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Preface 
Welcome to the fourth Stockholm Music Acoustics Conference (SMAC 2013), July 30 – August 3, 2013. This 
time SMAC is run in parallel with the Sound and Music Computing Conference (SMC 2013).  SMAC 2013 
continues the series of music acoustics conferences in Stockholm, started 30 years ago. Following the tradition 
of SMAC 83, SMAC 93, and SMAC 03, SMAC 2013 covers the traditional fields of music acoustics, including 
musical instruments, singing voice, perception, and physical modeling. The fields of music perception and 
performance are this time covered by SMC 2013, as well as the rapidly growing research in sonic interaction 
design, sound processing and music information retrieval 

A good reason for keeping the broad perspective from earlier SMACs is to offer the possibility of at least a 
partial overview of the many fascinating research areas which address the wonderful combination of 
performing arts, physics, creativity, and life experience called music. In order to give this perspective SMAC 
2013 and SMC 2013 feature a number of invited presentations (the exact number being 13), in which outstanding 
researchers, old and young, will present overviews of their areas up to and including the research frontier.  

SMAC 03 was run in two parallel sections. In the 2013 edition, one of the two sessions is the SMC conference. 
SMC is rapidly establishing as one of the most important conference series in the field of sound and music 
computing. This year SMC celebrates the 10th edition. SMC 2013 is jointly hosted by the Sound and Music 
Computing Research Group at the Royal Institute of Technology (KTH) and the Department of Composition, 
Conducting and Music Theory at the Royal College of Music (KMH) in Stockholm. KTH is responsible for the 
scientific part and KMH will host the music performances. 

The theme for SMAC and SMC this year is “Sound Science, Sound Experience.” During the past five decades, the 
domain of music acoustics has widened from studies of the acoustics of musical instruments and voice, 
including basic elements of musical perception and performance, to investigations of how humans experience 
and interact with sounds and music. Increasingly, the knowledge is put into industrial, societal and 
psychological perspectives. The age-old dream of bridging science and art has found new and bountiful ground 
in the field of Sound and Music Computing. 

Besides all scientific sessions SMAC and SMC 2013 will include many memorable events, including three 
concerts organized by KMH, Rencon Performance Rendering Contest, an electroacoustic pub, a Swedish 
summer night banquet in the archipelago of Stockholm, and above all, numerous occasions to meet friends and 
colleagues, old and new. 

 
WE WELCOME YOU ALL TO SMAC 2013 & SMC 2013 ! 

 
Sten Ternström, Roberto Bresin, Anders Friberg, Anders Askenfelt 
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EXPLOITING DOMAIN KNOWLEDGE
IN MUSIC INFORMATION RESEARCH

Xavier Serra
Music Technology Group

Universitat Pompeu Fabra, Barcelona
xavier.serra@upf.edu

ABSTRACT

Music Information Research (MIR) is a discipline that aims
to understand and model music from an information pro-
cessing perspective, but the successful approaches used in
MIR are going beyond the traditional data processing me-
thodologies. Most of the great advancements have been the
result of combining engineering disciplines such as audio
signal processing and machine learning with non-engin-
eering disciplines such as music perception and music the-
ory. One of the challenges in MIR is to automatically des-
cribe music audio signals, thus to develop methodologies
to extract musically useful information from audio recor-
dings. In this paper we claim that if we want to advance
in this direction we should maximize the use of musical
knowledge in all the steps of our research tasks. To support
this claim we overview some of the work being carried out
in CompMusic, a project that aims to analyze and auto-
matically describe the music of several non-western music
traditions.

1. INTRODUCTION

The field of MIR has greatly grown in the past two decades
and the number of disciplines involved has expanded. The
MIR research community is evolving and changing accor-
dingly, specially due to the incorporation of researchers
coming from fields such as Speech Processing, Text Re-
trieval or Computer Vision. These changes might have
been influential in the fact that most of the current research
is centered in data processing methodologies, thus with
a bottom-up perspective. Most of the approaches used
are not specific to musical problems and there is a recent
agreement in the community on the need to explore new
methodological approaches that can complement the cur-
rently used data processing ones.

The recently published MIR roadmap [1] identifies cur-
rent research challenges while reviewing the relevant state
of the art. It lists challenges related to the gathering and
organization of machine-readable musical data, to the de-
velopment of data representations, and to the methodolo-
gies for processing and understanding that data, taking into

Copyright: c©2013 Xavier Serra et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

account domain knowledge and bringing expertise from re-
levant scientific and engineering disciplines. The Roadmap
also looks into a user perspective, thus promoting the need
to understand the user roles within the music communi-
cation chain and to develop technologies for the interac-
tion of these users with music data. Finally, the roadmap
emphasizes the fact that music is a communication phe-
nomenon that involves people and communities immersed
in specific social and cultural contexts, thus it claims that
MIR should aim at developing methodologies for process-
ing musical data that capture these contexts.

There is a widespread consensus in the MIR community
on the need to emphasize knowledge-driven methodolo-
gies. Collaboration should be promoted with disciplines
such as Musicology, Psychology, and Sociology. But the
key question is: how can we use the knowledge generated
from these disciplines as part of the methodologies being
used in MIR?

Most MIR projects are carried out following a common
set of steps. After defining the problem, the data to be
analyzed is gathered, a methodology is developed to pro-
cess the data, experiments are run in which the methods
are applied to the data, and finally the results are evaluated.
The main point that we want to emphasize in this paper is
the need to use musical knowledge, domain knowledge, in
every one of these steps. The problem, the data, the method
and the evaluation steps, all have to be musically meaning-
ful and musically relevant. Many published articles have
not given enough consideration to the musical issues and
as a result the obtained results lack the impact intended by
the authors.

The most direct way of adding domain knowledge in a
research project is by incorporating domain experts in the
research team. This is fundamental. But even then, how
can we represent and express specific musical concepts in
the data and methodologies used in an MIR project? Given
that many music traditions have developed and use forma-
lizations/representations in the education and transmission
of their music, a good starting point are the formalisms
developed by the music scholars of those traditions. These
formalisms can then be incorporated into the MIR-specific
computational methodologies.

Next we present some issues related to musical know-
ledge representation and then we go over how we address
these issues in the CompMusic project.
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2. MUSICAL KNOWLEDGE REPRESENTATION

Knowledge engineering is a discipline that involves inte-
grating knowledge into computer systems in order to solve
complex problems normally requiring a high level of hu-
man expertise. In the currently favored modeling view of
the field, the knowledge engineer attempts to model the
knowledge and problem solving techniques of the domain
expert. 1 A major concern in knowledge engineering is
the construction of domain specific ontologies, which are
structural frameworks for organizing information and that
are used as a form of knowledge representations [2].

Music is a complex phenomenon that can be approached
and studied from a multitude of perspectives. Even the de-
finition of music vary according to culture and social con-
text. 2 From a knowledge engineering perspective the only
way to agree on a set of musical formalisms and concepts
is to narrow down the domain to a level in which we can
find a sufficient scholarly consensus, without reaching a
domain size so small that is of no use. A practical approxi-
mation is to constrain the domain to a particular music cul-
ture and to a particular application. For example, the Music
Ontology project 3 is developing and maintaining several
ontologies of music production concepts and it is basically
centered on western commercial music. In the CompMu-
sic project we have decided to focus on five music cultures
and we are working towards the particular application of
music discovery of audio content.

An ontology specifies concepts, attributes, relations, con-
straints, and instances in a domain. For creating music on-
tologies the most useful types of information sources are
the encyclopaedias and dictionaries, ideally written by mu-
sic scholars specialists on the chosen domain. From these
sources we can gather all the relevant concepts used in a
specific domain area, but it is not easy to gather the rela-
tions between concepts. Musicological books and articles
are very useful but they are often not precise enough for ex-
tracting clearly formalized concepts and relationships. At
the same time it is not easy to find clear agreement between
different information sources, thus there is always the need
to involve domain experts and to account for the fact that
there are no single and long-lived formalizations. No mat-
ter what information source we start from, even written by
the most academically reputed scholar, it will be impos-
sible to come up with complete and persistent ontologies.
Thus, we should develop systems that can handle multi-
ple versions of an ontology and that can support dynamic
ontologies.

There has been little work in the development of domain
specific ontologies for music and efforts are needed to cre-
ate them. The existing and most related initiatives are the
repositories of structured information that are being cre-
ated as collaborative on-line projects. Two of the larger
and most important projects of relevance to music are Mu-
sicbrainz 4 and DBpedia. 5

1 http://en.wikipedia.org/wiki/Knowledge_
engineering

2 http://en.wikipedia.org/wiki/Music
3 http://musicontology.com/
4 http://musicbrainz.org
5 http://dbpedia.org

MusicBrainz is an open music encyclopedia that collects
music metadata and makes it available to the public. It
aims to form a trusty central database to identify music
CDs. In MusicBrainz anyone can add the metadata of CDs
such as the names of tracks, the label of the release and
the artists featured in the album. Yet, MusicBrainz is more
ambitious than just being a database of metadata of CDs,
it also allows to add detailed information about the music,
such as personal details of artists, composer/lyricist infor-
mation, or the specific date of a performance. Even more,
the MusicBrainz database can maintain relationships be-
tween the data entities.

The DBpedia project is a community effort to extract struc-
tured information from Wikipedia and to make this infor-
mation available on the Web. Through DBpedia we can
ask sophisticated queries against Wikipedia, and we can
link different data sets on the Web to Wikipedia data. DB-
pedia is at the core of the W3C Linking Opendata com-
munity effort 6 and MusicBrainz is the main music project
within that community. All the information generated by
these projects is available as open data sets using the RDF
specification. These RDF links enable to navigate between
data items in various data sources using a search language
like SPARQL. 7

In the context of MIR we are interested in describing and
organizing the musical concepts and entities observed in
audio recordings, scores, and writings on music. We ge-
nerally get data/information both from existing data repo-
sitories and from the processing of the data. The automatic,
or semiautomatic, structuring and integration of all this in-
formation is one of the main research efforts in MIR.

3. THE CASE OF COMPMUSIC

In the CompMusic project we work on the automatic des-
cription of music by emphasizing the use of domain know-
ledge of particular music traditions. We are focusing on
five music cultures: Turkish-makam (Turkey), Arab-Anda-
lusian (Maghreb), Beijing Opera (China), Carnatic (South-
India) and Hindustani (North-India). There are many great
traditions that we could have also chosen, but we had to
limit ourselves and we were looking for traditions that:
(1) had musical personalities contrasting with the popular
western music of the last few decades, (2) had alive perfor-
mance practices and strong social and cultural relevance,
(3) had musicological and cultural studies available about
them, and (4) it was feasible to collect sufficient and co-
herent machine-readable music data. At the same time we
wanted to have a diverse set of music repertoires to study
a variety of new and diverse MIR problems. The target ap-
plication of CompMusic is to develop a system to browse
through audio music collections of the chosen cultures, a
system with which to discover characteristics of the music
and relationships between different musical concepts. For
a list of articles resulting from this research we refer to the
project’s website. 8

6 http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

7 http://en.wikipedia.org/wiki/SPARQL
8 http://compmusic.upf.edu
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Figure 1. Diagram of the tasks being carried out in Comp-
Music for every musical culture.

Figure 1 shows a diagram of the specific research tasks
that are being carried out for all the music traditions. How-
ever, in order to emphasize our point, here we overview
CompMusic by going through the basic and most common
tasks in MIR projects.

3.1 Problem definition

Defining relevant problems is the single most important
step in any research project. For the case of CompMu-
sic we wanted to work on problems that could take ad-
vantage of the musical specificities of each tradition and
that could result in technologies for musically meaningful
explorations of audio music collections. This is a large
project and thus we were able to be ambitious in the pro-
blem formulations.

In the five music traditions chosen, melody and rhythm
are, arguably, the two most important musical facets. At
the same time each tradition has a different way to un-
derstand both melody and rhythm. These complementary
facts offer the possibility to focus on just these two mu-
sical facets while being able to explore a large variety of
problems and methodologies.

In the project we have involved music experts and re-
searchers coming from all the cultures we are studying.
With their input we have defined specific problems to work
on. Impossible to detail here all the identified issues; so
let’s just mention the basic concepts that are framing most
of our automatic music description tasks. In the indian tra-
ditions rāga and tāla are the driving melodic and rhyth-
mic concepts and in Turkish-makam music the correspond-
ing melodic and rhythmic frameworks are the makam and
usul. In Arab-Andalusian music the nawba is a fundamen-
tal structuring concept that defines the melodic and rhyth-
mic characteristics and in Beijing Opera the shengqiang
and the banshi are the basic concepts underlying melody
and meter. We could go very deep into each of these con-
cepts but for the purpose of MIR, given that we are just
starting in this direction, basic musicological studies have
been sufficient for defining the musical issues of relevance
for our project, at least for now.

3.2 Data collections

Properly collecting and organizing the data is a crucial and
demanding task. The basic types of machine readable data
used CompMusic are: audio recordings, editorial meta-
data, scores, and social data. In the research done so far
we have focused on the audio recordings and the accompa-
nying metadata.

Experts advised us in the selection of the CDs for each
repertoire, with the goal to gather in the course of the pro-
ject at least 500 hours of curated audio per collection. For
the selection of the CDs it was important to choose recor-
dings by recognized and representative artists, with reliable
editorial information. As a result of musical and research
considerations each collection has special characteristics.
For example the Carnatic collection is basically composed
of live recordings of concerts and the Beijing Opera col-
lection is composed of CDs in which a single artists sings
a compilation of arias.

To store the editorial metadata of the CDs we use Mu-
sicBrainz. However MusicBrainz was designed to support
western popular music and it lacks the support for some
of our culture specific concepts. Given the community-
based development of MusicBrainz, we are involved in the
addition of the culture specific concepts that we need and
in contributing to make sure that it can properly support
our music repertoires. For example, MusicBrainz now sup-
ports most of the instruments used in our music traditions
and we are in the way to add support for concepts such as
rāga and tāla.

The musical cultures studied have developed as oral tra-
ditions but they also use music notations, scores, and these
are useful to study and describe some musical characteris-
tics. However few scores are available in machine read-
able form and so far we have been able to gather a well
curated collection of scores for Turkish-makam music. 9

It has been easier to obtain the lyrics, also very relevant, of
the vocal pieces that we are gathering, which represent a
large percentage of all our music.

Social data is a valuable source of information to work on
issues like community profiling. The challenge is to iden-
tify on-line communities with discussion forums dedicated
to particular music traditions and available to be crawled
and studied computationally. So far we have identified and
studied an on-line community for Carnatic music. 10

3.3 Data processing

The most common data processing methodologies used in
MIR come from the fields of signal processing and ma-
chine learning; being both extensively used in CompMu-
sic.

With signal processing methods we extract features from
audio recordings, in our case features that describe melodic
and rhythmic characteristics of the music. We focus on
audio features that are perceptually relevant and on top of
which we can apply music considerations. Features that we
extract include: prominent pitch, intonation profiles [3],

9 SymbTr (http://compmusic.upf.edu/node/140)
10 http://www.rasikas.org/forum/index.php
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loudness, note onset location, and brightness. These are
meaningful features that can be used to study and to de-
scribe musical concepts and at the same time they are basic
features from which to extract higher level descriptors. To
compute these features we use Essentia, 11 an audio ana-
lysis library developed by our research group.

With machine learning methods we obtain higher level
descriptors and identify musically meaningful categories.
For example we have computed the tonic pitch for the case
of indian music [4] and performed structural segmentations
of many pieces. A fundamental problem of the machine
learning methods is that they behave like black boxes, sol-
ving a given task without helping much in the understan-
ding of the solution. For our purposes we try to minimize
this problem by using well selected and musically mean-
ingful features as input and by emphasizing supervised ap-
proaches in which the training set has been labelled by mu-
sic experts. Also we choose machine learning methods,
like decision trees, that generate explicit rules that might
be easier to understand, specially if the number of input
features is small.

One of the key research problems in CompMusic is the
identification and characterization of melodic and rhyth-
mic patterns. For this task we need to develop meaningful
similarity measures so we can compare patterns from the
extracted audio features and organize them into categories.
Important here is to use melody and rhythm representa-
tions that make sense for the given culture and that can
be invariant to non-relevant music transformations, such
as transposition and tempo change. So far we have applied
some supervised approaches using dynamic time warping
methods [5].

The most common bottleneck in statistical and machine
learning methods are the training sets. In CompMusic we
have put a lot of effort in having data collections for train-
ing that are carefully labelled by experts. We are working
towards having complete ontologies that can capture all the
relevant attributes and relationships of the data and meta-
data of each collection, thus resulting in well structured
training sets that can be used in a variety of problems.

3.4 Evaluation

The evaluation has become a fundamental part of any MIR
project and there is much concern on developing proper
evaluations at the system level [6]. To evaluate an MIR
system we have to characterize the usage experience of the
users who will employ it, thus we need to have a system
with a clear application and identified target users.

For the case of CompMusic we are developing technolo-
gies with which to discover musically relevant relation-
ships within specific audio music collections and our tar-
get users are the music lovers of the particular music tra-
dition that the collection belongs to. To carry proper eva-
luations we are developing a web-based software applica-
tion, Dunya, 12 that lets users interact with an audio music
collection using the technologies developed in the project.

11 http://essentia.upf.edu
12 http://dunya.compmusic.upf.edu

The application displays the content of various culture spe-
cific entities and their relationships. Users can listen to
the recordings and navigate through the collection by ex-
ploring information that is related to the currently viewed
entity, either through links that reflect ontological relation-
ships or by using culturally relevant similarity measures.

We are evaluating specific technologies using ground truth
data and we will evaluate the overall Dunya system with
user tests. Not many evaluations have yet been done but
we will make sure that the user evaluation results are used
for improving the technologies being developed.

4. CONCLUSIONS

Music Information Research is a field very much tied to
the domain that it studies, Music. Any music information
processing task reaches a glass ceiling quite early on unless
domain knowledge is added into the research methodology.
In this article we have argued in favour of this point by
using as example the problem of automatically describing
audio recording of specific music cultures for the purpose
of discovering relationship between the entities that can be
identified in them. The project CompMusic started two
years ago and has three more years to go, but with the ob-
tained results we have already shown the usefulness of ex-
ploiting domain knowledge.
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ABSTRACT 

During the past three decades, our knowledge about brain 
functions and its structures underlying music perception, 
performance, and emotions has accumulated relatively 
quickly. Cortical and subcortical brain areas involved in 
these musical functions have been identified using various 
techniques and paradigms. 
   In the present talk, I will introduce recent findings reveal-
ing enhanced brain mechanisms during long-term musical 
training, as well as by informal music activities at home. 
Furthermore, I will present examples of how casual music 
activities, such as music listening and singing, can be used 
in neurological rehabilitation to promote health and wellbe-
ing in patients and their family members.  
   In sum, these findings promote the use of music in formal 
and informal settings across the whole life span in healthy 
participants, as well as with individuals with special needs.  
 

1. INTRODUCTION 
 
During the past 30 years, pioneering knowledge about the 
neural basis of musical activities has been acquired in sev-
eral complementary empirical and methodological frame-
works. The earliest endeavors aimed at determining the 
brain functions involved in music-sound perception and 
cognition in healthy adult participants. Thereafter a devel-
opmental approach was also adopted. In parallel, investiga-
tions on musical expertise were started.  
   Currently, these lines of research are still active, but they 
are appended by systematic studies on music emotions and 
preferences as a newly established field of neuroaesthetics. 
Importantly, findings in all these fields of neurosciences of 
music are systematically used in applied settings in educa-
tion and rehabilitation. 
   In the following, the basic brain functions and structures 
of music processing will be described (Section 2), and fol-
lowed by key findings in music development (Section 3) 
and music rehabilitation (Section 4). The paper will end 
with general conclusions. 
 
Copyright: © 2013 Tervaniemi. This is an open-access article dis- tributed 
under the terms of the Creative Commons Attribution License 3.0 Unport-
ed, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

 
2. MUSIC IN THE BRAIN 

 
All sounds are perceived via neural transfer from the inner 
ear and subcortical nuclei to the auditory cortices in the 
temporal lobes in both left and right hemispheres. In the 
case of music, this sound-specific activation of primary 
auditory areas in the upper part of the Sylvian fissure is 
necessary, but not sufficient for an elaborated musical per-
ception to form, and emotions to emerge. It needs to be 
supplemented by further neural activation in the brain areas 
governing cross-modal (e.g., audio-visual and audio-motor) 
processes, focused attention, and regulation of emotions and 
alertness [1]. Since these functions are determined by high-
ly distributed neural networks which occupy many brain 
areas, it is safe to say that for intentional and emotional 
music listening we need most parts of our brain. In the case 
of music performance this is even more apparent – then the 
cerebellum and sensory as well as motor cortices also need 
to be active and in sync.  
 

3. DEVELOPMENT OF MUSIC SKILLS 
 

3.1 Studies on adults 
 
Knowing now which parts of the brain are activated by 
music listening and performance, we can ask what are the 
brain areas that can be shaped by musical expertise.  

Initial findings in this area emphasized neuroplasticity as 
observed in the primary sensory areas in the cortex - partic-
ularly in the auditory [2] and in the somatosensory [3] are-
as. These brain responses were stronger in musicians than 
in laymen and, importantly, stronger in those musicians 
who started their training early (before the age of seven) 
than in those who started later.  

More recently, these findings were replicated using sever-
al brain research methods on both brain function and brain 
structure [4]. Additionally, they were augmented by results 
indicating that musicians are not “a homogenous group of 
experts in sound and motorics”. Instead, they display differ-
ent structural brain indices and neural auditory responses as 
a function of their background in training, for instance, with 
regard to the primary instrument and music genre they are 
most attached with [5, 6]. 
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These studies on adult musicians were considered as an 
interesting window to the outcome of neuroplasticity in the 
music domain. Yet, they unfortunately left unanswered 
whether there was a neurocognitive readiness already pre-
sent in the brains of those “musicians-to-be” prior to their 
training. In other words, could it be that the musicians in 
general, and the early starters in particular, had some skills 
which motivated their parents to pursue musical training’ 
For instance, they display sensitivity to music in general, 
accurate discrimination and error detection in pitch and 
rhythm, preference to sing or play any instrument, or even a 
non-instrument like a table or a box.  
 
3.2 Studies on children 
 
When studying children and their development during mu-
sic training, we are able to complete initial investigations to 
the onset of the music training. By these means, we can 
determine the “kick-off” level of their neural and behavioral 
functions, and can compare that to “control” children who 
have hobbies with a comparable frequency and intensity as 
the musically oriented children, but without the involve-
ment of sound-related actions. These recordings are con-
ducted first before the training onset, and second, after the 
commencement of the training (e.g., after 6 or 12 months).                                                                                                 
   In the first studies in this field, however, this opportunity 
was not used. Yet, these pioneering findings strongly indi-
cated that already after a relatively brief 1-year training 
program, music had enhanced timbre-specific brain re-
sponses to the child’s own instrument [7] implying training-
induced modulation of the auditory brain activity. Due to 
these strong findings, follow-up studies were started. In 
these studies, the participating children were either random-
ly allocated into music activities or other (e.g., painting, 
theater) activities [8]; or, they were recruited from children 
who were randomly allocated into different music programs 
[9]. 
   These studies point strongly towards the following con-
clusions: First, music training facilitates the auditory (per-
ceptual, cognitive) and motor functions which are crucial to 
music perception and performance, namely, auditory, mo-
tor, and neural transfer between the left and right hemi-
spheres [9]. Second, even informal, familial music activities 
at home, such as singing, dancing/moving with the music, 
listening to music, etc.; can modulate brain indices reflect-
ing attentional functions [10]. 
 

4. MUSIC REHABILITATION 
 

If music activities can boost a healthy, normally developing 
brain as the previous subsection documented, would it also 
be feasible to assume that music can “repair” brain func-
tions after brain damage? This has been the assumption and 
justification for various kinds of music therapy and music 
rehabilitation for some time. However, only recently has 
this assumption received systematic scientific support. One 
of these successful initiatives with neurological patients will 
be introduced below. Further evidence to support the use of 

music in clinical settings, particularly in patients with 
memory disorders, will be given in the talk. 
 
4.1 Music listening in neurological rehabilitation 
 
A stroke, a sudden disorder in the blood circulation in the 
brain, can cause various perceptual, motor, and/or cognitive 
impairments. Thanks to the neuroplasticity of the brain, 
those impairments can be rehabilitated and sometimes even 
fully recovered; however, symptoms often remain and may 
even lead them to retire. 
   Since any neurological rehabilitation is most effective 
right after the damage, it was our intention to look for a 
treatment which is readily available after hospitalization. 
Music listening was the most obvious choice - readily 
available and cheap to implement. We recruited 60 patients 
who had had an acute stroke and randomly assigned them to 
three groups: 1) music listening (experimental group), 2) 
audio-book listening (control group with non-musical audi-
tory stimulation), 3) standard care (control group). Their 
recovery was followed by a multitude of testing in listening 
[11], neuropsychological functions [12], and brain activity, 
[13] as well as interviews [14]. 
   It turned out that the patients who were guided to listen to 
their favorite music for about one hour a day for two 
months had the fastest recovery as indicated in the cognitive 
tests for attention and memory. Additionally, the patients 
guided to listen to music or audio books had less confusion 
and depression, so, in other words, their emotional recovery 
was advanced compared to patients who belonged to the 
control group (with standard care but no further rehabilita-
tion on top of that).  

  
5. GENERAL CONCLUSIONS 

 
During past two-three decades, our knowledge about the 
brain functions underlying music activities has accumulated 
relatively quickly. Currently, we are at the stage of finding 
and evaluating ways to improve brain functions by using 
music, e.g., with children and with neurological patients. 
We can predict that music has a great potential to facilitate 
emotional and cognitive functions on various groups of 
participants with special needs in learning and rehabilita-
tion.    
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ABSTRACT

Our study investigates the interactive relationship between
bassoon and horn players in achieving timbre blend dur-
ing musical performance. The interaction is studied in a
behavioral experiment, measuring the timbral adjustments
performers employ. Several timbre descriptors serve as
acoustic measures, quantifying global and formant-based
spectral-envelope properties. Furthermore, musicians’ self-
assessment of their performances is measured through be-
havioral ratings. The performances are investigated across
four factors, i.e., room acoustics, communication directiv-
ity, musical voicing, and leading vs. accompanying roles.
Findings from ANOVAs suggest that differences in role
assignments and communication directivity between per-
formers lead to timbral adjustments. These effects are more
pronounced for horn than for bassoon and performer in-
terdependencies appear to be most important for unison
voicing.

1. INTRODUCTION

In orchestration practice, composers rely on their experi-
ence and intuition to obtain instrument combinations that
lead to blended timbres, i.e., combinations exhibiting higher
degrees of perceptual fusion. Previous research on timbre
blending has emphasized explanations of the degree of
blend through correlations with acoustic instrument prop-
erties. However, the contribution of musical performance
factors to the actual realization of timbre blend remains
largely unexplored. Past investigations of timbre blending
between orchestral instruments have instead primarily em-
ployed stimuli that were created by a mix of solo-instrument
recordings [1, 2], with their findings not fully extending to
more realistic scenarios. In musical practice, blend is al-
ways performed by two or more musicians in an interactive
relationship that allows for timbral adjustments between
performers. Our investigation focuses on this interactive
relationship between two performers attempting to blend
together.

A previous investigation of performer interaction focused
on synchrony between two pianists [3]. Experimental fac-
tors such as performer role or acoustical feedback were
investigated, showing asymmetric dependency of players

Copyright: c©2013 Sven-Amin Lembke et al. This is an open-access article dis-
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vided the original author and source are credited.

acting as followers on the leading pianists. Furthermore,
under impaired acoustical feedback, performers increas-
ingly relied on visual cues to maintain synchrony, which
argues for investigations of performance-related factors in-
volving auditory properties alone to exclude the possibility
of visual communication between performers. With regard
to common examples from the orchestral repertoire, musi-
cians performing in a blended pairing may involve either
doubled performances in (pitch) unison or paired phrases in
non-unison. In both scenarios, one of the performers would
usually assume the leading role, with that role commonly
also being associated with the top voice in non-unison cases.
It therefore may be hypothesized that followers would ad-
just their timbres to the leading performer and not vice versa.
Moreover, a general validity of this unilateral dependency
should not result in the leader performing differently, if they
were to receive no auditory feedback from the follower,
as might occur in unfavorable studio or live-performance
situations.

Performer interaction in achieving timbre blend is investi-
gated in a behavioral experiment for an instrument combi-
nation that finds widespread use in the orchestral repertoire,
namely, the combination of bassoon and (French) horn.
Orchestration treatises discuss these two instruments as
forming a common blended pairing [4–7], with these ob-
servations reflected in findings of high degrees of blend in
perceptual investigations [1, 2]. The horn is often consid-
ered an unofficial member of the woodwind section, bearing
a timbral versatility that succeeds in blending with wood-
winds, brasses, and even strings. Given the relevance to
orchestration practice, the investigation of musical perfor-
mance situates musicians in approximation to the ecologi-
cally valid setting of a concert hall, realized through con-
trolled and reproducible virtual performance environments.
The measurement of musical performance is conducted in
both behavioral and acoustic domains.

2. METHODS

2.1 Experimental design

The behavioral experiment addresses a series of research
questions. The principal aim investigates what instrument-
specific adjustments are employed in achieving timbre blend
and how these interact in a performance scenario with two
musicians. These interactions are furthermore studied as a
function of musical and acoustical factors. The experiment
is based on a mixed-model design, with the two instruments
implemented as a between-participants factor. All remain-
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ing factors employ a repeated-measures design, to rule out
the possibility that individual differences for instruments
and playing technique or style are confounded with the
investigated effects for musical and acoustical factors.

2.1.1 Musical factors

Two within-participant, independent variables involve the
performer role and the influence of different musical voice
contexts. The former considers one instrumentalist taking
on the role of leader, whereas the other performer acts as fol-
lower, i.e., takes on an accompanying role. According to the
‘voice’ factor, musicians either perform a melodic phrase
in unison or a musically related, two-voice phrase in non-
unison. The musical excerpts are taken from Mendelssohn-
Bartholdy’s A Midsummer Night’s Dream, Op. 61, No. 7
(measures 1-16). In this orchestral excerpt, the chosen in-
strument combination is featured prominently, with a horn
solo being accompanied by two bassoons. All phrases were
transposed by a fifth down to A major from the original key
of E major, to reduce the impact of player fatigue through re-
peated performances in high instrument registers. The solo
melody functions as the unison excerpt, denoted A; the two
accompanying voices serve as the top and bottom voices
in the non-unison condition, denoted B and C, respectively,
with B being assigned to the leader.

2.1.2 Acoustical factors

Another pair of within-participant variables considers ef-
fects for communication directivity between performers and
the room-acoustical properties of performance venues. The
‘communication’ factor assesses the influence of whether
both performers are able to hear each other or only the
follower hears the leader, denoted two-way or one-way, re-
spectively. For the ‘room’ factor, the influence of room
acoustics is assessed for two different performance spaces:
musicians are simulated as performing in either a large, mul-
tipurpose performance space (Music Multimedia Room) or
in a mid-sized recital hall (Tanna Schulich Hall). 1

2.1.3 Procedure

Two participants were tested in a single experimental ses-
sion, being instructed to perform together to achieve the
highest possible degree of blend. Each musician underwent
three repetitions of 16 different experimental conditions
(four factors by two treatment levels, 24), leading to a total
of 48 experimental trials. The total duration of the experi-
ment was around two hours, including a break scheduled
after half of the trials. To avoid disorientation of musi-
cians through strongly varying performer-role and voice
assignments, the musical factors were blocked. Participants
assumed the role of either leader or follower throughout the
first or second half of the experiment. Furthermore, shorter
eight-trial blocks grouped conditions based on voice as-
signment (e.g., four unison trials, another four non-unison),
with the repetitions occurring after each block. For in-
stance, a given participant would begin as leader for 24 tri-
als, performing the first repetition of four unison trials, then

1 Both venues are located at the Schulich School of Music, McGill Uni-
versity. More details under http://www.mcgill.ca/music/about-us/facilities.
(Last accessed on March 20, 2013.)

proceed to four non-unison trials, followed by the second
repetition of the same four unison trials, etc. The four pos-
sible block-ordering schemes were counterbalanced across
all participants and instruments. The acoustical-factor com-
binations were encapsulated inside sub-blocks of four tri-
als and randomized in order. Three practice trials were
conducted under the guidance of the two experimenters,
presenting the experimental conditions encountered at the
beginning of individual block-ordering schemes.

2.1.4 Participants

Sixteen musicians participated in the experiment and were
primarily recruited from the Schulich School of Music at
McGill University and the music faculty of the Univer-
sité de Montréal. The bassoonists, three female and five
male, had a median age of 21 years (range 18-31). The
hornists, six female and two male, had a median age of
20 years (range 17-44). Across both instruments, 10 par-
ticipants considered themselves as professional musicians,
and overall, the musicians reported to play or practice their
respective instruments for the median duration of 21 hours
per week. All musicians were remunerated with 35 CAD
for their participation.

2.1.5 Performance measures

The musical performances were evaluated with the help of
a set of behavioral and acoustic measures, which focus on
capturing features related to timbre blending. Behavioral
measures comprise two ratings that participants provided
after each experimental trial. The first rating assessed how
well musicians thought they performed individually given
their assigned role, on a continuous scale with the verbal
anchors very badly and very well. The second measure
acquired ratings on the perceived degree of achieved tim-
bre blend with the other performer, on a continuous scale
with the verbal anchors low blend and high blend. The
acoustic measures consist of a number of spectral-envelope
descriptors, which are discussed in Section 2.3.

2.2 Technical realization

The experiment was conducted in two research laboratories
at the Centre for Interdisciplinary Research in Music Media
and Technology (CIRMMT) at McGill University. Separate
laboratory spaces were called for in order to create individ-
ual acoustical environments for each participant, ensuring
the capture of separate source signals as well as preventing
visual cues between performers. Each performance labo-
ratory was treated to be relatively non-reverberant, with
a RT60< 0.5 s. Performers received instructions to pre-
pare for performances of assigned roles and excerpts and
also provided their behavioral ratings through dedicated
computer interfaces. Furthermore, the performances were
synchronized by attending to a video monitor transmitting
a silent conductor cue track.

Each musician’s performance was captured through an om-
nidirectional high-voltage microphone, which were matched
across laboratories. Both microphone signals were routed
to a control room, where preamplification gain was digi-
tally matched across both performance spaces. The analog
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signals were converted to 96 kHz / 24-bit PCM digital data,
recorded at full resolution for later acoustical analysis and
at the same time fed into separate convolution engines, pro-
cessing the source signals with different sets of binaural
impulse responses (IRs). Individualized binaural signals,
based on the acoustical factors, were then fed to headphones
for each performer. Headphone amplifier volume was held
constant, as were the circumaural closed-ear headphones.
The convolution introduced a system latency of 805 sam-
ples, resulting in delayed arrival of the room feedback by
about 8.4 ms, affecting both performers equally and thus
not assumed to influence their interaction. The IRs had
been previously collected in the concert halls discussed in
Section 2.1.2, with RT60 for the smaller and larger halls
being 1.3 and 2.1 s, respectively. IRs were measured with a
binaural head-and-torso system, positioning the excitation
source and receiver appropriately for a typical orchestral
setup: horns on the conductor’s left front side and bassoons
on the conductor’s right front.

2.3 Acoustic descriptors

For the instruments bassoon and horn, the existence of
largely pitch-invariant, local spectral maxima has been re-
ported [8–10], which are also termed formants by analogy
with the human voice. Furthermore, frequency alignment
of formants between instruments has been argued to con-
tribute to the perception of blend [2], with certain aspects of
this hypothesis having been replicated in further perceptual
investigations [11], confirming the significant contribution
of the most prominent formants. On the other hand, global
spectral-envelope descriptors, such as the spectral centroid,
have also been reported to correlate with the perception of
blend [1].

Time-variant spectral envelopes are obtained through True
Envelope (TE) estimation [12]. The TE algorithm applies
iterative cepstral smoothing on STFT-magnitude spectra,
with the computed estimates using a constant cepstral or-
der oriented at fundamental frequencies f0 ≤300 Hz. A
formant-analysis algorithm, based on the detection of lo-
cal spectral maxima and plateaus, i.e., regions of spectral-
envelope slopes approximating zero, identifies and classi-
fies up to three formants within a dynamic range of 50 dB.
The frequencies of formant maximums (e.g., F1) serve as
descriptors. In addition, the most prominent formant F1,
also termed main formant, involves pairs of descriptor fre-
quencies delimiting upper or lower bounds at which the
magnitude has decreased by 3 dB or 6 dB (e.g., upper F →3dB
and lower F ←3dB bounds relative to F1). These formant
descriptors are illustrated for a spectral-envelope estimate
of a single participant’s performance in Fig. 1, based on
median magnitudes over time. In addition, relative mag-
nitude differences between spectral-envelope regions are
considered: for example, ∆L1vsRest quantifies the level
difference between F1 and the averaged magnitude for fre-
quencies f >F →6dB . The spectral-envelope estimates further-
more serve as the basis for the computation of the spectral
centroid Sc (amplitude-weighted frequency average) and
slope Ss (linear regression of the spectrum) [13]. These
serve as global, formant-independent descriptors of general
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Figure 1. Time-averaged spectral-envelope estimate and
its formant description for a single bassoon performance of
the unison excerpt.

