 

used: y is along the grain, x is across the 

grain and z is through the grain; E is the 

Young modulus; r, is the shear modulus. 

Quantity 

E (plate) 
y 

E 
y 

(struts) 

E 
X 

r, 
xy 

G 
yz 

G 
XZ 

Poisson Ratio 

Density (plate) 

Density (struts) 

FnquMCy 251.0 1-ft 

Value 

9225 

15000 

852 

850 

850 

44 

0•37 

420 

480 

Unit 

MPa 

MPa 

MPa 

MPa 

MPa 

MPa 

Kg m-3 

Kg m-3 

The first ten modes of a freely-supported guitar 
top plate computed by finite element analysis. 
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construction of the guitar shown in Figs. 1 to 3 (Guitar BRll), so a 
comparison of the mode frequencies shown in these figures with those 
obtained from the model (Fig. 8) will indicate the affect of the addition 
of the bridge on this instrument. 

The theoretical and experimental results were in good agreement. .Fbr 
the unstrutted plate and the fixed, completed plate the agreement was 
better than 5%. Fbr the free, strutted plate the errors were larger, some 
modes being 10% out. Some of these errors were the result of inaccurate 
modelling of the fan struts which run across the grain at the bottom of 
the lower bout. We know from experimental experience that the free-plate 
modes whiCh exhibit bending in these areas are very sensitive to small 
changes in the height of these fan struts, but the influence of the 
struts is greatly reduced when the plate is glued to the sides. 

Using this plate as a 'standard' we then introduced changes in the 
plate's dimensions and material properties. After each modification we 
computed modes of the free and fixed plate, but we restrict the results 
presented here to those of the fixed plate. Fig. 9 shows how the mode 
frequencies depend on the thickness of the plate (like many guitar top 
plates, this plate has a constant thickness); the strutting configuration 
and strut heights were kept constant. Mode frequencies are approximately 
linear functions of the thickness of the plate. Some modes are seen to 
cross over, especially if the 'antisymmetric' and 'symmetric' graphs are 
combined. Thus, the maker is able to modify the relative tuning of modes 
by altering the thickness of the plate. We should note here that the mode 
frequencies of a flat, unstrutted plate are proportional to the thickness 
of the plate and that they have a fixed relationship which is governed by 

the shape of the plate. Where modes cross on either Fig. 9a or 9b, inter
modal coupling occurs. This is the same type of coupling which generates 
the 'ring' and '}( modes from the two simple beam modes of a rectangular 
spruce plate (Caldersmith and Rossing, 1983). Such coupling can only 
occur between symmetric or antisymmetric modes. Fig. 10 shows the affect 
of reducing the heights of all the fan struts by 75%, 50% and 25% of 
their heights in the 'standard' plate (100% case). The thickness of the 
plate was kept constant at 2.9 mm. Reduction of the heights of the fan 
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~ 

,f;;: 1·0 

T(4,2l 
T(6,1) 

0·8 
TU(2,1) 

______.T(2,1l 

0·2 

2·1 2·5 2-9 3·1 
plate thickness /mm 

Fig. 9. Top-plate mode frequencies as a function of the thickness of 
the plate. (a) Symmetric modes. (b) Antisyrmnetric modes. 

struts increases or decreases the frequencies of modes depending on 
whether it is the reduction in mass or stiffness of the struts which is 
the more important. It appears that the mode frequencies are more sensi

tive to changes in the thickness of the plate rather than to changes in 
the heights of the fan struts. We also computed the affect of reducing 
the heights of all the cross struts (heights of the fan struts constant). 
Table 2 shows that fewer modes are then affected, because most modes have 
nodal lines running across these cross struts (Fig. 2). The maker can 

change the heights of the cross struts to tune the T(l,2) mode, but this 
will also alter the frequency of the T(l,l) mode. As the heights of the 
cross struts are reduced, the motion of the T(l,l) mode spreads into the 
upper bout, and the resulting increase in wavelength lowers the frequency 
of the mode. Inter-modal coupling between the T(1,2) and T(3,1) modes 
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Fig. 10. Tbp-plate mode frequencies as a function of the heights of the 
fan struts (relative to the heights of the struts used in the 
'standard' ptate) . The thickness of the plate was constant at 
2.9 rnm. (a) Syrrm~tric modes. (b) Anti-symmetric modes. 

generates a family of pairs of modes having shapes which can be formed by 

combinations of their shapes shown in Fig. 8. Mode mixing increases as 
the frequency separation between the modes decreases. We have observed 
this phenomenon in real guitars. Similar coupling occurs in the com
pleted instrument where the addition of the bridge often raises the 
frequency of the T(3,1) mode to a similar frequency to that of the T(l,2) 
mode, again producing mixed mode shapes. 

One of the most interesting aspects of the finite element work is that 
it allows us to 'build' identically-sized instruments from wood of dif
ferent material properties. The final column of Table 2 shows the mode 
frequencies of a plate built to the same dimensions as our • standard' 
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Table 2. Mode frequencies of the 'standard' plate compared 

with those of the same plate in which (a) the heights 

of the cross struts have been reduced by SO%, and 

(b) the cross-grain stiffness has been reduced by SO%. 

Frequency, Hz 

Mode 'Standard' SO% Cross- SO% E 
X 

Plate Strut Height Plate 

T(l,1) 199•9 170•0 199•8 
T(3, 1) 360•8 341•9 330•2 

T(1,2) 449•6 362•2 445·3 

T(1,3) 588•S 581·2 583•2 

T(S ,1) 642·8 639•6 548· 7 

T(3,2) 758•8 731·8 73S•O 

T(l,4) 861•9 841•1 855•1 

T(7, 1) 1000•6 999·8 825•5 

T(2,1) 260•2 249•5 248•0 

T( 4, 1) 483•8 479•7 424·1 

T (2, 2) 612•3 544•6 601•2 
TU(2, 1) 808•5 638•0 793•6 

T(6, 1) 833•7 830•8 701•1 
T( 4, 2) 891•0 871·5 843•5 
T(2,3) 1099·9 955·4 1085•6 
T(6,2) 1301•2 -* 1159•1 

* Not computed. 

plate b..lt in which the cross-grain stiffness has l:een reduced to half its 
original value (426 MPa). The cross-grain stiffness of spruce is one of 
the most variable parameters that the guitar maker has to cope with. 
This variation is generally the result of poor cutting, i.e., the wood is 
not quarter sawn. The reduced value used in this experiment is not unduly 
low and such a piece of spruce would be used by a guitar maker. We see 
from a comparison of Fig. 9 and Table 2 that a 2.9 mm thick plate made 
from this wood would have, apart from a few exceptions, the same mode 
frequencies as the 'standard' plate reduced to a thickness of 2.4 mm. 
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Cbnclusions 

We have shown that finite element analysis can be used to model ac
curately the top-plate modes of a guitar. The model is not able to 
predict interactions between the top and back plates or between the top 
plate and the air cavity, but analytical models exist to compute the 
resonance frequencies of coupled modes of this type. The theoretical work 
is at an early stage. OUr next step will be to include the bridge in our 
model. We will then investigate thoroughly the affect of changing parame
ters such as plate thickness, strut height, strutting configuration, 
bridge design and plate shape. We are also interested in the importance 
of changes in the wood's material properties on the mechanical action of 
the instrument. 

