ERRATA

Clarence BARLOW (USA, 1945) – Approximating Pi for 16 audio channels (7'37)

Point of departure: the converging series $\pi = 4(1 - 1/3 + 1/5 - 1/7 + 1/9 \cdots)$.

Each convergence gets a 5040-sample time window (twice the LCM of the numbers 1-10), in which ten square-wave partials of 8³/₄n Hz (deriving from the 5040 samples) and amplitude 2[^]d_n are set up, 'n' being the partial number and 'd_n' the nth digit in the convergence's decimal representation; e.g. for '3.141592654', the amplitudes are 2³, 2¹, 2⁴, 2¹, 2⁵, 2⁹ etc., thereafter rescaled by the factor $2\pi/n$, 'n' still being the partial number. The convergences stabilize the digits from left to right to a value approaching π , the resultant timbre moving from turbulence to constancy over $4 \times 10^9 \times 5040$ samples or $-14\frac{1}{2}$ years. Here sixteen audio channels are transposed by sample-dropping from 8³/₄" Hz to frequencies from 9 to 402 times higher

(= $[9 \ge \pi^{(1+l_2+l_3+\cdots+1/\chi)}]$, where χ is the channel number plus one); the duration is truncated to 7' $37^{1}/_{7}$ ", the highest transposition thereby reaching the 1,608,000th approximation of π , where the first six digits are already stable.