Figure 2. Temporal evolution of True Envelopes for the
same performance as in Fig. 1.

spectral trends in the frequency and magnitude dimensions,
respectively.

From qualitative evaluations of spectro-temporal repre-
sentations for both instruments conducted prior to running
the experiment, the chosen spectral-envelope description
could be confirmed as capturing relevant features associ-
ated with timbral modifications. The main formants F1

for both instruments are located around 500 Hz and, as
illustrated in Fig. 2 for the bassoon, they remain relatively
stable across pitch and dynamic range. It also became ap-
parent that the players’ control over instrumental timbre is
constrained, more so for bassoon than for horn. The main
formants of horns are broader, less defined, and more vari-
able in location, which affords horn players greater timbral
control. For both instruments, the strongest variability is
achieved for changes in dynamic markings, which in the
chosen excerpt are limited to a single, notated change (e.g.,
crescendo-descrescendo) in measures 13-14.

3. RESULTS AND DISCUSSION

The strongest trends for effects between instruments and
the remaining factors should already become apparent from
inferential statistics computed on the behavioral and time-
averaged acoustic measures. Moreover, it will not be pos-
sible to address more complex effects found across the
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Figure 3. Bassoonists’ spectral envelopes and me-
dian acoustic-descriptor values per factor combination
‘voice’×‘role’×‘communication’. Formant description in
red: F1 (solid line), F →3dB (dashed line), and ∆L1vsRest

(numerical value). Global descriptors in green: Sc (line)
and Ss (numerical value).

time course of performances within the scope of this paper.
Given that amongst the acquired data some performances
were qualitatively better than others, the entire dataset with
three repetitions per condition is reduced by retaining only
the two performances per participant that yield the highest
self-assessed performance ratings. 2 Separate performances
are considered as independent cases, i.e., corresponding to
a total number of 16 cases (eight performers × two repe-
titions) per instrument. Mixed-model ANOVAs involving
the between-participants factor ‘instrument’ and the within-
participants factors ‘role’, ‘voice’, ‘room’, and ‘communi-
cation’ were computed, assuming a significance level of
α = .05. Both behavioral measures as well as the acoustic
measures F1, F →3dB , ∆L1vsRest, Sc, and Ss were consid-
ered as dependent variables in separate analyses. 3 We will
focus on a discussion of the main and two-way interaction
effects, as higher-order interactions are generally difficult
to draw conclusions from.

The time-averaged spectral envelopes of performances
and their trends across the acoustic descriptors are visual-
ized for bassoon and horn in Figs. 3 and 4, respectively. For
the sake of clarity, the data set has been collapsed over the
two levels of the ‘room’ factor, as this factor does not lead
to any statistically significant effects. The figures display
complete sets of time-averaged spectral envelopes across

2 Due to unforeseen technical issues during two experimental sessions,
data for a total of five trials were rendered unusable. However, these only
concern conditions for which two remaining repetitions were still available,
and these were used for the statistical analyses.

3 Shapiro-Wilk tests on case-based residuals per factor combination
yield slight deviations from normality. Across all seven dependent vari-
ables and 16 factor combinations, violations are obtained for 23% of tests
at α = .05, reducing to 6% at α = .01. Given the limited number of
violations and the known robustness of ANOVAs run on equal sample
sizes per factor combination, the statistics are still assumed to be valid.
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Figure 4. Hornists’ spectral envelopes and me-
dian acoustic-descriptor values per factor combination
‘voice’×‘role’×‘communication’. See caption of Fig. 3
for legend.

32 performances (16 cases × two rooms) across the eight
remaining factor combinations. Furthermore, the corre-
sponding median values for the acoustic descriptors are de-
picted as well; formant-related descriptors (red) and global
descriptors (green). It should be noted that differences in
medians computed across participants do not directly corre-
spond to how within-participant variables are evaluated in
repeated-measures ANOVAs, with the latter having greater
statistical power in detecting effects.

3.1 Main effects

The main effects for ‘instrument’ are obtained for all acous-
tic variables, but for none of the behavioral measures. This
suggests that the differences are based on systematic devi-
ations between the spectral envelopes of the instruments
alone, without bassoonists or hornists judging the assess-
ment of their performances differently. As anticipated and
illustrated in Figs. 3 and 4, the spectral-envelope profiles
for both instruments bear some resemblance in shape, while
notable differences do exist. The strongest differences are
found for the descriptors Sc [F (1, 30) =36.8, p < .001,
η2p =.551] and F1 [F (1, 30) =21.4, p < .001, η2p =.416].
While on average the bassoons’ main formants are located
slightly above 500 Hz, the horns’ F1s lie slightly below that
frequency, with an analogous frequency difference for Sc.
At the same time, the location of both instruments’ F →3dB
is more similar, reflected in a less pronounced difference
[F (1, 30)=7.0, p= .013, η2p =.190]. Differences for the de-
scriptors of relative magnitude differences yield comparable
statistical effect sizes (η2p).

With regard to within-participant factors, the strongest
effects are found for ‘voice’. The global descriptor Sc

[F (1, 30)=165.7, p<.001, η2p =.847] and the formant de-
scriptors F1 and F →3dB [F (1, 30)≈86.0, p<.001, η2p≈ ..740]
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bassoon horn
vc. f0 F1 F →3dB Sc F1 F →3dB Sc

A 100 100 100 100 100 100 100
B 84 96 97 92 80 89 87
C 63 98 97 91 78 88 86

Table 1. Comparison of frequencies between voice ex-
cerpts A, B, and C relative to A (in %), reporting median
descriptor values across all non-‘voice’ factor combinations.
The variable fundamental frequency f0 corresponds to the
lowest pitch in each excerpt.

exhibit strong effects, suggesting the presence of systematic
differences between unison and non-unison excerpts. As
is apparent in the figures, the descriptor frequencies shift
downward in the lower-pitched non-unison conditions. Ta-
ble 1 quantifies these frequency shifts across all performed
musical excerpts and compares them to the corresponding
shifts in pitch register. Variations in pitch are quantified
through f0 for the lowest pitch occurring in each voice ex-
cerpt (i.e., A, B, and C). Although the shifts in descriptor
values follow the same trend as for pitch, their deviations
remain more constrained compared to the maximum pitch
change of 37%. For the bassoon, the formant descriptors
are relatively stable and only shift downwards by about 3%,
whereas Sc decreases by about 9% for both non-unison ex-
cerpts. The horn deviations are most strongly pronounced
for F1, with a downward shift of 21%, whereas the re-
maining descriptors deviate by about 13%. Across both in-
struments, F →3dB exhibits the weakest dependency on pitch.
Overall, these differences appear to stem more from pitch
covariation inherent to instrument acoustics than intentional
spectral adjustments evoked by the performers.

In addition, the ‘voice’ factor yields the only main ef-
fects with behavioral measures. For the blend ratings, a
moderate effect is obtained [F (1, 30) = 13.3, p = .001,
η2p =.308], which is based on the fact that unison perfor-
mances lead to higher blend. The weak main effect for
musicians’ judgments of their performance [F (1, 30)=6.0,
p= .020, η2p =.168] is more complex in nature, as it involves
several interaction effects and therefore will be discussed
further in Section 3.2.

The ‘role’ factor yields main effects across all acous-
tic measures. The strongest effects are again obtained
for Sc [F (1, 30) =95.5, p < .001, η2p = .761] and F →3dB
[F (1, 30) =31.4, p < .001, η2p =.512], which yield lower
frequencies in the follower condition. This trend is clearly
observable in Figs. 3 and 4, especially in the unison condi-
tions that do not exhibit the confounding covariation with
pitch discussed above. For the unison conditions in Fig. 3,
the relationship between F →3dB and Sc is characterized by
the latter decreasing relative to the former. Given the sta-
ble main formant in this example, the downward shift in
centroid implies a reduction of spectral magnitudes located
above F →3dB . Relating these observations to the interac-
tion between performers as a function of their role assign-
ments, followers adjust their spectral envelopes towards
being slightly ‘darker’ in timbre than those of the leaders,

without affecting the main formant as much. Along these
lines, a single, weak main effect for the factor ‘commu-
nication’ with F →3dB [F (1, 30) =4.5, p= .041, η2p =.131]
provides another interesting insight. This effect suggests
that in the one-way-communication scenario, both musi-
cians perform more ‘timidly’ by exhibiting lower F →3dB .
In this scenario the leader is unable to hear the follower,
which implies that leaders tend to adjust their sounds to-
ward ‘darker’ timbres, in order to ensure the achievement
of blend under the communication impairment.

3.2 Interaction effects

There are several cases of the between-participants factor
‘instrument’ interacting with the within-participant factors
‘role’ or ‘voice’, which are mainly related to effects being
more pronounced for the horn, likely due its greater tim-
bral versatility. For example, the horn exhibits more drastic
differences along all acoustic measures as a function of per-
former role as well as being more prone to pitch covariation
across different voice excerpts. A similar case concerns
the descriptor Sc and an interaction effect ‘role’× ‘voice’,
which is explained by the augmented pitch separation for
non-unison voices inducing increased Sc differences be-
tween performer roles. In the interest of brevity, no detailed
report of the statistics will be made.

As mentioned above, the behavioral measure of individ-
ual performance judgments and the ‘voice’ factor yield
complex dependencies based on two-way interactions with
‘role’ [F (1, 30)=6.6, p= .015, η2p =.181] and ‘communica-
tion’ [F (1, 30) = 9.5, p= .004, η2p =.241]. Assuming that
the larger effect size conveys the more dominant influence,
only in unison performances do musicians rate their perfor-
mances higher for unimpaired, two-way communication,
whereas the ratings for non-unison performances appear to
be unaffected by communication directivity. The second
interaction involves musicians rating themselves as having
performed their role better as followers than as leaders in
unison conditions, with the inverse relationship holding
for non-unison performances. In addition, the modulating
three-way interaction with the additional factor ‘instrument’
[F (1, 30) = 4.9, p = .035, η2p = .139] motivates a rein-
terpretation with respect to non-unison performances. It
suggests that hornists acting as followers rate their perfor-
mances worse than as leaders, with the contrary applying
to bassoonists. This could be related to the playability of
the bottom non-unison voice, set in the low pitch register,
having been reported as being harder for horns than for
bassoons. Overall, these interdependencies suggest that
for unison performances, communication impairment has
a stronger effect on performers and that followers perform
their roles more satisfactorily than leaders.

4. CONCLUSIONS

Both acoustic and behavioral measures succeed in reveal-
ing effects of performer interaction within the context of
achieving timbre blend. The strongest implication for inter-
action is found across performer roles. Performers acting as
followers adjust their timbres to be ‘darker’ (i.e., exhibiting
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lower spectral centroids) compared to their performances
as leaders. In the leader role, musicians indicate being less
satisfied with their performances, implying that this role
bears a larger responsibility for the joint performance (e.g.,
regarding phrasing, intonation, timing). Hence, leaders may
be more critical of their own performance or the resulting
blend outcome. In the absence of acoustical feedback from
the followers, this increased responsibility may have also
encouraged leaders to orient their playing towards avoiding
‘brighter’ timbres.

Effects found between instruments and between voicings
covary with systematic differences in instrument acoustics
and pitch range. As a result, the assessment of their ac-
tual influence on performer interaction is difficult. This
translates to analogous difficulties regarding certain acous-
tic measures being more sensitive to one instrument or the
presence of pitch differences. However, the acoustical anal-
yses based on both pitch-invariant formant traits (e.g., F1,
F →3dB) and global spectral traits (e.g., Sc) aid in evaluating
the different contributions. Across both instruments, F →3dB
appears least affected by instrument and pitch covariation,
and it also leads to the only effect obtained for commu-
nication directivity. These observations agree with find-
ings suggesting that F →3dB serves as a perceptually salient
feature in correlating blend ratings with spectral-envelope
traits [10]. Furthermore, the behavioral measures convey
that performer interactions appear to be more critical in
unison than in non-unison contexts, as the perceived degree
of blend is also higher in the first case.

The reported findings will have to be considered prelim-
inary until further analyses are conducted on time-variant
datasets. These analyses are expected to provide more in-
sight into effects related to performer interactions that are
left concealed in the time-averaged representations as well
as allowing two other important influences on timbre blend
to be addressed, i.e., intonation and synchrony. While mu-
sicians may have succeeded in compensating for effects
between room-acoustical environments over the entire du-
ration of performances, the ‘room’ factor may still become
relevant on a finer timescale.

In conclusion, results from this experiment will be valu-
able to both performance and orchestration practice. For
musicians, rules to improve timbre blending between per-
formers could be deduced from effects obtained across
musical and acoustical factors. With regard to orchestra-
tion, its practitioners will benefit from knowing to what
extent performers can affect blend and, conversely, what
instrument-specific acoustic properties remain unaffected.
These constraints would only emphasize the crucial impor-
tance of selecting suitable instrument combinations.
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ABSTRACT

During recent years, games with a purpose (GWAPs) have
become increasingly popular for studying human behaviour
[1–4]. However, no standardised method for web-based
game experiments has been proposed so far. We present
here our approach comprising an extended version of the
CaSimIR social game framework [5] for data collection,
mini-games for tempo and rhythm tapping, and an initial
analysis of the data collected so far. The game presented
here is part of the Spot The Odd Song Out game, which is
freely available for use on Facebook and on the Web 1 .

We present the GWAP method in some detail and a pre-
liminary analysis of data collected. We relate the tapping
data to perceptual ratings obtained in previous work. The
results suggest that the tapped tempo data collected in a
GWAP can be used to predict perceived speed. I toned
down the above statement as I understand from the results
section that our data are not as good as When averaging
the rhythmic performances of a group of 10 players in the
second experiment, the tapping frequency shows a pattern
that corresponds to the time signature of the music played.
Our experience shows that more effort in design and dur-
ing runtime is required than in a traditional experiment.
Our experiment is still running and available on line.

1. INTRODUCTION

Collecting perceptual data from listening experiments is a
tedious task and the resulting data sets are typically small
(tens or hundreds of entries). On the other hand, in mu-
sic information retrieval (MIR), the size of music collec-
tions has exceeded 10 million songs (20m in the Spotify
Library 2 , 12m in iTunes store in 2010 3 ). To also gather
perceptual data on music on a larger scale, the concept
of games with a purpose (GWAPs), as defined in 2006

1 http://apps.facebook.com/spottheoddsongout/
and http://mi.soi.city.ac.uk/camir/game/

2 https://www.spotify.com/se/about-us/press/
information/

3 http://www.apple.com/pr/library/2010/02/
25iTunes-Store-Tops-10-Billion-Songs-Sold.html

Copyright: c©2013 Guillaume Bellec et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

by von Ahn [6], has been applied in some recent MIR
projects [1–3,5]. In comparison to traditional experiments,
the number of participants in a GWAP can be very large
at low cost (TagATune reached 14442 unique players [1]).
However, the design and evaluation of GWAPs requires
more effort than traditional experiments, as there is less
control over the experimental conditions and no human in-
teraction with the subject during the experiment.

Social networks have reached world wide popularity in a
relatively short time. Facebook was founded in 2004, and
had one billion monthly active users in December 2012.
Integrating a GWAP into social networks is thus an oppor-
tunity to reach potentially large numbers of players and to
gather contextual information.

This paper presents the tempo and rhythm sections of the
Spot The Odd Song Out Facebook game. This paper is
complementary to ongoing work [7] examining ’speed’ as
a perceptual intermediate used to model higher level se-
mantic attributes such as sadness vs. happiness.

In this work we address the following questions:

• Can we use a GWAP for collecting tapped tempo
data, and if so how?

• Is the distribution of tempi of each musical example
a good predictor of speed?

• If we let users tap rhythms freely along to music, can
we find relevant patterns in the data?

The remainder of this paper is organised as follows: Sec-
tion 2 describes the software architecture and the design of
the two mini-games used in this study. Section 3 presents
the collected results. Section 4 discusses the data analy-
sis and reflects on the method. Section 5 summarises the
results and discusses future work.

2. METHOD

In this section, we describe the application architecture as
well as the design for the tempo tapping and rhythm tap-
ping experiments with GWAPs.

2.1 Application architecture

The GWAP presented here is built with the CaSimIR API
and game framework. CaSimIR as well as the method and
the user interface to collect similarity data have been intro-
duced in [5].
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Game Server CASIMIR APIGame Client

- Multiplayer platform
- Points storage

Experimental DATA:
- Storage
- Optimisation

Other research 
projects

Figure 1. The application is organised in three layers: the
client, the CaSimIR game server and the CaSimIR API.
The API deals with the collection, organisation and selec-
tion of experimental data. The game server is separated
from the game client to make the multi-player game acces-
sible across different devices and operating systems.

The CaSimIR framework supports the development of so-
cial games with a purpose, providing a multi-player plat-
form, high scores, social network integration and compat-
ibility over a large range of browsers and devices. The
CaSimIR API is a machine-to-machine interface between
the game and the database systems, providing storage and
controlled selection of experimental data.

From the developer’s point of view, the client interface
structures the game as a sequence of mini-games, which
are part of the modular architecture. In the latest release of
the Spot The Odd Song Out game, we provide three mini
games studying different aspects of music: music similar-
ity, tempo and rhythm.

2.1.1 The CaSimIR API: the data collecting system

The CaSimIR API provides an interface between the game
and the database. Its two main purposes are firstly to gather
and relate the data from different instances and different
applications into a central database. Secondly the API also
manages the selection of stimuli in order to achieve in-
tended data properties, e.g. a certain number of subject
responses per stimulus, or connectedness of graphs in the
result coverage.

The API controls the number of responses for each song
and returns a song according to the intended data set prop-
erties. In the “tap tempo” mini-game, for example, the API
checks whether 70% of the songs have been annotated at
least 7 times. Once this condition is achieved, new songs
will be added to a subset and presented to future users.

Each time a player joins the game, they are authenticated
in the API according to a unique key related to their IP
or Facebook profile. Similarly, songs are uniquely refer-
enced from the MagnaTagATune [1] and the Million Song
Dataset [8] dataset. Thus data can be related by song and
user across different games, supporting the comparison and
aggregation of results from different studies.

2.1.2 The CaSimIR game framework

In comparison to traditional experiments or to web sur-
veys a GWAP has additional requirements. A game de-
sign needs more software functionality to provide an en-
gaging experience. Especially the cooperative aspect of
a multi-player increases enjoyability and involvement of
the subjects, but it poses further challenges: e.g. players
with variable latencies, different Java Script interpretation
across browsers and the need for AI-players to avoid empty
matches. CaSimIR aims to provide a modular multi-player
game environment that many projects can easily adapt to
their needs, without having to re-implement basic func-
tionalities such as data management, player synchronisa-
tion or social sharing.

Most existing GWAPs simulate a multi-player experience
or restrict interaction to a high score table. In contrast, Spot
The Odd Song Out features almost real-time interaction,
a display menu, high scores and Facebook integration in
addition to the mini-games for data collection. All mini-
games feature basic gaming functionality such as a naviga-
tion menu, volume control and the display of the status of
collaborating players.

To encourage players to return, options to customise the
game experience are provided: Players may use points earned
before to buy a new avatar or a genre in the music similar-
ity mini-game. We also provide high scores tables, modern
graphics, and social advertisement on Facebook to attract
players.

2.1.3 Client-side JavaScript and implementation issues

The game client runs on mobile devices and computers in a
web browser supporting HTML5. We use LimeJS 4 game-
framework and the Google Closure Library 5 to achieve
compatibility over many devices and browsers. By provid-
ing a tested multi-platform framework, CaSimIR makes it
easier for researchers to develop GWAPs.

2.2 Game experience and user interface

The user plays sequence of mini-games and against three
other players. Each mini-game corresponds to one exper-
iment, the current succession being “odd-one-out”, “tap
tempo”, “odd-one-out”, “tap rhythm”, “odd-one-out”, “tap
tempo”. The “odd-one-out” mini-game is described in [5].
During each mini-game, the player is asked to perform a
task within 60 seconds. Once all players have completed
the task, or on time-out, the results are compared and points
are awarded.

We aimed to make the games easily understandable with
short explanation. In the design stage we found that im-
plicit information from images, titles and overall layout
has a stronger influence on the user than lengthy instruc-
tions. Thus the tasks are described in few short sentences
in the first appearance of each mini-game and descriptive
images and animations are provided. In the first run of a
mini-game, the interface provides additional information.

4 http://www.limejs.com/
5 https://developers.google.com/closure/

library/
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Figure 2. Screenshot of the “tap tempo” mini-game.

The data of these runs is still recorded but can be identified
in evaluations.

We use rules and rewards to encourage “well-behaved”
responses, and avoid cheating or random behaviour. It is
also important not to bias the experiment by rewarding
very particular inputs. We use two approaches for award-
ing points: basing rewards on a parameter that is indepen-
dent of the studied parameter (all the tempo octaves cor-
respond to a correct answer) and rewarding agreements of
players.

The dataset for the experiments described here contains
audio for 100 ring tones synthesised from MIDI and songs
from the Million Song Dataset [8] and is used for both the
“tap tempo” and the “tap rhythm” mini-games.

2.2.1 The “tap tempo” mini-game

The “tap tempo” mini-game is designed to study how play-
ers tap a tempo. As the mini-game appears, an instruction
explains the task. It shows an animated icon of a finger
hitting the space bar of a keyboard and a note: “Listen and
tap a regular pulse like a metronome.“ A large icon of a
metronome in shown the background. The user listens to
the audio clip while clicking on the mouse or hitting any
key of the keyboard to reproduce the perceived pulse. De-
pending on the speed of the tapping, the timings of 8 to
16 taps performed by the player are recorded in ms. At
each tap a red flash provides visual feedback. The player
has to wait for the other players to finish the task before
being shown the results and the rewards. The tempo and
the relative precision error accumulated during tapping are
displayed in the evaluation.

For the evaluation we only use the intervals between the
taps, because the tap positions in relation to the music are
subject to latencies that we can not control. The four play-
ers are ranked and get 0, 5, 10 or 20 points, based on
the ranking score Rtempo, where lower values are better.
Rtempo is the weighted sum of the irregularity indicator
indreg and the imprecision indicator indpre

Rtempo = c1indreg + c2indpres (1)

We manually determined c1 = 0.1 and c2 = 0.1 so that the
reward is low for users with incoherent balance between
regularity and precision.

Figure 3. Screenshot of the “tap rhythm” mini-game.

Let vector t contain the times of the different taps, T the
median time difference of successive taps. We define the
irregularity indicator

indreg =

n∑
i

ti − ti−1

T
. (2)

The imprecision indicator needs to be minimal for oc-
taves of the tempo, thus we use

m = max(
T

Tref
,
Tref

T
) (3)

indpre = m− round(m) (4)

where Tref the reciprocal of the tempo. indpre will also
be minimal for integer multiples greater than 2, 3 authorise
a ternary subdivision of the bar and higher values did not
appear in our data.

In the results screen following each mini-game, the tempi
given by all the players are shown coloured from green to
red depending on the imprecision indicator. The relative
error in percent is displayed in the same way according to
the irregularity indicator. The earned points (0 - 20) are
also displayed.

2.2.2 The “tap rhythm” mini-game

The “tap rhythm” game is designed to encourage com-
plex rhythmic performances. The screen shows four circles
of different colours and a drum kit is shown in the back-
ground. On each of the circles we display the letter D,C,J
or N and a picture of a djembe and a double bass. By hit-
ting the keys for the letters users can tap different rhythms
or instruments which together form a rhythmic pattern. An
instruction bubble explains: “Reproduce the main rhyth-
mic pattern. Repeat it during 9 sec. Use four fingers.”
When the user hits one of the four keys, the corresponding
circle blinks as a visual feedback. After pressing play and
taping for the first time, the user’s taps are recorded during
nine seconds. When the rating is displayed an instruction
bubble explained that it is based on complexity and preci-
sion of the tapping sequence. The users are ranked accord-
ing to their performances and get from 0 to 20 points. In
the rating computation and the presented preliminary anal-
ysis, the recorded taps of the four keys are merged to a
single tap sequence.
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We define the precision indicator on the same way as
in the “tap tempo” mini-game, but the inverse of the fre-
quency maximising the squared spectrum of the tap se-
quence is used instead of the median time difference of
successive taps.

The complexity indicator ranges from 0 to 36 and is de-
fined as growing each time one of the three highest peaks
of the squared spectrum goes below one of the threshold
values 0.025,0.02,0.016 and 0.013. We manually deter-
mined these threshold values so that:

• a random performance will obtain the three peaks
under the thresholds values,

• an isochronous sequence will have the second and
third peaks lower than the thresholds,

• poly-rhythms - repeating a one bar pattern contain-
ing multiple intervals - are promoted by giving three
peaks over the thresholds.

The players are ranked according to the value:

Rrhythm =
1

1 + d1indcomp
+

1

1 + d2indpres
(5)

The constants d1 = 0.05 and d2 = 0.2 are determined
manually like the threshold values.

These rating functions are not optimised estimators of
tempo, rhythmic accuracy or complexity, but we feel that
they are meaningful enough to support enjoyable game play
and encourage participants to enter meaningful data.

3. PRELIMINARY RESULTS

The presented results are based on data collected during
an internal testing period of two weeks and one week fol-
lowing the official release on Facebook and the web. The
database contains 904 tempo estimations and 396 rhythm
estimations. These were provided by 114 Facebook users
and 50 further unique users of the web version. For the
majority of these users, attributes including age, gender,
country and further demographic data have been collected.
A measurement of the accuracy of the recording of the taps
led to an error below 30 ms in most cases and 100 ms in
one particular case.

3.1 Testers’ feedback

During the internal testing we provided computers and iPad
devices to the players, observed how they understood the
tasks and asked them for feedback following each match.
Testers found the game was enjoyable but the mini-games
would deserve more explanations to be understood from
the beginning. Many testers were unsure what to do in
the “tap rhythm” mini-game. Many non-musician play-
ers expressed that they felt the “tap rhythm” and some-
times the “tap tempo” games were too difficult. However,
testers with a musical background appreciated this part of
the game.

Figure 4. Comparison of tapped tempo (red line) vs
ground truth (blue dots). The red curve follows the domi-
nant tempo estimated from tapping. Red bars indicate the
standard deviation of the user data. The computed/expert
ground truth tempo and the tapped tempo agree in most of
the cases. Extreme tempi tend to be tapped as multiples or
divisions in a range of about 70 to 180 BPM.

3.2 Precision of tempo estimations

In order to filter out tap sequences given by players who
did not actually try to perform the intended task, we used
a set of “relevance thresholds”. With the following thresh-
olds for the “tap tempo” we obtain 46% of relevant tap
sequences:

• the average tempo is between 30 and 300 BPM

• the relative standard deviation of time intervals is be-
low 25%

• the maximum of relative deviation is under 35%

Players without musical background were sometimes adapt-
ing their taps with strong rhythmic changes or paused tap-
ping. Most of those values are filtered out.

We compared the tapped tempo to a computed ground
truth tempo: The tempo extraction is based on a percus-
sive onset detection in the audio files [9] and agrees with
the expert tempo for every song of the ringtones dataset,
which was mainly used in the “tap tempo” mini-game. For
the songs from the Million Song Dataset, we used tempo
estimations provided by The Echo Nest.

3.3 Tempo and perceived speed

By speed we mean subjective ratings of “how fast” a piece
of music is on a scale from “not at all” (0) to “very much”
(see [10] for more detail). The relation between speed
perception and tempo is not straightforward. E.g. the per-
ceived tempo for a certain music example is not necessarily
the same for all listeners. There are usually different met-
ric levels present at the same time in a piece, and the one
that is chosen as the most salient tempo can vary among
listeners. This can be referred to as the tempo octave issue
studied in [11–13]. For our study, we use three different
tempo estimates:
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Method R-Square
Centroid 0.59
Tapped 0.51
Expert 0.61

Table 1. Linear regression of the correlation between
speed and the listed variables.

• expert tempo - estimated by a music expert,

• tapped tempo - the most frequently tapped tempo
within the players,

• computed tempo - is determined by an algorithm [9].

Madison et al. [10] relate expert tempo to speed ratings,
concluding that speed can be modelled as a sigmoid func-
tion of an expert tempo. Elowsson et al. [9] find that a
computed tempo and a combination of custom features for
onset and computed tempo could predict up to 90% of es-
timations.

Levy [11] used a web based application to collect the
speed labelled as fast, intermediate or slow while asking
the user to tap the tempo. The purpose was to correct pos-
sible tempo octave errors in a computed tempo. Determin-
ing speed from the tempo distribution with this dataset is
not straightforward, because only three categories of speed
are used and a bias may be introduced by the subject being
asked to tap and evaluate speed at the same time.

3.4 Tempo distribution

For each song we computed the centroid of the tempo dis-
tribution given by the tapped estimations. Madison et al. [10]
relate expert tempo values to speed estimations with a sig-
moid curve. We computed a linear regression to compare
the correlation between perceived speed collected in a sep-
arate experiment described here [7] and the centroid of
the tapped distribution, the tapped tempo, and the tempo
ground truth. The results are summarised in a table 1 and
figure 5.

3.5 Rhythmic pattern identification

The data acquired from the second experiment are anal-
ysed as an onset list. Based on this list we compute a
main rhythmic pattern description: To each onset we as-
sociate a Gaussian function with a standard deviation of
50ms. We define the bar period as four beats in the ground
truth tempo. Inspired by the Beat Spectrum published by
Jonathan Foote et al. [14], for each offset we sum the cor-
responding positions of the tap signal over the bar periods
starting. This results in a pattern representing the accu-
mulated tap incidence over the time of one bar. We sum
over all performances to obtain an estimation of the main
tapped pattern of the song. This pattern is compared to a
pattern extracted using a computed onset list over the audio
file. In this experiment the offset is hard to define, as for
recorded taps, the time when audio playback starts could

Figure 5. Regression for tapped tempo centroids (squares)
and ground truth (filled circles). Regression of centroids is
plotted as red line (75 - 200BPM), and regression of tempo
ground truth is plotted as black dotted line. The X-axis
represent the speed and the Y-axis represent the tempo.

not be accurately recorded. We recreated the offset by as-
suming that the player taps on the first beat more than at
any other time in the bar.

4. DISCUSSION

4.1 General assumption on tempo estimations

In nearly all cases (figure 4), the tapped tempo data re-
produced the ground truth tempo given by computer and
experts, with tempo octave disagreements occurring only
for extreme tempi. When a tempo octave can be ambigu-
ous, indicated by more than one valid tapped tempo cen-
troid, non-musician players disagreeing with the ground
truth tend to prefer tempi close to 120 BPM.

4.2 Tempo distribution

The centroids of the tempo distribution and the expert tempi
in figure 5 show similar performances as indicators of the
speed ratings. Madison et al. [10] indeed describe a high
correlation between speed and expert tempo. We have not
yet collected sufficient data to allow for a more wide-ranging
comparison. The above correlations of tempo centroid and
expert tempo are still encouraging to infer perceptual speed
from tempo centroids. The tapped tempo itself proved an
inferior predictor of perceptual speed.

For musically trained subjects, tempo-related tasks ap-
pear relatively easy. On the other hand, non-musician sub-
jects had often great difficulty in reproducing the tempo.
MacDougall et al. [15] state that 120 BPM correspond to
a “resonant frequency” of the human body. Madison et al.
suggest the tendency of performing a tempo in a middle
range tempo between 90 and 150 BPM. A non-musician
may have trouble to produce a pulse out of this natural
range from a motor point of view. On the other hand, a mu-
sic expert will be able to pick a tempo multiple more rep-
resentative of his perception of speed in the musical piece.
This would explain both the disagreement of the crowd and
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Figure 6. (top) Rows depict onset times from “tap rhythm”
performances for 4 users, with colours identifying different
fingers. (bottom) Accumulated tap incidence pattern for a
single performance, red vertical lines locate predicted beat
positions.

the expert in extreme ranges as well as the higher correla-
tion for the expert tempo compared to the most frequently
tapped tempo.

4.3 Tapping free rhythms with four fingers

Many different behaviours can be identified in the collected
data (Figure 6). The task was designed to give interpre-
tive freedom to the player, in contrast to the very strict
“tap tempo” mini-games. Unfortunately, many players per-
ceived it as hard to understand and perform. This may be
due to the interpretative freedom and multi-limb and fin-
ger coordination as well as rhythmic skills required by the
task. The main aim of this second task was to identify
which metric positions would be emphasised by players.
This could have led to more complex or irregular patterns
such as syncopation, swing or groove, useful for extending
the regular notion of tempo.

During analysis we found that, by summing the main pat-
tern tapped by ten players or more, (see Figure 7) we con-
verge to a hierarchical description of the time division in
the bar. In most of the cases, this hierarchical descrip-
tion corresponds to the actual time signature a music expert
would assign to the music piece: a hierarchical sequence
of regular subdivisions of the bar is indicated by the most
represented onsets. With a standard 4/4 (four quarters) au-

Figure 7. Averaged tap incidence pattern over several per-
formances for 2 songs (top) Song “Damaged”, time sig-
nature 4/4, averaged over 10 data entries. (bottom) Song
“Baffo Natale”, time signature 12/8, averaged over 11 data
entries. The beat patterns are plotted as continuous graphs
(-). For comparison, the dashed curves (–) represent beat
patterns automatically extracted from audio.

dio stimulus, a clear majority tapped beat corresponds to
the first beat of the period. However, there is a bias here,
as we do not know the absolute time of each tap. To over-
come this problem we shift each performance’s maximum
of accumulated tap incidence to the beginning of the pat-
tern. The lower peaks represent the three other beats of the
bar. Eights are tapped as well, but no lower subdivisions of
the bar are represented.

Figure 7 compares players’ patterns to the patterns ex-
tracted from the audio clip. In most of the cases, the tapped
pattern corresponds very closely to the onset identified in
the song. Yet in a song containing twelve subdivisions per
bar, players agree on the song signature even if the auto-
matically extracted onsets barely finds this in the music.

In this preliminary study, we have considered the tapping
with the four fingers as having an equivalent role. This
representation led to an interesting result but did not repre-
sent rhythmic irregularity of some songs as expected. The
dataset could be further explored, e.g. by comparing play-
ers using 1,2,3 and 4 fingers or identifying reproduced pat-
tern in a particular bar of the song.
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5. CONCLUSIONS AND FUTURE WORK

In this paper we have described the CaSimIR API, a modu-
lar GWAP framework, and evaluated its applicability to re-
search in tempo, rhythm and speed using two experiments:
“tap tempo” and “tap rhythm”. The CaSimIR framework
allowed for the recording of taps in reasonable accuracy.
The programming of automated answer scripts via bots
should be discouragingly complex. This is due to integrity
testing of submitted user data and the general complexity
of the interaction with the game-style user interface.

5.1 Results of the tapping experiments

For “tap tempo”, we were able to collect a large dataset
of new tempo estimations, and found the collected data
strongly reproduced ground truth data, encouraging the use
of GWAP’s to collect more tempo information about mu-
sic, which could be used for inferring perceptual speed.

The “tap rhythm” mini-game also allowed for the collec-
tion of rhythmic patterns. Although we encountered some
usability problems, rhythmic patterns were extracted and
used for analysis by combining data from several users.
When asking a group of people to perform a rhythm freely
with four fingers, the data was relatively noisy. However,
the averaged pattern still converged to a regular hierarchi-
cal subdivision of the bar similar to a traditional time sig-
nature.

After a preliminary data collection period of a few of
weeks, we raise questions to be explored in future stud-
ies: In order to further investigate the relation of speed
perception and collected tempo data, we need precise nu-
merical results and more data. The exploration of the “tap
rhythm” dataset encourages further research into charac-
terising rhythm singularities or particularities in motion
related to the reproduction of rhythms. Results of these
experiments might also relate to other perceptual features
such as rhythmic complexity or clarity.

5.2 Lessons learned in using a GWAP

The CaSimIR framework addresses many challenges re-
lated to the GWAP approach: It provides a multi-player
platform, survey example selection, and manages data stor-
age allowing for combination of different data collection
ventures.

The game has reached enough players to observe inter-
esting details using this experiment. Although the mass
effect of a GWAP based experiment is appealing, it is not
granted: Many players did not return to the game, and it
proved hard to maintain a constant amount of players par-
ticipating. Other GWAPs such as HerdIt [2,3] have reached
a threshold of 500 players, TagATune even reached an au-
dience of almost 15,000 players. Reaching such a success
is a hard task and requires appealing game as well as a
long term effort including regular additions and advertis-
ing. The number of players needed for particular studies
may not justify the complexity of the application compared
to a study with large promotion [11].

As earlier games focussed on collecting textual annota-
tions, we show that recent technology allows for collect-

ing tempo data on a large scale of users. The tightly timed
game interaction promotes high attention of users, but means
of controlling the users’ context such as noise, type of
speakers and sound levels could not be applied. Although
we found the visual feedback helpful, we did not measure
the influence on the performer. Despite the preliminary
nature of our data collection and the moderate timing pre-
cision, our data still allowed to validate and identify human
perception specificities, which is appropriate for a prelimi-
nary study. Communication and interaction between users
is important and should be improved, as collaborative play-
ing might be a key to attract more players.
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ABSTRACT

In this paper three methods for the introduction of new
harmonic content to an acoustic signal are assessed. Each
method extracts the amplitude envelope of the fundamen-
tal frequency in a signal and applies it to a newly generated
harmonic. In one method this is achieved in the frequency
domain through use of the short time Fourier transform.
The other two methods process audio in the time domain
using either instantaneous amplitude and phase measure-
ments or single side band automodulation.