Finally, we note that it is possible to evaluate the effective mass of 
the plate at any point using the finite element method. We can, there
fore, predict the degree of coupling between the strings and individual 
modes of the body according to the methods of Gough (1981) and thus 
predict the type of decay and the decay rates for 'typical' strings 
mounted on our model. We are also looking into the possibility of evalu
ating the 'piston area' of the vibrating top plate, from which we should 
be able to predict the monopole component of the sound radiation from the 
instrument. Using these techniques, we hope to synthesise guitar tones so 
that we are able to 'play' our model. Only in this way can we truly 
assess the importance of changes in the structure of the instrument. 
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PlATE VIBRATIONS AND RESPONSE OF CLASSICAL AND FOLK GUITARS 
Richard E. Ross* and Thanas D. Rossing 

Nortl1ern Illinois University, DeKalb, IL, USA 

Abstract 
Many of the acoustical differences between classical and folk guitars 

result from differences in the way the plates are braced with struts in 
the two types of instruments. We find good agreement between the vibra
tional modes observed in the top plates in the two types of instruments 
and those calculated for equivalent rectangular plates simply supported 
at their edges. For the fan-braced classical guitar, the struts are 
considered to affect only the longitudinal stiffness, whereas in the x
braced folk guitar the struts increase the stiffness both along and 
across the grain. Classical guitars generally show a greater sound output 
at low frequency, for a given driving force, than the more stiffly braced 
folk guitars. 

Introduction 

Most research on the acoustical behavior of guitars has focused on 
classical guitars. Much less work has been done on other types of gui
tars, such as the American folk guitar. It is the purpose of this paper 
to discuss some of the acoustical and vibrational properties of this 
popular instrument, and to compare them to the classical guitar. 

Folk guitars have steel strings, which are normally played with a 
plectrum rather than the fingers, and the strings carry a much greater 

tension than the strings of a classical guitar. Thus the top plate of a 
folk guitar is usually braced by diagonal struts arranged in a pattern 
commonly referred to as cross- or X-bracing. The bridge is placed near 
the center of the lower bout, and a flat brace or bridge-liner appears on 

* present address: Scott Corrmuni ty College, Bettendorf, IA, USA 
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the underside of the plate at this same location. Folk guitars are com
monly larger in size than classical guitars. 

In this paper we compare the vibrational frequencies of the main modes 
of vibration of guitar top plates with those calculated using a simple 
rectangular plate model. 

Vibrations of wood plates 

The equation of motion for flexural vibrations of a wood plate having 
flexural rigidity Dy along the grain and Dx across the grain is 

a2w 4 4 4 
+ _1 (D a w + 2D o w + D ~) = 0 

ot2 ph X OX4 xy ox2ay2 y oy4 
( 1 ) 

where w is the displacement perpendicular to the middle surface, p is 
the density, h is the thickness of the plate, and Dxy is the torsional 
rigidity. The expressions for the flexural and torsional rigidities can 
be written in terms of the Young#s moduli Ex and Ey, the shear modulus 
G, and the Poission' s ratios v x and v y: 

D 
X 

E h3 
X 

= -=-12~( 1=-~v-v--.-> ' 
xy 

E 

E h3V 
= y X 

12 (1-v v ) xy 

Gh3 
+ --6 

(2) 

For an isotopic plate G = 2 ( 1 +v) • For an orthotropic plate, G can be 

estimated from an analogous expression which uses the geometrical mean 
values for E and v : 

G~1!EE 
v~x~y 

2(1+,/vV V ·x·y 

We further note that vxEy = vyEx = VvxvyExE;, so that 
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(3) 

Fbr a rectangular plate with dimensions a and b, simply-supported at 
its edges, the normal mode solutions can be written: 

wm,n = sin 
(m+1 )rex 

a sin (n+~)rcy (A cos wt + B sin wt), 

and the normal mode frequencies are 

f = TC [D (m+1) 
4 

+ 2 D [ (m+1) (n+1) 14 
+ D 

m,n 2 J hp' x a xy ab J y J 

1 
4 2 

(n~1) 

The effect of adding transverse struts can be included by adding a 

E t\J 
term Y d Y to Dx, and the effect of longitudinal struts .. by adding a term 

y 

E t 3w 

(4) 

T to Dy, where w and tare the width and thickness of the struts, 
and d is their spacing. (The ratio wxfdx indicates what portion of the 
plate is effectively stiffened by struts running along the grain, for 
example.) Ey appears in roth terms for additional stiffness, since all 
struts are assumed to be cut along the grain of the wood. Thus the 
rigidities of the braced plate are: 

D' 
X 

= D (1 
X 

D' = D (1 
y y 

A guitar plate model 

andD I \~ 
xy = V vxuy (5) 

In this study we compare the lowest modes of vibration of a guitar top 
plate with those calculated for an equivalent rectangular plate simply 
supported at its edges. The dimensions of the equivalent plate are esti
mated from hologram interferograms of the particular vibrational mode of 
interest. 

305 



For the 'Ibrres- or fan-braced classical guitar, the struts are con

sidered to affect only the longitudinal stiffness, whereas in the X
braced folk guitar the struts are considered to increase the stiffness 
along and across the grain py roughly equal amounts. 

The first four modes of a guitar top plate are shown schematically in 

Fig. 1. The frequencies of these modes, especially the (0,0) mode, depend 
upon the conditions under which they are measured (:Rossing, Popp, and 
Polstein, 1984). 'Ib measure the correct modal frequencies in the top 
plate, the back should be removed and the ribs fixed (Jansson, 1971). 

Since this is often not convenient to do, the modal frequencies can be 

measured with the reck plate and ribs immobilized in sand and the sound 

hole covered. Under these conditions the (0,0) mode is raised in fre
quency py the effective restoring force of the enclosed air, which can 
easily be calculated from the equation 

(6) 

where fp is the frequency of the plate reeked py the enclosed air cavity, 

Mp is the effective mass of the top plate, and CV is the compliance of 
the enclosed air. 

Other modes are affected much less by the enclosed air. Vibration in 

the (1,0) mode does not change the volume of the enclosed air, and 
vibration in the (0,1) or {2,0) modes changes it only slightly. 

(0,0) ( 1,0) (0,1) (2,0) 

Fig. 1. First four modes of vibration of a guitar top plate. 
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Guitar response measurements 

We have used several methods to measure the frequency response of free 
plates and guitars (see Ross, 1979). Most often the plates were driven 
by a small coil of wire attached to the bridge or plate and supplied with 
an alternating current from an audio amplifier. When a small permanent 
magnet is inserted into the coil, a sinusoidal driving force results. 
The motion of the plate was detected by using an accelerometer, a 
velocity-sensitive phonograph pickup, and/or a small probe microphone 
within a millimeter or two of the plate. Scanning the plate surface 
indicated the positions of the nodes and antinodes for each vibrational 
mode of interest. 

Another technique was to attach an accelerometer to some point on the 
plate and to tap the plate at various other points while analyzing the 
signal from the accelerometer on a real-time spectrum analyzer. Usually 
adding up the spectra from eight taps sufficed to determine the frequen
cies of the main plate resonances. 

The radiation response was determined by driving the guitar with the 
coil driver in an anechoic room and recording the sound pressure level 
one meter in front of the center of the bridge. Usually tl1e sound pres
sure directly in front of the sound hole was recorded at the same time. 

Results and discussion 

The radiation response spectra of a fan-braced classical guitar (Epi
phone) and an X-braced folk guitar (Lyle) are shown in Fig. 2. Both 
guitars have spruce top plates, and the strength of the applied driving 
force is approximately the same in l:oth. In l:oth cases the driving force 
was applied to the bridge by a coil driven by an audio amplifier. Sound 
pressure levels were recorded in an anechoic chamber with a microphone 
one meter in front of the center of the bridge. 

The low-frequency response of the classical guitar is substantially 
greater than tllat of the stiffly-braced folk guitar for the same driving 
force. (The steel strings used on folk guitars provide a greater driving 
force than the nylon strings of a classical guitar, however, so the sound 
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Fig. 2. 

70 

Sound pressure spectra from two guitars driven with approximately 
the same force; ~) fan-braced classical guitar; (b) an X-braced 
folk guitar. Each guitar was driven by a coil attached to the 
bridge, and the sound pressures were recorded one meter in front 
of the top plate in an anechoic room (from Ross, 1979). 

output is at least as great when it is played.) Several resonances occur 
at substantially greater frequencies in the folk guitar, especially the 
one due to the (1,0) mode in the top plate, which is sensitive to trans
verse stiffness. 

The measured and calculated frequencies of the first four modes of 
four guitar top plates are given in Table 1. The frequencies of the (0,0) 
modes {(0,0) meas) were calculated from equation {6). For the other 
modes, the frequencies measured in the complE~te guitar are used. 

For each mode, the frequency was calculated from the rectangular plate 
model described in an earlier section. Dimensions and areas of the equi
valent rectangular plates to be used in the calculations were estimated 
from holographic interferograrns of "typical" guitar plates. Rigidities 
of the braced plate were estimated from equation (5). 

The agreement between the measured and calculated frequencies for 
these modes is quite good. 
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Table 1 • Measured and calculated frequencies of the first four 
top. plate modes in fa~-braced and X-braced guitars. 

fan-braced X-braced 
Epiphone Garcia Gu_Ud Martin 

W:>od spruce pine mahogany spruce 

'lhickness (nm) 2.7 2.5 3.0 3.0 

Mode frequencies (Hz) 

(0,0) calc 182 170 178 192 

(0,0) meas 187 212 190 185 

(1 ,0) calc 280 263 392 393 

(1 ,0) meas 242 283 400 365 

(0,1) calc 451 420 146 492 

(0, 1) meas 420 426 430 426 

(2,0) calc 499 463 597 588 

(2,0) meas 530 560 588 580 

Material constants used in calculations: 

I 

Ex (N/m2) E (N/m2l Vx '!.:1.. 
p(kg/m3) 

spruce 1.0x1010 0.69x109 0.37 0.02 390 

pine 1.66x1o10 1.12x109 0.46 0.03 540 

mahogany 1.16x1o10 1.24x109 0.31 0.033 500 

Conclusions 

The results of this study indicate that the frequencies of the vibra
tional modes of guitar plates (and thus the frequencies of the guitar 
resonances) can be predicted, with some success, 'by calculations based on 
a simple rectangular plate model. Huch of this work was done several 
years ago (Ross, 1979), and meanwhile the work of other investigators has 
confirmed this (see, for example, Meyer, 1982: Richardson, 1982; calder

smith, 1981). 
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'lhere continues to be considerable support for the feeling that the 

first four top plate resonances largely determine the quality of the 
guitar sound in the important low- and mid-frequency ranges (Meyer, 19837 

Caldersmith, 1982; Christensen, 1983; Jansson, 1982; Richardson and Tay
lor, 1983). 

'lhe authors thank John Popp, Ove Christensen, Graham Caldersmith, and 
Bernard Richardson for many enlightening corrunents and discussions. 
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ACOUSTICAL RESPONSE OF GUITARS 
Thanas D. Rossing, John Popp*, and David Polstein** 

NOrthern Illinois University, DeKalb, IL, USA 

Abstract 
We have studied the most important resonances of several classical and 

steel-string folk guitars. These resonances are related to the normal 
modes of vibration of the top plate, the back plate, and the enclosed 
air. The resonances at low frequency can be understood by considering 
two-mass and three-mass models. Coupling between the top and ba.ck plates 
takes place through motion of the ribs and/or acoustic waves in the 
enclosed air. We will discuss the normal modes and resonances of two 
classical and two folk guitars in details. 

Introduction 

A number of investigators have studied the acoustical response of 
guitars. In order to determine the vibrational configuration of the 
guitar at each of its major resonances, the instrument is usually driven 
sinusoidally at one or more points, and its motion is observed optically, 
acoustically, electrically, or mechanically. Optical sensing techniques 
include holographic interferometry (Stetson, 1981) and laser velocimetry 
(Boullosa, 1981). For the most part these techniques have been applied 
to various parts of guitars (especially top plates) rather than to com
plete guitars, however. Acoustical detection techniques have included 
using an array of microphones (Strong et al., 1982} and scanning the near 
field with a single microphone (Ross and Rossing, 1979; see also Ross, 
1979). An electrical pickup relies on variation in capacitance as the 
instrument vibrates, and a mechanical pickup consists of an accelerometer 

* 
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or velocity transducer of very small mass (a phonograph cartridge can be 

used). 

Frequencies at which the mobility of the instrument (velocity divided 
by force) is maximum are called resonances, and frequencies at which it 
is a minimum are called anti-resonances. The configurations in which it 

vibrates at each of its resonances are often called "modes of vibration", 
but they are not necessarily the normal modes of vibration or eigenmodes 
of the system. A mobility maximum or resonance may result from the 
excitation of two or more normal modes. Only when the spacing of the 

normal modes is large compared with their natural widths does the vibra

tion pattern at a resonance closely resemble that of a normal mode of 
vibration (Arnold and Weinreich, 1982). 

In this paper we will describe studies of the acoustical response of 
various parts of the guitar and discuss the way in which they interact as 
coupled oscillators. Various l:oundary conditions have been used in order 
to observe the responses of individual components. Most of the observa
tions were made by using one or more accelerometers in conjunction with a 
microphone at the soundhole. 

The response function 

The response function of a guitar is a function of the frequency f and 
the coordinates of the driving point P and the point Q at which the 
motion is observed. Mathematically, it can be written as a sum over the 
normal modes of the free system (Morse and Ingard, 1968). The contribu
tion of each normal mode consists of a product of three factors: the 
amplitude of the normal mode at P, its amplitude at Q, and a resonance 
factor which is proportional to (f2 - fi 2)-1, where fi is the frequency 
of the normal mode (Arnold and Weinreich, 1982). In general the response 
function remains the same when P and Q are interchanged. 

If P and Q are the same point, the response function gives the driving 
point mobility. Since both the magnitude and the phase of the velocity 
are of interest, it is customary to write the force, the velocity, and 
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the mobility as complex functions, with the actual physical quantities 
being represented by the real parts. The response when P and Q are 
different points is generally called the "transfer mobility" (or transfer 
admittance). 

Each normal mode can be described as a combination of "elementary" 
motions of the top plate, back plate, ribs, neck, and the air inside the 

guitar. The normal modes depend upon the acoustical environment of the 
guitar and especially on how the instrument is supported (that is, on the 
boundary conditions of the various parts). Thus it is not surprising to 

find differences in the response curves recorded by various investi
gators. 