The results from a set of preliminary listening tests are
discussed and compared against objective measurements
based on psychoacoustic models. It is suggested that fre-
quency domain processing is too inaccurate where low la-
tency is required and a time domain approach is preferen-
tial. The two time domain approaches show similar lev-
els of accuracy, however it is considered that extracting the
amplitude envelope of harmonics other than the fundamen-
tal could increase accuracy. It is noted that the instanta-
neous amplitude and phase method provides more flexibil-
ity in order to achieve this.

1. INTRODUCTION

Harmonic excitation involves the introduction of new har-
monic content to an audio signal. This can be used to in-
crease the perceived quality of a piece of audio. They can
also be used to restore old recordings where the recording
medium may have deteriorated or was not able to capture
high frequency signals. [1].

Pitched sounds arise from resonant systems that produce
a harmonic spectrum with complex evolution and enve-
lope. In sound synthesis the detailed harmonic spectrum
can be produced by synthesising the harmonics separately
or by using higher order nonlinearities to process the fun-
damental. Chebyshev polynomials allow synthesising any
proportion of harmonics by applying a transfer function to
a full amplitude sine wave [2]. In the context of real-time
processing this technique is ideal for its zero latency, how-
ever it is not suitable for exciting harmonics of acoustic
sounds as the non-unit amplitude produces a varying mix-
ture of the desired and the lower order harmonics as shown
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Figure 1: The levels of unwanted harmonics introduced
when using Chebyshev polynomials to synthesise the 6th

order harmonic of sine waves with various peak ampli-
tudes.

in Figure 1.

A simple method to introduce new harmonic content to a
signal is through the application of a static nonlinear sys-
tem. The value of each input sample is mapped, using
some nonlinear function, to a new output value. Examples
of these types of systems are given in [3]. For a sinusoidal
input each of these systems will introduce a characteristic
set of harmonics. The order and amplitude of these har-
monics is defined by the nonlinear function used to process
the signal.

The downside of these methods is that more than one har-
monic is introduced to the signal. This is not desirable in
situations where only a specific harmonic is required. This
paper deals with methods by which single harmonics can
be introduced to a signal with as little extraneous frequency
content as possible.

Three such methods are be described in Section 2. The
methods are then assessed on their latency and their ability
to introduce specific harmonics into a pitched signal. The
later is done through use of perceptual listening tests, as
described in Section 3, and a perceptual distortion metric.
The results of these test are then compared in order to de-
termine which harmonic excitation method is most suitable
for real time applications.
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2. METHODS

The process by which individual harmonics will be intro-
duced to a signal can be broken down into four stages.

• Calculate the fundamental frequency of the input sig-
nal.

• Extract the amplitude envelope of the fundamental
in the input signal.

• Synthesise a new signal with the frequency of the
desired harmonic and the amplitude envelope of the
fundamental.

• Scale the synthesised harmonic and mix it back into
the original input signal.

Three different methods for the synthesis of new harmon-
ics are assessed in this paper. Each has been named ac-
cording to the mathematical transforms on which they are
based. The methods are based on:

• The Short Time Fourier Transform (STFT).

• Instantaneous amplitude and phase measurements (IAP).

• Single side band automodulation (SSB).

2.1 Short Time Fourier Transform

The STFT can be used to analyse the frequency content
of sequential time frames of the input signal. This frame
based processing introduces an inherent delay into the sys-
tem. The challenge with generating harmonics using the
STFT is to keep the frame length short enough to keep la-
tency from being perceptible whilst still maintaining enough
frequency resolution to accurately synthesise the new har-
monic [4].

The acceptable levels of latency in live music situations
are discussed in [5]. It is suggested that the acceptable level
varies from 1.4ms to 42ms depending on the instrument
and monitoring system. The frame length used needs to be
kept short enough such that the latency of the entire system
does not exceed these limits.

The phase vocoder technique can be used to scale the fre-
quency of the fundamental to the desired harmonic. This
is achieved by zeroing the bins for frequencies greater than
the fundamental in the DFT data for each frame. The new
frequency domain data can then be pitch shifted via a phase
vocoder to the frequency of the desired harmonic. It was
found that when using short frame lengths pitch shifting of
several octaves is not achievable due to the poor frequency
resolution. This means that higher order harmonics could
not be generated.

A simpler method is to calculate the amplitude of the fun-
damental frequency in each time frame. These values can
then be linearly interpolated in order to approximate the
amplitude envelope of the fundamental. This amplitude
can then be applied during the synthesis of a harmonic with
the desired frequency. This allows for a better accuracy for
short STFT frame lengths but it does rely on knowing the
frequency of the fundamental precicely. The samples used
in the listening tests discussed in Section 3 were created
using this method.

2.2 Instantaneous Amplitude and Phase

In this technique the fundamental of the input signal is iso-
lated using a low pass filter. The amplitude envelope of
the fundamental can then be found using measurements of
instantaneous amplitude.

The principles of instantaneous amplitude and phase are
discussed in [6]. To take these measurements the filtered
signal must be converted to its analytic form. In a true
analytic signal the real part will be the original input signal
and the imaginary part its Hilbert transform. Calculating
a true analytic signal is not possible without introducing
delay to the system. The more delay introduced the more
accurate the analytic signal will be.

A low latency alternative is to use a pair of all pass filters
whose phase responses differ by π

2 radians across a large
proportion of the audible bandwidth. An example of such
a pair of filters is given in [7]. Simple calculations can be
applied to the output of these filters to produce two new
signals. One is a signal which represents the amplitude
envelope of the fundamental (a[t]) and the other represents
the phase of the fundamental (φ[t]). Due to the filters used
the phase measurements will not represent the phase of the
fundamental in the the original signal. The change in phase
measurement with time however, will be consistent with
the frequency of the fundamental.

Once the measurements of amplitude and phase have been
taken, the new harmonic can be synthesised as done in [8].
Equation 1 shows the calculation for synthesising the nth

harmonic (h[t]).

h[t] = a[t] cos(nφ[t]) (1)

The accuracy of this method is largely dependant on the
order of the low pass filter used to isolate the fundamental.
The higher the order of the filter the better the isolation of
the fundamental. This leads to less extraneous frequencies
being introduced in the synthesis of the new harmonic.

2.3 Single Side Band Automodulation

With this technique, as with the IAP technique, the fun-
damental is isolated using a low pass filter and then fur-
ther filtering is applied in order to create an analytic signal.
This analytic signal can then be raised to a power in order
to scale its pitch to that of the desired harmonic. The un-
derlying principle is that of de Moirve’s formula (Equation
2) and single side band modulation.

(cos(x) + i sin(x))n = cos(nx) + i sin(nx) (2)

When signals are multiplied together (or multiplied by
them selves in this case) an upper and lower sideband are
created. These sidebands are comprised of various inter-
modulation frequencies which are the sums and differences
of the frequencies in the input signals. If the two signals are
converted to their analytic representations first only a sin-
gle sideband will be created. This is the concept of single
side band modulation as discussed in [9]. For the genera-
tion of harmonics the analytic signal of the fundamental is
multiplied with itself rather than a modulator wave. This
gives rise to the idea of single side band automodulation.
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Where z[t] represents the analytic signal for the fundamen-
tal the nth harmonic can be calculated using equation 3.

h[t] = Re(z[t]n) (3)

As with the IAP technique the accuracy of this process re-
lies on the fundamental being well isolated. The better iso-
lated the fundamental the less unwanted intermodulation
frequencies will be present in the synthesised harmonic.

An advantage of this technique is that the amplitude en-
velope of the fundamental does not have to be measured,
as such it requires the least computation of the discussed
methods. This is beneficial for real time processing but it
does cause inaccuracies in the amplitude envelope of the
generated harmonic. If the nth harmonic were generated,
its amplitude envelope would be the amplitude envelope of
the fundamental raised to the power n.

3. LISTENING TESTS

A preliminary series of subjective listening tests were un-
dertaken in order to assess the accuracy of each of the de-
scribed methods. The assessment criteria for the listening
tests were based on the following statement. “If some har-
monic content is removed from an audio signal and then
reintroduced through harmonic excitation. The newly pro-
duced signal should sound the same as the original signal”.
This is similar to the method by which the quality of per-
ceptual coding algorithms is assessed. This allows a listen-
ing test methodology similar to MUSHRA [10] to be used
effectively.

To create the stimuli for the listening test four different
audio samples were each processed in nine different ways.
The four unprocessed samples were:

• A bowed cello sample.

• A clarinet sample.

• A synthesised harmonic sound.

• A piano sample.

Each of the samples were of the instrument playing a sin-
gle sustained note. The synthesised sample has very lit-
tle energy at frequencies that are not its harmonics. This
should make it easier to excite harmonics in as the funda-
mental can be isolated more easily. Owing to the acoustic
nature of the other samples they have more energy at these
non harmonic frequencies.

In order to reduce the number of variables each of the
unprocessed samples was analysed prior to the creation of
the test stimuli. The fundamental frequency of each sam-
ple was measured along with the amplitudes of the third
through ninth harmonics. This information was then used
in the reconstruction of the signal. This allowed for any
inaccuracies which may be involved with real time cal-
culation of the fundamental frequency or amplitudes of
harmonics to be mitigated. Allowing the accuracy of the
harmonic generation algorithms to be assessed more thor-
oughly.

For each sample the third through ninth harmonics were
filtered out as shown by the spectrograms in Figure 2. This
was in order to cause significant degradation in the quality
of the sample such that the difference is plainly audible to
the majority of listeners. The second harmonic was left
in the signal in order to pose a challenge to the IAP and
SSB techniques. As mentioned previously the accuracy of
these methods is dependant on how well the fundamental
is isolated. Retaining the second harmonic allows for the
effects of filter order on the accuracy of the technique to be
assessed.

(a) Original Signal

(b) Signal with Harmonics Removed

Figure 2: Spectrograms showing the frequency content of
the cello sample before and after the harmonics were re-
moved.

The filtered signal was then processed using the tech-
niques discussed in Section 2. Each technique was used
to create three stimuli, each with different parameters. For
the STFT method, frame lengths of 50, 100 and 500 sam-
ples were used. For the IAP and SSB stimuli FIR filters
with kernel lengths of 50, 100 and 500 samples were used
to isolate the fundamental.

In line with the ITU recommendations [10] test subjects
were presented with all the processed versions of a par-
ticular sample at once along with a reference sample (the
unprocessed sample). Subjects could listen to the samples
in any order and as many times as they required. Subjects
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(a) Cello Sample Grades (b) Clarinet Sample Grades

(c) Synthesised Sample Grades (d) Piano Sample Grades

Figure 3: Mean grades and confidence intervals for each of the stimuli.

were asked to rate how well each processed samples recre-
ated the reference sample on a scale from 0 to 100. The
scale is shown in Figure 4.

0 20 40 60 80 100

Bad Poor Fair Good Excellent

Figure 4: Listening Test Grading Scale

Among the samples to be graded are a hidden reference
and anchor. The hidden reference is the same as the ref-
erence sample so should be given a score of 100. The an-
chor is the sample with the third through ninth harmonics
removed. As no attempt was made to reintroduce the har-
monics, this stimuli should be graded worse that the stimuli
which have undergone harmonic excitation.

4. RESULTS

4.1 Listening Test Results

Preliminary testing has been undertaken with six test sub-
jects. While this not a sufficient amount to provide confi-
dent assessments for each of the processing algorithms, it
was sufficient to find basic patterns in the accuracy achieved

by using a different method or changing the parameters of
the method.

The grades given by each test subject were normalised
to the range of 0 to 100. The mean grade given for each
stimulus was then calculated. As suggested in the ITU
recommendations [10] a 95% confidence interval was also
calculated for each stimulus.

Figure 3 shows the results obtained from this preliminary
testing. Each separate graph relates to a particular refer-
ence sample. The sample numbers relate to different pro-
cessing algorithms as follows:

1. The hidden reference sample.

2. STFT reconstructed sample with a frame length of
50 samples.

3. STFT reconstructed sample with a frame length of
100 samples.

4. STFT reconstructed sample with a frame length of
500 samples.

5. SSB reconstructed sample using a filter kernel length
of 50 samples.
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6. SSB reconstructed sample using a filter kernel length
of 100 samples.

7. SSB reconstructed sample using a filter kernel length
of 500 samples.

8. IAP reconstructed sample using a filter kernel length
of 50 samples.

9. IAP reconstructed sample using a filter kernel length
of 100 samples.

10. IAP reconstructed sample using a filter kernel length
of 500 samples.

11. The hidden anchor sample.

The error bars on each bar in the graphs show the 95%
confidence interval for that stimulus.

It is immediately apparent that the confidence intervals
are fairly large. For most of the stimuli this can be at-
tributed to only having a small cohort of test subjects.

Across the three acoustically recorded samples (Cello,
Clarinet and Piano) there is an increase in the perceived ac-
curacy of the algorithms as the frame or filter kernel length
is increased as seen in Figures 3a, b and d. The lowest

grades in each of these are given to the STFT process-
ing with the shortest window length. The IAP and SSB
techniques show greater accuracy while introducing less
latency. For the electronically synthesised sample how-
ever the different processing algorithms are all given sim-
ilar grades but with a wider variance in grades between
different test subjects.

This could be attributed to the synthetic nature of the
sample. There is very little energy in the sample at fre-
quencies that are not harmonics. This makes it easy to iso-
late the fundamental and generate accurate new harmonics.
Because of this even the processed samples which used
short filter of frame lengths will be accurate. As all the
processed samples sound fairly similar it is then difficult
for the test subject to determine where on the scale they
should be placed.

In the acoustic signals there is much more energy in fre-
quencies which are not harmonics. This makes it more
difficult to generate accurate harmonics so the differences
between stimuli with different frame or filter lengths are
more perceptible. As the subject is given a larger range of
accuracies to assess it is easier for them to place them on
the scale in a consistent manner.

The piano sample used is of special interest as its fun-

(a) Cello Samples (b) Clarinet Samples

(c) Synthesised Samples (d) Piano Samples

Figure 5: Rnonlin measurements for each of the listening test stimuli.

31

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



damental frequency is heavily damped. This led to the
second harmonic in the signal being the most prominent.
As the processing used relies on the amplitude envelope
of the fundamental to generate new harmonics this lead to
accuracy problems. Figure 3d shows that the reconstruc-
tion of the piano sample was not successful. The anchor
signal has been graded higher than all of the reconstructed
samples. The harmonic excitation has served to make the
filtered signal sound less like the original rather than more.

4.2 Rnonlin Results

The Rnonlin metric was developed for predicting the per-
ceived quality of nonlinearly distorted signals. The process
by which it is measured is described in [11]. The metric
uses psychoacoustic models and correlation measurements
to determine how similar a distorted signal sounds to the
undistorted signal. This is very similar to the assessment
criteria of the subjective listening tests.

The Rnonlin value for each of the listening test stimuli were
calculated and are shown in Figure 5. As the Rnonlin metric
returns a value between 0 and 1 the results have again been
normalised to the range of 0 to 100. These values are used
to support the results obtained from the listening tests as
the cohort of test subjects was not large enough to provide
conclusive results.

The results in Figure 5 support some of the correlations
noticed in Figure 3. It is shown that increasing the frame
or filter kernel length will produce a signal which is ob-
jectively more similar to the reference sample. It has also
shown that for samples with a prominent fundamental (Fig-
ures 5a, b and c) the reconstructed samples are more simi-
lar to the original than the anchor sample is.

Figure 5d again highlights the inaccuracies of the dis-
cussed methods when the input signal has a severely damped
fundamental. Some of the reconstructed samples are less
similar to the original than the anchor signal. This was
also apparent from the results shown in Figure 3d. Sec-
tion 5 will suggest methods by which this problem may be
overcome.

5. FURTHER ISSUES

5.1 Fundamental Amplitude Envelope

Scaling the amplitude envelope of the fundamental and ap-
plying it to the generated harmonic has caused some prob-
lems with accuracy. Most obviously in the reconstruction
of the Piano sample, where the fundamental was damped
and hence its amplitude envelope did not reflect those of
the higher order harmonics.

More subtle issues also arose in the reconstructed Cello
samples. Figure 6 shows spectrograms of the Cello sample
before and after reconstruction using the IAP method.

The decay portion of each of these samples are substan-
tially different from one another. In the original signal
(Figure 6a) the first and third harmonics decay in ampli-
tude over a longer period than any of the other harmonics.
As the reconstructed harmonics all use the amplitude enve-
lope of the fundamental they also have this extended delay

(a) Original Signal

(b) IAP Reconstruction (50 Sample Filter kernel)

Figure 6: Spectrograms showing the frequency content of
the cello sample before and after reconstruction with the
IAP method.

time, as shown in Figure 6b. This results in an audible
difference in the two samples during the decay phase.

A proposed method to increase accuracy in these cases is
to use the amplitude envelope of harmonics closer to the
one being generated rather than that of the fundamental. It
may also prove more accurate to use the amplitude enve-
lope of a harmonic with the same parity as the one being
generated. Note in Figure 6a that the first and third har-
monic have an extended decay but not the second.

This is only achievable using the STFT and IAP methods.
While the SSB method is fast to compute it does not mea-
sure the amplitude envelope of the harmonic used as the
input. It merely pitch shifts it by an integer multiple. This
means that unless the fundamental is used as the input not
every harmonic can be generated.

In the samples made for the experiment discussed in Sec-
tion 3, a large amount of the harmonics were removed prior
to harmonic excitation. This meant there was little choice
of harmonics to extract an amplitude envelope from. In a
more ideal situation the amplitude envelope could be taken
from the nearest harmonic with the same parity as the one
being generated. Thus an improvement that could be made
to the samples created for the experiment would be to use
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the amplitude envelope of the second harmonic to generate
the even order harmonics. Evidently further experimenta-
tion is needed to examine what effect this would have on
accuracy.

5.2 Post Filtering

Another issue apparent in the samples is the extra high or-
der harmonics that are generated using the SSB and IAP
techniques. Any extraneous frequencies in the isolated
fundamental will cause these higher order harmonics to
be generated along with the desired one. A simple way
to overcome this is to apply a band pass filter at the fre-
quency of the desired harmonic after it has been generated.
This post filtering process reduces the amount of extrane-
ous high order harmonics in the output signal as evidenced
in Figure 7. The extended decay seen at the higher frequen-
cies in Figure 7a are seen to be reduced by the application
of post filtering (Figure 7b).

(a) Without Post Filtering

(b) With Post Filtering

Figure 7: Spectrograms showing the frequency content
of the SSB recontruction of the Cello sample without and
with post filtering.

6. CONCLUSION

It has been shown that resynthesising harmonics using the
amplitude envelope of the fundamental gives varying de-

grees of accuracy depending on the input signal. It is sug-
gested that to increase this accuracy the amplitude envelopes
of harmonics closer to those being synthesised could be
used. Further experimentation is needed in order to deter-
mine the effect this will have on accuracy.

It is also suggested that in order to introduce new har-
monics to an audio signal with as little latency as possible,
time domain approaches (IAP and SSB) are preferential to
a frequency domain approach (STFT). From the prelimi-
nary listening tests conducted it is not possible to conclude
which of the two time domain approaches is superior.

Were latency the prime concern the SSB method would
be appropriate as it requires the least computation. If it can
be shown that using the amplitude envelope of harmonics
other than the fundamental to synthesise new harmonics
would improve accuracy, the more flexible IAP technique
would be more appropriate.
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ABSTRACT

An experiment has been conducted, in which ten pianists
with different skill rated the sound realism and scene ac-
curacy of a sequence of piano notes reproduced by a linear
loudspeaker array, whose channel positions were changed
during the test so to define different spatial patterns for the
same sequence. Only exaggerated channel permutations
produced significant downgrade of both qualities, further-
more without introducing appreciable changes of the ap-
parent listening position. These results suggest that an
accurate multi-channel reproduction of the frontal waves
may not be crucial for determining the perceived quality of
a digital piano.

1. INTRODUCTION

The quality of a digital piano depends on every design
aspect of the electronic instrument, and involves current
makers in a complex process that typically requires several
iterations along the development cycle. Even if optimal
source sounds are at hand, such as the output from a mod-
ern physically-based model or an accurate recording of the
pressure field taken in the proximity of the real instrument,
nevertheless the recipes that are needed to correctly display
these sounds to the pianist remain a matter of experience
and craft. Particularly in the case of piano sound repro-
duction, the rendering systems that have been proposed to
fill the distance between the source and the listening point
represent a manifold family spanning the history of digital
pianos, ranging from standardized loudspeaker configura-
tions [1] up to more recent arrangements aiming in partic-
ular at increasing sense of depth [2].

Performers declare to be especially sensitive to changes
in the sound coming from their instrument. On the other
hand, the role and importance played by the auditory cues
when a piano is perceived to sound different is not obvious.
In a pioneering paper, Mary Cochran claimed the insensi-
tivity of pianists to piano tone quality [3]. Galembo and
Askenfelt showed that a group of expert pianists lost much
of their recognition ability when listening to three different
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pianos, even if they had been able to identify them easily
and accurately during a previous performing task [4]. Re-
cent literature marks the difference existing between play-
ing as opposed to listening to a piano: such two activities
would in fact lead the pianist to develop different impres-
sions about the quality of the instrument [5, 6].

The proposed research considers a collection of accurate
multi-channel recorded piano notes, that were presented
to a group of pianists via a calibrated array of eight small
loudspeakers. Distortions were introduced during the lis-
tening test by exchanging the output channels, and sub-
jective impressions about the realism of the sound and the
auditory scene were gathered along with the apparent lis-
tening position. Our analysis suggests that only the largest
permutations, in a sense that will be defined later, cause
significant corruption of both qualities furthermore with-
out clear implications on the auditory scene description.

2. EXPERIMENT

The experiment was intended to pilot a broader research
aiming at clarifying whether pianists, while listening to re-
produced piano sounds in the inside of a normal room, are
able to discriminate differences in the spatial-temporal en-
velope of the partial components forming each note: if
proved to exist, this ability may concur to characterize the
apparent source width [7] of the instrument, and hence be
exploited to create auditory sense of depth and “spacious-
ness” similar to those pianists declare to experience when
they play a real (especially grand) piano.

The evolution in space and time of such envelopes mainly
depends on the radiation properties of the soundboard [8].
A linear array of small loudspeakers reproduces at least
some patterns of radiation at a central listening point in
front of the array, within a reasonably wide frequency range.
For this reason, this system represents a solution for achiev-
ing sufficiently accurate reproductions of a piano sound-
field in the performer’s listening area, at reasonable cost.

Before experimenting on the perception of differences in
the reproduced partial components, we decided to first test
whether a group of pianists was able to discriminate ma-
jor distortions in the soundfield: did the subjects judge the
distorted soundfields to be less consistent and/or to sound
worse, then it could make sense to increase the precision of
the reproduction and to focus the investigation on specific
perceptual effects, and the cues at their origin. Rather, our
experiment suggests that the pianists’ ability to discrimi-
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Figure 1. Recording session: microphone setup.

nate a reproduced piano soundfield distortion in terms of
perceived realism is lower than expected.

2.1 Stimuli

Six mezzo forte piano notes (C4, E4, C2, A4 major, D4,
C5) were selected from a huge collection, result of a record-
ing session made in July 2012 at the Viscount International
SpA semi-anechoic room based in Mondaino (RN) - Italy,
using a Seiler model 1849 piano that was tuned and pre-
pared for the occasion, and then played by a professional
pianist and sound designer consulting for the company.
Such notes were collated together one after the other, hence
forming a slow scale lasting about thirty seconds.

Fig. 1 illustrates the recording setup consisting of a lin-
ear array of 30 Bruel&Kjær model 4188 omnidirectional
microphones, calibrated and made available by Angelo Fa-
rina’s acoustics research group at the University of Parma,
along with an M-Audio multi-channel sound interface. The
array was positioned in such a way to capture the sound-
field in front of the cover, which was left open.

The reproduction was realized avoiding any signal pro-
cessing, by just reporting eight equally-spaced recorded
channels onto a single-pressure chamber linear array made
with 2.5” Ciare loudspeaker units, prepared by the same
research group. The array was driven by four t.amp model
S75 stereo power amplifiers. Before feeding such ampli-
fiers, the frequency range below 60 Hz was cut in each
channel by an 48 dB/octave linear phase digital filter, to
prevent injection of energy in the low frequency in the re-
spective loudspeaker; in parallel, the sound in the low fre-
quency range was isolated using a complementary filter,
accepting a downmix of the eight channels and then send-
ing its output to a Mitsubishi 8” active woofer standing
below the array. Note that the fundamental components of
all notes forming the scale have a frequency above 60 Hz,
hence none of them was mixed down into the woofer. Fi-
nally, the 8+1 output channels were played by Adobe Au-
dition running on a desktop PC, which drove an M-audio
Delta 1010 audio card.

Fig. 2 shows the alignment between the microphone and
the loudspeaker array, with the piano keyboard taken as
reference: the eight loudspeakers, hence, reproduced the

Figure 2. Microphone/loudspeaker alignment.

recorded channels no. 8, 10, 12, 14, 16, 18, 20 and 22,
respectively. From here on we will associate such recorded
channels respectively to the loudspeakers 1, 2, 3, 4, 5, 6, 7,
8, numbered left to right.

Ten reproduction patterns were prepared using the eight
channels: two of them were formed respectively by qua-
druplicating two, and duplicating four recorded channels
over the loudspeakers; the third one was left untouched;
the remaining seven were obtained by permutations of the
inputs. All patterns are listed in Table 1 below.

Pattern no. Configuration Label
1 11118888 Magnified stereophony
2 11336688 Magnified quadraphony
3 12345678 Original
4 21436587 Swapped adjacent ones
5 34127856 Swapped adjacent pairs
6 56781234 Swapped quadruples
7 73258146 Random no. 1
8 78345612 Swapped edge pairs
9 87654321 Reverse panning

10 51843276 Random no. 2

Table 1. Output patterns.

2.2 Subjects

Three professional pianists, four piano practitioners, and
three amateur sound engineers having regular contact with
the instrument were involved in the test, for a total of seven
male and three female (age 13-49, avg 33.2 years old). All
reported normal hearing ability and understood the Italian
language. On a scale ranging 1 to 7 they declared sufficient
(2) to excellent (7) knowledge of the instrument (avg 4.7).

2.3 Setup and method

The experiment was set up in a silent, dry room (approxi-
mately 3× 3× 2.75 meters) having walls partially covered
with damping foam. In addition to the active array, four
loudspeakers were located each at one corner of the room,
furthermore two additional eight-channel arrays were put
in front of the listener: the presence of such idle systems
added uncertainty in the listeners about the sources that
were going to be used during the experiment.

Subjects had to sit on a chair at the center of the room,
approximately one meter far from the loudspeaker array.
While sitting, every subject was given a tabletop computer
on which (s)he could respectively rate the realism of the
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Figure 3. Graphical user interface used for the tests.

sound RS and the realism of the auditory scene RA on a
scale ranging 1 (poor) to 7 (excellent), as well as choose his
or her own relative position RP in the virtual scene among
nine possible listening points, labeled A to I in alphabeti-
cal order (see Fig. 3). Before the test, the subject was given
verbal instructions about the scale (s)he was going to listen
to, as well as about the use of the graphical interface.

The test consisted of listening to a balanced random dis-
tribution of the patterns, each repeated five times for a total
of fifty trials. During each trial, every subject listened to
the musical scale and then rated RS , RA and RP by se-
lecting the corresponding value in the graphical interface;
finally, (s)he submitted her or his selections by pushing a
software button. After each submission a new trial was
started: this procedure allowed in particular for rating a
scale and go to the next one by submitting before the end
of the current sound, or conversely to pause at the end of
a trial by delaying the respective submission. In this way
subjects could optimize the flow of the test, which took
approximately 40 minutes to be completed.

3. RESULTS

Fig. 4 (above) plots, for each pattern in the respective box,
the median of the corresponding rate RS , the 25th and 75th

percentiles with their extreme datapoints, the average val-
ues and the outliers. The same boxes are displayed for each
pattern rated RA, below in the figure. Both plots have been

1
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1 2 3 4 5 6 7 8 9 10

output pattern
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S

1
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5
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7

1 2 3 4 5 6 7 8 9 10
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R
A

Figure 4. Boxplots showing median, 25th and 75th per-
centiles with their extreme datapoints, average values (‘◦’)
and outliers (‘+’) for each output pattern rated RS (above)
and RA (below), respectively. On either boxplot, the rect-
angle in dashed line gathers average values within the re-
spective HSD range, edged by the largest average.

obtained using the boxplot function of Matlab.
An informal inspection suggests the existence of a sig-

nificant decay in both sound and scene realism when the
patterns 7,8 and 10 are displayed. In fact, significant differ-
ences in the average subjective rates exist among patterns,
concerning in general the perceived realism of both sounds
(repeated-measures anova: F(9,81) = 8.2056, p = 1.44e-8)
and auditory scenes (repeated-measures anova: F(9,81) =
6.9137, p = 2.50e-7). However, only relatively few pairs
are actually responsible for such differences: concerning
sound realism, a Tukey’s HSD value amounting to 1.048
has been computed; concerning the realism of the scene,
we obtained a Tukey’s HSD value amounting to 1.031. Es-
sentially these results confirm the eye inspection of Fig. 4,
in which we have added a rectangle in dashed line in ei-
ther boxplot, grouping averages within the respective HSD
including the largest value: even if such rectangles do not
strictly split the respective averages in two categories based
on the significance of their paired differences — compare
for instance patterns 1 and 7 in both boxplots — never-
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theless they give a useful picture about the significance of
most paired comparisons.

The apparent listening positions exhibit a broad spectrum
of selections, that are summarized in Fig. 5. Also on the
light of the significance observed regarding the realism of
the auditory scene, no statistical analysis of such apparent
positions has been attempted: their dependence on the out-
put pattern is instead left to the reader’s qualitative inspec-
tion of the same figure, and will be informally discussed in
the next section.

Some subjects showed large deviations around their aver-
age ratings, at least for some patterns. Concerning sound
realism, the largest std values across subjects respectively
amounted to 1.79, 2.35, 1.0, 1.48, 1.79, 2.83, 1.95, 1.58,
0.89, 0.54; within subjects, the same values amounted to
2.05, 2.30, 2.30, 1.64, 1.67, 1.94, 1.73, 2.83, 2.34, 1.73.
Similar ranges were found for the realism of the scene.
During the final debriefing, all subjects expressed positive
surprise for the unexpected quality of the multi-channel
sound reproduction, and consequent satisfaction for their
participation in the experiment.

4. DISCUSSION

The first consideration concerns the perceived realism of
the sounds. Perhaps surprisingly, listeners did not judge
the realism as significantly lower but for few patterns. A
deeper look to Fig. 4 suggests that the random distributions
of the output channels were judged to form kind of “worst
category” in terms of sound realism. Pattern 8 suffers from
a lower average rating as well: this evidence may depend
on the higher degree of distortion coming from swapping
the edge pairs of the multi-channel output.

This consideration is reinforced by the results on the per-
ceived realism of the auditory scene, in which patterns 7, 8
and 10 again show significant differences against the other
stimuli. Together, both results suggest that listeners may
correlate the realism of the sounds with the realism of the
auditory scene, and, perhaps, downgrade both of them once
a distortion threshold is reached.

To quantify this idea in simple terms, we have computed
a figure of penalty Pi for each pattern i = 1, . . . , 10. The
penalty value is obtained by summing up nine “scores of
neighborhood”, one for each pair of subsequent loudspeak-
ers in the array, based on the following rule: a loudspeaker
pair scores zero if both speakers reproduce the same chan-
nel n; otherwise the same pair scores k − 1, in which k
is the distance between the reproduced channel numbers
(e.g., the pair scores k − 1 if its speakers respectively re-
produce the channels n and n+ k, or n+ k and n). In par-
ticular, it follows that a score of neighborhood equals zero
if the corresponding loudspeaker pair reproduces the same
channel as well as two adjacent channels irrespectively of
their orientation along the array. Based on this rule we can
compute a penalty for each pattern, and obtain the list ap-
pearing in Table 2, which is in fairly good correspondence
with the judgments on realism.

As a second consideration, let us instead consider the per-
ceived similarities among patterns. How can it be that pi-
anists declare to be so sensitive to the piano sound qual-

i 1 2 3 4 5 6 7 8 9 10
Pi 6 4 0 6 5 6 16 8 0 15

Table 2. Pattern penalties.

ity and the related auditory scene during playing, and con-
versely our group on average failed in discriminating the
realism of most multi-channel presentations once the order
of such channels was changed in the array? 1 An inspec-
tion channel-by-channel (see Fig. 6) of the temporal en-
velopes of the fundamental, first and second partial com-
ponent of the note C4 used for the stimuli, computed by
processing every channel of the array with a bank of het-
erodyne filters each fitted on a partial component by means
of a dynamic programming search algorithm [9,10], shows
the existence of local relative differences among the enve-
lope amplitudes amounting to 20 dB and more. Switching
such components among channels should translate in ap-
preciable changes of the resulting soundfield.

At least two arguments can be attempted to support this
relative insensitivity of our group to loudspeaker permuta-
tions in the array. i) A professional pianist who is asked
to evaluate a novel instrument definitely prefers to play in-
stead of simply listening to it: only if engaged in an in-
teractive task does the performer feel him or herself suffi-
ciently confident as an evaluator. It is possible that most
variations in the soundfield that were presented during the
experiment cannot be perceived by pianists, as far as they
are engaged in a passive listening task. ii) We speculate
that our subjects had specific listening practice with their
own piano, conversely they were not used to judge sounds
coming from an unknown instrument. Both arguments do
not contradict rigorous studies, investigating on the per-
ceived acoustics of a piano made through listening as op-
posed to performance tests, especially concerning judg-
ments on its tone and touch quality [5, 6].

The conclusions about the relative insensitivity of pianists
to loudspeaker permutations may be further supported by
the wide scope of apparent listening points (see Fig. 5) sub-
jects selected during the test. The breadth of this scope is
almost certainly also a result of the known tendency of sub-
jects to make, during a test, multiple choices from a palette
of possible answers when the stimuli actually do not bring
significant information for that choice. Mainly due to this
suspicion, the blocks in Fig. 5 hardly establish any sig-
nificance. However, some considerations are worth being
done: i) pattern 1 seems to establish a polarization around
the “I” position, that is, the center of the instrument. This
fact does not contradict the stereophonic nature of the cor-
responding stimulus, and the existence of phase cancella-
tions among identical components reproduced by multiple
speakers, hence the possible net loss of spatial cues other-
wise present in the other stimuli; ii) the random patterns,
i.e. 7 and 10, seem to evoke relative positioning of the pi-
ano off the frontal plane. This fact fits with the decreased

1 This evidence does not imply that pianists did not detect relative dif-
ferences among patterns. However measurable using a different exper-
imental procedure, at present their discovery would have provided few
insight for reproduction system design purposes.
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Figure 5. Apparent listening positions as functions of the output pattern.

Figure 6. Temporal envelopes, channel-by-channel, of the fundamental (left plot), 1st partial (center plot), and 2nd partial
(right plot) component of the note C4 used for the stimuli.

perceived realism of the auditory scene; finally, iii) revers-
ing the output positions in the array (pattern 9) apparently
does not translate in a significant impression of listening
to the piano from its back (i.e., from positions “D”, “E” or
“F”): this point is further commented in the next paragraph.

The perceived realism obtained by reversing the array
points to a discussion about the ability of pianists to per-
ceive the direction of arrival of a piano note. Traditional
studies in the field have investigated the question limit-
edly to the stereophonic or binaural reproduction of piano
sounds, furthermore considering the instrument as a con-
centrated sound source [12–14]. Even if stereophonic pan-
ning has been used in digital pianos to lateralize the notes
based on the key/hammer position, and the interactive ren-
dering of piano sounds through headphones is nowadays
object of more advanced studies [11], nevertheless in a
real piano only the initial noise of the key and hammer
mechanics before the strike, responsible for the creation
of the so-called touch precursor [15], may provide suffi-
cient lateralization cues to a listener sitting in front of the
keyboard: the following mechanical energy in fact is dis-
tributed across the bridge, soundboard and keybed while
radiating from the instrument. The observation of a 10 ms
temporal window containing the signal attacks for the note
C4, see Fig. 7, suggests that the relative delays and ampli-
tude differences among channels are not large enough to

elicit lateralization cues. On the other hand, should such
cues be present in the sound then their reversal along the
array would have created confusion in listeners who, con-
versely, in their answers neither downgraded the realism of
the corresponding auditory scene nor polarized the appar-
ent listening point toward the back of the instrument.

Similarly to the explanation given for motivating the sta-
bility of the perceived realism in presence of loudspeaker
permutations in the array, independently of the existence of
a precedence effect we conjecture that the localization of a
note during playing is locked to the corresponding key po-
sition by the somatosensory cues of hand proprioception.
Holding this locking effect, then the same position can be
robustly recalled during listening: this previously learnt
process may suppress the auditory localization of the same
note via lateralization cues, in particular resolving any po-
tential incongruence between the proprioceptive and audi-
tory information. All this said, a rigorous discussion of the
apparent listening points emerging from the tests appears
to have limited consistency here, and should rather be re-
inforced through future experimentation.