Coupling of the top and back plates 

Since the top plate and the back plate are the most massive parts of 
the guitar, one approach to understanding the guitar is to consider tl1e 
top and back as separate multimode oscillators coupled together by the 
motion of the ribs and the enclosed air. If tl1e two plates were identi
cal, one would expect the normal modes to occur in pairs, the plates 
moving in the same direction in one mode and in opposite directions in 
the other mode. In the anti-phase mode the ribs would move very little. 
In the in-phase mode, the ribs would move opposite to the main part of 
each plate, with a node occurring some distance in from the rib. 

Stetson (1981) studied this type of motion in a box with square top 
and back plates and with perforated ribs to minimize air coupling. He 
found that the anti-phase modes occurred at nearly the same frequencies 
as those of a single plate, whereas the in-phase modes were higher in 
frequency. Although the motion of the ribs was not reported, one would 
expect an up and down motion in the in-phase mode and an in and out 
bending motion in the anti-phase mode, as indicated in Fig. 1 for the 

mode pair of lowest frequency. 

Clearly, the vibrations of Stetson's box would have been quite differ-

313 



Fig. 1 • Two lowest vibrational modes of a box with identical 
top and bottom plates and perforated sides. (a) 'lbp 
and bottom move in anti -phase; (b) Main part of top 
and bottom move in phase but opposite to sides. The 
in-phasemode will have the higher frequency. 

ent had the sides not been perforated. The 11 stiffness11 of the enclosed 
air would have raised the frequency of the anti-phase mode by a consider
able amount. In a guitar, air flows freely in and out of the soundhole, 
so the stiffness of the enclosed air is considerably smaller than in an 
airtight rox. However, the air flowing in and out of the soundhole has 
momentum, so it must be included as one of the "elementary motions" that 
determine. the normal modes. 

Law frequency modes and equivalent circuits 

Several authors have constructed models to illustrate the motion of 
the top plate, the back plate, and the air in the soundhole at low 
frequency. A two-mass model that ignores the motion of the back (see 
Galdersmith, 1978; Firth, 1977; Christensen and Vistisen, 1980) is shown 
in Fig. 2a, and a three-mass model that includes back motion (see calder

smith, 1981; Christensen, 1982) is shown in Fig. 2b. The following 

~ 
~ 

(a) 

F(t) m 

eM 
(bl mb 

Fig. 2. Models of the guitar: (a) Two-mass model (rigid back); 
(b) Three-mass model (flexible back). 
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symrols are used: 

m_p = mass of top plate 
II'h = mass of air in soundhole 

~ = mass of l:a.ck 
~ = stiffness of top plate 
V = volume of enclosed air 

Kb = stiffness of l:a.ck 
F{t)= force applied to top plate {"by the strings) 

It is helpful to represent the various components in Fig. 2 as circuit 
elements in equivalent circuits {Cox, 1980). Of the several choices 
available, we have chosen the acoustical impedance representation {Be
ranek, 1954) shown in Fig. 3. The equivalent voltage is the force ap-

Mp Cp Rp 

[-up 
Mh Mh 

;,_ F(tJ 
Ap ~ Rh Rh 

{a) {b) 

Fig. 3. Equivalent circuits corresponding to models shown in Fig. 2: 
(a) Two-mass model; (b) Three-mass model. 

plied to the top plate (by the strings) divided by the top plate area. 
The equivalent currents are volume velocities {in m3/s). The following 

symrols are used: 

M_p = rrp/~2 = inertance {mass/area) of top plate {kg/m4) 
~ = Il'bl~} = inertance of air in sound hole {kg/m4) 

~ = ~AtJ2 = inertance of l:a.ck plate {kg/m4 ) 
<;,=A/~ =compliance of top plate {N/ms) 

cb = A2/K~ = canpliance of l:a.ck plate (N/m5 ) 
cy = V/pc = compliance of enclosed air {N/m5) 

UP = volume velocity of top plate (m3/s) 
Db = volume velocity of air in sound hole (m3/s) 

Ub = volume velocity of l:a.ck plate (m3/s) 
~ = loss (mechanical and radiative) in top plate 
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Rb = loss (mechanical and radiative) in back plate 
~ = loss due to radiation by sound hole 
Rv = loss in the enclosure 

The two-mass model in Fig. 2a has two resonances with an anti-reso
nance between them. At the lower resonance, air flows out of the sound 
hole in phase with the inward-moving top plate. In the equivalent 
circuit in Fig. 3a this corresponds to Up and Uv being essentially in 
phase (they would be exactly in phase if Rh = Rv = 0). At the upper 
resonru1ce, up and Uh are essentially opposite in phasei that is air moves 
into the soundhole when the top plate moves inward. The anti-resonance 
represents the Helmholtz resonance of the enclosure; Dv and Up are equal 
and opposite, and thus UP in a minimum. 

>
t
:::; 
co 

~A~: s /:v : ' 
' ' ' 

' 
'! 
'' '' '' 

Fig. 4. Top plate mobilities obtained from guitar models: 
(a) 'I.Wo-mass (rigid back) model; (b) Three-mass 
(flexible back) model. 

A graph of mobility vs frequency for the two-mass guitar model is 
shown in Fig. 4a. The two resonances occur at f 1 and f 2, and the anti
resonance occurs at fA. (This curve is a familiar one because of its 
similarity to the mobility of a loudspeaker in a bass-reflex enclosure, 
see Rossing, 1981). The two resonances f 1 and f 2 will span the lowest 
top plate mode fp and the Helmholtz resonance fA; that is, fA and fp will 
lie between f 1 and f 2. In fact it can be shown that f 1

2 + f 2
2 = fA2 

(Ross and Rossing, 1979; Christensen and Vistisen, 1980). If fp > fA (as 
it does in most guitars), fA will lie closer to f 1 than to f 2 (Meyer, 
1974). 

The top plate mobility in the three-mass model has a third resonance 
and a second anti-resonance indicated as f 3 and fB in Fig. 4b. In 
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addition f 1 has been moved to a slightly lower frequency, and f
2 

may be 

moved either upward (for fb < fp) or downward (for fb > f ) , depending 
upon the resonance frequencies f and fb of the top a!d back alone 

(Christensen, 1982). In most guifars, fb > f , so both f 1 and f
2 

are 

shifted downward by interaction with the flexible reck (Meyer, 1974). 

Dickens (1981) has proposed a four-mass model that includes the mass 
of the ribs. The equivalent circuit now increases in complexity. By 
means of a computer, he ,has obtained solutions for 9 different cases. 

His model predicts another anti-resonance below f 1 , however, which is 
normally not observed. 

Determining the response functions 

In most of the experiments described in this paper, the guitar was 

driven at some selected point P (usually at or near the bridge) with a 

Bruel and Kjaer (B & K} 4810 vibration exciter used in conjunction with 

an 8001 impedance head, which has an effective mass load of 2.1 grams. 
The output from the force transducer is fed to a GenRad 1569 automatic 

level regulator and an audio amplifier to provide a constant driving 
force. The accelerometer output is amplified and integrated by a B & K 

2651 charge amplifier. This velocity signal was fed through a tracking 
filter /amplifier (GenRad 1901} to a chart recorder (GenRad 1521) in 

order to obtain a graph or driving point mobility (v/F at point P) vs 
frequency. 

The transfer mobility (v/F when Q =f P) was obtained by afixing a BBN 
501 accelerometer (m:::,2 g) at Q and driving the guitar at constant force, 

as described above. The sound pressure levels were determined with a 
GenRad 1933 sound level meter. A B & K 2971 phase meter was used to 

determine the phases of the velocity and sound pressure with respect to 
the driving force. 

In order to excite internal air vibrations or standing waves within 
the guitar, we used a driver consisting of a loudspeaker enclosed in a 
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box with a small rubber hose to transmit pressure variations to any 
desired point within the guitar. A small microphone was moved around 
within the guitar (with the help of a wire extending to the outside 
through the sound hole) in order to locate pressure nodes and antinodes. 

Great care must be exercised in the selection of appropriate con
straints or boundary conditions in order to observe the behavior of the 
component parts as well as the entire guitar. Seven different arrange
ment~ are illustrated in Fig. 5: 

fp 

A 
f~ 

A 

till 

__AA 
~\ 

Fig. 5. Seven different boundary conditions used for measuring the 
vibrational behavior of a guitar and its component parts. 
In the first four arrangements, the guitar is placed in a 
sand box; in the latter three, the neck is clamped and the 
ribs are left free or immobilized with sand bags. 

1. The entite guitar 1:x:xly is immobilized in a rox of sand, so that only 
the enclosed air vibrates. This arrangement is used to determine 
the Helmholtz resonance frequency fH, as well as those of the otl1er 
modes of the air cavity which we designates as FA2, fA3, fA4, etc. 
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2. The reck and ribs are immobilized, and the sound hole is closed. As 

the top plate vibrates, the air pressure inside the guitar changes. 
The first mobility maximum occurs at the lowest top plate resonance 

frequency fp' and successive maxima occur for other top plate modes 
(these are not the same as the free plate modes). 

3. The top plate and ribs are immobilized in sand. The lowest back 

plate resonance frequency fb and successive resonances of the back 
are determined. 

4. The back and ribs are immobilized, as in (2), but the sound hole 
is open. The first top plate mode couples to the lowest air (Helm-

) od f
l I 

holtz mode to pr uce resonances at 1 and f 2• An anti-resonance 
occurs at fw From the model shown in Figs. 2a and 3a, it can be 
shown that f' 2 + f' 2 - f 2 + f 2 1 2 - H p . 

5. The ribs are fixed, but the top and back plates are free to move, 
and the sound hole is open. The first top plate mode, the first 

back plate mode, and the lowes·t air mode couple to produce three 
resonances, designated as f" 1 , f" 2 , and f" 3 , plus two anti

resonances f"A and f"s· From the model in Figs. 2b and 3b, it can 

be shown that f" 1
2 + f" 2

2 = f"A2 + f" 8
2 • 

6. The ribs are fixed, as in (5), but the sound hole is closed. There 

are now two resonances at f m
1 

and f 111 

2 
with an anti-resonance at 

the frequency of the first back plate mode fb. It can be shown that 
f"' 2 + f"' 2 - f 2 + f 2 1 2 - p b • 

7. Finally, the neck of the guitar is fixed, but the entire body is 

allowed to vibrate freely. The three lowest resonances occur at f 1 , 
f 2, and f 3, and anti-resonances occur at fA and f 8 • 

Along with these various conditions of constraint in Fig. 5 we show 
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the vibration configurations at the lowest resonances and typical 
driving-point mobility curves. Note that we are dealing only with the 
resonances that result from coupling between the lowest modes of the top 
plate, back place, and the enclosed air. Similar coupling occurs between 
the higher modes of these vibrating components, but this coupling is less 
well understood. 

Coupling at low frequency 

The two-mass and three-mass models, discussed in the previous section, 
predict several interesting relationships between the various measured 
frequencies of vibration. These can be checked with the measured fre
quencies. The two-mass model, for example, predicts that f12 + f' 22 = 
f 2

2 + fH2• Given below are experimental values for these frequencies in ,, 
several guitars f 1• 

f'2 
1 

+ f'2 
2 

f fH f' f' f2 + f 2 
_E_ 1 2 p H --

Martin D-28 163 121 105 180 Hz 1.05 

Martin D-35 131 125 92 159 1.03 

Guild 190 123 106 200 0.96 

Kohno 30 183 122 104 211 0.99 

Conrad 188 127 101 205 0.98 

The first three guitars are steel-string folk guitars, and the last two 
are classical guitars. In all five instruments, the ratio is within 5% 
of unity, which supports the validity of the two-mass model. 

In a previous study, guitar resonances were measured in a helium 
atmosphere (Ross and Rossing, 1979). Although the experimental con
ditions were slightly different, these data are also in reasonably good 
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agreement with the relationship predicted by the two-mass model. 

f'2 
1 

f'2 
+ 2 

f fH f' f' f 2 2 
_E._ 1 2 p + fH 

Conrad 195 205 148 255 Hz 0.91 

Epiphone 193 198 150 245 1.08 

Guild 198 180 142 220 0.96 

Lyle 214 160 150 228 1.04 

The three-mass model predicts that f'A2 + f"B2 = fH2 + fb2. This can 
be checked with data from two steel-string folk guitars and one classical 
guitar. Again the agreement is good. 

"2 112 
fA + fB 

f" If 

fB A fH fb f 2 
H + f 2 

b -- --
Martin D-38 110 180 121 165 Hz 1.06 

Martin D-35 109 176 118 159 1.07 

Kohno 30 118 209 119 204 1.03 

. f Ill and f Ill ed . 6 F~nally, the resonances L 2 measur ~ arrangement should 
follow the :r:elationship f}.' 12 + f2"2 = fp2 + fb2 • We have data on two 
steel-string guitars to check this. 

If 2 
f1 + 

If 2 
f2 

f'" f"' f fb f 2 + f 2 
1 2 _E._ p b 

Martin D-28 157 178 163 165 Hz 1.05 

Martin D-35 118 174 131 159 1.04 

Thus the two-mass and three-mass models are seen to apply to the 
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vibrational behavior of the guitars under different conditions of con

straint. It is essential, however, to use the parameters appropriate to 

each particular boundary condition. 

Modes of vibration of component parts 

Thus far we have discussed only the resonances that result from the 

interaction of the lowest vibrational modes of the top plate, the back 
plate, and the enclosed air. Each of these major components has many 

other modes of vibration, and combinations of these lead to abundant 
resonances throughout the audible range of frequency. 

Several investigators have made hologram interferograms of a guitar 
top plate vibrating in its various modes under different conditions of 
constraint (Firth, 1977~ Jansson, 1981; Richardson, 1982·: Jovicic and 
Jovicic, 1977). Thus their modal frequencies are somewhat different, 
although the modal shapes are in rather good agreement. Richardson 
(1982) also shows hologram interferograms of several modes of vibration 
of the back plate of a classical guitar. 

We have studied the vibrational modes of the top plates and back 
plates of several guitars with the ribs and other members immobilized in 
sand (arrangements 2 and 3, previously described). The plate was driven 
by a B & K vibrator, and the motion of the plate was determined by moving 
a small accelerometer (m = 2 g) across the surface of the plate. (While 
the mass of the accelerometer causes a small shift in the modal frequen
cies, it has negligible effect on the modal shapes. The modal frequecies 
were determined without the accelerometer attached). 