5. CONCLUSIONS

The results of this research may support decisions of dig-
ital piano makers, who are often challenged by the idea
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Figure 7. Temporal windows (10 ms) containing the attack
of C4 on each channel.

of increasing the number of frontal output channels as a
mean for improving the sound of their products. Hold-
ing some methodological immaturity as with many pilot
studies, in the limit of its findings this paper suggests that
such an option, and the consequent increase in hardware
costs, must be pondered carefully. Besides this qualitative
conclusion, the experiment leaves questions open concern-
ing its repeatability over broader pitch and dynamic ranges,
and across different subjective impressions. The scalabil-
ity of the results to different array sizes and technologies
should be dealt with as well. More in general, the exact
nature of the auditory cues linking the objective to the per-
ceived accuracy of a multi-channel piano reproduction is
still largely unexplored.

Acknowledgments

The authors acknowledge the support of Viscount Interna-
tional SpA during the recording session. The calibrated
microphones and recording equipment were courtesy of
Angelo Farina and his research team. Stefano Zambon
has permitted use of his software for computing the par-
tial component envelopes appearing in Fig. 6. Submission

of this paper was granted by the project PiaNo - Piano
from Nothing, funded by Intel Corporation, Santa Clara,
CA 95052.

6. REFERENCES

[1] R. D. Lawson, “Loudspeaker system for electronic piano,”
US Patent 5 789 693, Aug., 1998.

[2] S. Koseki, R. Mantani, N. Sugiyama, and T. Tamaki,
“Method for making electronic tones close to acoustic tones,
recording system and tone generating system,” EU Patent
EP1 357 538A3, Apr., 2003.

[3] M. Cochran, “Insensitiveness to tone quality,” The Aus-
tralasian Journal of Psychology and Philosophy, vol. 9, no. 2,
pp. 131–133, 1931.

[4] A. Galembo and A. Askenfelt, “Quality assessment of musi-
cal instruments - Effects of multimodality,” in 5th Triennial
Conference of the European Society for the Cognitive Sci-
ences of Music (ESCOM5), Hannover, Germany, Sep. 8-13
2003.

[5] A. Askenfelt, A. Galembo, and L. L. Cuddy, “On the acous-
tics and psychology of piano touch and tone,” The Journal of
the Acoustical Society of America, vol. 103, no. 5, p. 2873,
1998.

[6] W. Goebl, R. Bresin, and A. Galembo, “Once again: The per-
ception of piano touch and tone. Can touch audibly change pi-
ano sound independently of intensity?” in Proceedings of the
International Symposium on Musical Acoustics (ISMA2004),
Nara, Japan, Mar. 31 – Apr. 4 2004, pp. 332–335.

[7] D. Griesinger, “The psychoacoustics of apparent source
width, spaciousness and envelopment in performance
spaces,” Acustica, vol. 83, pp. 721–731, 1997.

[8] N. H. Fletcher and T. D. Rossing, The Physics of Musical
Instruments. New York: Springer-Verlag, 1991.

[9] M. Karjalainen, P. Esquef, P. Antsalo, A. Mäkivirta, and
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ABSTRACT

Music is deeply related to emotions. The relationships be-
tween musical modes and emotions are especially strong.
This has been recognized since the age of ancient Greece.
However, finding a mode that represents a specific emo-
tion well by psychological experiments is not easy because
there are so many modes mathematically. To deal with this
problem, we propose a method to generate modes that rep-
resent emotions with an engineering approach that uses re-
inforcement learning rather than a psychological approach.
Since this method gradually adapts a mode to a target emo-
tion, we can expect to obtain a desirable mode without enu-
merating all the possible modes one by one. However, this
method needs a human evaluator who trains the mode. In
consideration of reducing the burden on the evaluator, we
have designed four function approximation models of the
action-value function. As a result of a pilot experiment,
the best model could acquire modes that represent “high”
representational power of happiness, sadness and tender-
ness and “a little high” representational power of fear. Ad-
ditionally, we propose a musicological concept “interval
scale” that is derived from the second model and show a
possibility of applying it to compose music.

1. INTRODUCTION

There are strong relationships between musical modes and
emotions. If we think of bright major mode and dark minor
mode, then this is obvious. These relationships have been
recognized since the age of ancient Greece. In Plato’s The
Republic [1], Socrates argues, from an educational view-
point, that “sad” Lydian mode and “loose” Ionian mode
should not be used and that only Dorian and Phrygian mo-
des, which represent “courage” and “moderation” respec-
tively, should be used. 1 Aristotle argues in Politics [2] that
“aggressive” modes and “enthusiastic” modes can be used
in some cases, though Dorian is the most suitable mode
for educational purpose because it is the most “calm” and
“masculine” mode.

1 Greek modes mentioned here are different from church modes,
though the names are identical.

Copyright: c©2013 Tsubasa Tanaka et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

In recent decades, empirical research of finding corre-
spondence between modes and emotions has been con-
ducted. Kastner et al. [3] performed an experiment about
major and minor modes that used illustrations of facial ex-
pressions as emotion labels for children. All of the 38
subjects between the age of three and 12 could perceive
positive emotion from major mode and negative emotion
from minor mode. Hill et al. [4] conducted an experi-
ment in which the subjects listen to Bach’s melodies that
consist of Ionian or Phrygian modes and judge which of
the modes correspond to “salvation” or “condemnation.”
The results shows that Ionian mode corresponds to sal-
vation and Phrygian mode corresponds to condemnation.
Ramos et al. [5] mapped seven church modes to the two-
dimensional plane of valence and arousal and analyzed the
differences of emotions represented by respective church
modes. Thompson et al. [6] also found that atonality and
chromatic harmony are related to “anger.” In India, there
are many types of mode called “raga,” and it is said that
Indian musicians can generate various moods by selecting
ragas [7]. 2

A significant difficulty in studying the correspondence
between modes and emotions is that there are a very large
number of modes mathematically, though we can only in-
vestigate a small number of modes practically. Calculated
simply, the number of modes (as pitch class sets) in n-tone
tuning is 2n (4096 in 12-tone). Individual investigation is
needed for each tuning. Because of this difficulty, most
research only treats major and minor modes. Even the re-
search that treats seven church modes like [5] would be
approved as highly motivated work. Moreover, if we try
to deal with not only mere pitch class sets, but also modes
that include tendencies of melodic behavior, the number of
modes increases further.

To avoid this difficulty, we propose a new method based
on an engineering approach that uses reinforcement learn-
ing [9] rather than a psychological approach. In the ap-
proach, a mode gradually changes to adapt to a target emo-
tion by feedback given by a human evaluator. It is expected
that this method will enable us to obtain desirable modes
that represent target emotions well without investigating a
very large number of fixed modes. Another possible ad-
vantage of this method is that it may be adaptable to indi-
vidual, cultural, and educational differences.

2 Raga is not just a scale. It contains melodic behavior and is regarded
as a kind of mode [8]. We use the term mode as a pitch class set that
contains tendencies of melodic behavior.
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There are some previous studies about application of re-
inforcement learning in music. They include the research
[10] in which a musical agent adapts its parameters to the
degree of musical tension desired by a human evaluator.
The research [11] that intends to imitate polyphonic musi-
cal styles by reinforcement learning from musical scores is
also included in such studies. As far as we know, our re-
search is the first attempt to adapt modes to emotions using
reinforcement learning.

The outline of this paper is as follows: Section 2 ex-
plains the basic methods of reinforcement learning. Sec-
tion 3 presents our method of learning modes using rein-
forcement learning, and four function approximation mod-
els are introduced. Section 4 reports the results of pilot
experiment that evaluates and compares the performances
of the four models. Section 5 provides additional remark
and proposes a musicological concept “interval scale” that
is derived from the second model. Section 6 summarizes
this paper.

2. REINFORCEMENT LEARNING

2.1 Basic Framework

Reinforcement learning is an unsupervised machine learn-
ing techniques in which an agent in an environment learns
optimal actions through trial and error. The environment
repeats state transitions within the state space S at each
time step t. The agent observes the state s ∈ S of the en-
vironment and takes an action a ∈ A(s), where A(s) is
the set of actions available in the state s. Partly as a con-
sequence of its action, the agent receives a reward r from
the environment. The aim of the agent is to maximize the
return Rt defined as:

Rt =

∞∑
k=0

γkrt+k+1, (1)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount
rate.As γ approaches to 1, the agent takes future rewards
into account more strongly.

Using the received reward r as a clue, the agent estimates
the value of s, which is denoted by V (s), and the value
of the action a at s, which is denoted by Q(s, a). V (s)
is called the state-value function, and Q(s, a) is called the
action-value function. V (s) and Q(s, a) are defined as:

V (s) = E{Rt|st = s}, (2)

Q(s, a) = E{Rt|st = s, at = a}. (3)

In many cases, the environment satisfies the Markov prop-
erty and is called a Markov Decision Process (MDP), and
the state and action spaces are finite. In MDP, s moves
to the next state s′ by transition probability P ass′ when the
agent takes an action a. And then, environment gives the
agent the reward r whose expected value is Rass′ . Thus,
MDP is characterized by P ass′ and Rass′ .

On the other hand, the agent has a preference in selecting
its actions. The agent in a state s takes an action a by
probability π(s, a). This π is called the policy. The value

of π(s, a) is determined by referring to V (s) or Q(s, a),
in many cases, and the values of V (s), Q(s, a) and π(s, a)
are improved as time passes.

If P ass′ and Rass′ are known and γ < 1, V (s) and Q(s, a)
can be obtained by solving a simultaneous equation called
Bellman equation without trial and error. In many cases,
however, the environment is unknown, and the agent learns
through trial and error under π(s, a).

2.2 Bootstrapping and Episode

There are many types of reinforcement learning method in
unknown environments. The difference between the meth-
ods that update value functions step by step and the meth-
ods that update value functions after an episode ends is es-
pecially important for this study, where an episode means a
finite series of states experienced under π(s, a). This sub-
section explains the difference.

The general expressions of improvement of the value func-
tions are the following update rules that make V (s) and
Q(s, a) closer to the target Rt:

V (st)← V (st) + α[Rt − V (st)], (4)

Q(st, at)← Q(st, at) + α[Rt −Q(st, at)], (5)

where α is called a step-size parameter that determine the
degree of learning in one step. In general, calculating Rt
according to equation 1 in a naive manner would require
infinite time and is therefore impossible. To make it possi-
ble to learn V (s) in real time, the next equation

V (s) = E{Rt|st = s}

= E{
∞∑
k=0

γkrt+k+1|st = s}

= E{rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s}

= E{rt+1 + γV (st+1)|st = s} (6)

is used to approximate Rt. For example, TD(0), which
is a method that updates V (s) step by step, estimates Rt
indirectly from the immidiate reward rt+1 and V (st+1) by
the following update rule:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]. (7)

This type of method that estimate the state values indi-
rectly using the estimated values of other states is called
bootstrapping method. Similar methods can be taken for
Q(s, a), too.

On the other hand, there are some cases where the exact
calculation is possible. If the series {st}∞t=1 is divided into
the episodes that end in a finite time, Rt can be determined
after reaching the ends of the episodes. In such cases, we
can directly update V (s) andQ(s, a) that correspond to the
states and actions appearing in the episode using the actual
Rt by the update rules (4) and (5). This method is called
Montes Carlo method.

Bootstrapping methods include TD-learning, Q-learning
and Sarsa and the methods whose unit is an episode in-
clude Monte Carlo method and profit sharing. In this study,
we adopt Monte Carlo method.
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2.3 Function Approximation, Gradient Descent

To train Q(s, a) about all the pairs of (s, a), long time and
large data are required. Therefore, generalization of ex-
perience is important. Generalization makes it possible
to estimate Q(s, a) of which (s, a) has not been experi-
enced yet to an extent. It is accomplished when Q(s, a)

is approximated by a function of a parameter vector ~θ =
(θ0, θ1, · · · , θn−1)T whose number of the elements n is
smaller than the number of combinations of s and a.

A linear approximation is one of the simplest in such
function approximations. It approximates Q(s, a) using a
feature vector ~φ(s, a) = (φ0(s, a), φ1(s, a), · · ·φn−1(s, a))T

that corresponds to ~θ, and Q(s, a) is expressed as:

Q(s, a) = ~θT · ~φ =

n−1∑
i=0

θi · φi(s, a). (8)

When Q(s, a) is generalized by ~θ, gradient descent is of-
ten used to update ~θ. It moves the parameters to the di-
rection that decreases the objective function most steeply
to minimize it. In this study, the objective function is the
square error of the difference betweenRt andQ(s, a). The
gradient of the square error is calculated as:

∇~θ[Rt −Q(s, a)]2 = −2[Rt −Q(s, a)]∇~θQ(s, a). (9)

From this equation, the update rule is expressed as:

~θ ← ~θ + α[Rt −Q(s, a)]∇~θQ(s, a). (10)

In the case of the linear approximation (8), the gradient can
be easily calcurated as:

∇~θQ(s, a) =

(
∂Q(s, a)

∂θ0
, · · · , ∂Q(s, a)

∂θn−1

)T
= (φ0(s, a), φ1(s, a), · · ·φn−1(s, a))T

= ~φ(s, a), (11)

then the update rule is expressed as:

~θ ← ~θ + α[Rt −Q(s, a)] · ~φ(s, a). (12)

3. PROPOSED METHOD

3.1 Target

The aim of this study is to obtain a “mode that represents
the target emotion E.” We define this concept as follows:

Definition 1. 3 Let us consider tone series (ordered list) e=
(s1, s2, · · · , sT ) that is generated from a first order Markov
chain M on the state space S, where S is the pitch classes
of n equal temperament Zn = {0, 1, 2, · · · , n− 1}. When
e is generated repeatedly from M and a human evaluator
evaluates that e represents the target emotion E well on
average, we call M a “mode that represents the emotion
E,” and denote M by ME .This definition makes possible
to include the tendencies of melodic movements and dis-
tinguish a “mode” from a “scale” that is represented by a
mere probability distribution of the pitch classes.

3 For the sake of simplicity, we treat only the equal temperaments (es-
pecially that of 12 tone in the experiment).

3.2 Monte Carlo Method

As was mentioned in subsection 2.2, we apply Monte Carlo
method to obtain ME . This subsection explains how to
apply it.

The action a ∈ A(s) (∀s ∈ S, A(s) = Zn) is defined
as the melodic interval from the current pitch class s to
the next pitch class s′. s′ is determined uniquely by s and
a (P ass′ = 1), and it equals (s + a) mod n. Tone series
e = (s1, s2, · · · , sT ) is used as the episode. This e is
stochastically generated by π(s, a) that is defined later. Af-
ter each episode finishes, the human evaluator decides the
reward rT . Because the evaluation is for all of the states
and actions in e, γ is set as 1. Based on this rT , V (s) and
Q(s, a) whose s and a appear in the episode are updated
by the rules (4) and (5).
rT is an integer between -3 and 3 that corresponds to the

degree of how much representational power of the emotion
E the tone series e has. The meanings of these values are:
3 (very high), 2 (high), 1 (a little high), 0 (neither high nor
low), -1 (a little low), -2 (low), -3 (very low). Under such
rewards, the state-value function V (s) reflects the neces-
sity of s to express the emotion E and Q(s, a) reflects the
necessity of the melodic movement a from s to s′.

Here, let us consider the meaning of the policy π. π(s, a)
is equal to Pr(s′|s), the transition probability from s to
s′. Therefore, π derives a Markov chain. After the con-
vergence of learning an emotion E and the achievement
of a high average score, the Markov chain derived from π
becomes ME , a mode that represents the emotion E.

3.3 Policy

In this study, π(s, a) that is used to generate the episodes
is defined as follows:

π(s, a) =


Q(s,a)∑

u(∈A(s)) s.t. 0<Q(s,u)

Q(s,u) if 0 < Q(s, a)

0 otherwise.
(13)

By this definition, the transition with the positive action-
value Q(s, a) will appear according to the probability pro-
portional toQ(s, a), and transition with the negative action
value will not appear at all. This policy is expected to elim-
inate the transitions that are not necessary to represent the
target emotion. However, once Q(s, a) becomes under 0,
a stops appearing at s. Therefore, it is necessary to prevent
the failure to appreciate Q(s, a) by ill fortune. To prevent
it, the initial values of Q(s, a) are set as optimistic values
(3.0, for example).Optimistic initial values are also known
to encourage broad exploration of the state space and ac-
tion space [9].

3.4 Function Approximation Models

The domain of Q(s, a) is the direct product of the state
space and the action space, and Q(s, a) has n2 values to
learn in this case. Learning all these values is inefficient.
In this section, therefore, we build four function approx-
imation models. The performances of these models are
compared to each other in the next section.
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In these function approximations, a parameter vector ~θ
that is common to four models is introduced under the as-
sumption that the melodic interval a has its own worthiness
not depending on the pitch class s. This ~θ consists of 2n
parameters. The parameters from θ0 to θn−1 are used to
represent the worthinesses of the pitch classes from 0 to
n−1 respectively and the parameters from θn to θ2n−1 are
used to represent the worthinesses of the melodic intervals
from 0 to n− 1 respectively.

3.4.1 Model 1: Pitch Class Model

This first model approximates Q(s, a) by disregarding the
melodic interval a. Only the parameter for the pitch class
s′, which is the state reached after the transition, is taken
into account. In the linear approximation (8), the feature
vector of this model is expressed as follows:

φi(s, a) = φi(s
′) =


1 if i = s′

0 otherwise.

(14)

The action-value function of this model is expressed as:

Q1(s, a) =

2n−1∑
i=0

θi · φi(s, a) = θs′ . (15)

In this model, the Markov chain derived from π doesn’t
depend on the current state s, and it is degenerated to the
probability distribution Pr(s′).

3.4.2 Model 2: Melodic Intervel Model

In contrast with the first model, the second model approx-
imates Q(s, a) by disregarding s′. Only the parameter for
the melodic interval a is taken into account. In the linear
approximation (8), the feature vector of this model is ex-
pressed as follows:

φi(s, a) = φi(a) =


1 if i = n+ a

0 otherwise.

(16)

The action-value function of this model is expressed as:

Q2(s, a) =

2n−1∑
i=0

θi · φi(s, a) = θn+a (17)

In this model, the Markov chain derived from π doesn’t
depend on s or s′, and it is degenerated to the probability
distribution Pr(a).

3.4.3 Model 3: Additive Model

The third model approximates Q(s, a) by the sum of the
parameters for s′ and a. In the linear approximation (8),
the feature vector of this model is expressed as follows:

φi(s, a) =


1 if i = s′ or i = n+ a

0 otherwise.

(18)

The action-value function of this model is expressed as:

Q3(s, a) =

2n−1∑
i=0

θi · φi(s, a) = θs′ + θn+a (19)

3.4.4 Model 4: Multiplicative Sigmoid Model

The fourth model is designed to have a synergetic effect
of the parameters for s′ and a. The action-value function
is approximated by the parameters for both s′ and a trans-
formed by the sigmoid function:

σ(θ) =
1

(1 + e−θ)
. (20)

The sigmoid function has a pair of horizontal asymptotes.
It approaches to 0 as θ → −∞ and approaches to 1 as
θ → ∞, respectively. Using these properties, the range of
σ(θ) can be controled. The action-value function of this
model is expressed as:

Q4(s, a) = 6σ(θs′)σ(θn+a)− 3. (21)

Here, we determined the values of the coefficient and the
intercept so that Q4(s, a) is bounded as −3 < Q4(s, a) <
3. Because the derivative of the sigmoid function is ex-
pressed as:

dσ(θ)

dθ
= σ(θ)(1− σ(θ)), (22)

the gradient ofQ4(s, a) can be calculated using the follow-
ing partial derivative:

∂Q4(s, a)

∂θi
=



6σ(θs′)(1− σ(θs′))σ(θn+a) (i = s′)

6σ(θn+a)(1− σ(θn+a))σ(θs′) (i = n+ a)

0 (otherwise).

(23)

4. PILOT EXPERIMENT

In order to examine whether learning musical mode is pos-
sible with the proposed method and compare the parfor-
mances of four models, the first author (he is studying mu-
sic at the university) carried out a pilot evaluation experi-
ment as an evaluator. n was set as 12. V (s) is also learned
by the update rule (4) to see dominant pitch classes.

4.1 Experimental Conditions

As the target emotions, happiness, sadness, fear, and ten-
derness were selected by referring to the circumplex model
adopted by Juslin et al. (Fig. 1 [12]). In this model, many
categories of emotions are arranged on a two dimensional
plane of valence and arousal. The four emotions are the
representatives of the respective quadrants of the two di-
mensional plane.

The tone series e used as the episode was set up as fol-
lows: T was set up as a small number, 5, because there is
a fear that learning does not progress speedily if the length
of a tone series T is too long. Tonic was set as C (MIDI
number 60) and the note at the beginning of the episode
was fixed as the tonic. This is because there is a fear that
the learning does not progress due to a confusion of keys.
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Low!arousal�

High!arousal�

Posi7ve!
valence�

Nega7ve!
valence�

Surprise"Astonishment�

Interest"Expectancy�

Happiness"Ela7on�

Pleasure"Enjoyment�

Anger"Irrita7on�

Fear"Anxiety�

Disgust"Contempt�

Shame"Guilt�

Sadness"Melancholy�

Boredom"Indifference�

Love"Tenderness�

Calm"Contentment�

Nostalgia"Longing�

Figure 1. Circumplex model of emotion categories.

In order to evaluate the episodes accurately, each episode
was repeated until the evaluator was able to become con-
fident of the evaluation. When the evaluator felt that the
learning reached a deadlock, the learning was ended. We
adopted this deadlock as the definition of the convergence.
twelve pitch classes were represented by the MIDI num-
bers from 60 to 71. The step-size parameter α was set as
0.1. The durations of the notes were fixed as 300ms, and
the timbre of the piano (MIDI) was used.

4.2 Results

4.2.1 Reward Transition

The learning processes about the respective emotions by
the four models are shown in Fig. 2. The mean rewards
of the latest 10 episodes are shown by the lines. We can
observe that there are tendencies of convergence toward
higher mean rewards than 0 by around the 150th episode.
This shows the success of the proposed method to a cer-
tain degree. However, the melodic interval model receives
smaller rewards (between 0 and 1, in many cases) than
other models. This probably indicates that pitch classes
have more important roles in representing the emotions
than melodic intervals.

The pitch class model and the multiplicative sigmoid mo-
del show comparatively good performances in every emo-
tion. They received “high” mean rewards around 2 except
for “fear,” and they received “a little high” mean rewards
around 1 in “fear.” The multiplicative sigmoid model dom-
inates the pitch class model in “tenderness.” However, the
pitch class model converges earlier than the multiplicative
sigmoid model. This might be because the former model
uses fewer parameters (the parameters for the states s are
virtually not used.).

4.2.2 Acquired Modes

The parameters of ~θ after training are shown in Fig. 3.
From this figure, it is observed that the multiplicative sig-
moid model (blue) shares the features of ups and downs of
the black pitch class model (from θ0 to θ11) and the fea-
tures of the red melodic interval model (from θ12 to θ23).
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Figure 2. Mean rewards.

While each element of the gradients takes 0 or 1 in other
models than the multiplicative sigmoid model, the multi-
plicative sigmoid model has interdependences between the
states and the actions in its gradient. This interdependence
may be the reason of the dominance of the multiplicative
sigmoid model. However, the shapes of ups and downs
from θ0 to θ11 are more clear than those of θ12 to θ23. This
may also suggest that pitch classes are more important in
representing emotions than melodic intervals.

Fig. 4 shows the value function V (s). The set of s whose
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Figure 3. ~θ after training.

V (s) is clearly larger than 0 means the aspect of the mode
as a “scale,” which consists of only pitch classes. These are
represented by the vertical dotted lines (these lines refer to
the multiplicative sigmoid model, which has the best per-
formance). We can observe that the mode of happiness is
identical to Mixolydian mode (on C). The mode of sadness
is a Locrian mode to which the pitch D and G are added.
The mode of fear can be interpreted as a mode of sadness
to which E and B are added. The mode of tenderness is
identical to a subset of Ionian mode (major mode).
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Figure 4. V(s) after training.

In the research [5], music samples of the combinations
of three tempi and seven church modes are mapped to the
two-dimensional plane of valence and arousal. Although it
is not easy to interpret the results of the research because
of the difference of tempo, the results can be interpreted,
at least, that Mixolydian mode and Ionian mode have high
arousal, and the Locrian mode has low arousal. This is con-
sistent with the results of our experiment that the mode of
happiness, which is considered to have high arousal, was
Mixolydian mode and the mode of sadness, which is con-

45

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



●

●

●

● ●

●

●

●

●

● ●

●0
1

2
3

0 1 2 3 4 5 6 7 8 9 10 11

Yousenpou

s

  
 V
(s

)

● ●

● ● ●

●

●

● ●

●

●

●0
1

2
3

0 1 2 3 4 5 6 7 8 9 10 11

Insenpou

s

  
 V
(s

)

Figure 5. Japanese traditional modes (ascending and de-
scending forms are merged) [8]. Yosenpou (bright mode)
is embedded in the mode of happiness and insenpou (dark
mode) is embedded in the mode of sadness. The pitch class
sets of the modes of happiness and sadness are represented
by the vertical dotted lines.

sidered to have low arousal, was similar to Locrian mode.
However, our result that the mode of tenderness was sim-
ilar to Ionian mode appears to be inconsistent with the re-
sult of the research. Considering that the mode of tender-
ness was a subset of Ionian mode and not the exact Ionian
mode, a hypothesis that not using all of the pitch classes of
Ionian mode was effective to lower the arousal and to rep-
resent tenderness can be suggested. Also from the modes
acquired by our experiment, we can make hypotheses that
the number of pitch classes is correlated with the height of
the arousal and that the number of pitch classes is inversely
correlated with the height of the valence. Further investi-
gation of such relations between the constitutions of pitch
classes and the types of emotions is an future subject.

Interestingly, a pair of traditional Japanese modes, “you-
senpou” and “insenpou,” are embedded in the modes of
happiness and sadness, respectively. “Yousenpou” means
“bright mode” and “insenpou” means “dark mode” in Japa-
nese. These modes are shown in Fig. 5. These results may
suggest that the fact that the evaluator was Japanese af-
fected the results and that there is a consistency between
the culture and the results of the training due to the adap-
tive method. It will be also valuable to investigate personal,
cultural, and educational differences by a larger scale ex-
periment in the future.

5. ADDITIONAL REMARK

Although the experiment in the previous section indicates
that the second melodic interval model is inferior to the
other models, it works to some extent. Moreover, it is mu-
sicologically very important. In this section, we present
the concept “interval scale” derived from the second model
and show that the concept can be an alternative basis of
music composition (especially in atonal music).

The concept “scale” usually just means a constitution of
pitch classes, and the constitution of melodic intervals is
of second importance in many cases. However, we define
“interval scale” as a concept that reversed it. That is to say,
“interval scale” just means a set of melodic intervals, and
the constitution of pitch classes is not restricted. “Interval
scale” is exactly the object to which we tried to obtain by
using the second model. To distinguish “interval scale”
with usual scale, we call an usual scale a “pitch scale.”
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Figure 6. The opening of Ligeti’s Étude No. 2.

It is obvious that a musical piece based on a pitch scale
exists. However, is there a musical piece based on some
interval scales? Ligeti’s piano piece “Étude No. 2: Cordes
à vide” may be an good example. The title means “open
string.” As is guessed from it, ascending and descending
perfect fifths (intervals of 5 and 7) are used all over the
piece. Fig. 6 shows the opening of this piece.

The collection of all the melodic intervals between adja-
cent eighth notes in Fig. 6 is {5, 6, 7, 8}. The number of
the elements of this set is small, and there is a feature that
the elements are consecutive numbers. The interval 6 and
8 are adjacent to 5 and 7 respectively, and 6 and 8 make
it possible to transpose the motions of perfect fifths mildly
and play a role of preventing fixation of the melodies.

On the other hand, the pitch scale of this part of the piece
includes all the pitch classes, and it is, therefore, chromatic
scale. When a piece is based on an interval scale, it is not
accidental that a pitch scale becomes the chromatic scale.
That is because the interval 7, for example, can generate all
the pitch classes passing through the circle of fifths. Con-
versely, even if a piece of music is atonal music, it is con-
ceivable that an characteristic interval scale is implicitly
used in the piece. The Ligeti’s piece shows that interval
scale can be used as a basis of composing atonal music.

To characterize interval scale from the standpoint of emo-
tion, we define the following pair of concepts that are re-
lated to the first and the second models.

Definition 2. After the reinforcement learning of the emo-
tion E by the first model has converged on a mean reward
larger than 0, we call {s ∈ Zn|θs > ε} “a pitch scale that
represents the emotion E,” where ε is an adequate thresh-
old.

Definition 3. After the reinforcement learning of the emo-
tion E by the second model has converged on a mean re-
ward larger than 0, we call {a ∈ Zn|θa+n > ε} “an in-
terval scale that represents the emotion E,” where ε is an
adequate threshold.

By these definitions and the results of the experiment,
Mixolydian mode, for example, is a pitch scale that rep-
resents happiness and the interval set {2, 3, 5, 7, 10} is an
interval scale that represents happiness. Although finding
an existing music piece based on specific interval scales
will be difficult, the proposed method may be useful to se-
lect appropriate interval scales for emotional expressions
in composing music from now on. What is important is
that interval scales may be useful to express emotions even
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in atonal music.
In reinforcement learning, by the way, the state-value func-

tion V (s), which disregards the action a, and the action-
value functionQ(s, a), which depends on both s and a, are
used. However, why is the following action-value function
W (a), which disregards s, not used?:

W (a) = E{Rt|at = a}. (24)

This is probably because, in most of the problems of re-
inforcement learning, reaching the goal states is treated as
the purpose and the actions are regarded as interchangeable
with other alternative actions. This bias that gives priority
to the states rather than the actions may have something
to do with the fact that interval scale has not been focused
on in music. However, when the actions themselves are
also important like in music, the value function like W (a)
may become important. θn+a in the proposed method cor-
responds to such values of a independent of s.

6. CONCLUSION

We proposed a method to obtain modes that represent tar-
get emotions based on reinforcement learning, and four
function approximation models were proposed and com-
pared to each other. As a consequence of the pilot exper-
iment of learning four categories of emotions, the multi-
plicative sigmoid model, which was the best model in the
four models, could generate the modes that have high rep-
resentational power of happiness, sadness and tenderness
and the mode that has a little high representational power
of fear. From comparison of the models, it was suggested
that pitch classes are more important for representing the
emotions than melodic intervals. The mode of happiness
was identical to Mixolydian mode and it consists of 7 pitch
classes. Japanese yousenpou was embedded in it. The
mode of sadness was a Locrian mode to which the pitch D
and G are added and it consists of 9 pitch classes. Japanese
insenpou was also embedded in it. The mode of fear was
a mode of 11 pitch classes without the pitch class 9. The
mode of tenderness was a subset of Ionian mode and it con-
sists of 6 pitch classes. From these, we hypothesized that
the number of pitch classes is correlated with the height
of the arousal and inversely correlated with the height of
the valence. However, further experiments are needed to
confirm these hypotheses. Additionally, we presented the
concept “interval scale,” which was derived from the sec-
ond function approximation model, and the possibility of
applying it to compose atonal music was suggested.

The following issues are included in the future subjects:

• Further investigation of the proposed method in more
categories of emotions.

• Application of the proposed method to other tunings
such as microtonal tunings and non-octave tunings.

• Investigation of personal, cultural, educational influ-
ences.

• Expansion of the proposed method to other musi-
cal elements such as timbre, register, tempo, rhythm,
and chord.

• Mathematical and musicological investigations about
the property of interval scales and application of the
concept to compose music.

Acknowledgments: This work was supported by Grant-
in-Aid for JSPS Fellows Grant Number 12J11238.

7. REFERENCES

[1] Plato: The Republic. N. Fujisawa (Translation): Kokka
Vol.1, pp.209-213, Iwanami Shoten (2005).

[2] Aristotelis: The Politics. M. Yamamoto (Translation):
Seijigaku, pp.368-381, Iwanami Shoten (1997).

[3] M. P. Kastner and R. G. Crowder: Perception of the
major/minor distinction: IV. Emotional connotations in
young children. Music Perception, 8, 189-202 (1990).

[4] D. S. Hill, S. B. Kamenetsky, and S. E. Trehub: Re-
lations among text, mode, and medium: Historical
and empirical perspective, Music Perception, 14, 3-21
(1996).

[5] D. Ramos, J. L. O. Bueno and E. Bigand: Manip-
ulating Greek musical modes and tempo affects per-
ceive perceived musical emotion in musicians and non-
musicians, BRAZILIAN JOURNAL OF MEDICAL
AND BIOLOGICAL RESEARCH, Vol.44(2), pp.165-
172 (2011).

[6] W. F. Thompson and B. Robitaille: Can composers ex-
press emotions through music?, Empirical Studies of
the Arts, Vol.10:1, pp.79-89 (1992).

[7] A. P. Merriam: The anthropology of music. Chicago:
Northwestern University Press (1964).

[8] S. Sadie et al. (Eds.): The New GROVE Dictionary of
Music and Musicians, Macmillan Publishers Limited,
London (1980).

[9] R. S. Sutton and A. G. Barto: Reinforcement Learning:
An Introduction , The MIT Press, (1998).

[10] S. Le Groux, and Paul F. M. J. Verschure: To-
wards Adaptive Music Generation by Reinforcement
Learning of Musical Tension, Proc. SMC, pp.160-165
(2010).

[11] M. V. Butz, O. Sigaud, G. Pezzulo and G. Baldas-
sarre (Eds.): Anticipatory Behavior in Adaptive Learn-
ing Systems: A. Cont, S. Dubnov, and G. Assayag:
Anticipatory Model of Musical Style Imitation using
Collaborative and Competitive Reinforcement Learn-
ing, pp.285-306, Springer (2007).

[12] P. N. Juslin and J. A. Sloboda (Eds.): Handbook of
Music and Emotion - Theory, Research, Applications,
Oxford University Press (2010).

[13] G. Ligeti: Études pour piano premier livre, pp.14-19,
SCHOTT (1986).

47

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



About the Impact of Audio Quality on Overall Listening Experience

Michael Schoeffler
International Audio Laboratories Erlangen

michael.schoeffler@audiolabs-erlangen.de

Jürgen Herre
International Audio Laboratories Erlangen

juergen.herre@audiolabs-erlangen.de

ABSTRACT

When listening to music, rating the overall listening expe-
rience takes many different aspects into account, e. g. the
provided audio quality, the listener’s mood, the song that
is played back etc. Music that is distributed over the In-
ternet is usually encoded into a compressed audio format.
Compressed audio formats are evaluated by expert listen-
ers who rate these audio formats according to the perceived
audio quality. Much effort is put into researching tech-
niques for encoding music by having better audio quality
at lower bit rates. Nevertheless, the beneficial effect that
the audio quality has on the overall listening experience is
not fully known.

This paper presents the results of an experiment that was
carried out to examine the influence that a song and au-
dio quality have on the overall listening experience. The
27 participants rated their personal overall listening expe-
rience of music items which were played back in different
levels of audio quality.

Since listeners have different preferences when rating over-
all listening experience, the participants were divided into
two groups of listeners according to their responses: song
likers and audio quality likers. For both types of listen-
ers, the effect of the audio quality on the rating of overall
listening experience is shown.

1. INTRODUCTION

When we listen to music, it is probably not only the music
itself which makes us like it or not. For a rating of the over-
all listening experience, we probably put emotional aspects
into account which e. g. could be an individual experience
we made in our life that we are connecting to the song [1].
The influence of such emotional aspects and their impact
on the overall listening experience differs from person to
person and research is far away from fully understanding
the effects of emotions in music [2]. Besides emotion-
related aspects, the provided audio quality probably influ-
ences the overall listening experience as well. This influ-
ence of audio quality becomes apparent when we listen to
broadcast radio, and the reception is getting so poor that
we turn off the radio or switch to another channel.

Copyright: c©2013 Michael Schoeffler et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

In the context of digital distribution, music is provided
in uncompressed or compressed formats. Since the up-
coming of MP3, compressed formats have become more
popular and are nowadays used by most of the Internet
music providers. In the last decades, a lot of research ef-
fort has been put into improving the audio quality of com-
pressed music. For the evaluation of compressed formats,
MUSHRA [3] or BS.1116-1 [4] are often used where the
rating is done by so-called expert listeners trained to fo-
cus on audio quality related differences between a given
reference and the compressed audio signal while suppress-
ing emotional influences. Since the audio quality rated ac-
cording to MUSHRA or BS.1116-1 does not fully corre-
late with overall listening experience, the question arises:
What is the impact of higher audio quality on the overall
listening experience?

2. RELATED WORK

In 2005, James L. Barbour published a study for answer-
ing the question whether normal listeners are able to iden-
tify any significant differences between multichannel audio
codecs [5]. He came to the conclusion that normal con-
sumers listening to commercial releases on good quality
audio equipment at home are able to perceive differences
between some uncompressed and compressed digital au-
dio delivery formats, depending of the style of music, the
production values of the surround mix and the data rate.

In 2005, Francis Rumsey et al. presented the results of
two experiments with the purpose to find out what relation-
ships between experienced listener ratings of multichannel
audio quality and naı̈ve listener preferences exist [6]. They
stated that there is a relatively large similarity between the
basic audio quality scores acquired from the experienced
listeners and preference scores elicited from the naı̈ve lis-
teners.

Blauert and Jekosch structured the broad field of sound
quality evaluation into a four-layer model [7]. They de-
fined Aural-communication Quality as the most abstract
layer containing the so-called product-sound quality which
is the quality from an user’s point of view.

In this paper the term overall listening experience covers
all aspects which are taken into account by listeners when
rating music. Therefore, the term overall listening experi-
ence as it is used in this paper is related to Quality of Ex-
perience (QoE). An overview about Quality of Experience
models is given by Laghari and Connelly [8].
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Figure 1. Block diagram of the stimuli manipulation.

3. EXPERIMENT

3.1 Stimuli

Six music excerpts having nine different audio quality lev-
els served as stimuli. The audio quality levels were ob-
tained by limiting the bandwidth and distorting the music
excerpt in the frequency domain. The cut-off frequencies
used for limiting the bandwidth were 920 Hz, 3150 Hz
and 15500 Hz. Distortion was introduced by quantizing
the magnitudes of the spectral coefficients in 8, 16 and
4096 quantization levels. The purpose of the different au-
dio quality levels was to add artifacts which are common
when encoding music into compressed audio formats. An
overview of the processing applied to the stimuli is de-
picted in Figure 1.

The challenge in the music excerpt selection was to find
excerpts that have an emotional influence on the partici-
pants, while each audio quality level should result in ap-
proximately the same perceived audio quality for all music
excerpts.

For having a strong emotional influence on the partici-
pant, the song and its level of awareness of the music ex-
cerpt were decided to be important. Therefore 79 music
excerpts of ten seconds duration were chosen from a large
database such that a recognizable part of the song (e. g. re-
frain) was selected. Moreover, the song had to be ranked in
known record charts which was expected to represent the
level of awareness. In the second selection step, the spec-
tral flatness and spectral centroid of the 79 music excerpts
were computed.

The spectral flatness was used as a simple feature for
roughly representing the perceived effect of distortion in
the frequency domain:

spectral flatness =

N

√∏N−1
n=0 X(n)∑N−1

n=0 X(n)
N

, (1)

where X(n) is the magnitude of bin number n and N is

Song Interpret Flatness Centroid[Hz]

Feel Robbie Williams 0.289 3736
Hold on me Marlon Roudette 0.299 3636
Love Today Mika 0.308 3887

Paid my Dues Anastacia 0.317 3556
Summertime Kenny Chesney 0.306 3658

Respect Yourself Joe Cocker 0.343 3595

Table 1. Selected music excerpts and their spectral flatness
and spectral centroid.

the total number of bins.
The spectral centroid was used as a representing feature for
limiting the bandwidth:

spectral centroid =

∑N−1
n=0 f(n) X(n)∑N−1

n=0 X(n)
, (2)

where X(n) is the magnitude of bin number n, f(n) is
the center frequency of bin number n and N is the total
number of bins.

A cluster of 20 music excerpts represented by their spec-
tral flatness and spectral centroid was computed, where
the sum of the Euclidean distances between all nodes was
minimal. In a final step, the selected 20 music excerpts
were manually reduced to 6 excerpts according to their ex-
pected emotional influence on the overall listening experi-
ence. Table 1 shows the final selection of music excerpts
including their spectral flatness and spectral centroid.

The selected music excerpts were down-mixed from stereo
to mono and their loudness was normalized according to
EBU R128 recommendation [9].

The low-pass filter for limiting the bandwidth was real-
ized by two biquad filters in series. The cut-off frequencies
(920 Hz, 3150 Hz and 15500 Hz) for limiting the band-
width correspond to the cut-off frequencies of the 8th, 16th
and 24th critical band of the Bark scale [10].

To introduce distortion, the magnitudes of spectral coeffi-
cients obtained from short-time Fourier Transform (STFT)
were quantized. The boundaries for the quantization inter-
vals were calculated as follows:

QBound(i) = 1.0−

√
log (N − i)

logN
, (3)

where i is the boundary index and N the number of total
boundaries. The corresponding quantization value for each
interval is calculated as follows:

QValue(i) =

{
0 if i = 0
QBound(i)+QBound(i+1)

2 if i > 0
, (4)

where i is the interval index. Input values are mapped to
quantization values according to

Q(x) = QValue(i), (5)

whenQBound(i) ≤ Q(x) andQBound(i+1) > Q(x). The
details of the distortion processing including frequency do-
main transformation are depicted as a block diagram in
Figure 2. For the STFT, a square-root Hann window with
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Figure 2. Block diagram of quantization.

a size of 512 samples and an overlap size of 256 samples
was used. Before quantization, the values were normalized
from 0 to 1 by using the maximum value as target value 1.

After processing the distortion, the loudness was again
normalized using the EBU R128 recommendation. The
last processing step consisted of adding a 500 ms fade-in
and fade-out effect to the music excerpts.

3.2 Participants

The experiment was attended by 27 participants including
researchers, students and related persons of the Interna-
tional Audio Laboratories Erlangen. 12 participants had a
professional background in audio and 18 participants were
familiar with listening tests. 25 participants were between
20 and 29 years old and 2 were between 30 and 39 years
old. Since especially the participants with a professional
background in audio are in touch with audio quality in their
everyday work, it was assumed that these participants are
more sensitive to audio quality than randomly selected par-

Total Age group professionals listening test

27 25 [20-29] 15 [no] 9 [no]
6 [yes]

10 [yes] 10 [yes]
2 [30-39] 2 [yes] 2 [yes]

Table 2. Information about the participants.

Figure 3. Experiment User Interface.

ticipants with not such background. Detailed information
about the participants are described in Table 2.

3.3 Method

The participants were instructed to rate the music excerpts
in how much they like it by using a five-star scale. They
were told that the music excerpts differ in song and qual-
ity. In the instruction, it was also emphasized that it is
asked for the listener’s personal rating and they should put
everything into account what they would do in a real world
scenario. This additional instruction note was added since
pilot tests showed that some listeners tend to rate only the
audio quality no matter what instructions say. The reason
for this is that very often the listening experiments con-
ducted at our institute focus on audio quality.

After reading the instructions the participants did a train-
ing. This training phase was added to familiarize the par-
ticipants with the rating scale, range of audio quality lev-
els and songs. During the training phase the participants
listened to all six music excerpts, each in lowest quality
(bandwidth = 920 Hz and distortion = 8 quantization lev-
els) and highest quality (bandwidth = 15500 Hz and distor-
tion = 4096 quantization levels), making 24 items in total.
Pilot tests showed that adding this training phase leads to
more reliable responses but as a consequence listeners tend
to become more audio quality aware. For the training, the
same experiment question and scale were used as for the
actual listening test which started right after the training.

Then, the participants listened to 54 items (6 music ex-
cerpts · 3 bandwidth levels · 3 distortion levels). The ex-
periment question was formulated as follows: “How do
you like this music item?”. Participants were allowed to
play back an item as often as they wanted. The participants
rated the items by using a five-star Likert scale. The stars
were labeled with “Very Bad”, “Bad”, “Average”, “Good”
and “Very Good”. The user interface is shown in Figure 3.

At last, the participants were asked how much was their
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Figure 4. Distribution of all 162 Reference Ratings (6
items · 27 participants).

Variable Kendall’s Tau p-Value

Bandwidth 0.552 0
Distortion 0.142 2.908e-10

Reference Rating 0.269 0

Table 3. Correlation between Overall Listening Experi-
ence and Bandwidth, Distortion and Reference Rating.

overall listening experience rating influenced by the audio
quality and the song. The responses were given by a Likert
scale with the values “Strongly Agree”, “Agree”, “Neu-
tral”, “Disagree” and “Strongly Disagree”.

The experiment was done using open electrostatic Stax
SR-507 headphones with SRM-600 driver unit. The sys-
tem was calibrated to 75 dBA SPL for a 1000 Hz sine.
Completing the listening test took each participant about
15 minutes. As mentioned before, the music excerpts were
normalized according to EBU R128 which recommends to
normalize at -23 dB.

4. RESULTS

The main hypothesis is formulated as whether bandwidth
and distortion correlates with rating of overall listening ex-
perience. Overall Listening Experience is the dependent
variable and Bandwidth (representing cut-off frequency)
and Distortion (representing quantization levels) are the in-
dependent variables. Another variable, Reference Rating,
is calculated from Overall Listening Experience for the sta-
tistical analysis. Reference Rating is the response of Over-
all Listening Experience that was given when Bandwidth
is 15500 Hz and Distortion has 4096 quantization levels.
Distribution of reference ratings are depicted as histogram
in Figure 4.

Table 3 shows the results of correlations with Overall Lis-
tening Experience by using Kendall’s Tau (0 = no correla-
tion, 1 = perfect correlation) which is a ranked correlation
coefficient. The correlation and all following calculations
are calculated without the data which was used for Refer-
ence Rating, since this data is used as independent variable
and e. g. including would lead to higher correlation values.

Correlation with bandwidth is very strong (= 0.552) which
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Figure 5. Kendall’s Tau correlation between Overall Lis-
tening Experience and Reference Rating and its p-value for
each participant. All participants having a correlation co-
efficient greater than 0.25 are marked as song likers.

is expected since very low levels of bandwidth were used.
The very weak correlation between Overall Listening Ex-
perience and Distortion (= 0.142) is a bit surprising, as
the first two levels of distortion were very low, too. Ref-
erence Rating which probably contains some information
about participant’s emotional value for a music excerpt has
a medium correlation (= 0.269).

An individual calculation of Kendall’s Tau Correlation
between Overall Listening Experience and Reference Rat-
ing for each participant points out that participants have
different preferences in rating overall listening experience.
Figure 5 shows Kendall’s Tau correlation between Over-
all Listening Experience and Reference Rating to their p-
values for each participant. The results show that a group
of participants had at least a medium correlation to Ref-
erence Rating (≥ 0.25) while their p-values are below a
significance level of α = 0.05. These participants are con-
sidered to be more influenced by the song that is played
back than the other participants who have weaker correla-
tions.

For further analysis all participants who have a Kendall’s
Tau coefficient greater than 0.25 are assigned to the song
likers group. The remaining participants are assigned to
audio quality likers. To avoid confusion, participants who
are in the song likers group could also have a strong corre-
lation between their rating and an audio quality variable. In
addition, the spread of correlation coefficients shows that
the correlation with the song is rather a continuum. The
main reason for defining only two groups is that a more
detailed distinction would require a larger amount of par-
ticipants to avoid under-representation.

When correlation values are calculated separately for song
likers and audio quality likers, the emotional influence be-
comes more obvious. For the song likers, Reference Rating
correlates nearly the same as Bandwidth to Overall Listen-
ing Rating. Due to the high p-value, no reliable statement
can be made for Distortion. Correlation values for audio
quality likers and song likers are shown in Table 4 and 5.

In Figure 6, the ratio between Overall Listening Experi-
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Variable Kendall’s Tau p-Value

Bandwidth 0.530 0
Distortion 0.018 0.516

Reference Rating 0.192 6.961e-13

Table 4. Correlation between Overall Listening Experi-
ence and Bandwidth, Distortion and Reference Rating of
audio quality likers.

Variable Kendall’s Tau p-Value

Bandwidth 0.430 0
Distortion 0.002 0.972

Reference Rating 0.405 8.882e-16

Table 5. Correlation between Overall Listening Experi-
ence and Bandwidth, Distortion and Reference Rating of
song likers listeners.

ence and Reference Rating for each Bandwidth is shown.
A ratio value of 1 would mean that Overall Listening Ex-
perience for the particular Bandwidth level is the same as
for Bandwidth = 15500 Hz and a ratio of 1.5 would mean
the rating was 50% higher. One can see that audio quality
likers have lower values than song likers. This means that
audio quality likers are more critical in their rating when
audio quality is decreased. Besides that, the ratio values
of audio quality likers decrease more for each bandwidth
limitation level than for song likers.

A cumulative link model of Overall Listening Experience
was calculated (Table 6). As the previous analysis indi-
cated, Bandwidth had more influence on Overall Listening
Experience than Distortion. Furthermore, song likers gave
slightly higher ratings.

At the end of the experiment the participants were asked
how much their rating was influenced by song and audio
quality. It was expected that song likers do much more
strongly agree that their rating was influenced by the song
compared to audio quality likers. As Figure 7 shows such
a trend could not be confirmed. Figure 8 shows that for
both types of listeners audio quality is important for their
rating.

5. DISCUSSION

The presented results indicate that all ratings were strongly
correlated with bandwidth. Interesting is the fact that the
mean of Overall Listening Experience to Reference Rating
ratio for song likers had a value of 0.75 (0.67 for audio
quality likers) for Bandwidth of 3150 Hz. Such a band-
width degradation is considered as a strong impairment
and a much lower ratio was expected. Some participants
who rated lower bandwidths the same or higher than refer-
ence bandwidth stated that lower bandwidths reminds them
of festivals or concerts resulting in a positive effect on their
rating.

We assume that especially the song likers would rate lower
bandwidths in a real world scenario much higher than in
this experiment. Many participants reported that they got
annoyed by listening to the same songs repeatedly which
made them focus on audio quality. Since this reaction was
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Figure 6. Overall Listening Rating to Reference Rating ra-
tio for all three bandwidths. Only samples with Distortion
of 4096 levels are included.

Coefficient Estimate Std. Error z-value p-value

Bandwidth = 3150 2.0788 0.1433 14.505 <2e-16
Bandwidth = 15500 3.9807 0.1840 21.632 <2e-16

Distortion = 16 0.7560 0.1294 5.842 5.17e-09
Distortion = 4096 1.0305 0.1554 6.632 3.32e-11

Reference Rating = 2 3.4240 1.0729 3.191 0.00142
Reference Rating = 3 4.8280 1.0697 4.513 6.38e-06
Reference Rating = 4 5.7951 1.0712 5.410 6.31e-08
Reference Rating = 5 5.7654 1.0797 5.340 9.32e-08

Liker Type = song 0.2750 0.1386 1.984 0.04728

Threshold coefficients:
Estimate Std. Error z-value

very bad|bad 6.685 1.082 6.178
bad|average 8.596 1.093 7.867
average|good 10.550 1.103 9.563
good|very good 12.953 1.128 11.480

Residual Deviance: 2704.485
AIC: 2730.485

Table 6. Cumulative Link Model of Overall Listening Ex-
perience.

expected, we integrated the very long training phase where
participants listened to each song twice (best quality and
worst quality). Therefore, we assumed that at the begin-
ning of the actual experiment the participants were more
influenced by audio quality than they would be without the
training phase. This was also reported by several song lik-
ers that their sensitivity to audio quality increased due to
the training phase. Since in a real world scenario, listen-
ers have no reference what the music they are listening to
sounds in best quality, their ratings would not be as critical
as in this experiment.

Some participants reported about the distortion that it felt
like being masked by the bandwidth limitation which is
also seen in the statistical analysis results where distortion
correlates very weakly with Overall Listening Experience.
It should not be concluded from the results that bandwidth
is more important than distortion for Overall Listening Ex-
perience since only three levels of each variable were ex-
amined. Moreover, music can be distorted in frequency do-
main in various ways, other algorithms for distortion might
lead to other results. It was also reported that it is harder
to remember the best quality reference of distortion than
it is for bandwidth. It can be assumed that for non-expert
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Figure 7. Distribution of participants’ responses of how
much their rating was influenced by the song.
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Figure 8. Distribution of participants’ responses of how
much their rating was influenced by audio quality.

listeners building a short-time reference for bandwidth is
easier than for frequency domain distortion.

In our statistical analysis, Reference Rating was used as
some sort of dependent variable like Bandwidth and Dis-
tortion. This means when the selection of music excerpts
matches a participant’s taste of music, Reference Rating
has higher values in average than if the selection would not
match his taste of music. This results in an unequally dis-
tributed data of Overall Listening Experience for Reference
Rating. To overcome, one would need to ask each partic-
ipant before the test for five songs which would be rated
from one to five stars and use them as stimuli. But then
each participant would listen to different songs where lim-
iting the bandwidth or distortion would result in different
perceived audio quality artifacts. That is why we carefully
selected six music excerpts from a large database where
differences of the perceived artifacts were within reason-
able limits.

6. CONCLUSIONS

The results of the experiment show that rating music in
overall listening experience is strongly influenced by band-
width when the listeners is presented a reference of the mu-
sic in maximum available bandwidth. In this experiment,
the participants were familiarized with the minimum and
maximum available bandwidth by a training phase.

The participants were divided into two types of listen-
ers by using the correlation between reference rating and
overall listening experience: audio quality likers and song
likers. Audio quality likers have stronger correlation with
bandwidth and their rating was more critical than song lik-
ers’ rating.

Further research will look into the effect of bandwidth
limitation on overall listening experience in more detail.
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ABSTRACT

Timbre saliency refers to the attention-capturing quality of
timbre. Can we make one musical line stand out of mul-
tiple concurrent lines using a highly salient timbre on it?
This is the question we ask in this paper using a melody
recognition task in counterpoint music.

Three-voice stimuli were generated using instrument tim-
bres that were chosen following specific conditions of tim-
bre saliency and timbre dissimilarity. A listening exper-
iment was carried out with 36 musicians without abso-
lute pitch. No effect of gender was found in the recog-
nition data. Although a strong difference was observed for
the middle voice from mono-timbre to multi-timbre condi-
tions, timbre saliency and timbre dissimilarity conditions
did not appear to have systematic effects on the average
recognition rate as we hypothesized. This could be due to
the variability in the excerpts used for certain conditions,
or more fundamentally, because the context effect of each
voice position might have been much bigger than the ef-
fects of timbre conditions we were trying to measure. A
further discussion is presented on possible context effects.

1. INTRODUCTION

1.1 Timbre Saliency

Timbre saliency is a new concept we proposed regarding
the attention-capturing quality of timbre [1]. It was mea-
sured using tapping to perceptually isochronous ABAB se-
quences, the pitch (C4), loudness and effective duration of
which were all equalized. The duration of each stimulus
was controlled by imposing a raised cosine decay envelope
at a point corresponding to the effective duration of 200 ms
on a recorded sample from the Vienna Symphonic Library
[2]. All sounds were selected from those playing mezzo-
forte in the most basic manner (such as bowing on the cello
rather than plucking). The hypothesis was that the more
salient a timbre is, the more attention it will draw from
the participants, and hence be tapped to more often. Fig-
ure 1 shows the one-dimensional saliency scale obtained
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Figure 1. One-dimensional timbre saliency space of 15
timbres: Clarinet (CL), English Horn (EH), French Horn
(FH), Flute (FL), Harp (HA), Harpsichord (HC), Marimba
(MA), Oboe (OB), Piano (PF), Trombone (TN), Trumpet
(TP), Tuba (TU), Tubular Bells (TB), Violoncello (VC),
and Vibraphone (VP).

from CLASCAL [3]. Although the saliency scale is one-
dimensional, it is presented in two dimensions because of
the seven instruments closely positioned around 0.

As saliency refers to the character of an object that makes
it stand out from its surroundings, we next studied the ef-
fect of saliency on the perceived blending of concurrent
unison dyads [4]. 105 composite sounds were created us-
ing pairs of non-identical timbres that were used in the tap-
ping experiment [1]. Rating data from 60 people showed
that, as we hypothesized, a highly salient timbre would not
blend well with others, although the degree of correlation
was mild at most. Attack time and spectral centroid were
most efficient in describing the blend ratings, which are the
two acoustic features that were reported in previous stud-
ies of the blend perception [5, 6], verifying that a sound
will tend to blend better when it has more low-frequency
energy and when it starts slowly.

After studying the effect of timbre saliency on the sim-
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plest musical situation of unison concurrent dyads, the next
step is an investigation in a more musically realistic sce-
nario. For example, it has been known that the entries of
inner voices are more difficult to detect than those of outer
voices in polyphonic music [7]. Therefore, can we en-
hance the detection of an inner voice by applying a salient
instrument timbre to it?

To answer this question, we decided to employ a melody
recognition task. Iverson, and Bey & McAdams found that
having two highly dissimilar timbres helped the recogni-
tion of the target melodies that were interleaved with dis-
tractors [8,9]. Using concurrent melodies, Huron observed
that in general musicians were capable of correctly identi-
fying the number of voices, although the performance de-
graded as the number of voices increased, especially be-
yond three [7]. Gregory found that concurrent melodies
that had simultaneous note onsets in the same pitch range
in a related key tended to be easier to perceive if they were
distinguished by timbre differences [10]. Although this
result suggests that listeners can attend to more than one
musical line at a time, it might need to be interpreted with
caution because the voices in musical excerpts in the study
were not controlled carefully and some excerpts might have
been too well-known (such as the one from Mozart’s Don
Giovanni).

As we aimed to expand the study of the effect of timbre
saliency in a more musically realistic setting, the method
of melody recognition in counterpoint music was deemed
to be appropriate. There are two or more musical lines
with virtually equal musical importance. Since the authors,
who knew the melodies in the excerpts by heart, could not
listen to all voices in an excerpt at once, it is practically
impossible for listeners to attend to every note of every
voice. Therefore they would tend to focus on whatever
voice catches their attention. Hence, if we can control
the timbre saliency of the voices in music, listeners’ ten-
dency to attend to a specific voice must reflect the voice’s
saliency. But since it is difficult for us to figure out which
voice each listener is hearing out at a given moment, we
decided to use a comparison task based on melody recog-
nition. If, for example, a listener happened to focus more
on the high voice melody and was tested with a high-voice
comparison melody, he or she would be more likely to an-
swer correctly than someone who happened to focus on
the low voice. Therefore performance in this task should
covary with voice prominence.

Since this is a very complex experiment, we had to run
two experiments for preparation. One was to study the
dissimilarity of the timbres that were used in our saliency
experiment (Section 1.2). The other was a melody com-
parison experiment to make sure that the changes on a
voice were easy enough to hear out in isolation (Section
3). The design of musical stimuli, which took place before
the melody comparison experiment, is explained in detail
in Section 2. Section 4 discusses the main experiment, then
finally a general discussion and conclusions are presented
in Section 5.
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Figure 2. Two-dimensional timbre dissimilarity space.
See Fig. 1 caption for abbreviations.

1.2 Timbre Dissimilarity

A classic timbre dissimilarity experiment was carried out
using the same set of 15 isolated instrument sounds used in
the timbre saliency experiment [1]. Twenty participants,
balanced in gender and musicianship were recruited, with
ages from 19 to 39 with a median age of 26.5 years.

Repeated-measures ANOVAs on dissimilarity ratings sho-
wed no effect of gender or musicianship. The dissimilarity
judgments were formed into 20 individual lower triangular
matrices, then analyzed by CLASCAL [3] to obtain the
dissimilarity space. The best solution turned out to have
two dimensions with specificities and five latent classes of
participants (Figure 2).

Note that the percussive instruments are all located above
the y = 0 line. This suggests that the second dimension
may be related to attack time. Correlations were computed
between each of the two dimensions and the acoustic fea-
tures computed by the Timbre Toolbox [11]. The first di-
mension shows a high correlation with spectral centroid in
the ERB-FFT spectrum, r(13) = .845, p < .0001, and the
second dimension a moderate correlation with attack time,
r(13) = −.692, p = .004. This is in agreement with previ-
ous studies in timbre dissimilarity showing that attack time
and spectral centroid are two of the most important acous-
tic features [12–17].

This two-dimensional timbre dissimilarity space in Fig-
ure 2 will provide a basis for the selection of stimuli for
Experiments 1 and 2. This is necessary because it is not
feasible to study all 15 timbres’ effect on melody recog-
nition, and therefore we need to select timbres that best
represent the experimental conditions. This timbre dissim-
ilarity space will also be essential in data analysis as the
dissimilarity distance is one of the main parameters for Ex-
periment 2.
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Figure 3. An example excerpt and corresponding comparison melodies

2. MUSICAL STIMULUS DESIGN

A number of excerpts and their comparison melodies are
needed to avoid any unexpected training effect from par-
ticipants. We selected nine excerpts from J.S. Bach’s Trio
Sonatas for Organ, BWV 525 – 530, because the music
was already clearly written for three-voices (right hand,
left hand and pedal) and relatively unknown in compari-
son with other three-voice pieces (such as the Sinfonias).

We looked for the parts with all three voices clearly in
action with about equal note onset density. Any excerpts
with voice crossings were avoided. We also did some edit-
ing of the excerpts such as transposing the melodies to a
new key (often to accommodate the playing ranges of se-
lected instruments), changing the pitch of a note (often by
an octave) to avoid voice crossing, or breaking a longer
note into two shorter notes to maintain the note onset den-
sity.

For each voice in each excerpt, a comparison melody was
composed by changing the pitches of two notes, which re-
sulted in a different pitch contour, following the approach
in auditory streaming studies using interleaved melodies
[9]. An example is shown in Figure 3. The first two mea-
sures show the three-voice excerpt by Bach and the last
two measures the corresponding comparison melodies. In
the actual experiment all three voices in an excerpt will
play together, whereas the three comparison melodies will
never be heard together.

The excerpts were first encoded in Finale [18], the MIDI
timings of which were exported to Logic [19]. The stim-
uli were created using the recorded samples in the Vienna
Symphonic Library [2] based on the MIDI timing infor-
mation. The specific timbre combinations used for stimu-
lus generation are presented in the next section.

2.1 Timbre Combinations

A subset of instruments was chosen that would best rep-
resent the timbre saliency and timbre dissimilarity condi-
tions from the two spaces in Figures 1 and 2, respectively.
We decided to focus on a subset of timbre combinations in
which two timbres are similar and the other one is differ-
ent (i.e., two are close to each other and the third one is far
from these two in timbre dissimilarity space), and one is a
highly salient timbre and two others are of lower saliency.
Three timbre dissimilarity conditions combined with three

timbre saliency conditions resulted in nine conditions (Ta-
ble 1).

D1, D2 and D3 represent the three dissimilarity condi-
tions according to the assignments of three timbres to three
voices. Among the three timbres, T1, T2 and T3, T3 is
always the “far” timbre and is highlighted in blue italics.
Similarly, S1, S2 and S3 represent the three saliency con-
ditions. The “High” saliency timbre of the three timbres
is highlighted in a bold red font. For example, the D1S1
column in Table 1 shows that in this condition high and
middle voices have timbres that are of low saliency and
close in dissimilarity space. This factorial combination of
saliency and dissimilarity allows us to test their separate
contributions to melody recognition, as well as their po-
tential interaction.

Even though there are nine conditions, it turns out that
only four sets of timbre assignments are required – {D1S1,
D2S2, D3S3}, {D1S2}, {D1S3, D2S3, D3S2}, and {D2S1,
D3S1}, as specified with four types of fonts in Table 2.
These combinations were chosen considering not only the
relative positions in timbre dissimilarity and timbre saliency
spaces, but also the instrument ranges, because some in-
struments cannot play higher notes in the top voice and
others cannot play the lower notes in the bottom voice.

In addition, we need to test the same-timbre version of all
stimuli, to determine baseline performance in the absence
of timbre differences. We decided to use the piano (PF)
for this, not only because it has a sufficient range for all
excerpts, but because its timbre is quite homogeneous over
the middle range, which is used primarily in the current
study.

In searching for the right timbre combinations for the
conditions specified in Table 2, we had to make some com-
promises by using some instruments with medium saliency.
More specifically, Harpsichord (HC) was used in place of
some lower saliency instruments. This was the best we
could do with the two given spaces (Figures 1 and 2), es-
pecially because nine out of fifteen timbres were located
together in the lower left corner of the timbre dissimilarity
space (Fig. 2).

3. EXPERIMENT 1: MELODY DISCRIMINATION

The goal of this experiment was to verify that the changes
in pairs of melodies were easy enough to detect in isolation
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Table 1. Timbre conditions for three-voice excerpts

D1S1 D1S2 D1S3 D2S1 D2S2 D2S3 D3S1 D3S2 D3S3
High T1L T1L T1H T2L T2L T2H T3L T3L T3H
Middle T2L T2H T2L T3L T3H T3L T1L T1H T1L
Low T3H T3L T3L T1H T1L T1L T2H T2L T2L

Table 2. Timbre assignments for three-voice excerpts

D1S1 D1S2 D1S3 D2S1 D2S2 D2S3 D3S1 D3S2 D3S3
High T1L T1L T1H T2L T2L T2H T3L T3L T3H
Middle T2L T2H T2L T3L T3H T3L T1L T1H T1L
Low T3H T3L T3L T1H T1L T1L T2H T2L T2L
T1 CL EH TP MA TN TN VP TP CL
T2 TN TP TN VP CL TP MA TN TN
T3 MA HC HC CL MA HC CL HC MA

at least 75% of the time, because if participants cannot hear
changes in corresponding melodies in isolation, they will
not be able to hear out changes on one voice in a mixture
with other voice(s). The stimuli were 108 ordered pairs of
“original” and “comparison” multi-timbre melodies from
all three voices in nine excerpts: original-original, original-
comparison, comparison-original, and comparison-compa-
rison. These were presented to the participants in a ran-
dom order without an option to repeat. Participants were
required to indicate whether a given pair of melodies was
identical or not on the graphic user interface, which then
automatically proceeded to the next trial.

Twenty musicians (10 males) without absolute pitch were
recruited, aged from 18 to 37 with a median of 24 years.
There was quite a large variability in the participants’ aver-
age performances, ranging from 69% to 92% correct, with
a median of 84%. All melody pairs showed correct dis-
crimination above 75% with the exception of one pair at
72.5%. As the 75% threshold was somewhat arbitrary and
72.5% is not too far from 75%, we decided to proceed to
the main experiment using the current modified melodies
without any further adjustments.

4. EXPERIMENT 2: MELODY RECOGNITION IN
THREE-VOICE COUNTERPOINT MUSIC

4.1 Methods

This experiment studied the role of timbre dissimilarity
and saliency in melody recognition in counterpoint music.
Stimuli were the three-voice Bach excerpts, as well as the
individual monophonic melodies. For each trial, a multi-
voice excerpt would play first, followed by a monophonic
melody. The monophonic melody could be the original or
comparison melody corresponding to one of the voices in
the preceding excerpt. Participants were required to indi-
cate whether the monophonic melody was the same as or
different from a voice in the excerpt by pressing on the ap-
propriate button on the graphic user interface. There was
no option to listen to the stimuli again to prevent partic-
ipants from strategically learning all voices by attending
to one voice each time over repeats. Once an answer was
submitted, the next trial would start automatically, playing

a new multi-voice excerpt.
Thirty-six musicians without absolute pitch took part in

the experiment. Their ages ranged from 18 to 37, with a
median of 24 years. There were equal numbers of males
and females. Nineteen of them identified themselves as
“professional” musicians and the rest as “amateurs”. In
terms of their listening habits, 15 claimed to be “harmony-
listeners” and 21 to be “melody-listeners.” Although we
have not come across any literature on the effect of this lis-
tening habit on the listeners perception of voices in coun-
terpoint music, we thought the melody-listeners might fo-
cus on one prominent voice whereas the harmony-listeners
would focus on emergent properties of all voices.

4.2 Results

4.2.1 Average Performance Per Condition

The main goal of this experiment was to examine the melody
recognition performance in terms of timbre conditions based
on timbre saliency and timbre dissimilarity. For this pur-
pose, we computed the average recognition rate over all
melodies used per voice per condition and compared those
average values (Figure 4). The horizontal axis shows the
saliency conditions and each line represents the dissimilar-
ity conditions.

Considering only the mean values (blue dots, black stars
and red triangles), we see they loosely follow a v-shape,
although sometimes flipped upside down or almost flat-
tened. The three v-shaped lines in the middle voice ap-
pear to maintain the same direction, which suggests that
the timbre saliency condition may play an important role
in the recognition of the middle voices. The fact that the
lines keep a similar shape in the middle voice graph but
not in other two voices implies a possible main effect of
voice position or an interaction between timbre saliency
and voice position.

A three-way repeated measures ANOVA was performed
on the average recognition rate per condition as the depen-
dent variable. The voice position (high, middle or low),
dissimilarity and saliency conditions in Table 1 were within-
subjects factors. The only significant effects were inter-
actions between voice position and saliency, F (4, 140) =
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Figure 4. Results for three-voice excerpts. The error bars show ± one standard deviation.

3.86, p = .005, and between voice type, saliency, and dis-
similarity, F (8, 280) = 3.14, p = .002. None of the other
effects was significant.

The significant voice position× saliency interaction means
that our hypothesis that the effect of saliency condition dif-
fers across voices was correct. This may imply that the in-
nate ‘voice prominence’ from this musical structure may
have a bigger impact on melody recognition than the con-
trolled timbre conditions. The significant three-way inter-
action of voice position, dissimilarity and saliency indi-
cates that the two-way interaction effect between dissim-
ilarity and saliency differs depending on the voice type.
This is in agreement with the fact that in Figure 4, the dis-
similarity× saliency interaction (i.e., the angles of v-shape
lines) seems to be higher for high and low voices, but neg-
ligible for the middle voice.

Two-way ANOVAs were performed to study the effect
of timbre dissimilarity and timbre saliency for each voice
type. On the high voice, the interaction effect was signifi-
cant, F (4, 140) = 3.12, p = .017, but not the main effects
of timbre dissimilarity, F (2, 70) = 2.28, p = .11, or of
timbre saliency, F (2, 70) = 0.91, p = .41. In the high-
voice graph of Figure 4, the locations of the nine points,
corresponding to average performance across participants
in nine timbral conditions, are quite different according to
timbre conditions, although their vertical or horizontal (per
line) averages do not show significant differences (hence
non-significant main effects).

On the middle voice, the main effect of timbre saliency
turned out to be significant, F (2, 70) = 4.69, p = .012,
but not timbre dissimilarity, F (2, 70) = 1.04, p = .36, nor
their interaction F (4, 140) = 0.71, p = .59. The three
lines in the middle voice graphs of Figure 4 have simi-
lar shapes (hence no significant interaction effect) and lo-
cations (hence no significant main effect of dissimilarity).
The nine points representing the nine conditions have very
different vertical means (therefore a significant main effect
of saliency), but not so different horizontal means (hence
a non-significant main effect of dissimilarity). What is
strange is that the performance on the middle voice was
at its worst when the salient timbre was on the middle

voice. This can be observed in all three dissimilarity con-
ditions, probably suggesting that the effect of a salient tim-
bre was minimal on the middle voice. It is also hard to
understand why the recognition performance on the mid-
dle voice (black dash-dotted line connecting stars) was the
worst when the far timbre was assigned to the middle voice.
In summary, this graph seems to suggest the absence of
our hypothesized effects of dissimilarity or saliency on the
middle voice.

A two-way ANOVA on the low voice showed two signifi-
cant effects: the main effect of timbre saliency, F (2, 70) =
3.66, p = .031, and its interaction with timbre dissimilar-
ity, F (4, 140) = 4.56, p = .002. The main effect of tim-
bre dissimilarity was not significant, F (2, 70) = 0.28, p =
.75. The v-shapes face different directions, reflecting the
significant interaction effect. Although the per-dissimilarity
condition (i.e., per-line) averages are all located in a simi-
lar area (hence no main effect of dissimilarity), the vertical
means are at different locations, confirming the significant
main effect of saliency. However, it is strange to see that
the vertical mean was at its lowest when the salient tim-
bre was on the low voice. Having the salient timbre on
the low voice was expected to help the recognition perfor-
mance, but apparently it did not. A close look reveals that
the performance was not too bad when the salient timbre
was on the low voice and the far timbre was on the high or
low voice. But somehow having a far timbre on the middle
voice hindered the recognition of the low voice melody so
much that the performance actually fell below 50%. This
might result from the saliency differences inherent in the
stimuli: somehow the low voice melodies were not salient
at all and participants’ attention was drawn to the salient
high-voice melodies in the given condition.

Overall, it is quite disappointing to see that recognition
was not highest (with an exception of the high voice) when
a voice had both the salient and the far timbre, which had
been hypothesized to have the maximum effect on the recog-
nition task. For example, the high voice graph on the left
of Figure 4 reaches the maximum performance at the left
blue dot, when the salient and far timbre happened to be
on the high voice, but this is not the case in the other two
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graphs. The black star in the middle of the dash-dotted
line of the middle voice graph, which was hypothesized to
be the highest point, is located much lower than the ac-
tual highest point (a red triangle). In fact, it is puzzling to
see the low performance on the middle voice when it was
played with the salient timbre. We began to wonder if the
middle voice melodies used for this condition happened to
be too difficult. To study this, we decided to analyze the
average recognition performance for each stimulus, which
is presented in the next section.

4.2.2 Average Performance Per Excerpt

The average recognition rates of the nine excerpts across
all participants are shown in Figures 5 and 6. There is quite
a bit of variability across the excerpts used. This might be
due to the fact that some excerpts are more difficult to re-
member than others. At first glance, the multi-timbre aver-
age curves look a bit different from the mono-timbre ones,
but paired-sample t tests show that these seeming differ-
ences are mostly non-significant. One marginally signif-
icant difference was found on the middle voice, t(8) =
1.89, p = .096, where the average recognition rate of the
middle voice in multi-timbre condition was 0.65 (STD =
0.11), whereas that in the mono-timbre condition was 0.52
(STD = 0.18). This may suggest that having a distinc-
tive timbre on the middle voice, which is usually the most
difficult to listen to in the given musical structure, helps its
recognition slightly.

Since the average performance per excerpt varied quite a

bit, we came to wonder if this is related to how easily the
changes in corresponding voices could be heard out in Ex-
periment 1. Hence, the average recognition rate per excerpt
was analyzed in terms of the average percent correct values
from Experiment 1. Spearman’s rank correlation showed
that no correlation was significant. This lack of correlation
could reflect the fact that the current experimental task is
too complex to be successfully predicted by the control ex-
periment result.