The modal frequencies and configurations of the top and back plates of 
a Martin D28 guitar are shown in Fig. 6. The modal designations at the 
top give the numbers of nodes in the horizontal and vertical directions, 
respectively. The lowest frequencies for the top and back plates corre

spond to fp and fb' as discussed earlier. All modal frequencies are 
given for a closed sound hole (arrangement 2}. With the sound hole open, 
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TOP (0,0) (0,1) (1,01 (0,2) 

@~ i~(j~ 
BrQcing 
pQttern 

163 276 390 431 

(1,1) (0,3) 12.0) 

643,665 733 756 

BACK (0,0) (0,1) (0,2) (1,0) (0,3) (1,1) (0,1.) 12,1) (1,2) 

®m ~~~~a~am~ 
BrQcing 
pattern 

165 

121 

257 337 369 

A2 A3 

383 504 

480 509 602 678 693 H.z 

A4 AS 

722 956 652 

Fig. 6. (a) Modes of a folk guitar top (.Martin D-28) with the back and 
ribs in sand; (b) Modes of the back with the top and ribs in 
sand; (c) Modes of the air cavity with the guitar body in sand. 
Modal designations are given above the figures and modal fre-

,quencies below. 

the lowest top plate mode is replaced by resonances at 110 and 185 Hz 
I I 

(f 1 and f 2 ). 

Also shown in Fig. 6 are the modes of vibration of the air inside the 
guitar b:xly. The lowest air mode is the Helmholtz resonance of the cavi
ty7 air moves in and out of the sound hole as the pressure inside the 
cavity changes. The mode designated A2 resembles the first resonance of 
a pipe closed at both ends; air "sloshes" back and forth, creating a 
pressure node at the center and pressure maxima at the ends. The A4 mode 
resembles the second mode of this same pipe oriented vertically, while A3 
and AS resemble the first two resonances of a horizontal pipe having a 
length equal to the width of the guitar. 

Several modes of the top and back plates and air cavity of a Kohno 30 
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TOP IO.Gl (1,01 (0,1) (0,2) ( 1,1) (2,0) (1,2) 3,0 

® I i(j~:~~~[J 
183 296 388 466 558 616 660 812 Hz 

BACK (0,0) (1,0) (0,1) {0,2) { 1,1) {2,01 (0,3) 3,0 

® ffi i[i~~tiOOQ~ 
204 417 285 368 566 646 537 856 H:t 

H IA1l A2 A3 A4 AS 

© AIRCAVITY a [J a [J ffi 0 a [J ~ [J ffi 
118 396 560 780 -1030 674 

Fig. 7. (a) M:xles of a classical guitar top (Kohno 30) with the back 
and ribs in sand, (b) M:xles of the back with the top and ribs 
in sand; (c) M:xles of the air cavity with the guitar body in 
sand. M:xlal designations are given above the figures and 
modal frequencies below. 

(Professional model) guitar are shown in Fig. 7. Note that the (0,1) 
mode is higher in frequency than the (1,0) mode due to the fan bracing. 
Modes in the back plate nearly always occur at higher frequencies than 
the corresponding modes in the folk guitar of Fig. 6; this is partly due 
to the smaller size of the lower bout, partly due to the greater stiff
ness. The modes of the top and back are not as closely matched in 
frequency as in the folk guitar. 

Table I compares the modal frequencies in four different guitars, two 
classical and two folk. Many interesting observations can 'be made. In 

the Martin D-28, for example, the fundamental modes of the top and tack 
plate are tuned to almost the same frequency; in the other three guitars 
the back is tuned considerably higher (by two to six semi ton.es on the 
musical scale). In the fan-braced top plates of the classical guitars 
the (0,1) mode occurs at a higher frequency than the (1,0) mode, in the 
cross-braced top plates and in all the back plates the reverse is true. 
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Table 1. Frequencies of the principal Irodes of the top --- plate, back plate, and air cavity in four guitars 

'lbp Elate 
(0,0) (0, 1) (1 ,0) (0,2) (1, 1) (0,3) (2,0) (1 ,2) 

folk: 

Martin D28 163 276 390 431 643 733 756 

Martin D35 135 219 313 397 576 626 648 777 

classical: 

Kohne 30 183 388 296 466 558 616 660 

COnrad 163 261 228 382 474 497 

Back Elate 
(0,0) (0, 1) (0,2) (1 ,0) (0,3) (1, 1) (2,0) (1 ,2) 

folk: 

MartinD28 165 257 337 369 480 509 678 693 

Martin D35 160 231 306 354 467 501 677 

classical: 

Kohne 30 204 285 368 417 537 566 646 856 

Cbnrad 229 277 344 495 481 573 830 611 

Air cavit;( 
H (A1) A2 A3 A4 A5 

folk: (F.elmholtz) (0, 1) (1 ,0) (1 , 1) (0,2) (2,0) 

Martin D28 121 383 504 652 722 956 

Martin D35 118 392 512 666 730 975 

classical: 

Kohne 30 118 396 560 674 780 

COnrad 127 391 558 711 772 1033 

Guitar resonances 

The main vibrational patterns of a Martin D-28 guitar with a fixed 
neck and free body are shown in Fig. 8. The first three resonances at 

102, 193, and 201 Hz result from coupling between the lowest modes of the 
top plate, the back plate, and the air cavity7 these occur at fl' f 2, and 

f 3, as previously discussed. Sound is radiated strongly from the sound 
hole at 102Hz and 201Hz, somewhat less strongly (about 20 dB less) at 
193 Hz. The coupling at 102 Hz is mostly through the motion of the 
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Fig. 8. 

102 Hz 193 Hz 201 Hz 

iii8i~ 
CE.,:.:J 

sade viw 

247Hz 

Vibrational patterns of a Martin D28 guitar at some of the 
more important resonances below 800 Hz (neck fixed, body free). 

enclosed air, at 193 Hz it is mostly through rib motion, and at 201 Hz 

there is an appreciable amount of both. 

The next three resonances at 247, 310, and 368Hz appear to result 
from a coupling between the (0,1) modes in the top plate and back plate 
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plus a weak coupling to the A2 air mode, which has the same modal shape. 
The radiation from the sound hole is considerably less (al:out 20 dB less 

at 247 Hz and 368 Hz, and about 30 dB less at 310 Hz) compared to the 

resonances at f 1 = 102 Hz and f 3 = 201 Hz, but nevertheless the sound 
hole radiation appears to make a notable contribution to the total sound 

output in this frequency range. The coupling scheme we have described is 
illustrated in Fig. 9. 

TOP BACK AIR 

•·a+a ~ l+i+i 
163 165 121 102 193 201 

B+i+B ~ i+i+a 
276 257 383 247 310 368 

(j+[l+ffi ~ Li+ll+(] 
390 369 504 3n 438 506 

Fig. 9. Low-frequency coupling in a Martin D-28 folk guitar. 
In each case a top plate mode, a back plate mode, and 
a mode of the enclosed air couple together to produce 
one of the resonances shown in Fiq. 8. 

The (1,0) modes in the top and back plates appear to couple together 

and also to interact with the A3 air mode to produce resonances at 377, 
438, and 506 Hz. Radiation from the sound hole is quite weak at these 

frequencies, because the sound hole lies on the line of symmetry of the 
plate motion. This coupling is also illustrated in Fig. 9. 

Coupling between top and back plates in the Kohno 30 classical guitar, 
illustrated in Fig. 10, is quite different from that described in the 
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Fig. 10. 