4.3 Discussion

In this experiment, we studied the effects of timbre saliency
and timbre dissimilarity on the melody recognition in coun-
terpoint music with nine three-voice excerpts in nine tim-
bre conditions. Considering previous work in auditory strea-
ming that has shown that greater timbre dissimilarity leads
to better recognition of interleaved melodies [8, 9], as well
as our measurement of timbre saliency [1], we hypoth-
esized that a highly dissimilar or a highly salient timbre
would enhance a voice’s prominence in a multi-voice tex-
ture. We were also confident of our choice of counterpoint
music excerpts, where each voice had about equal musical
importance.

However, the results from 36 musicians did not confirm
our hypothesis. Analysis of per-condition performance of
middle and low voices showed a significant effect of saliency,
although not in the direction we expected: the average per-
formance was poorer when the salient timbre was located
on the target voice. This is completely against our hypoth-
esis, and essentially nullifies the conjecture of the timbre
saliency’s effect on melody recognition in multipart mu-
sic.

In searching for an answer to this unexpected pattern, we
looked at the average recognition performance for each
of the excerpts used. It turned out that there was a large
difference in per-excerpt performance, which could have
come from various degrees of memorability that affected
the recognition performance. This variance in per-excerpt
performance could also have contributed to differences in
per-condition performance.

As there were no significant differences in average recog-
nition of each excerpt-voice according to the timbre con-
ditions (multi-timbre vs. mono-timbre), with an excep-
tion only for the middle voice, the lack of effect of tim-
bre saliency may actually indicate a greater ‘voice promi-
nence’ in the given musical structure than whatever tim-
bral effects we expected. After all, we had not studied the
intrinsic saliency of each voice in the three-voice counter-
point structure. This could be a case of the experimental
context affecting the measurement of saliency differences
of the objects in the experiment.

However, the fact that the average recognition of the mid-
dle voice was marginally higher in the multi-timbre condi-
tion in comparison with the mono-timbre condition does
speak for the case of timbral effects. The middle voice,
which is the most difficult to listen to in three-voice music,
became easier to recognize with the use of a timbre dif-
ferent from those on the other voices. Unfortunately, this
effect seems too weak to be reflected and measured prop-
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erly in the current experimental setup.
The large variance in recognition performance also makes

us hesitate in drawing firm conclusions based on the anal-
ysis. In the per-condition performance, all the means and
the respective confidence intervals overlapped without ex-
ception. Hence, the analyses based on mean values lose
their effectiveness when we consider the large variance.

It was disappointing not to see the expected effects of
timbre saliency and timbre dissimilarity. What we saw in-
stead was another incidence of a context effect, which was
possibly a lot stronger than our planned timbral effects in
this experiment. To clarify unanswered questions, another
experiment using the untested portion of the current stim-
uli seems to be in order, which will provide data that can
complement this experiment so that we can apprehend the
big picture.

5. SUMMARY & GENERAL DISCUSSION

To examine the effect of timbre saliency and timbre dissim-
ilarity in a more realistic music listening setting, a melody
recognition experiment was carried out as a natural exten-
sion of the previous study of the perception of blend in
concurrent unison dyads [4]. As a mild negative relation-
ship between timbre saliency and the perceived blend was
observed in the concurrent unison dyads, we hypothesized
that a highly salient timbre would show little blend with
other voices in the musical texture and therefore be heard
out more easily. Also considering the effect of timbre dis-
similarity, we expected to confirm previous findings in the
auditory streaming literature [8,9] that a highly dissimilar
timbre on a voice would help detect changes in that voice
more easily in the presence of other voices in multipart
music.

The high voice did not show any main effects of timbre
saliency and timbre dissimilarity conditions; it is already
the most prominent voice in the chosen musical structure.
This ‘voice prominence’ was probably a lot more salient
than any possible additional benefits from timbre saliency
and dissimilarity conditions. There was a significant inter-
action effect observed though, suggesting that the effect of
timbre dissimilarity varied with timbre saliency (and vice
versa). Middle and low voices showed a significant effect
of timbre saliency condition, but this effect did not go in
the same direction as our hypothesis. In fact, the average
recognition performance was lowest when the salient tim-
bre was located on the target voice. This was completely
unexpected, and we are still puzzled by it.

So we decided to look into the per-excerpt average per-
formance, hoping that it would shed light that could ex-
plain the aforementioned observations on middle and high
voices. When each excerpt’s average recognition perfor-
mance in multi-timbre condition was contrasted with that
in mono-timbre condition, the only marginally significant
difference was observed on the middle voice. The recogni-
tion performance was much higher on average (by 13%) in
the multi-timbre condition. This suggests that the middle
voice, which has the least ‘voice prominence’ in the chosen
musical structure, benefited from having a different timbre

from the other voices, which agrees with previous litera-
ture on timbral effects on auditory streaming.

However, the fact that this additional benefit did not make
any significant differences in average performances per tim-
bre condition led us to think about the context effects again.
As we hypothesized, there exists an intrinsic saliency for
each object and an extrinsic saliency for each context in
which the object’s saliency is measured. Considering this,
the limit in our experiment might have been that we did not
consider the inherent prominence of each voice position
in the musical form that was selected for the experiment.
Even the strong recognition improvement on the middle
voice in the condition with multiple timbres may not have
covaried systematically with the hypothesized timbre con-
ditions, which could be why there is lack of effect of the
timbre conditions.

Reflecting on the complexity of Experiment 2, we wonder
if we should have started with a simpler experiment. Per-
haps it would help to carry out a new experiment with sim-
plified conditions to verify the effect of timbre saliency and
timbre dissimilarity, where the stimuli have only two con-
ditions – a “high” condition with a highly salient and dis-
similar (i.e., far in dissimilarity space) timbre and a “low”
condition with a not-so-salient and similar timbre. This
should be able to clearly contrast the performance in each
condition to examine the effect of timbre saliency and tim-
bre dissimilarity. We can also conduct Experiment 2 again
with the set of stimuli that were not tested currently. Be-
cause each three-voice excerpt in a particular timbre com-
bination was tested with only one voice, we can make use
of the untested voices and run the same analysis on the
combined data.

Another idea is to conduct an experiment utilizing top-
down attention instead of the current melody recognition
paradigm, which depends on bottom-up attention and short-
term memory. Imagine that a short cue, an isolated note at
a certain pitch and timbre, is played right before a poly-
phonic excerpt is played. What happens to the recognition
rate? Do listeners tend to get drawn more towards the voice
close to the pitch of the cue? Or to the voice that has the
same timbre? This may bring us to an interesting interac-
tion of top-down and bottom-up attention together.

Also, more fundamentally, the relationship between tim-
bre saliency and timbre dissimilarity needs to be examined.
In the design of experiments in this paper, we proceeded
from assumptions that timbre saliency and timbre dissimi-
larity would be at least somewhat related to each other and
that there would not be any negative interaction between
them. Do our assumptions still hold? What is the differ-
ence between saliency and dissimilarity? Can one explain
the other? After studying their relationship, we might have
a new insight to bring to understanding the current results.

One thing that we learned from carrying out this complex
experiment is that counterpoint music is such a sophisti-
cated art that it could not be sufficiently analyzed with our
model. Saliency is a function of context, and our mea-
sure of timbre saliency might not have been effective in
the context of melody recognition in counterpoint music,
especially when each voice position’s prominence is un-
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known. As this was our first attempt to explain the per-
ception of multipart music in terms of timbre saliency, any
findings are important. However disappointing or puzzling
the findings were, these will lead to a new journey with
more questions to answer, which will eventually help us
understand what catches our attention in music, which was
the starting point of timbre saliency.
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ABSTRACT 
Our lab’s research has repeatedly documented significant 
differences in the outcomes of perception experiments 
using flat (i.e. sustained) vs. percussive (i.e. decaying) 
tones [1, 2]. Some of these findings contrast with well-
established theories and models, and we suspect this dis-
crepancy stems from a traditional focus on flat tones in 
psychophysical research on auditory perception.  To ex-
plore this issue, we surveyed 94 articles published in At-
tention, Perception & Psychophysics, classifying the 
temporal structure (i.e. amplitude envelope) of each 
sound using five categories: flat (i.e. sustained with ab-
ruptly ending offsets), percussive (i.e. naturally decaying 
offsets), click train (i.e. a series of rapid sound-bursts), 
other, and not specified (i.e. insufficient specification 
with respect to temporal structure). The use of flat tones 
(31%) clearly outnumbered percussive (4.5%). This un-
der-utilization of percussive sounds is intriguing, given 
their ecological prevalence outside the lab [3,4]. Interest-
ingly, 55% of the tones encountered fell within the not 
specified category. This is not indicative of general ne-
glect, as these articles frequently specified other details 
such as spectral envelope, headphone model, and model 
of computer/synthesizer. This suggests that temporal 
structure’s full importance has not traditionally been rec-
ognized, and that it represents a rich area for future re-
search and exploration.   

1. INTRODUCTION 
Research in the field of audition has a long history of 
using artificial (i.e. sustained or ‘flat’) tones to assess 
perceptual and cognitive ability. While these flat tones 
lend themselves well for the kinds of rigorously con-
trolled stimuli desirable in an experimental or clinical 
setting, they offer little resemblance to the types of 
sounds heard outside the laboratory or audiologist’s of-
fice [5].  

1.1 Stimuli used in auditory perception research 

In broad strokes, this issue has been addressed in the lit-
erature previously by William Gaver [3, 4], who argued 
that auditory perception research largely focuses on spe-
cific attributes of sounds, such as pitch, loudness or tim-
bre.  This contrasts with our listening outside the labora-
tory, which is generally focused more on the events pro-
ducing sounds. Gaver referred to this event-based percep-
tion as ‘everyday listening’ – conveying its pervasive 
nature in real world settings. For instance, when listening 
to two hands colliding, one might remark that it ‘sounds 
like hands clapping’, not that ‘it sounds like a spectrally 
dense burst of noise with a sharp onset’ [6]. Such scenar-
ios can also be observed in laboratory settings – in free 
identification tasks, participants often describe sounds 
based on the events creating them rather than their attrib-
utes (unless the source is ambiguous) [7]. 
        Such event-based perception can be derived in part 
from a sound’s temporal structure or amplitude envelope. 
Impact sounds such as handclaps, footsteps and door 
slams are pervasive in our environment and carry detailed 
information regarding the materials and force used, par-
ticularly in their offset. While this information is easily 
derived from ecologically valid impact sounds, this is not 
the case for the abruptly ending flat tones commonly used 
in auditory perception research. In fact, previous studies 
in our lab have repeatedly shown striking differences in 
outcomes when using sounds with abruptly-ending flat 
vs. more naturalistic, gradually decaying ‘percussive’ 
tones in a variety of tasks [1, 2]. Examples of flat and 
percussive tones used in those experiments can been seen 
in Figure 1. 

1.2 Temporal structure and sensory integration 

Our interest in this issue began with a seemingly unrelat-
ed debate among percussionist in which some argue that 
stroke length can influence perceived note duration, with 
longer gestures making ‘long’ notes and shorter gestures 
making ‘short’ notes. To test this hypothesis empirically 
we asked participants to rate the durations of tones paired 
with videos of a professional marimbist making either 
long or short striking gestures, while ignoring the visual 
information [1].  
        When paired with flat tones, the visual information 
(i.e. gestures) did not influence perceived tone durations. 
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However, when paired with percussive tones, long ges-
tures made the tones sound ‘longer’ and short gestures 
made the tones sound ‘shorter’. Curiously, the use of 
sounds with naturally decaying offset leads to qualitative-
ly different outcomes on a seemingly unrelated sensory 
integration task.  
 
 

 
Figure 1. Examples of flat (left) and percussive (right) tones 
used in previous experiments [1, 2]. Flat tones are character-
ized by a quick onset, indefinite sustain period and abrupt 
offset. Percussive tones are characterized by a quick onset, 
followed by an immediate exponentially decaying offset. 

 
        This finding is surprising, as it conflicts with the 
widely held notion that visual information does not affect 
auditory judgments of duration [8] (although vision is 
known to affect other aspects, such as localization [9]). 
This finding has been replicated using point-light dis-
plays [10] and a single dot using simplified motion paths 
[11], suggesting that this discrepancy cannot be fully ex-
plained by the use of visual information depicting a ma-
rimbist rather than a more traditional visual stimulus.  
This observation led to our interest in exploring the de-
gree to which this discrepancy can be explained by dif-
ferences in the perception of sounds with natural vs. arti-
ficial envelopes. In other words: is this previously unob-
served visual influence on auditory judgments of event 
duration driven by categorical differences in the percep-
tion of ecologically common naturally-decaying sounds 
vs. the artificial abruptly-ending sounds? 
        It is worth mentioning that previous studies have 
used tones with ‘ramped’ (i.e. increasing in intensity over 
time) and ‘damped’ (i.e. decreasing in intensity over 
time) amplitude envelopes to investigate the perception 
of streaming vs. bouncing of converging visual stimuli 
[12]. Overall, damped tones produced the perception of 
bouncing visual stimuli whereas ramped tones produced 
the perception of bouncing and streaming equally.  This 
finding is not surprising, as impact events do not typically 
produce sounds with ramped temporal structures and 
therefore should not integrate with the visual stimuli. 
Likewise, if we attempted to replicate this experiment 
using flat and percussive tones, we would expect fewer 
‘bounce’ responses for flat tones as flat temporal struc-
tures are not indicative of an impact event. 

1.3 Duration judgment strategies  

        Intriguingly, differences in the outcomes of percep-
tual tasks involving flat and percussive tones are not lim-
ited to sensory integration.  Other members of our team 
have found evidence for the use of different strategies 
when estimating the duration of flat vs. percussive tones 
[2]. With flat tones participants are able to use what we 
call a ‘marker strategy’, marking the onset and offset of a 
tone to derive the duration. Consistent with the pacemak-
er-accumulator model [13], participants may be neurally 
tracking the accumulation of time-markers between the 
onset and offset of flat tones. Such approaches are ill-
suited to frequently encountered percussive tones, where 
we suspect participants might use what we refer to as a 
‘prediction strategy’ in which an estimation of the mo-
ment of tone completion can be derived by the rate of 
offset decay.  
        When we presented these two types of tones uni-
formly blocked, we found no difference in the precision 
of duration judgments, suggesting that participants could 
easily adopt one strategy over the other. However, when 
we mixed flat and percussive tones within a block, partic-
ipants performed significantly worse on duration estima-
tions of percussive tones. In other words, when partici-
pants are unable to predict what tone type will be pre-
sented in the next trial, they cannot select the optimal 
strategy. Instead, participants presumably resorted to the 
‘marker strategy’ – a viable but less optimal tactic for 
estimating the duration of decaying percussive tones.  
        These findings of perceptual differences in both au-
diovisual integration and tone duration estimation tasks 
raises the question of whether we process sounds with 
percussive temporal structures in a categorically different 
way than the flat tones commonly used in a research set-
ting. Together, this work (along with other differences 
observed between percussive and flat tones in an associa-
tive memory task [14]) motivated us to explore the tem-
poral structure of sounds used in auditory perception re-
search. As part of a large-scale effort by several members 
of our research team, here we surveyed the sounds in one 
prominent journal, in order to determine the relative 
prevalence of flat vs. percussive tones.  

2. METHOD 
We chose to use Attention, Perception, & Psychophysics 
(formerly Perception & Psychophysics) as the basis for 
our survey, with the intention of selecting roughly one 
hundred articles focused on human perception of non-
speech sounds. Searching PsycInfo using the terms ‘Per-
ception & Psychophysics’ (Publication), ‘Auditory’ 
(Identifier/Key Word) and NOT ‘Speech’, ‘Language’, 
‘Phonetic’ and ‘Dialect’ (Identifiers/Key Words) yielded 
422 articles. From this pool we composed our sample by 
selecting the first two articles from each year of the pub-
lication (1966-2012), for a total of 94 articles.  
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        We modeled our approach of sound categorization 
after an earlier survey of articles in the journal Music 
Perception conducted by the MAPLE Lab [15]. As in that 
study, we classified only the auditory components and 
coded all experiments (n=212) in the 94 articles individu-
ally. We allocated one point to each experiment, subdi-
viding based on the number of sound categories em-
ployed. For example, we allocated a point weighting of 1 
to experiments using a single sound. If an experiment 
contained two sounds (i.e. a target and a probe), we allo-
cated each sound category a point weighting of 0.5. If 
these categories contained multiple sounds, we split the 
category’s weighting equally. Examples of point weight 
distributions are illustrated in Table 1 [16:19]. 

2.1 Categories of primary classification 

We classified each sound into one of five categories: (1) 
flat, (2) percussive, (3) click train, (4) other, and (5) not 
specified.  We classified sounds as flat if the description 
included a period of sustain with rise/fall times. For ex-
ample, Watson and Clopton had a “550-Hz sinusoid, 
150msec in duration…gated with a rise-decay time of 
25msec” [20] (suggesting a sustain period of 100msec). 
Other examples of flat descriptions included more am-
biguous descriptions such as ‘fade-ins and fade-outs to 
avoid clicks’ [21], which imply rise/fall times of an un-
specified duration.  
        We classified sounds as percussive if they consisted 
of a sharp onset followed by a period of exponential de-
cay. Although rarely explicitly described this way, per-
cussive temporal structures are implied by the sound pro-
duced by certain instruments and/or materials. Therefore, 

we included studies using traditional percussive sounds 
such as cowbell [22], chimes [23], bells [23], and bongos 
[16], as well as impact sounds such as footsteps [24], 
hand claps [23] and objects dropped on a surface [25] in 
the percussive category. Additionally, we classified piano 
tones [22] as percussive given that they are produced by 
impact events (i.e. a hammer striking a string). 
        We classified sounds as click trains if they consisted 
of a series of repeated stimuli over a short duration. In 
most cases, these stimuli were explicitly described as 
‘click trains’ or ‘pulses in a train’. One study described 
its sounds as “a series of free-field acoustic clicks” [26], 
which we also included in this category. 
        The other category encompassed sounds with speci-
fied envelopes other than those described previously. 
This included natural sounds such as recordings of com-
plex environmental sounds [23], and tones produced by 
brass and wind instruments [19, 23], as well as artificial 
sounds such as amplitude modulated tones [27] and ‘pyr-
amid’ tones (i.e. with linear rise/fall times but no sustain 
period) [28, 29]. 
        We treated our final classification of not specified as 
a ‘category of last resort’, used only when the infor-
mation regarding temporal structure was insufficient to 
classify stimuli into one of the previous four categories. 
For cases in which stimuli were not specified in their de-
scription but available online, we simply downloaded the 
stimuli and classified them accordingly. In the current 
survey, one paper failing to specify the temporal structure 
included a link to a webpage containing the stimuli.  
Therefore we determined the envelope shape by analyz-
ing these files [23]. 

            Article Experiment  
Num 

Sound 
categories 

Functional 
category 

Point 
weighting 

Envelope 
category 

 
Radeau & Bertelson, 1978 [16] 

 
1 

 
1 

 
stimulus 

 
1.0 

 
percussive 

__________________________________ _____ ______ _________ ____ _________ 

Shinn-Cunnigham, 2000 [17] 1 1 target 1.0 click train 
Five experiments, each using 2  target 1.0 click train 
a single type of sound 3  target 1.0 click train 
 4  target 1.0 click train 

 5  target 1.0 click train 
__________________________________ _____ ______ _________ ____ _________ 

Boltz, Mashburn, Jones & Johnson, 1985 [18] 1 2 stimulus 0.5 flat 
Two experiments, each using 1  warning tone 0.5 not specified 
two types of sounds 2 2 stimulus 0.5 flat 

 2  warning tone 0.5 not specified 
__________________________________ _____ ______ _________ ____ _________ 

Stilp, Alexander, Keifte & Kluender, 2010 [19] 1 3 target A 0.33 other 
Two experiments, each using 1  target B 0.33 other 
three types of sounds 1  precursor 0.33 not specified 

 2 3 target A 0.33 other 
 2  target B 0.33 other 
 2  precursor 0.33 not specified 

 

Table 1. Each experiment received a single point, which we distributed equally amongst the functional categories of the 
sounds used. 
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        Amplitude modulated tones presented an interesting 
classification challenge. At slow rates (i.e. 3Hz) modula-
tors can effectively change the amplitude envelope from 
flat to a sinusoid-like shape. However, at faster rates (i.e. 
periods sufficiently shorter than the tone’s duration) the 
modulators are too fast to play a significant role on am-
plitude envelope. Only one paper in our sample used a 
slow modulation rate (3Hz [27]); the rest exceeded 20Hz.  
Therefore we placed the 3Hz amplitude modulated tones 
in other category, and classified the remaining amplitude 
modulated tones (with modulators ranging from 80Hz to 
200Hz) according to the previously stated criteria. 

2.2 Secondary classifications 

In addition to our main focus on temporal structure, we 
classified other important stimulus characteristics such as 
the spectral structure, duration, and intensity.  Additional-
ly, we noted descriptions of technical equipment infor-
mation such as headphone model and the model of sound 
generators so as to gauge methodological diligence. We 
used the following criteria for this supplemental infor-
mation: 

2.2.1 Spectral information 

Spectral information included descriptions such as 
pure/sine tones, complex tones, white noise, amplitude 
modulated tones, etc. If an instrument produced a sound, 
we simply used the instrument name as gross aspects of 
their spectral structure are already well known. We used 
the category not specified (spectral information) when 
the spectral structure was not given.  

2.2.2 Duration 

Duration simply tracked the temporal length of the sound. 
In the case of click trains, we recorded durations in two 
ways: the duration of individual clicks (if given) and the 
duration of the train. We denoted descriptions of sounds 
that did not include duration information as not specified 
(duration). 

2.2.3 Intensity 

We recoded the intensities of sounds in decibels, or if 
described as being presented at a ‘comfortable listening 
level’. If insufficient information was provided regarding 
sound pressure level, we recorded these sounds as not 
specified (intensity). 

2.2.4 Equipment 

As with the spectral information, duration and intensity, 
we recorded the make and model of equipment (i.e. 
headphones, speakers, tone generators and computers) 
given in experimental descriptions. If no information was 
provided, we recorded these as not specified (equipment). 

3. RESULTS 

3.1 Fairly accounting for masking noise 

We came across several instances where experiments 
made use of a target or signal in addition to masking or 
background noise. In these experiments we often found 
that the target or signal would be specified in terms of its 
temporal structure, but the masking or background noise 
would not. Mindful of the possibility of artificially inflat-
ing our not specified category, we plotted the survey data 
in three ways: including the masking/background noise 
(Figure 2A), specifying the proportions of back-
ground/masking noise separately (Figure 2B) and, remov-
ing it from the sample entirely (Figure 2C). As seen in 
Figure 2, these considerations did not significantly 
change the outcome of the survey. Therefore, all reported 
results are based on the full survey, counting all data 
points including background and masking noise.  

3.2 Outcomes of classifications 

As seen in Figure 2A, the majority of sounds (55.1%) 
used in Attention, Perception & Psychophysics fell within 

Figure 2. Distribution of the temporal structures of sounds used in Attention, Perception & Psychophysics, 1966-2012. Depicts 
the distribution of envelope types when (A) masking or background noise is included, (B) separated and (C) removed (note the 
smaller number of “points” included in panel c). Ultimately, decisions regarding the classification of noise do not meaningfully 
alter the results of this survey. 

Not Specified (46.2%)

Not Specified Noise (8.85%)Flat Noise (1.65%)

Flat (29.7%)

Click Train (4.72%)
Other (4.37%)Percussive (4.46%)

Not Specified (55.1%)Flat (31.4%)

Click Train (4.72%)
Other (4.37%)Percussive (4.46%)

Not Specified (51.7%)

Flat (33.2%)

Click Train (5.27%)
Other (4.88%)Percussive (4.98%)

Flat!
(31.4%)!

Not Specified!
(55.1%)!

Not Specified!
(51.7%)!

Flat!
(33.2%)!

Not Specified!
(46.2%)!

Click Train!
  (4.72%)!

Other (4.37%)! Percussive (4.46%)!

Click Train!
  (5.27%)!

Other (4.88%)!
Percussive (4.98%)!

Click Train !
(4.72%)!

Other (4.37%)! Percussive (4.46%)!

A) ! ! ! ! ! ! ! ! !       B) ! ! ! ! ! ! ! ! ! !       C)!

Points = 212, Papers = 94! Points = 212, Papers = 94! Points = 189.7, Papers = 94!

Not Specified Noise (8.85%)!

Flat!
(29.7%)!

Flat Noise (1.65%)!
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the not specified category in terms of their temporal 
structure. This finding echoes the results of an earlier 
survey classifying the types of sounds used in the journal 
Music Perception, in which not specified also formed the 
largest category [15]. As in that survey, we speculate that 
many of the not specified tones actually have flat tem-
poral structures. If so, then tones with artificial abruptly 
ending offsets comprise 93% of the experiments surveyed 
(i.e. not specified, flat, click trains as well as amplitude 
modulated and pyramid tones classified in the other cate-
gory), with less than 7% of experiments making use of 
sounds with more naturalistic offsets (with percussive 
sounds making up almost two thirds  – 4.46%). 

This disproportionate focus on tones with abruptly 
ending artificial envelopes rather than sounds with enve-
lopes more indicative of those encountered in everyday 
perceiving raises intriguing questions about the generali-
zability of this research to real world listening.  

3.3 Specifications for the not specified tones 

It is worthwhile to note that the lack of specification of 
temporal structure is not an indication of a lack of atten-
tion to detail on the part of the authors. In fact, within the 
not specified category 61.9% of studies specified another 
important acoustic parameter known to affect perception 
– spectral structure. Intriguingly, 66.5% of studies in the 
not specified category denoted the exact model of speaker 
(i.e. “Sony SRS-A91”, “Harman/Kardon HK-195”, 
“Acoustic Profile PSL 0.5”) or headphones (i.e. “Senn-
heiser HD465”, “Sony MDR CD250”, “AKG-K270”, 
“Beyer DT-49”), used for the experiment and 52% speci-
fied the precise model of tone generator (i.e. “Grason-
Stadler 455C noise generator”, “Hewlett-Packard 200 
ABR oscillator”, “Wavetek Model 116 oscillator”) used 
to produce the stimuli.  

These comparatively high proportions of specifica-
tion with respect to spectral structure and technical 
equipment indicate that authors and reviewers frequently 
felt compelled to include in-depth technical information. 
Therefore the lack of specification of regarding temporal 
structure does not indicate negligence to detail, but rather 
demonstrates that temporal structure has not been previ-
ously recognized as playing a meaningful role in the out-
come of perceptual experiments—or at least a role less 
significant than that of the specific model of headphone 
used to deliver sounds, or the specific tone generator used 
to synthesize a pure tone.   

4. DISCUSSION 
Previous work conducted by our research team has re-
peatedly shown that a sound’s temporal structure has the 
ability to qualitatively change the outcome of perceptual 
experiments. In an audiovisual integration task, long and 
short striking gestures did not influence tone duration 
estimations when paired with flat tones. However, when 
paired with percussive tones, short gestures made the 
tones sound ‘shorter’ and long gestures made tones sound 

‘longer’ [1]. Similarly, it appears that participants adopt 
different strategies to estimate the duration of flat vs. per-
cussive tones [2]. When tones are uniformly blocked, 
participants adopt a ‘marker strategy’ – marking the be-
ginning and end – to estimate the duration of flat tones 
and a ‘predictor strategy’ – deriving an estimation based 
on the rate of decay – for percussive tones.  
        Beyond perceptual experiments, we have also found 
differences in performance on a more cognitive task in-
volving associative memory of tone sequences [14]. In 
this experiment we asked participants to associate ten 
everyday objects with ten short 4-note melodies that were 
either percussive or flat. The results indicate that partici-
pants not only learned the associations faster, but could 
recall significantly more object-associations when hear-
ing percussive tone sequences. 
        These findings suggest that we process sound with 
naturally decaying offsets in a qualitatively different way 
than the abruptly ending flat tones. While impact sounds 
exhibiting naturally decaying temporal structures are per-
vasive in our everyday listening [3], these types of sounds 
have not historically been used in auditory perception 
research. Instead, flat sounds with artificial sustain peri-
ods and abrupt offsets appear to dominate psychophysical 
research on auditory perception. This survey helps to test 
our intuitions regarding a long-standing bias towards 
sounds with artificial envelopes by establishing a set of 
data capable of commenting on this issue of broad rele-
vance to the auditory perception community.   
        As anticipated, the proportion of flat tones (31.4%) 
significantly outnumbered the proportion of percussive 
tones (4.46%) in the current survey. This finding differs 
from our previous survey of the journal Music Percep-
tion, in which the proportions of percussive and flat tones 
were almost equivalent (i.e. 26.9% for percussive and 
27.6% for flat) [15]. This difference may be due to a 
larger focus on listening to natural (i.e. acoustic) sounds 
in the case of Music Perception, compared to a more psy-
chophysical approach in the case of Attention, Perception 
& Psychophysics. Despite these differences, we did find 
that not specified formed the largest proportion of sounds 
within each journal. In the current survey, not specified in 
fact encompassed the majority of the sample – 55.1%. 
This is appreciably more than the 35% encountered in 
Music Perception.  Therefore these findings extend our 
previous results, demonstrating that the general lack of 
amplitude envelope specification is not limited to a single 
journal.  The degree to which this is a widespread issue 
within the field of auditory perception remains an open 
question—albeit one we are currently exploring by sur-
veying other journals. 
        It is also worthwhile to mention that the exploration 
of the temporal structure of sounds is not a new idea. In 
fact, over the last few decades a small group of research-
ers have been conducting experiments that focus specifi-
cally on the perceptual differences produced by varying 
temporal structures. For instance, these researchers are 
finding that ‘ramped’ sounds (i.e. increasing in intensity 
over time) are consistently perceived as longer than 
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‘damped’ sounds (i.e. decreasing in intensity over time) 
of equal duration, when presented alone [30, 31] or ac-
companied by a visual stimulus [12, 32]. This suggests 
that the importance of amplitude envelope in auditory 
perception research is starting to be recognized and has 
great potential to flourish. 

4.1 Further thoughts on the not specified tones 

Due to the ease with which flat tones can be created and 
the control afforded, we suspect that many of the not 
specified sounds in the current survey are actually flat in 
nature. Working on this assumption and noting that click 
trains exhibit abruptly ending offsets, we suspect that 
93% of sounds surveyed used abruptly ending envelopes 
(i.e. flat, not specified, click trains as well as amplitude 
modulated and pyramid tones within the other category) 
that may afford different processing strategies and lead to 
different experimental outcomes than would be obtained 
using sounds with more natural envelopes.  In contrast, 
percussive sounds with naturally decaying envelopes are 
used in just 4.46% of experiments surveyed, despite their 
ubiquity in everyday listening [3]. 
        Although we suspect the not specified sounds are in 
fact flat, it would be irresponsible to draw any strong 
conclusions based on this assumption. As this infor-
mation was not explicitly provided, researchers attempt-
ing to replicate the reported results would not be able to 
recreate the described stimuli. This lack of specification 
with regards to temporal structure does not however sug-
gest an inattention to methodological detail. Within the 
not specified category, there is evidence authors went to 
great lengths to rigorously specify important methodolog-
ical details. For example, a large proportion (66.5%) of 
studies in the not specified category included the exact 
model of speakers or headphones used to deliver the 
stimuli – details that could arguably not significantly in-
fluence the overall outcome of the experiment.  
        Additionally, the spectral structure of the sound as 
well as other equipment details, such as the model of tone 
generator and computer, were commonly included in the 
descriptions of not specified stimuli. This attention to 
detail with respect to other aspects of the methodological 
and technical details suggests that temporal structure has 
simply not been recognized as a parameter that could 
inherently influence results. 

4.2 Implications for auditory research and future 
directions 

As a result of our lab’s findings in audiovisual integration 
[1] and tone duration estimation [2] tasks using flat and 
percussive tones, we have reason to believe that temporal 
structure can be an influential parameter in auditory per-
ception research. Given the sophistication of modern 
sound synthesis tools, we now have the ability to generate 
sounds with more realistic envelopes while still tightly 
controlling other parameters. Consequently, researchers 
are well equipped to assess our perceptual system with 
sounds paralleling those encountered in the real world.  

To help others interested in exploring these issues, we are 
now sharing the software we have developed to generate 
flat and percussive tones (Figure 1), which is freely avail-
able at www.maplelab.net/software. In the future, we 
plan to expand our survey to other important auditory 
perception journals such as the Journal of the Acoustical 
Society or America and Hearing Research. Ultimately, 
we believe temporal structure is a parameter with great 
potential for fruitful future research, and hope that our 
survey can help inspire interest in this under-studied as-
pect of auditory perception.  
 

Acknowledgments 

We would like to acknowledge financial assistance for 
this research through grants to Dr. Michael Schutz from 
the Natural Sciences and Engineering Research Council 
of Canada (NSERC RGPIN/386603-2010), Ontario Early 
Researcher Award (ER 10-07-195) the Canadian Founda-
tion for Innovation (CFI-LOF 30101), and the McMaster 
University Arts Research Board (ARB) program. 

5. REFERENCES 
[1] M. Schutz, “Crossmodal integration: The search for 

unity” Doctoral thesis, University of Virginia, 2009. 

[2] M. Schutz, G. Vallet, and D. Shore, “Exploring the 
role of amplitude envelope in duration estimation: 
Evidence for two strategies” Presented at Auditory, 
Perception, Cognition, and Action Meeting, 
Minneapolis, 2012, pp.7. 

[3] W. Gaver, “What in the world do we hear? An 
ecological approach to auditory event perception” in 
Ecological Psychology, 1993, pp. 1-29. 

[4] W. Gaver, “How do we hear in the world? 
Explorations in ecological acoustics” in Ecological 
Psychology, 1993, pp. 285-313. 

[5] Acoustical Society of America, American National 
Standard Specification for Audiometers. American 
National Standards Institute, 2010. 

[6] N. Vanderveer, “Ecological acoustics: Human 
perception of environmental sounds”, Doctoral 
Dissertation, Georgia Institute of Technology, 1979. 

[7] W. Gaver, “Everyday listening and auditory icons” 
Doctoral Dissertation, University of California, San 
Diego, 1988. 

[8] S. Guttman, L. Gilroy and R. Blake, “Hearing what 
the eyes see: Auditory encoding of visual temporal 
sequences” in Psychological Science, 2005, pp. 228-
235. 

[9] C. Jackson, “Visual Factors in auditory localization” 
in Quarterly Journal of Experiment Psychology, 
1953, pp. 37-41.  

[10] M. Schutz and M. Kubovy, “Deconstructing a 
musical illusion: Point-light representations capture 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

67



salient properties of impact motions” in Canadian 
Acoustics, 2009, pp. 23-28. 

[11] J. Armontrout, M. Schutz and M. Kubovy, “Visual 
determinants of a cross-modal illusion” in Attention, 
Perception & Psychophysics, 2009, pp. 1618-1627. 

[12] M. Grassi and C. Casco, “Audiovisual bounce-
inducing effect: Attention alone does not explain 
why the discs are bouncing” in Journal of 
Experimental Psychology: Human Perception and 
Performance, 2009, pp. 235-243. 

[13] C. Buhusi and W. Meck, “What makes us tick? 
Functional and neural mechanisms of interval 
timing” in Nature Reviews Neuroscience, 2005, pp. 
755-765. 

[14] M. Schutz, J. Stefanucci, S. Baum and A. Roth 
“Name that percussive tune: Associative memory 
and amplitude envelope”, Under Review. 

[15] M. Schutz and J. Vaisberg, “Surveying the temporal 
structure of sounds used in Music Perception” in 
Music Perception, In Press. 

[16] M. Radeau and P. Bertelson, “Cognitive factors and 
adaptation to auditory-visual discordance” in 
Perception & Psychophysics, 1978, pp. 341-343. 

[17] B. Shinn-Cunningham, “Adapting to remapped 
auditory localization cues: A decision-theory model” 
in Perception & Psychophysics, 2000, pp. 33-47. 

[18] M. Boltz, E. Mashburn, M. Jones and W. Johnson, 
“Serial-pattern structure and temporal-order 
recognition” in Perception & Psychophysics, 1985, 
pp. 209-217. 

[19] C. Stilp, J. Alexander, M. Kiefte and K. Kluender, 
“Auditory color constancy: Calibration to reliable 
spectral properties across nonspeech context and 
targets” in Attention, Perception & Psychophysics, 
2010, pp. 470-480. 

[20] C. Watson and B. Clopton, “Motivated changes of 
auditory sensitivity in a simple detection task” in 
Perception & Psychophysics, 1969, pp. 281-287. 

[21] P. Bertelson, J. Vroomen, B de Gelder and J. Driver, 
“The ventriloquist effect does not depend on the 
direction of deliberate visual attention” in Perception 
& Psychophysics, 2000, pp. 321-332. 

[22] P. Pfordresher and C Plamer, “Effect of hearing the 
past, present, or future during music performance” in 
Perception & Psychophysics, 2006, pp. 362-376. 

[23] M. Gregg and A. Samuel, “The importance of 
semantics in auditory representations” in Attention, 
Perception & Psychophysics, 2009, pp. 607-619. 

[24] R. Pastore, J. Flint, J. Gaston and M. Solomon, 
“Auditory event perception: The source-perception 
loop for posture in human gait” in Perception & 
Psychophysics, 2008, pp. 13-29. 

[25] M. Grassi, “Do we hear size or sound? Balls 
dropped on plates” in Perception & Psychophysics, 
2005, pp. 274-284. 