TOP BACK AIR 

i i ffi ~ i+i+ WEAK RESONANCES 
AT 230, 242 Hz 

183 204 '118 104 211 

[j (] m ~ ~ 
29.~ 417 560 303 

i+~ -
~+B+~+~ &+~+a g 

396 280 351 369 427 

466 368 

IDw-frequency coupling in a Kohno 30 classical guitar 
(neck fixed, body free). The coupling between top and 
back plates and the enclosed air modes is considerably 
:n:ore complicated than in the folk guitar shown in Fig. 9. 

Martin D-28, because the relative frequencies of the same modes in the 
top and back are substantially different. The lowest modes of the top 
and back plates couple together to give strong resonances at 104 Hz and 

211 Hz; weak resonances at 230 Hz and 242 Hz. also appear to originate 
from this interaction. 

Because there is much less transverse bracing. the (1,0) mode occurs 
at a much lower frequency in the top plate of a classical guitar than in 
a cross-braced folk guitar. Thus it couples only weakly to the (1,0) 

mode in the back plate and to the A3 air resonance, and the resonance at 
303 Hz is mainly a mode of the top plate. 

The (0,1) and (0,2) modes in the top and back plates plus the A2 air 
mode appear to couple together in a complicated way to produce at least 
four resonances, as shown in Fig. 10. The resonance at 280 Hz is mainly 
due to the (0,1) mode in the back plate. The sound hole radiates strong
ly at the upper two resonances, which are near the A2 air mode in fre-
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quency~ the sound level at the sound hole is only 8 to 10 dB below that 
observed at the lowest resonances, where the top and back plates move in 
their main (0,0) mode. Strong radiation around the frequency of the A2 