[26] W. Uttal and P. Smith, “Contralateral and 
heteromodal interaction effects in somatosensation: 
Do they exist?” in Perception & Psychophysics, 
1967, pp. 363-368. 

[27] L. Riecke, A van Opstal and E Formisano, “ The 
auditory continuity illusion: A parametric 
investigation and filter model” in Perception & 
Psychophysics, 2008, pp. 1-12. 

[28] B. Wright and M. Fitzgerald, “The time course of 
attention in a simple auditory detection task” in 
Perception & Psychophysics, 2004, pp. 508-516. 

[29] E. Hasuo, Y. Nakajima, S, Osawa and H. Fujishima, 
“Effect of temporal shapes of sound markers on the 
perception of interonset intervals” in Attention, 
Perception & Psychophysics, 2012, pp. 430-445. 

[30] R. Schlauch, D. Ries and J. Di Giovanni, “Duration 
Discrimination and subjective duration for ramped 
and damped sounds” in Journal of the Acoustical 
Society of America, 2001, pp. 2880-2887. 

[31] M. Grassi and C. Darwin, “The subjective duration 
of ramped and damped sounds” in Perception & 
Psychophysics, 2006, pp. 1382-1392. 

[32] J. Neuhoff, “Perceptual bias for rising tones” in 
Nature, 1998, pp. 123-124. 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

68



Modeling of Melodic Rhythm Based on Entropy toward 
Creating Expectation and Emotion 

 
Hidefumi Ohmura Takuro Shibayama Satoshi Shibuya 

JST, ERATO, Okanoya Emotional 
Information Project, Japan,  
and Riken, Saitama, Japan 

ohmura@brain.riken.jp 

Tokyo Denki University, Saitama, 
Japan 

takuro@mail.dendai.ac.jp 

Tokyo Denki University, Saitama, 
Japan 

shibuya@rd.dendai.ac.jp 

Tatsuji Takahashi Kazuo Okanoya Kiyoshi Furukawa 
Tokyo Denki University, Saitama, 

Japan 
tatsuji@mail.dendai.ac.jp 

JST, ERATO, Okanoya Emotional 
Information Project, Japan,  

Riken, saitama, Japan, and The Uni-
versity of Tokyo, Tokyo, Japan 
kazuookanoya@gmail.com 

Tokyo University of the Arts, Tokyo, 
Japan 

furukawa@zkm.de 

ABSTRACT 
The act of listening to music can be regarded as a se-
quence of expectations about the nature of the next seg-
ment in the musical piece. While listening to music, the 
listener infers how the next section of a musical piece 
would sound based on whether or not the previous infer-
ences were confirmed. However, if the listener’s expecta-
tions continue to be satisfied, the listener will gradually 
want a change in the music. Therefore, the pleasant be-
trayal of the listener’s expectations is important to evoke 
emotion in music. The increase and decrease of local 
complexities in the music structure are deeply involved in 
the betrayal of expectation. Nevertheless, no quantitative 
research has been conducted in this area of study. We 
already validated that entropy in sets of note pitches are 
closely related to the listeners’ feeling of complexity. 
Therefore, in this paper, we propose a model that is able 
to generate a melodic rhythm based on entropy in sets of 
note values, and then we validate the suitability of the 
model in terms of complexities of rhythm through a psy-
chological experiment. 
 

1. INTRODUCTION 
Meyer pointed out that the deviations of expectations 
arouse emotions when listening to music [1], based on 
Dewey’s theory that conflict causes emotions [2]. Nar-
mour defined the relation between expectation and devia-
tion/realization as the IR (implication-realization) theory 
[3]. Huron also proposed the ITPRA Theory of Expecta-
tion [4]. These research studies indicate that the devia-
tion/realization of expectations could have an influence 
on musically induced emotions. In these theories, the 
generation and deviation/realization of expectation are 
defined as rules based on intuitive feelings; therefore, the 
theories are difficult to implement directly on computers. 

 Therefore, we propose a model to calculate the devia-
tion/realization of expectation to be able to generate mu-
sic automatically within a perspective. Deviation from the 
expectation of the listener when listening to music is 
brought by the partial or complete disregard of rules that 
were accepted in advance. This indicates an increase of 
entropy from the viewpoint of informatics theory because 
of its augmented uncertainties. These uncertainties have a 
commonality with the complexity in the optimal-
complexity model [5], which illustrates the relation be-
tween complexity and pleasure. This commonality sug-
gests the existence of a relation between uncertainty and 
emotion. Therefore, uncertainty could be calculated, 
based on the order of the musical sequence generated 
using entropy. The important characteristic of this re-
search is the viewpoint that controlling entropy in melo-
dies elicits emotions. 

 Generally, melodies can be described as sets of pitches 
and values of musical notes. Timbre is also one of the 
elements that indicate the characteristics of melodies; 
however, we used a melody-generation system that con-
siders only the pitches of musical notes. In this paper, the 
model about the uncertainty of rhythm was the basis for 
the generation of rhythm in our melodies, while we fo-
cused our attention to the duration of musical notes that 
form the melody. Then we developed the system of mel-
ody generation and verified the appropriateness of this 
model by experiment. 

2. MUSICAL CONSTRUCTION AND 
COMPLEXITY 

2.1 Musical Construction for Musical Expectation 

Based on Meyer’s theory that emotion arises when the 
music deviates from the listener’s expectations, Narmour 
proposed the IR theory, which treats the listener’s expec-
tation as an “implication.” Two sequential notes have a 
specific relation, which creates an expectation or “impli-
cation” of the next note. The third musical note brings the 
“realization” for the “implication.” If the listener incor-
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rectly guessed the third musical note, then the music 
evokes emotion. We attempted to generate melodies by 
developing a system that produces the various pitch tran-
sition possibilities of two sequential notes with symmetry 
biases, which is a human illogical reasoning process 
brought on by human intuition [6]. As a result, this sys-
tem, which is the core of this research, was able to gener-
ate melodies that can offer the listener musical coordina-
tion or musical unpredictability. Through these analyses 
of melodies, we find that the feelings of unity and unpre-
dictability are closely related to entropy in expressing 
musical complexities, a similar close relationship could 
exist between melodic rhythm and entropy. 

2.2 Entropy 

The theories for musical deviation/realization of expecta-
tions are not appropriate for computer system implemen-
tations, because they are based on intuition and are not 
quantitative but qualitative. We propose a computation 
model of complexity to create musical devia-
tion/realization of expectations so that we can develop an 
automatic system to create music that can evoke musical 
emotion. To substantiate the model of musical complexi-
ty, we use information theory [1], which provides the 
quantity of information to be delivered. Music elicits a 
listener’s emotion with temporal structures of musical 
notes. By modeling the structures based on information 
theory, we can create music that can evoke emotions. 
In information theory, when event 𝑖 occurs, the amounts 
of information are defined as 

𝐼 = − log 𝑝!                                                                                       (1) 
where 𝑝! is the probability of event 𝑖. When 𝑛 events oc-
cur with the probabilities 𝑝!, 𝑝!,⋯ 𝑝!, the expected val-
ues are calculated as 

𝐻 = − 𝑝! log 𝑝!

!

!!!

                                                            (2) 

The value 𝐻 represents the amount of information to be 
delivered, i.e., the degree of uncertainty and complexity. 

3. PROPOSED MODEL 

3.1 Creation of Melodic Rhythm 

Melody is characterized by many factors, such as note 
value (duration of a note), pitch (frequency), and timbre 
(tone color). We developed a system that automatically 
creates complex melodies using the relationships among 
the pitches of notes. The entropy of the transitions be-
tween pitches creates the human cognition of complexity. 

 In this paper, we propose a model of complexity by ad-
justing the note value. The minimum rhythmic pattern is 
pulse-framed by a repeated arbitrary time interval, which 
is called a metrical structure. A pulse becomes a complex 

rhythm by extending or shortening the note value. To 
create rhythm, notes are positioned on a metrical struc-
ture, and their positions divide the metrical structures. 
Repeated divisions by a prime number can create various 
positions in a metrical structure. The typical number of 
division used in music is two or three. Five or higher di-
visions are infrequently used, probably because humans 
have difficulty perceiving such rhythms. For example, a 
quintuplet note or five beats are understood to be 2 + 3, 
and a septuplet note or seven beats are understood to be 2 
+ 2 + 3. Moreover, a rhythm with a mixed number of 
divisions is more difficult to perceive [8]. They suggest 
divisions by two or three to create melodic rhythm pat-
terns. In this study, we only consider a division by two 
for the sake of simplicity. 

Figure 1 shows the division of a metrical structure and 
the note positions at each level. Lv.1 includes a position 
created, but not a division. Lv.2 includes a position cre-
ated in a division by one. Similarly, the levels Lv.3, Lv.4, 
Lv.5, and Lv.6 include positions created in divisions by 
two, three, four, and five, respectively. At four-quarter 
time, a whole note is set at a position as in Lv.1, and thir-
ty-second notes are set at positions as in Lv.6. Although 
divisions greater than Lv.6 exist, they are not necessarily 
elements of a melodic rhythm, because sixty-four and 
shorter notes may not be perceived by the listener. There-
fore, we use positions of notes from Lv.1 to Lv.6 only. In 
this research, a metrical structure consists of 32 positions, 
and the melodic rhythm is created by selecting these 32 
positions. 

 

3.2 Creation of Entropy 

Entropy is calculated from the probabilities of selecting a 
position out of 32 positions. From Lv.1 to Lv.6, each 
position has a weight. A lower position has a greater 
weight than higher positions. The reason is that listeners 
may have difficulty perceiving notes at a higher position, 
because dividing a position creates new positions in the 
next higher level. 

𝑓 𝑥 =
1
2𝜋𝜎!

exp −
𝑥 − 𝜇 !

2𝜎!
                  (3) 

Figure 1. How to divide metrical structure 
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This equation describes the normal distribution with the 
mean 𝜇 and variance 𝜎!. The division at each level is 
substituted for 𝑥 in the equation. 𝜇 is 0. By controlling  𝜎, 
we can obtain values such as the weights of each position. 
We calculate the magnitude of the weights as 

𝑤 = 𝑓 𝑥 ×2.5×10!                                              (4) 

For example, when 𝜎   =   10 and each 𝑥 is set as indi-
cated in Table 1, we obtain the weight 𝑤 and the proba-
bility 𝑝 as shown in Table 1 using (3) and (4). By enter-
ing these probabilities in (2), we get entropy 𝐻   =   1.115. 
Melodic rhythms are created by probabilities, and our 
experimental melodies are introduced in 4.3. 

3.3 Implementation of Model 

We implemented the model in a system written in Java. 
The system can be downloaded from 
“http://emotion.brain.riken.jp/music/app/CMM.jar.” It 
has an interface consisting of four panels, as shown in 
Figure 2.  

The Main Panel, which is located at the top-left corner, 
has a melody generation button, a play melody button, a 
selector of identical metrical iteration counts, a check box 
for automatic continuous creation of metrical structures, a 
selector of the sample size, a selector of the limitation in 
the number of notes in a metrical structure, a selector of 
the number of pitches, a selector of the tempo, and the 
SMF output button. 

 The Control Panel, which is located at the top-right cor-
ner, has selectors of weights for each level and a selector 
of the variance 𝜎. Although each selector of weight is 

independent, all weights are decided by selecting the var-
iance. 

 The Score Panel, which is located at the bottom-left cor-
ner, shows a melody being created as a 32×32 sequencer 
whose x-axis indicates time and whose y-axis indicates 
the pitch. 

 The Movement Panel, which is located at the bottom-
right corner, shows the movement of pitch as a red ball in 
circle of fifths. A big circle means higher pitch, and a 
small circle means lower pitch. 

The Device Selection Panel, which is hidden, allows the 
selection of MIDI devices. 

4. EXPERIMENT 

4.1 Experimental Purpose and Participants 

The purpose of the experiment is to confirm that the lis-
tener can distinguish differences between melodies based 
on different entropies. 

Out of 25 participants, five did not understand the pur-
pose of the experiment: two participants assigned the 
same points to all melodies, and three participants com-
pared the melodies with popular music. Therefore, we 
analyzed the data of only 20 participants (men: 11, wom-
en: 9; mean age: 31.57, SD: 9.11). 

4.2 Experimental System 

The experiment was conducted on a Webpage written in 
PHP and JavaScript. Each participant accessed the site 
with arbitrary computers. After listening to the melodies 
with players on the experimental Webpage, they ap-

Table 1. weights and probability (𝜎 = 10)  
 Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 
𝑥 0 12 24 36 48 60 
𝑤 9978 4855 560 16 1 1 
𝑝 0.647 0.315 0.036 0.001 0.000 0.000 

 

Figure 2. The application system with the model 

Figure 3. Three Gaussian curves for melodies 
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Table 2.  Experimental parameter  

𝜎 
𝑝 

𝐻 
Lv.1 Lv.2 Lv.3 Lv.4 Lv.5 Lv.6 

10 0.647 0.315 0.036 0.001 0.000 0.000 1.115 
20 0.389 0.323 0.188 0.076 0.022 0.004 1.947 
50 0.210 0.204 0.188 0.163 0.133 0.102 2.544 
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praised the melodies by assigning appraisal labels. They 
were instructed to listen in a quiet environment or with an 
earphone or a headphone and to adjust the volume to a 
comfortable level.   

4.3 Experimental Melody 

We created melodies under three conditions ( 𝜎   =
  10, 20, 50 ), whose settings in a Gaussian curve are 
shown in Figure 3. Table 2 shows the probabilities and 
entropies of those three conditions. Melodies created 
from these three conditions were called Melody 1, Melo-
dy 2, and Melody 3. All melodies lasted for one minute 
and consisted of eight bars. Each bar in each melody had 
six notes. We generated at least 75 melodies, so that each 
participant listened to three unique melodies. Figure 4 
shows a sample of the melodies at each level. The melo-
dies were played for the participants in a random order to 
avoid order effects. 

4.4 Appraisal Label 

Participants were provided the following appraisal labels 
to identify their sensory perception of the melodies. The 
words in parentheses are abbreviations, which we used as 
appellative appraisal labels. Participants appraised the 
melodies on a five-point scale, where 1 is the lowest ap-
praisal meaning they feel nothing, and 5 is the highest 
appraisal meaning they feel something strongly.  

• You feel the rhythm. (Rhythm) 

• You feel a musical unity. (Unity) 

• You feel a complexity. (Complexity) 

• You feel amusement. (Amusement) 

• You feel positive emotion. (Positive) 

• You feel negative emotion. (Negative) 

• You like it. (Like) 

The orders of the appraised labels were randomized for 
each participant to avoid order effects. 

4.5 Experimental Procedure 

The experiment was conducted using the following pro-
cedure: 

1. Accessing the experimental Webpage with arbitrary 
computers. 

2. Reading the experimental manual, and answering 
questions such as age and gender. 

3. Listening to melodies, and appraising them. 

4. Completing the appraisal of the melodies and send-
ing the appraisal data. 

4.6 Experimental Result 

We analyzed the appraisal data for each appraisal label 
using ANOVA. Table 3 shows the results. 

 Rhythm, Unity, and Complexity showed significant dif-
ferences among the melodies; therefore, we analyzed 
them using multiple comparisons (Bonferroni). In 
Rhythm, the mean score of Melody 3 is higher than that 
of Melody 1 (p = 0.003), and the mean score of Melody 3 
is higher than that of Melody 2 (p = 0.180). In Unity, the 
mean score of Melody 3 is lower than that of Melody 1 (p 
= 0.037). In Complexity, the differences are not signifi-
cant, but the mean score of Melody 3 is lower than that of 
Melody 1 (p = 0. 055). 

Amusement, Positive, Negative, and Like have no signifi-
cant differences. 

5. DISCUSSION 

5.1 Experimental Purpose and Participants 

Adjusting entropy leads to variations of appraisal about 
Rhythm, Unity, and Complexity. Therefore, the model of 
melodic rhythm is validated by our results. The differ-
ences between Melody 1 and Melody 2 are significant, 
but that between Melody 1 and Melody 3 and that be-

Melody 1 (H=1.115) 

Melody 2 (H=1.947) 

Melody 3 (H=2.544) 

Figure 4. Sample of melodies 

Table 3. Means and result of ANOVA    *p<0.05, **p<0.01 
Melody 1 (𝐻 = 1.115) 2 (𝐻 = 1.947) 3 (𝐻 = 2.544) 

Rhythm 
Mean (SD) 3.4 (0.995) 3.15 (1.137) 2.25 (1.020) 
ANOVA 𝐹(2,57) = 6.609,𝑝 = 0.003∗∗ 

Unity 
Mean (SD) 2.85 (0.988) 2.55 (0.999) 2.05 (0.945) 
ANOVA 𝐹(2, 57) = 3.420,𝑝 = 0.040∗ 

Complexity 
Mean (SD) 2.85 (1.127) 2.65 (1.182) 3.55 (1.050) 
ANOVA 𝐹(2, 57) = 3.262,𝑝 = 0.046∗ 

Amusement 
Mean (SD) 2.8 (1.005) 2.75 (0.786) 2.85 (1.226) 
ANOVA 𝐹(2,57) = 0.479,𝑝 = 0.953 

Positive 
Mean (SD) 2.45 (1.146) 2.45 (0.887) 2.55 (1.356) 
ANOVA 𝐹(2,57) = 0.508,𝑝 = 0.951 

Negative 
Mean (SD) 2.2 (1.005) 2.1 (1.071) 2.45 (1.099) 
ANOVA 𝐹(2,57) = 0.579,𝑝 = 0.564 

Like 
Mean (SD) 2.2 (0.952) 2.6 (1.273) 2.4 (1.429) 
ANOVA 𝐹(2,57) = 0.525,𝑝 = 0.594 
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tween Melody 2 and Melody 3 do not tend to be signifi-
cant. The reason may be that the listener could not sense 
small differences in entropies but could recognize big 
differences. A threshold of feeling could exist, and we 
will examine that possibility as a future task.  

 The differences in the appraisal of Complexity are signif-
icant. One reason might be that the experimental melo-
dies were only based on values, and the pitches of notes 
were random; therefore, other properties of the melody 
might have created the feeling of Complexity. It is also 
possible that value and pitch are not independent, but 
interactive. 

 Amusement, Positive, Negative, and Like are not affected 
by adjusting the entropy, possibly because emotion and 
liking are elicited by deviation/realization of expectation. 
 In this paper, we proposed the model of rhythmic com-
plexity, which could provide elements of devia-
tion/realization. As a next step, we will implement these 
models. 

6. CONCLUSIONS 
We are developing a system that automatically creates 
melody based on deviation/realization of musical expec-
tations. In this paper, we proposed the model of melodic 
rhythm based on entropy, and we verified that the model 
can provide musical complexity, which is one of the mu-
sical elements that elicit emotions. 
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ABSTRACT

The article outlines a psychoacoustically 
founded method to describe the acoustic per-
formance of earphones in two dimensions, 
Spectral Shape and Stereo Image Coherence. In 
a test  set of 14 typical earphones, these dimen-
sions explained 66.2% of total variability  in 11 
acoustic features based on Bark band energy 
distribution. We designed an interactive Ear-
phone Simulator software that allows smooth 
interpolation between measured earphones, and 
employed it in a controlled experiment (N=30). 
Results showed that the preferred ‘virtual ear-
phone’ sound was different  between two test 
conditions, silence and commuter noise, both in 
terms of gain level and spectral shape. We dis-
cuss possible development of the simulator de-
sign for use in perceptual research as well as in 
commercial applications.

1. INTRODUCTION

One of the most common situations for music consump-
tion today might very well be that of listening over ear-
phones while on a suburban train or bus during rush 
hours. The acoustic performance of commercially avail-
able earphones is highly variable, and it is not clear to 
what extent objective audio quality measures predict 
people’s preference in a given listening context.  Portable 
audiovisual entertainment devices are increasingly popu-
lar and sales figures of earphones have increased expo-
nentially within the past decade. According to Cellular-
news, combined headphone and earphone sales in South-
east Asia went up by 7% during the first half of 2010 
alone, and even more so in Singapore [1]. The growing 
demand is one indicator of the direction in which tech-
nology is changing lifestyle and habits in the early 21st 
century. 

This is the background for a project to investigate the 
perceived quality of earphones. A questionnaire survey of 
listening habits of commuters on public transport in Sin-
gapore was conducted (N=94). Among other things, it 
revealed that people use earphones in a wide price range: 
from ‘free’ (e.g. included with player or phone) to several 
hundred dollars worth. Results showed a positive rela-

tionship between cost and perceived quality.  However, 
we suspected a less direct relationship with objective 
audio quality, itself a multidimensional measure that 
would have to be calculated from acoustic features. 

Fourteen earphones were selected, with characteristics 
typical of those observed in the survey findings, and their 
acoustic performance was measured in studio. A con-
trolled experiment with volunteers was designed to de-
termine perceptual ratings of sound quality, as well as 
visual aesthetics, physical comfort, and perceived sound 
quality in conditions of ‘lab silence’ and ambient noise. 
To achieve a high degree of ecologic validity, we used in 
the noise condition actual soundscape recordings from a 
commuter train, reproduced at the SPL that was regis-
tered on-site.

1. AIMS FOR THE SIMULATION
To be able to make predictions of earphone sound quality 
ratings, we developed an interactive earphone simulator 
to be part of the experiment. The design was made in 
order to minimise bias and to let the person doing the 
ratings quickly find the preferred ‘virtual earphone’ 
sound in a given condition, i.e. in a noisy environment or 
in lab silence.

It has been shown that perceptual ratings of subjective 
features are correlated with loudness level. In a real-life 
situation, such as listening to music while commuting, 
the user adjusts for optimal loudness considering factors 
such as the kind of sound (e.g. music style),  the internal 
emotional state and cognitive attitude, while taking into 
account the level of noise in the prevailing sonic envi-
ronment. As a consequence, in an experimental setting, 
the user must be allowed to adjust the playback gain for 
optimal experience when shifting between different ear-
phones. The trivial observation about actual usage also 
implies that SPL on its own is not a meaningful feature 
for earphone acoustic performance. Therefore, we hy-
pothesised that frequency magnitude response and stereo 
image would be sufficient to describe earphone sound 
quality. 

For the research project as a whole, several other acoustic 
features were considered, i.e. noise isolation, harmonic 
distorsion, and impedance matching, as well as non-
acoustic features such as physical comfort,  visual aes-
thetic, and price. The results are reported in [4]. How 
multimodal perceptual features relate to objective acous-
tic features is discussed in [9] and goes beyond the scope 
of the present text. 
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In what follows, we first describe how the acoustic 
measurements were made.  Then, the design of an interac-
tive Earphone Simulator and an implementation using 
the acoustic measurements. Finally, we report results 
from a controlled pilot experiment (N=30).

2. ACOUSTIC MEASUREMENTS
Table 1 lists the selection of 14 commercially available 
earphones,  representative of those typically used by 
commuters on buses and trains in Singapore. Purchase 
prices were in a range from zero (‘free’) to around 400 
USD. Four use buds placed in the outer ear, and ten use 
in-ear buds of different shape and material, such as foam, 
smooth silicon, and ‘tree’ shaped silicon.

1. Procedure 

Measurements were made in accordance with best prac-
tices as in [6]. Impulse-response recordings were con-
ducted in an acoustically isolated sound booth. A time-
smoothed impulse or ‘swept sine wave’ (logarithmic,  30 
seconds) was generated. The frequency range 12…22050 
Hz was chosen in order to cover the defined range of 
Bark bands. Recall that the lower limit of band 1 is 50 
Hz, and the higher limit of band 24 is 15500 Hz. The 
chirp was played back via a sound card (Echo Au-
dioFire4) through one earphone at a time, with earbuds 
fitted in left and right pinnae of a manikin head (Neu-
mann KU100). Left and right responses were captured by 
built-in reference microphones. A total of 33 stereo re-
cordings were made of the 14 earphones, with left-right 
swapping of earphone buds in the manikin pinnae to 
minimise any bias introduced by frequency response 
mismatch between the microphones. Custom software 
developed in Max (Cycling’74) was then used to calcu-
late each channel's energy content in 24 Bark bands [2], 
[3].  Plots of the earphone responses in units of Bark band 
are shown in Figure 1.

2. Results

Numerous features of the profiles were investigated be-
fore a parsimonious set of features could be settled upon. 
Seven measures of frequency magnitude response were 
calculated on the response averaged across left and right 
channels. Note that the relation between levels in broad 
Bark band regions and the total SPL is a measure of spec-
tral shape.  Means were calculated on amplitude, i.e.  lin-
ear pressure equivalent, while slope was calculated on 
levels expressed on a decibel scale [5].
• BB_pki = index for the Bark band with highest level;
• SPL_low = mean of Bark bands 1…8 minus total SPL;
• SPL_mid = mean of bands 9…16 minus total SPL;
• SPL_high = mean of bands 17…24 minus total SPL;
• R_low = regression slope (Pearson’s r) of bands 1…8;
• R_mid = slope of bands 9…16; and
• R_high = slope of bands 17…24.

Four measures of left/right channel matching were calcu-
lated on the separate response of left and right channel. 

Note that the correlation r between responses was con-
sidered but not included in the final selection.
• ChD_rms = root mean square of channel differences;
• ChD_low = RMS of differences in bands 1…8;
• ChD_mid = RMS of differences in bands 9…16; and
• ChD_high = RMS of differences in bands 17…24.

Numeric values for these measures are listed in Table 1.

3. Analysis

The interrelationships of the features were investigated 
with a Principal Component Analysis approach. The first 
two components together explain 66.2% of the variability 
in the data. The original solution was rotated so as pro-
duce two derived dimensions whose meaning could eas-
ily be interpreted. The first axis,  explaining 43.0%, de-
scribes Spectral Shape: low values correspond to ear-
phones with ‘boomy’ sound, and high values to those 
with ‘brighter’  character. The second axis, explaining 
23.2%, describes Stereo Image Coherence: low values 
mean that left and right channels have differing Bark 
band profiles, and high values that responses are closely 
matching. Each earphone thus occupies a position in a 
plane with orthogonal axes.  Figure 2 shows a biplot of 
the rotated PCA.

3. AN EARPHONE SIMULATOR
A software simulation was designed to enable partici-
pants in the ensuing perceptual experiment to interac-
tively select their preferred ‘virtual earphone’ sound. 

1. Interpolation space

Each of the 14 measured earphones is represented by an 
{x, y} position, or node, in the plane with axes corre-
sponding to Spatial Shape and Stereo Image Coherence, 
i.e. the two rotated PC dimensions. The Bark band left/
right profiles of an intermediate point in this plane can be 
estimated as a linear interpolation of values from two or 
more fixed positions weighted by the inverse of their 
Euclidian distance to that point. The design was imple-
mented in a Max patcher, using FTM [7] to store 51 val-
ues for each earphone, i.e. name, PC-derived position, 
and measured frequency response levels in 24 Bark 
bands per channel. The size of the region within which an 
earphone measurement contributes to an interpolation 
must be decided. Because the 14 measurements are not 
equally distributed in the plane we have defined, the size 
of the region around some nodes must be extended so as 
to achieve smooth interpolations and minimise non-
covered space. A solution was found heuristically where 
each region is a circle with radius adjusted so as to cover 
the two closest neighbours and exactly touch the third. 
The interpolation space is visualised in Figure 3.
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Table 1. Values of the selected acoustic measures of 14 earphones.
BB_pki SPL_low SPL_midSPL_high R_low R_mid R_high ChD_rms ChD_low ChD_midChD_high PC1 PC2

A 15 -24.56 -5.88 -7.27 0.86 0.94 -0.84 1.66 0.99 2.50 1.03 1.86 1.54
B 15 -16.13 -5.79 -9.62 0.95 0.72 -0.92 5.37 6.83 3.54 5.22 0.89 -0.51
C 4 -8.41 -10.31 -10.04 0.64 -0.95 -0.93 2.58 2.84 1.65 3.04 -1.66 0.54
D 16 -9.51 -7.66 -11.99 0.41 0.37 -0.94 3.35 2.60 2.17 4.71 -0.59 0.61
E 12 -20.06 -4.04 -11.29 1.00 -0.07 -0.70 1.44 2.11 0.86 1.03 1.30 1.13
F 19 -9.42 -9.49 -9.72 0.71 -0.93 -0.64 3.70 4.86 3.66 2.01 0.33 -1.09
G 16 -19.36 -6.59 -7.45 0.99 0.95 -0.93 3.75 5.62 2.18 2.42 1.50 0.59
H 22 -22.71 -9.95 -4.31 0.97 0.99 -0.60 4.15 5.16 4.91 1.03 2.67 -0.33
I 1 -4.52 -12.41 -15.61 -0.99 0.72 -0.97 1.27 0.84 0.69 1.92 -4.03 1.85
J1 14 -8.90 -7.44 -13.29 0.64 0.82 -0.92 1.33 0.91 0.63 2.02 -0.51 1.69
J2 14 -9.86 -6.78 -13.14 0.98 0.47 -0.92 7.78 12.71 1.43 4.24 0.10 -2.48
J3 14 -23.32 -4.86 -8.86 0.96 0.88 -0.91 1.74 1.64 0.83 2.40 1.56 1.66
J4 17 -10.00 -6.95 -12.59 0.81 0.83 -0.97 4.03 6.55 0.67 2.31 0.14 0.10
K 3 -5.87 -9.53 -16.07 -0.72 -0.12 -0.73 13.23 10.20 13.31 15.61 -3.55 -5.28

A B C D

E F G H

I J1 J2 J3

J4 K

Figure 1. Averaged frequency responses of 14  earphones in  24 Bark bands for left (blue) and right (red) channels. Linear re-
gression lines (‘slopes’, black) are indicated for channel average (‘mono mix’) in low, mid, and treble Bark band ranges.
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Figure 2. PCA biplot of 14 earphones where 11 acoustic measurements  are projected onto a plane with axes Spectral Shape 
and Stereo Image Coherence. ‘S’  and ‘N’  refer to the preferred virtual earphone sound in Silent and Noise conditions (mean 
position across 30 participants, surrounded by 95% confidence ellipses).

Figure 3. User interface for the Earphone Simulation. The square with the colourful circles corresponds exactly to the 2-dimensional 
plane yielded by the PCA. It is a visualisation of the space used for interpolation of Bark band profiles.

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

77



2. Slider interface

The patcher receives interactive input from three sliders 
of a USB MIDI interface (Evolution UC33e).  One slider 
allows the adjustment of gain level, for reasons discussed 
above. The two other sliders are mapped to the PCA-
derived dimensions, in a particular way. When using a 
physical input device to represent some perceptual di-
mension, there might be tacit assumptions such as “in-
creased pitch goes upwards” or “increasing loudness goes 
rightwards”, and so forth.  Such ‘cliché’ mappings can 
introduce response bias. To reduce this bias, the design 
randomises slider mappings (input slider -> x or y axis) 
as well as whether sliders and axes are mapped straight, 
or mirrored. This gives eight different arrangements. 
Since the mapping is not communicated to the person 
doing the rating, she must inform herself through atten-
tive listening while moving the sliders of the interface. 
For each rating stimulus, e.g. a sound excerpt or a new 
condition, the mapping is randomised. Further, in order 
to insure against ‘lazy clicking’ bias, the software verifies 
that a certain amount, i.e. at least 10 out of 14 nodes have 
been ‘heard’ (have been part of an interpolation), before a 
preference rating is accepted and saved to disk.

3. Filterbank

The interpolated 2x24 values, determining the Bark band 
profiles of the channels of a ‘virtual earphone’, are sent 
to a filter bank, implemented as a set of parallel 3rd-order 
Butterworth bandpass filters with centre frequency and 
bandwidth as in [2], [3]. The user can thus smoothly 
move between different kinds of earphone filtering, and 
eventually select what s/he consideres the optimal sound. 
In the experiment,  reference earphones with a very flat 
frequency response were used (Etymotic ER-2). Com-
pared to the commercial earphones that are simulated, 
these earphones can be considered transparent. According 
to the manufacturer, their passive isolation with ‘shallow 
insertion’. Finally, the Bark profiles for the preferred 
sound are saved to disk, together with the amount of gain 
adjustment for playback level. The Earphone Simulator 
interface is shown in Figure 3.

4. EXPERIMENT

The software was employed in a controlled experiment, 
as part of a pilot research project to investigate several 
aspects of earphones [4]. 

1. Procedure

30 volunteers completed the experiment,  one at a time, 
taking approximately 10 minutes of the test session. Par-
ticipants received a movie voucher as a token of appre-
ciation. The participant was fitted with the set of refer-
ence earphones (ER-2) and presented with the interface 
(UC33e). As stimuli, songs were selected randomly from 
a collection that had been normalised in terms of RMS. 
The participant was informed that two sliders control 
“the sound” (but not in what way) and that one slider 
controls “the volume”. There were two conditions, pre-
sented in random order. The ‘Lab Silence’ condition (ie. 

the sound studio) was measured at Leq(A, 60s)=39.8 dB, 
Leq(C)=65.4 dB. The ‘Commuter Noise’ condition, 
where a recording from the interior of a Singaporean 
MRT train during rush hour was played back at the level 
registered at the original site, was in studio measured at 
Leq(A)=75.7 dB, Leq(C)=82.6 dB. Hence the difference 
in ambient noise level between conditions was substan-
tial. The participant’s task was to move the three interface 
sliders so as to select the “best sound” for the given con-
dition. They repeated the task 6 times or more for each 
condition, and were free to change songs at any time. As 
described above, the mapping of slider movement to 
PCA dimension changed randomly between 8 different 
configurations every time a new song was selected. This 
obliged the participant to listen out carefully for how the 
sliders affected the sound output. To sum up, three pa-
rameters determining the preferred virtual earphone were 
collected. They are here referred to as Spectral Shape, 
Stereo Image Coherence, and Level. The first two are 
identical to the {x,  y} position in the 2-dimensional ro-
tated PCA plane, described above.

In the first round (N1=13) a procedure problem caused 
gain levels to be incorrectly saved. Serendipitously, 
screenshots had been taken of the GUI for all participants 
preferred setting in either condition, and in several cases 
for both conditions. From the latter, correct gain adjust-
ments could be read directly, and for the remaining, rea-
sonable estimates could be inferred with a conservative 
ad hoc method. As a result, Level values were similar to 
those in round two (very carefully registered), but be-
cause of the conservative estimate made, they showed a 
less pronounced difference between conditions.

2. Results

Means (on linear pressure equivalent where appropriate) 
were calculated for each participant and condition. A 
repeated-measures MANOVA with Spectral Shape, Ste-
reo Image Coherence,  and Level as dependent variables, 
and Condition as independent variable, yielded the re-
sults in Table 2.

Table 2. Main results from repeated-measures MANOVA of 
Condition  onto 3 parameters of the preferred virtual  earphone. 
Cohen’s d uses the pooled standard deviation method.

variable F(1, 29) p d ω2

Spectral Shape 7.32 0.0113 * 0.531
St. Img. Coherence 0.580 0.452 0.179
Level 11.7 0.0019 ** 0.667

0.196
0.019
0.280

As expected, Level was clearly different between condi-
tions. It was on average 4.2 dB higher during the noise 
condition, with 95% confidence interval {3.2…7.8} dB. 
The effect size was two-thirds of a standard deviation, 
and Condition explained 28% of the variance in Level. 
Interestingly, there was a significant difference in Spec-
tral Shape between conditions. During the noise condi-
tion,  participants preferred an earphone sound with larger 
ratio between higher Bark bands energy to lower Bark 
bands energy, i.e. SPL_high divided by SPL_low; see 
Section 2.2,  and Figure 4. Given that the commuter train 
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sonic environments (e.g. the recording used in the noise 
condition) contains a lot of low-frequency energy, music 
would be heard more clearly through an earphone with a 
high-frequency spectral bias. The effect size was slightly 
more than half a standard deviation, and Condition ex-
plained nearly 20% of the variance in Spectral Shape. 
For Stereo Image Coherence the difference between con-
ditions was not significant. 

In Figure 2 the positions of the optimal (preferred) virtual 
earphone sound can be seen, in both conditions (‘S’=Lab 
Silence, ‘N’=Commuter Noise). Note that neither corre-
sponds exactly with the sound profile of any of the 14 
measured earphones.
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Bark band profiles of preferred virtual earphones in two conditions
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Figure 4. Bark band profiles of preferred virtual earphones 
(mean across participants). Blue line is in the ‘lab silence’ con-
dition, and dashed red line is in the ‘commuter noise’ condition.

3. CONCLUSION
We have described a psychoacoustically founded method  
to analyse acoustic measurements of earphones and the 
design of a prototype Earphone Simulator software. A 
pilot experiment employing the Simulator showed that,  in 
addition to (gain) Level, Spectral Shape was a useful di-
mension along which listeners differentiated their pre-
ferred sound under two ambient noise conditions.

One reviewer of this article brought to our attention re-
cent work [8] by Rämö and Välimäki on software simula-
tion of headphones in quiet and noisy situations.  The 
authors measured the frequency response and isolation 
capabilities of different headphones. This is a highly in-
teresting work that merits further study, in particular in 
regards to the reference headphone calibration method 
and the inclusion of noise isolation in the simulation 
software. We believe that the Earphone Simulator de-
scribed in this article has features that are not described 
in their work, in particular the possibility to create a ‘vir-
tual earphone sound’ by smooth linear interpolation be-
tween measured, real-life earphones and using a physical 

interface. One interesting avenue of future work could be 
to integrate the methods in [8] with those we have pre-
sented here.