10~ Hz 211 Hz 280Hz 

•aiefi~ 
~ ~~ t~ 

303 Hz 351 ~z 369 Hz 

~13~~@8 
t~~SIOE 
~VIEW 

'~t 
57S Hz _590 Hz 750. Hz 

~~~8i~ 
Fig. 11 . Vibrational patterns of a Kohno 30 (Professional model) 

classical guitar at the most prominent resonances below 
800 Hz. 

air mode (about 400 Hz) is typical of good classical guitars. Meyer 
(1983) found that the acoustical response of classical guitars around 400 
Hz show a particularly high correlation to quality. 

Resonances of the Kohno 30 classical guitar are shown in Fig. 11. 
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guitar, two 

resonances are associated of the fundamental ( 0, 
the leads to three 
resonances. 

ences between the modal 

Kohne 

in the 

on the (1,0) modes 
because of 

The mode the Kohne appears to 
mode as well as the mode the 'back thus to a 

more of resonances than are observed in the Martin D-

28 
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nated by a 
tween the 
low 

response of both and 
resonances which are tracable to 
modes of the at 

are being made to 
in order to understand the 

In order to successfully describe the acoustical response of the 
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ed and described when response measurements are made. 

We 
for the loan of 
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some of the response measurements. Conversations with Richard Ross were 
enlightening. 
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'Ib be added after the third piece in the section 11Gui tar resonances 11 
: 

Although fixing the neck approximates the condition under ~~ich the 
guitar is played, suspending the guitar on rubber bands so that it is 
totally fr~e to vibrate appears to give results that may be easier to 
interpret. In the free condition, the Martin D-28 has only two strong 
resonances ( 104 and 201 Hz) due to the interaction in the first row of 
Fig. 9. 
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TONAL QUALITIES OF THE INDIAN TANPURA 
Ranjan Sengupta, B.M. Banerjee, Sumita Sengupta, Dipali Nag 

Sangeet Research Academy I calcutta I India 

Abstract 
Vocalists of North Indian Classical Music use the four-stringed "Tan

pura" to get the drones with which to synchronize the notes they must 
produce accurately in their song. "\,fuen the strings are struck by fingers 
in succession, the shell of its resonance chamber "Tumba." emits a charac
teristic melodious sound that creates the atmosphere of classical music. 
Though the four strings are tuned to three frequencies, the musicians can 
get the cue of all the notes from the harmonics, that are produced 
strongly and abundantly. The Tanpura drone, tuned and fingered by 
trained musicians, has been analyzed with a Kay Sonagraph. The sonagrams 
revealed spectra that extend over the full audio range. The sound per
sists with good amplitude and little decay over the first half of a 
period of 3 to 5 seconds. It starts to decay in the later half, when 
high frequency clusters are rapidly eliminated. r.rhere are vibratos, of a 
period of 0.1 second or greater, which may vary from cluster to cluster. 
This must be due to characteristic shell vibrations, which is oomplex for 
the Tumba has a complex shape. The Tanpura spectrum contains quite a 
number of unharmonic frequencies, that cannot be ascribed even to harmon
ics of strings other than that struck. 

Introduction 

Vocalists of North Indian classical music use the Tanpura ( Tambura) as 
an indispensable accompanying instrument providing the drones, with which 

to synchronize the notes they must produce in their song, accurate in 
pitch. The Tanpura is a four-stringed instrument, the resounding twangs 
of which create the atmosphere of Indian classical music. Its sound is 
considered very sweet and melodious, and it stimulates both the musician 
and the audience. 

333 



The Tanpura is a big four-stringed instrument (Fig. 1) Its first 

string - a steel wire - is tuned to the middle note of tl1e lower octave. 
The second and thiro string also of steel - are both tuned to the first 
note the middle octave. The fourth string - a thick brass wire -

tuned to the first note of the lower octave. The strings go side by side 
over the bridge, and then along the neck almost to the top of the Tan
pura, finally over the edge of "Ati" or "Atak", which is an ivory strip 
positioned securely in a slot cut into the convex surface of the neck, 

and then through the holes of 11 Targahan11
, yet another strip of ivory or 

Fig. 1. 

120 1601 
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to the four pegs on are twisted and The pegs are 

the knobs on 
, tension of individual can be adjusted sepa-

of obtained the 

go, to be held the wooden 
called or lDngot, which 

is to the bottom of , the resonance box. The Tumba 

formed out a shell of gourd. This must have the 

a flattened which 
re-entrant at the base, but 

where it is attached to the hollow wooden, neck 

of al:out a metre in 

About one-fourth of one of the is cut off to be covered 

convex wooden surface called the . The - a 
of deer horn- rests elevated on the wooden blocks, 

to the • The shells of Tumba 

to the neck leaves of 
The vibrations of the shells of Tabli and 

and to a lesser extent that the way 

·to the 

bestow the 

thread between the 

the four 

of the sound emitted. Periodic ex

at stable and controlled 
was well known to 

instrument. The 

instrument 

and the bridge, which, when 

the volume and quality of the 

This is known as the 

are tuned to three 

cotton 

viz., 

lower octave, the middle note of the lower octave 

and the first note of the middle octave, the musicians the cue of all 
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the seven notes. This is because they are trained to hear the hannonics, 

and to match with the harmonics of their own sung tones. (Perhaps they 
also recall these tones from their memory to help in this matching.) 
This becomes easy due to the abundance and. strength of harmonics in the 
•ranpura tones, which exceed the fundamental up to at least 1000-1500 Hz. 

In this frequency range, the sung tones also have similarly strong har-
~ v:; 

monies, particularly when the performer sings /'tf/, /ad and. /E/ and. in a 
slightly modified way /i/. Fbr it is well known that harmonics are very 
strong in the first two formants, and extend to 2000 Hz with large 
amplitudes. 

The eight notes of Hindusthani octave have the follovi.ng nominal 
frequencies. 

{Do) (Re) (Mi) (Fa) (Sol) (La) ~) 
"X\- Q1 'SfT ~ 'P\\ &! 
240 Z70 501 520 560 405 452 

When the first wire is tuned to Sol = 180 Hz, it gives the cue 

to .S1 
\' 
1-:t @- as 

La Ti lUi 

1) 

~~ 
4) 

180 Hz - Pancha:sn -Middle tone of lower octave "''>it 
180 x 2 - 360 Hz - Middle tone of JDiddle octave • • 1>'{1~ 
180 x 3 - 540 Hz - {270 x 2) - Re of upper .octave ~ , 

.. 
:»r 
480 

~~ 
7) 
8) 
9) 

180 x 4 - 720 Hz -Middle tone of upper octave (560 x 2) 'trt\ 
180 x 5 - 900 Hz - (450 x 2). Ti of upper octave ~!!. 
180 x 6 - 1000 Hz - 'Re of fourth octave; 4th harmoni~ nf Re (270 x 4) (~-
180 x 7 - 1260 Hz - Fa of fourth octave; @20 x 4) = 1280 Hz ~ 
180 x 8 - 1440 Hz -Middle tone of 4th octave; 560 x 4 = 1440 Hz 

1) 
2) 
5) 
4) 
5) 
6) 

~~ 
9) 
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180 x 9 - 1620 Hz - La of 4th octave; 405 x 4 = 1620 Hz .S1 

The thick wire is tuned to 120 Hz, so it gi vas the cue to 
'){('" SIT '1=>\1 ~-
Do, Mi Sol {Middle note) and Fa 

120 \-t'Z. -
120x 2- 240 H:z.. 
120 X 5 - 560 t* z. 
120 X 4 - 480 '' 
120 X 5 - 600 " 
120 X 6 - 720 ,, 
120x.7- 860 1• 

120 X 8 - 960 H 

120 X 9 - 1080 

First note of the lower octave J!I
First note of Middle octave m 
Middle note of Middle octave ''iT • 
First note of upper octave; 2nd harmonic ~ 
Mi of upper octave; (501 x 2) sfr , 
Middle note of upper octave; ( 560 x 2) 'II 
Very soft Ti of upper octave; (452 x 2) 
5rd harmonic of Fa; ~20 x 5) 'i.fr 
4th harmonic of Re; (270 x 4) 0. 



Experiments 

The Tanpura drone, tuned and fingered py trained mus1c1ans, with and 

without jwari, was directly recorded into the memory, and then analysed 

by a Kay Sonagraph, model 7800. The experiments were conducted in a 
noise proof studio of the dimensions 18'xl6'xl2' with a reverberation 
time around 0.1 second. The sonagrams revealed spectra that extend over 
the full audio range (Figs. 2a and 2b; also Fig. 4a). The sound persists 
with good amplitude and insensible decay over the first half of a period 
of 3 to 10 seconds (Figs. 3a and 3b). It starts to decay in the later 
half, when high frequency clusters are rapidly eliminated (Figs. 3a and 

3b). Notice that in the "3D spectra" recorded with a high frequency lift 
of 6 dB/octave (Fig. 3a), the maximum occurs at high frequencies - at 
about 5 kHz. This frequency of maximum response initially decreases with 
time- almost exponentially (Fig. 3a). Vibratos of different character 
and timing are visible in Fig. 2a, particularly in Figs. 3a and 4a, and 

are seen to be present in the different clusters. These must be due to 
the characteristic shell vibrations of the Tabli, Tumba and the neck. 
These must still be identified. The amplitude decay curve contains 
fluctuations at the fundamental frequency (Fig. 4a). These also come 
into the "3D spectra" as beautiful woven patterns. The spectra without 
jwari are shown in Figs. 6a and 6b. The frequency range is smaller, and 

there is a more rapid decay in amplitude which contains a smaller number 
of vibratos. Unharmonic frequencies reported in the abstract were not 
found in these direct recordings. The spectra of a Harmonium - an addi
tional accompanying instrument sometimes used by musicians of classical 
music - do not extend beyond 6 kHz (Fig. 5). The Tanpura emits a charac
teristic twang G-a:!-W. This is well explained py its formant structure -

which contains formants similar to the vowel /a:!/ in the first half. In 
the later half, high frequency clusters get dissipated, and the sound 
approaches that of the vowel /w/. The Tanpura sound is valued, not only 
because of its melody and sweetness, but also because it contains strong 
harmonics and formants, extending over almost the full audio range. A 
musician can "hear" all the notes of the "song" he is going to sing in 
the twangs of the Tanpura. The performing artist adjusts the strings to 
his own octaves accurately. He perhaps recalls from his brain the notes 
of his octaves, and this he also hears in the Tanpura twangs. This 
stimulates him so that he gets set to produce the required pitches accu
rately, easily and naturally. This also stimulates the audience, who are, 
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of 
; 16 

lines mark 1, 2 ••• 15, 16kHz); Notice 
vibratos in the formants within 1 kHz; 

that between 2 to 3 kHz; 4 to 5 kHz. 
between 6 to 7 

kHz; 8 to 9kHz; 9 to 10kHz; 11 to 12kHz; 
3 to 14kHz. The time span is 1.28 sec 

NOtice how 
into 3 to 14 

; also how the upper 
at first and then 



• 
. 3a. "3D of the string of 

Tanpure recorded with 6 dB lift per octave 
(horizontal lines mark 1, 2 ... 7, 8kHz}. 
Notice that the maximum amplitude, in this 
case, occurs above 5 kHz, at start. This 
frequency of maximum amplitude diminishes 
with time - almost exponentially. After 
about one second it rests at 3 kHz. Notice 
also the positions of maxima in the vibrato's 
on different hannonics. Time span = 2. 56 sec. 

3b. "Power Spectrum". Notice how the high fre
quency harmonics get dissipated with time. 
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Fig. 4. "3D Spectra" of the lower Sa - thick string -
of Gents Tanpura. Notice the rapid amplitude 
fluctuation that causes the "woven" patterns, 
also the vibrato's that are different in dif
ferent clusters;;compare the vibrato's with 
the amplitude fluctuation shown in the "ampli
tude display" curve. (8 kHz frequency span 
and 2.56 seconds time span.) 

Fig. 5. "Power Spectrum" of a Hannonium. Notice that 
the frequency canponents do not extend beyond 
6 kHz. ( 16 kHz frequency span and 1 . 28 seconds 
time span.) 



Fig. 6. 3D spectra and Power Spectrum of the middle string 
of a Tanpura without jwari. Notice how the ampli
tude decays rapidly, how the high frequency clusters 
get dissipated and how almost all frequencies above 
one kilohertz are eliminated after 2.5 seconds. 
( 8 kHz frequency span and 2 . 56 seconds time span. ) 

mostly, musicians themselves and to them the T.anpura has a position of 
prize. 

Conclusion 

He report the beginning of a scientific research on the Tanpura. Only 
the characteristics of the Tanpura sound are presented here. Fbllowing 
investigations should concern the formant and antiformant positions that 
make the sound melodious. This may be done in two ways, viz., {a) by 
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