We believe that interactive simulations enable certain 
kinds of perceptual investigation and that they extend-
able. Further development could aim to integrate all parts 
of the method here described in a single software, i.e. 
impulse-response measurements, PCA, interactive inter-
polation, and perceptual ratings. Such a software would 
be adaptable to various research design scenarios involv-
ing perceptual ratings of earphones,  headphones, or loud-
speakers of any type. It would also potentially be valu-
able in a commercial situation where a user needs to 
make an optimal selection within a set of loudspeaker 
options, depending on personal preferences of sound 
quality as well as other factors.
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ABSTRACT

The Melody Triangle is a smartphone application for An-
droid that lets users easily create musical patterns and tex-
tures. The user creates melodies by specifying positions
within a triangle, and these positions correspond to the
information theoretic properties of generated musical se-
quences. A model of human expectation and surprise in
the perception of music, information dynamics, is used to
‘map out’ a musical generative system’s parameter space,
in this case Markov chains. This enables a user to explore
the possibilities afforded by Markov chains, not by directly
selecting their parameters, but by specifying the subjective
predictability of the output sequence. As users of the app
find melodies and patterns they like, they are encouraged to
press a ‘like’ button, where their setting are uploaded to our
servers for analysis. Collecting the ‘liked’ settings of many
users worldwide will allow us to elicit trends and common-
alities in aesthetic preferences across users of the app, and
to investigate how these might relate to the information-
dynamic model of human expectation and surprise. We
outline some of the relevant ideas from information dy-
namics and how the Melody Triangle is defined in terms of
these. We then describe the Melody Triangle mobile ap-
plication, how it is being used to collect research data and
how the collected data will be evaluated.

1. INTRODUCTION

The use of generative stochastic processes in music com-
position has been widespread for decades—for instance
Iannis Xenakis applied probabilistic mathematical models
to the creation of musical materials [1]. However it can
sometimes be difficult for a composer to find desirable pa-
rameters and navigate the possibilities of a generative al-
gorithm intuitively.

The Melody Triangle is an interface for the discovery of
melodic content where the parameter space of a stochastic
generative musical process, the Markov chain, is ‘mapped
out’ according to the predictability of the output. The
Melody Triangle was developed in the context of infor-
mation dynamics [2]; an information theoretic approach to

Copyright: c©2013 Henrik Ekeus et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which
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modelling human expectation and surprise in the percep-
tion of music. Users of the Melody Triangle do not se-
lect the parameters to generative processes directly, rather
they provide input in the form of a position within a trian-
gle, and this maps to the information theoretic properties
of an output melody. For instance one corner of the tri-
angle returns completely random melodies, while an other
area yields entirely predictable and periodic patterns, the
entirety of the triangle covering a spectrum of predictabil-
ity of the output melodies.

In section 2 we review the concepts and ideas behind
information dynamics, and outline the information mea-
sures that lead to the development of the Melody Triangle,
which have been described in greater detail in our previous
work [2]. In section 3 we describe how these informa-
tion measures are used to construct the Melody Triangle,
and how the triangular interface is used to retrieve patterns
of symbols that are then mapped to notes or percussive
sounds. The Melody Triangle has in previous work been
implemented as an interactive installation and as a desktop
application, these implementations are described and eval-
uated in [3]. In section 4 we describe the Melody Triangle
mobile app for Android, which is the main contribution of
this paper. We outline its features, how it allows users to
share their settings with each other, and how it is currently
being used to collect data for research. We then describe
how the collected data will be interpreted to identify trends
and commonalities in aesthetic preferences across users of
the app, and to determine if parallels between these prefer-
ences and the information dynamics models can be made.

2. INFORMATION DYNAMICS

The relationship between Shannon’s [4] information the-
ory and music and art in general has been the subject of
some interest since the 1950s [5–9]. The general thesis
is that perceptible qualities and subjective states like un-
certainty, surprise, complexity, tension, and interestingness
are closely related to information-theoretic quantities like
entropy, relative entropy, and mutual information.

Music is an inherently dynamic process. An essential as-
pect of this is that music is experienced as a phenomenon
that unfolds in time, rather than being apprehended as a
static object presented in its entirety. Meyer [8] and Nar-
mour [10] argued that the experience depends on how we
change and revise our conceptions as events happen, on
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how expectation and prediction interact with occurrence,
and that, to a large degree, the way to understand the effect
of music is to focus on this ‘kinetics’ of expectation and
surprise.

Prediction and expectation are essentially probabilistic
concepts and can be treated mathematically using proba-
bility theory. We suppose that when we listen to music,
expectations are created on the basis of our familiarity with
various styles of music and our ability to detect and learn
statistical regularities in the music as they emerge. There
is experimental evidence that human listeners are able to
internalise statistical knowledge about musical structure
[11], and also that statistical models can form an effective
basis for computational analysis of music [12–14].

Information dynamics considers several different kinds
of predictability in musical patterns, how these might be
quantified using the tools of information theory, and how
they shape or affect the listening experience. Our working
hypothesis is that listeners maintain a dynamically evolv-
ing probabilistic belief state that enables them to make pre-
dictions about how a piece of music will continue.

They do this using both the immediate context of the
piece as well as using previous musical experience, such
as a familiarity with musical styles and conventions. As
the music unfolds, listeners continually revise this belief
state, which includes predictive distributions over possible
future events. These changes in probabilistic beliefs can
be associated with quantities of information; these are the
focus of information dynamics.

In this next section we briefly describe the information
measures that we use to define the Melody Triangle, how-
ever a more complete overview of information dynamics
and some of its applications can be found in [2] and [15].

2.1 Sequential Information Measures

Consider a sequence of symbols from the viewpoint of an
observer at a certain time, and split the sequence into a
single symbol in the present (Xt), an infinite past (

←
Xt) and

the infinite future (
→
Xt). The symbols arrive at a constant,

uniform rate.
The entropy rate of a random process is a well-known,

basic measure of its randomness or unpredictablity. The
entropy rate is the entropy, H, of the present given the past:

hµ = H(Xt|
←
Xt). (1)

that is, it represents our average uncertainty about the
present symbol given that we have observed everything be-
fore it. Processes with zero entropy rate can be predicted
perfectly given enough of the preceding context.

The multi-information rate ρµ [16] is the mutual infor-
mation, I, between the ‘past’ and the ‘present’:

ρµ = I(
←
Xt;Xt) = H(Xt)−H(Xt|

←
Xt). (2)

Multi-information rate can be thought of as measures of
redundancy, quantifying the extent to which the same in-
formation is to be found in all parts of the sequence. It
is a measure of how much the predictability of the pro-
cess depends on knowing the preceding context. It is the
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Figure 1: The Wundt curve relating randomness/complexity
with perceived value. Repeated exposure sometimes results in a
move to the left along the curve [17].

difference between the entropy of a single element of the
sequence in isolation (imagine choosing a note from a mu-
sical score at random with your eyes closed and then trying
to guess the note) and its entropy after taking into account
the preceding context: If the previous symbols reduce our
uncertainty about the present symbol a great deal, then the
redundancy is high. For example, if we know that a se-
quence consists of a repeating cycle such as . . . b, c, d, a, b,
c, d, a . . . , but we do not know which was the first symbol,
then the redundancy is high, as H(Xt) is high (because
we have no idea about the present symbol in isolation), but
H(Xt|

←
Xt) is zero, because knowing the previous symbol

immediately tells us what the present symbol is.
The predictive information rate (PIR) [2] brings in our

uncertainty about the future. It is a measure of how much
each symbol reduces our uncertainty about the future as it
is observed, given that we have observed the past:

bµ = I(Xt;
→
Xt|
←
Xt) = H(

→
Xt|
←
Xt)−H(

→
Xt|Xt,

←
Xt). (3)

It is a measure of the mutual information between the
‘present’ and the ‘future’ given the ‘past’. In other words,
it is a measure of the new information in each symbol.

The behaviour of the predictive information rate make it
interesting from a compositional point of view. The defini-
tion of the PIR is such that it is low both for extremely reg-
ular processes, such as constant or periodic sequences, and
low for extremely random processes, where each symbol
is chosen independently of the others, in a kind of ‘white
noise’. In the former case, the pattern, once established, is
completely predictable and therefore there is no new infor-
mation in subsequent observations. In the latter case, the
randomness and independence of all elements of the se-
quence means that, though potentially surprising, each ob-
servation carries no information about the ones to come.
Processes with high PIR maintain a certain kind of balance
between predictability and unpredictability in such a way
that the observer must continually pay attention to each
new observation as it occurs in order to make the best pos-
sible predictions about the evolution of the sequence. This
balance between predictability and unpredictability is rem-
iniscent of the inverted ‘U’ shape of the Wundt curve (see
Fig. 1), which summarises the observations of Wundt [18]
that stimuli are most pleasing at intermediate levels of nov-
elty or disorder, where there is a balance between ‘order’
and ‘chaos’.

A similar shape is visible in the upper envelope of the plot
in Fig. 3a, which is a 3-D scatter plot of the information
measures for hundreds of first-order, eight state Markov
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Figure 2: Two transition matrixes representing Markov chains.
The shade of grey represents the probabilities of transition from
one symbol to the next (white=0, black=1). The current symbol
is along the bottom, and the next symbol is along the left. The
left hand matrix has no uncertainty; it represents a periodic pat-
tern (a,d,c,b,a,d,c,b,a,d,c,b,a. . . ). The right hand matrix contains
unpredictability but nonetheless is not completely without per-
ceivable structure (we know for instance that any ‘b’ will always
be followed by an ‘a’ and preceded by a ‘c’), it is of a higher
entropy rate.
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Figure 3: The population of hundreds of randomly generated
8-state transition matrices in the 3D space of entropy rate (hµ),
redundancy (ρµ) and predictive information rate (bµ), all in bits.
As can be seen in (a) the distribution as a whole makes a curved
sheet, with the highest PIR values found at intermediate entropy
and redundancy. Although not visible in this plot, it is largely
hollow in the middle. As can be seen in (b), the same plot with the
PIR dimension projected out forms a right angled triangle, this
is the triangle which corresponds to the interface of the Melody
Triangle.

Figure 4: The Melody Triangle

chain transition matrices.The coordinates of the ‘informa-
tion space’ are entropy rate (hµ), redundancy (ρµ), and
predictive information rate (bµ). The matrices are gener-
ated by a hierarchical Dirichlet sampling method [19] to
increase the probability of generating very sparse transi-
tion matrices, and get a good spread that reaches the edges
and corners of the space. The points along the ‘redun-
dancy’ axis correspond to periodic Markov chains. Those
along the ‘entropy’ axis produce uncorrelated sequences
with no temporal structure. Processes with high PIR are to
be found at intermediate levels of entropy and redundancy.

These observations led us to construct the ‘Melody Tri-
angle’.

3. THE MELODY TRIANGLE

The Melody Triangle is an interface that is designed around
this natural distribution of Markov chain transition matri-
ces in the information space of entropy rate (hµ), redun-
dancy (ρµ) and predictive information rate (bµ), as illus-
trated in Fig. 3a.

The distribution of transition matrices in this space forms
a relatively thin curved sheet. Thus, it is a reasonable sim-
plification to project out the third dimension (the PIR) and
present an interface that is just two dimensional, resulting
in a right-angled triangle, as can be seen in Fig. 3b.

The right-angled triangle is rotated and stretched to form
an equilateral triangle with the ‘redundancy’/‘entropy rate’
vertex at the top, the ‘redundancy’ axis down the left-hand
side, and the ‘entropy rate’ axis down the right, as shown
in Fig. 4. This is our ‘Melody Triangle’ and forms the
interface by which the system is controlled.

3.1 Usage

The user selects a point within the triangle, this is mapped
into the information space and the nearest transition matrix
is used to generate a sequence of values which are then
sonified either as pitched notes or percussive sounds.

Though the interface is 2D, the third dimension (predic-
tive information rate) is implicitly present, as transition
matrices retrieved from along the centre line of the triangle
will tend to have higher PIR. As shown in Fig. 4, the cor-
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ners correspond to three different extremes of predictabil-
ity and unpredictability, which could be loosely charac-
terised as ‘periodicity’, ‘noise’ and ‘repetition’. Melodies
from the ‘noise’ corner (high hµ, low ρµ and low bµ) have
no discernible pattern; those along the ‘periodicity’ to ‘rep-
etition’ edge are all cyclic patterns that get shorter as we
approach the ‘repetition’ corner, until each is just one re-
peating note. Those along the opposite edge consist of in-
dependent random notes from non-uniform distributions.
Areas between the left and right edges will tend to have
higher predictive information rate (bµ), and we hypothesise
that, under the appropriate conditions, these will be per-
ceived as more ‘interesting’ or ‘melodic.’ These melodies
have some level of unpredictability, but are not completely
random. Or, conversely, are predictable, but not entirely
so.

Given coordinates corresponding to a point in the trian-
gle, we select from a pre-built library of random processes,
choosing one whose entropy rate and redundancy match
the desired values. The implementations discussed in this
paper use first order Markov chains as the content genera-
tor, since it is easy to compute the theoretically exact val-
ues of entropy rate, redundancy and predictive information
rate given the transition matrix of the Markov chain. How-
ever, in principle, any generative system could be used to
create the library of sequences, given an appropriate proba-
bilistic listener model supporting the estimation of entropy
rate and redundancy.

The Markov chain based implementation generates
streams of symbols in the abstract; the alphabet of symbols
is then mapped to a set of distinct sounds, such as pitched
notes in a scale or a set of percussive sounds. By layer-
ing these streams, intricate musical textures can be created.
The number of states in the generated Markov chains cor-
responds to the number of audio samples used, however
the output of the Melody Triangle could even be mapped to
non sonic outputs such as visible shapes, colours, or move-
ments.

The information measures that define the Melody Trian-
gle assume a constant rate of symbols, and thus the output
sequences proceed at a constant, uniform rate. Although
the placing of events in time and rhythm has a strong ef-
fect on expectations, surprise and satisfaction in music, the
system does not, as yet, address this temporal dimension.
Additionally the system does not address the culturally de-
fined expectations of melodic structure that result from our
exposure to tonal music; all symbols are considered equal,
regardless of what note in a scale they are mapped to.

4. THE MOBILE APP

The Melody Triangle has been implemented as an interac-
tive multi-user installation, as a desktop composition tool,
and most recently as a mobile app for the Android plat-
form. It was launched on 28th March 2013, and is free to
download from the Google Play app store. 1 A descrip-
tion of the interactive installation and the desktop versions

1 The download link and some sample audio can be found at
http://melodytriangle.eecs.qmul.ac.uk/

Figure 5: Screenshot of the Melody Triangle mobile app for
Android. The letters on the tokens correspond to the instrument
they are currently assigned to. P=piano, B=bass, D=drums.

of the Melody Triangle, as well as some user trials can be
read in [3].

To support the crowdsourcing of data, the app needs to
provide enough musical variety to engage users. A sim-
ple implementation (with for instance, one single concur-
rent melody, at one single rate and timbre), would make
data analysis easier and more straight forward, however
the limit musical appeal would make it difficult to collect
data from the public. In the next sections we outline the
features of the app, describe how the data is collected, and
how it will be analysed.

4.1 Features

As seen in Fig. 5, the app provides three tokens that can be
dragged in to the triangle using the touch screen. It is with
these tokens that the user selects the points in the triangle
that will generate sequences, and thus three sequences can
be played simultaneously. Each token can be assigned to
one of three instruments: piano, bass, drums. The user can
change what instrument is assigned to each token by press-
ing on the token’s holder position on the top left. In addi-
tion to changing the instrument, the user can also change
the register of the instrument; the piano has three octaves,
the bass has two. Additionally the user can select the num-
ber of notes per beat, as well as specifying whether this
token’s notes should be delayed to come on the off-beat,
allowing for syncopation between the sequences generated
by the tokens.

There are also some global controls; the master beats-
per-minute can be changed with the ‘+/-’ buttons on the
left, and there is an additional settings menu were the user
can choose between the diatonic scale, harmonic scale or
the pentatonic scale.

The mobile app is pre-populated with two sets of over
8000 matrixes that densely cover the triangular interface.
For the diatonic and harmonic scale (and for the drums
samples) the transition matrixes contain 8 states, and for
the pentatonic scale 6 states. Whenever a transition matrix
is selected by placing a token in the triangle, the symbol-to-
note mapping is shuffled. This allows the same transition
matrix to correspond to multiple melodies. One state for
each of the matrixes is mapped to a rest, allowing for some
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rhythmic variety and to increase the musicality of the out-
put. When a user taps one of the tokens in the triangle it
re-shuffles the symbol-to-note mapping while keeping the
same transition matrix.

The current transition matrices, settings of each token and
the global settings constitute the ‘state’ of the system. A
user can save their favourites states locally as presets or
share them with the world by pressing the ‘like’ button.

4.2 Collecting Data - ‘Likes’ and the Melody Triangle
‘Radio’

Onscreen notifications encourage users of the app to press
the ‘like’ button (the heart icon on the right of the screen)
whenever they enjoy what they are hearing. When they do
so, the current state of the system is stored and assigned
a unique 6 character hash code, referred to as a ‘song id’.
The users are given the option to enter a username, or may
choose to remain anonymous. This state is encoded into
a small file and uploaded to our servers at Queen Mary,
University of London. Geographical information is also
stored.

It is possible for users of the app to share settings with
each other. By pressing the cloud icon on the right of the
screen, the user can type in any song id. When they do
so the app downloads the state file from the server and
loads the state on to the user’s phone. Additionally the
app can go into ‘radio mode’, where the users can quickly
and easily audition other users’ uploaded states. Upon en-
tering radio mode, the app downloads a randomly selected
uploaded state. An additional button appears on the in-
terface, a ‘skip’ button, which whenever it is pressed the
app downloads another randomly selected state. Again the
users are encouraged (via on screen notifications) to when-
ever they enjoy one of the downloaded states, to press the
‘like’ button. This allows us over time to build a kind of
crowdsourced ranking of the uploaded states, as more pop-
ular states get more likes. Users can modify downloaded
states and then ‘like’ those, hence states can evolve from
other states, and so any uploaded state keeps a history of
previous states so that we may track their evolution.

To further encourage uploads and participations, there is a
‘Hall of Fame’ (see Fig. 6) available at the project website.
It shows a list of the users who have contributed the most
by uploading many states, as well as chart of most popular
songs when ‘liked’ in radio mode.

In previous work [3] we attempted to carry out a lab study
to find links between the information theoretic measures of
the Melody Triangle and aesthetic preferences, however it
quickly became clear that lab conditions were not practical
to get significant amounts of data. The Melody Triangle
mobile phone app provides an alternative means of col-
lecting data, while engaging crowds with a unique citizen
science project.

4.3 Interpreting Crowdsourced Data

By collecting many liked settings from users all over the
world, it may be possible to identify trends and commonal-
ities across these settings. A submitted setting contains all
the information relating to the current state of the app, this

Figure 6: The Melody Triangle ‘Hall of Fame’ as of 9th of June
2013. The top list shows the most prolific users who have shared
the most settings by pressing the ‘like’ button. The lower list
shows the top ranked songs based on the number of ‘likes’ a state
has received by other users while in ‘Radio Mode’. The hall of
fame can be found at http://melodytriangle.eecs.qmul.ac.uk/

forms a feature vector that includes the information mea-
sures of the currently playing Markov chains, the current
note-to-symbol mappings, instrument/register choices, scale,
notes per beat for every token and master BPM. Given a
submitted state we can extract a number of additional fea-
tures that are not explicitly stored in the data represent-
ing the state of the system, but that are implicitly available
by observing the output. This includes the frequencies of
notes and melodic intervals for each melody, and by look-
ing across concurrent melodies, inter-melody intervals al-
lowing us to extract harmonic information.

We can look for clusters in the feature space to answer
a variety of questions. For instance we can identify what
the most common intervals are, both within a melody, and
across concurrent melodies, and whether these correspond
to the more consonant intervals. We can look for the av-
erage information values of the Markov chains, and see
how these vary based on the number of concurrent tokens,
the rate at which notes are output, or register for instance.
We can see if the states that receive the greatest like-to-
download ratio in ‘Radio mode’ have similar information
properties to each other.

We are in the active state of research 2 and a full anal-
ysis is yet to be carried out. However it is already clear
from data collected so far that the more ‘predictable’ half
of the triangle (the half with lower entropy rate and higher
redundancy) is preferred to the ‘unpredictable’ half of the
triangle. Additionally it has been observed that the visual
layout of the interface has an influence on the parame-
ter choices; a number of states contain tokens lined up in
rows or columns. Approximately 20% of states submitted
so far contain only the drum sounds, and these may lend
themselves to a more straight-forward information theo-

2 As of June 9th 2013, there have been 173 submitted settings. The
collected data is being made available to researchers at the project web-
site: http://melodytriangle.eecs.qmul.ac.uk/data.
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retic analysis as these are not subject to cultural melodic
expectations.

Clusterings in the state-space of the data may provide us
with the means to link the information dynamic models
and its measures to aesthetic preferences. Additionally if
we get enough entries, the geographical information may
allow us to determine if there are any cultural differences
between users based on countries or continents.

5. CONCLUSION

We presented the Melody Triangle; an interface for the
discovery of melodic content where the input — positions
within a triangle — corresponds to the predictability of the
output melodies. The Melody Triangle is contextualised in
information dynamics; an information theoretic approach
to modelling human expectation and surprise. We out-
lined the relevant ideas behind information dynamics and
described three key information theoretic measures; en-
tropy rate, redundancy and a measure of predictive infor-
mation rate, which describes the gain in information made
by current observations about the future, but which are
not already known from past observations. We described
how the natural distribution of randomly generated Markov
chains in terms of these measures lead us to design the
Melody Triangle.

We described the Melody Triangle mobile app, a free app
for Android, and outlined how it collects data for research
by uploading the ‘liked’ settings of users to our servers.
We describe the app’s ‘radio mode’ that enables users to
quickly audition other uploaded states provide feedback
to form a crowd-sourced rankings table of most popular
settings. Finally we outline how the collected data will
be used to look for trends and commonalities in the up-
loaded settings, and to help identify any relationship be-
tween the information-dynamic model of human expecta-
tion and aesthetic preference.
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ABSTRACT

An algorithm named Prime-multiF0 for the estimation of
multiple pitches in a signal is proposed. Unlike other algo-
rithms that consider all harmonics of every pitch candidate,
our algorithm considers only on the fundamental frequency
and prime harmonics. This approach is shown to work ex-
tremely well with chords made of intervals no smaller than
a minor third. A test suite was created using synthetic sig-
nals of sawtooth, square, and triangle waves; major, minor,
diminished and augmented triads in fundamental and first
and second inversion, and spanning a bass range of three
octaves. Experimental results show that our algorithm was
able to detect the correct notes (after rounding to the clos-
est semitone) for all the sawtooth and square waves in the
test set, and for 99.3% of the triangle waves, failing only
on very high pitch notes.

1. INTRODUCTION

The first attempts to solve the problem of estimating pitch
in monophonic signals can be traced back to the 1960s, ac-
cording to a review of early algorithms in [1]. More recent
and successful approaches to solve the problem are pre-
sented in [2] and [3]. These algorithms can be applied to
solve problems in speech coding [4], speech therapy [5],
and music information retrieval [6], but they fail to solve
complex music problems like transcription, which require
estimating the pitch of concurrent signals [7].

In solving the multipitch problem, [8] and [9] are among
the most successful algorithms. They both use an audi-
tory model to split the signal in bands (notably two in [8]),
apply half-wave rectification to generate extra harmonics,
compute a generalized summary autocorrelation function
(SACF), and process this SACF to obtain pitches from its
peaks. In [8] the process consists in enhancing the SACF
by setting negative values to zero and subtracting from the
SACF stretched copies of itself to eliminate spurious peaks
(notably the root of the chord). In [9] the most salient peak
of the SACF is used to estimate the pitch of one of the sig-
nals. Then, an attempt is made to remove the recognized
signal from the spectrum, and the SACF is recomputed on
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Figure 1: Spectral components of (a) a signal with fun-
damental frequency 200 Hz, (b) a signal with fundamental
frequency 300 Hz, and (c) a signal combining both 200 Hz
and 300 Hz signals. In the latter case, the numbers along
the horizontal axis are the frequencies for which there
are no harmonics in the spectrum, which would corre-
spond to missing harmonics of a signal whose fundamen-
tal frequency is 100 Hz (the maximum common divisor of
200 Hz and 300 Hz).

the modified spectrum to recognize another pitch. The pro-
cess is repeated for the other sound sources.

The approaches in [8] and [9] use a generalized autocor-
relation function consisting in the inverse Fourier trans-
form of the magnitude of the signal’s modified spectrum
(with extra harmonics), raised to a certain power. A closer
look reveals that this function computes a score for each
pitch candidate based on the number and magnitude of the
peaks found at harmonics of the candidate in the modi-
fied spectrum. To illustrate the rationale behind this idea,
Fig. 1(a) and (b) shows the spectral components of two har-
monic signals with fundamental frequencies 200 Hz and
300 Hz, and Fig. 1(c) shows the components of the com-
bined signal. The signals are assumed to be limited to a
maximum frequency of 3 kHz (they are sampled at 6 kHz),
which means that the 200 Hz tone has 15 harmonics and
the 300 Hz tone has 10 harmonics. Based on the scoring
schema stated above, their respective scores would be 15
and 10. However, since 100 Hz is the root of the chord (i.e.,
all harmonics are multiples of 100), that frequency would
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receive a score of 20, corresponding to the total number
of harmonics in (c). The score for the (combined) 100 Hz
signal would then be higher than the score for the individ-
ual tones, which would cause autocorrelation to fail at es-
timating the correct fundamental frequency of these types
of combined signals.

In order to overcome this shortcoming of autocorrelation,
a different approach could be used that gives credit to a
pitch candidate based solely on those peaks located at its
fundamental frequency and prime harmonics. Using this
approach, the 200 Hz candidate would receive a score of
7 (for the components at 2, 4, 6, 10, 14, 22, and 26 in
Fig. 1-a), the 300 Hz candidate would receive a score of
5 (for the components at 3, 6, 9, 15, and 21 in Fig. 1-b),
and the 100 Hz candidate would receive score of 2 (for the
components at 2 and 3 in Fig. 1-c), leaving 200 Hz and
300 Hz as the indisputable winners. It can be shown that,
under this approach, no candidate can receive credit for
more than one harmonic of any tone with a fundamental
frequency larger than that one of the candidate, and that
will be the approach used in this work.

The theoretical advantage of identifying tones based on
their prime harmonics was identified by Klapuri [10]. How-
ever, he abandoned this approach on posterior works (e.g.,
[9]). Prime harmonics were are successfully used in [3]
for the single pitch estimation problem. Surprisingly, some
novel features proposed in that work, like the measurement
of frequency using the Equivalent Rectangular Bandwidth
scale (ERB) [11], the weighting of the harmonics as the in-
verse of their frequency, and the normalization of the ker-
nel, did not work well here and had to be removed. Except
for that, the algorithm proposed here is identical to that
one in [3], with the only novelty being its application to
the multipitch problem, plus the incorporation of an en-
hancement to the pitch candidates’ scores proposed in [8].

The rest of the paper is organized as follows. Section 2
describes the proposed method, Section 3 presents and dis-
cusses the results, and Section 4 outlines our conclusions.

2. METHOD

The proposed method, named Prime-multiF0, works as fol-
lows. It divides the signal in windows, computes the spec-
trum in each window, and applies an integral transform to
the spectrum to obtain a score for each pitch candidate.
Then, negatives scores are set to zero and a subharmonic
subtraction step is performed to enhance the scores. Fi-
nally, a peak-selection method is applied to detect the dif-
ferent pitches. The details of the method are described
next.

To compute the score of a pitch candidate f , the authors
of [3] recommend to use of a Hann window of size 8=f .
The use of this window type and size makes the width of
the spectral lobes match the width of the positive part of of
the kernel of the transform. This means that the spectrum
of the signal at time t should be computed as:

X.t; f 0/ D
Z 1
�1

w
�
8=f; t 0 � t� x �t 0� e�2�if 0t 0dt 0; (1)
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m

pl
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Figure 2: Spectrum of a signal with fundamental fre-
quency 100 Hz and kernel that allows to recognize its pitch.

where

w.T; t/ D
(
1
2
.1C cos .�.t 0 � t /=T // ; if jt j < T=2

0; otherwise.
(2)

Then, the score of a candidate f at time t should be com-
puted as the integral transform

S.t; f / D
1Z
0

K
�
f; f 0

� jX.t; f /j1=2 df 0 (3)

with kernel

K.f; f 0/ D K1.f; f 0/C
X
j2P

Kj .f; f
0/; (4)

where

Kj .f; f
0/ D

8̂<̂
:

cos.2�f 0=f /; if jf 0=f � j j < 1
4

1
2

cos.2�f 0=f /; if 1
4
< jf 0=f � j j < 3

4

0; otherwise,
(5)

and P is the set of prime numbers. Each component of
the kernel has the purpose to give credit to the candidate
if there is energy at its j -th harmonic. 1 This is illustrated
in Fig. 2, which shows the spectrum of a signal with fun-
damental frequency 100 Hz and the kernel with same fre-
quency.

Unfortunately, it is computationally expensive to com-
pute a different Fourier transform for each pitch candidate.
Hence, we adopt a schema to reduce the number of trans-
forms computed, at the price of a decreased match between
the width of the spectral lobes and the width of the com-
ponents of the kernel. Under this scheme, transforms are
computed using only window sizes that are powers of two
(in number of samples), and the score of each candidate is
produced as a linear combination of the scores obtained for
that candidate using the two closest power-of-two window
sizes. More precisely, the scores are computed as follows:

S.t; f / D .1 � �/ S0.t; f /C �S1.t; f / (6)

where S0.t; f / and S1.t; f / are computed as in (3), but
using the two closest power-of-two window sizes N0 D

1 The use of the square-root amplitude of the spectrum in (3) approxi-
mates the growth of loudness with amplitude [12], and the use of a cosine
in (5) allows for inharmonicity in the signals. Both are explained in more
detail in [3].
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2L and N1 D 2LC1 (in samples), respectively; and � is
obtained from N �, the optimal window size (in samples)
for a candidate f , with N � D 2LC� D Œ8fs=f �, where
L 2 N; 0 � � < 1, and fs is the sampling rate of the
signal).

Finally, the scores computed in (6) are enhanced by ap-
plying a variation of the approach proposed in [8]. The
original enhancement consists in setting to zero all nega-
tive scores and subtracting from each score the scores of
multiples of the candidate. This has the purpose of reduc-
ing the scores of the inevitable peaks at common divisors
of the pitches (e.g., the root of the chord). The proposed
variation uses only scalings by a prime factor:

S 0.t; f / D SC.t; f / �
X
k2P

SC.t; kf /; (7)

where
SC.t; f / D max f0; S.t; f /g (8)

is a clipped version of S.t; f / to nonnegative values.
Ideally, one would wish to use (7) itself to determine the

pitch of the notes being played at time t , but S 0.t; f / is a
little bit unstable over short periods of time. Therefore, it
is recommended to integrate it over some period of time in
order to obtain a more reliable estimate of the notes’ pitch.
In our experiments we obtained good results integrating
over 0.3 s.

The algorithm implementation we used was written in
the MATLAB programming language. The integrals in (1)
and (3) were approximated by sums using as step sizes
�t 0 D 1=fs and �f 0 D fs=N , where fs is the sampling
frequency of the signal and N is the window size (in sam-
ples).

3. RESULTS

In order to test the algorithm, we used chords consisting
of major, minor, diminished and augmented triads. All tri-
ads were played in root position, first inversion and second
inversion, except for augmented chords, for which inver-
sions are indistinguishable from other augmented chord in
root position. This made for a total of ten chord profiles.
The bass was let run from C3 (about 130.8 Hz) to B5 (about
987.8 Hz) for a total of 36 different basses and 360 chords.
The chords were generated using synthetic signals sampled
at a rate of 48 kHz and with a duration of 0.3 s. The signals
consisted of sawtooth, square, and triangle waves. These
types of signals were chosen because of their popularity in
the literature and their interesting spectral characteristics:
Sawtooth waves The amplitude of their harmonics decays

inversely proportional to frequency.
Square waves Have only even harmonics. Their ampli-

tude decays inversely proportional to frequency.
Triangle waves Have only even harmonics. Their ampli-

tude decays inversely proportional to the square of
frequency.

Each chord was built using only signals of the same type
and each type was used to build each of the chords. This
made for a total of 1440 chords. Since every chord has
three notes, the total number of notes was 4320.

Table 1: Error rates for the evaluated algorithms on saw-
tooth, square, and triangle waves.

Error rate

Signal type Prime-multiF0 Klapuri

Sawtooth waves 0.00% 0.00%
Square waves 0.00% 0.74%
Triangle waves 0.74% 0.28%

The performance of the algorithm was compared to that
one in [9]. The pitch search range used to test the al-
gorithms was from 30 to 5 kHz (based on psychoacous-
tic experiments [13–15]) and the resolution was a quarter
of a semitone. For the proposed algorithm, the candidate
with the highest score was matched to the closest note of
the chord, the candidate with the second highest score was
matched to the next available closest note (as long as the
distance to the previously detected note exceeds 2.5 semi-
tones), and the third best candidate was matched to the last
note of the chord (as long as the distance to the previously
detected notes exceeds 2.5 semitones). 2 Since the notes of
the chords and the pitch candidates shared the same tuning
(A4 = 440 Hz) and the resolution used for the candidates
was one quarter of a semitone, all errors were a multiple
of that quantity. For Klapuri’s algorithm, we matched each
note outputted by the algorithm to the closest note of the
chord. A note was considered to be in error if its distance
to the assigned note exceeded half a semitone.

Table 1 shows the error rates classified by signal type.
The proposed algorithm (Prime-multiF0) produced no er-
rors for sawtooth and square waves, and an error rate of
0.74% for triangle waves. On the other hand, the algo-
rithm proposed by Klapuri produced no errors for sawtooth
waveforms, but error rates of 0.74% and 0.28% for square
and triangle waves, respectively.

Errors tend to occur only at the very high and low ends of
the chosen pitch range for the signals. This is illustrated in
Fig. 3, which shows the cumulative error rate as a function
of bass. Errors from Prime-multiF0 occur only with basses
above E5 (660 Hz), and errors from Klapuri’s algorithm oc-
cur in a similar range for square waves, and with basses
below G3 (196 Hz) for triangle waves. This means that
both algorithms produce good results for the most common
pitch range for chords (i.e., the middle octave: between C4
and B4).

For illustrative purposes, we show in Figs. 4–6 the av-
erage scores produced by Prime-multiF0 for each type of
chord as a function of the distance to the bass in semi-
tones. 3

2 Candidates located at less than 2.5 semitones of previously recog-
nized pitches are not considered because we empirically found that the
algorithm, in its current state, does not work well for intervals smaller
than a minor third (three semitones).

3 The scores were normalized to the maximum score in each chord
before taking averages. This was done to avoid a bias toward chords
with overall higher scores, and to reduce the variance in Fig. 4. Averages
were taken over different signal types (i.e., sawtooth, square, and triangle
waves.)
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Figure 3: Cumulative error rates as a function of distance
of the bass respect C3. Most errors occur at the low or high
ends of the bass range used in the experiment.

4. CONCLUSION

A new estimation algorithm for multipitch signals was pro-
posed. This algorithm, named Prime-multiF0, was suc-
cessful in detecting the pitch of chords played with syn-
thetic signals consisting of sawtooth, square and triangle
waves, for a wide range of pitch. Its performance was
slightly better than a well known algorithm in the liter-
ature. However, both algorithms performed exceedingly
well, and more tests with natural signals need to be per-
formed to obtain more realistic results.
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ABSTRACT

This  paper  introduces  the  MIROR  Platform,  an 
innovative  adaptive  device  for  music  and  dance 
education,  proposed  in  the  framework  of  the  EU-ICT 
project  MIROR-Musical  Interaction  Relying  On 
Reflexion. In concluding the MIROR project, 3 software 
applications  (MIROR-Impro,  MIROR-Compo  and 
MIROR-Body  Gesture)  and  the  draft  version  of  the 
User’s and Teacher’s Guides have been accomplished. In 
this paper,  the technological  and pedagogical principles 
of  the  MIROR  platform,  notably  the  “reflexive 
interaction”  paradigm,  the  3 applications  and  related 
experiments will be introduced. Finally, the  draft of the 
full architecture of the platform is presented.

1. THE MIROR PLATFORM

The MIROR Platform is  an innovative adaptive device 
for early childhood music and dance education, proposed 
in  the  framework  of  the  EU-ICT  MIROR-Music 
Interaction Relying On Reflexion.1 It acts as an advanced 
cognitive tutor, designed to promote abilities in the field 
of  music  improvisation,  composition  and  creative 
movement.  The MIROR platform is designed to 
implement “reflexive interactive musical systems" (IRMS 
in  short)  [1], within technology-enhanced learning. On 
the basis of the interesting results observed with children 
and the first prototype of IRMS, the Continuator [2], in 
the context of the MIROR Project, we proposed, indeed, 
to  extend the IRMS with the analysis  and synthesis  of 
multisensory expressive gesture [3], to increase its impact 
on the musical pedagogy of young children. In so doing, 
the  MIROR Platform was  conceived  as  an educational 
device  composed  by  several  software  applications 
exploiting the reflexive interaction paradigm not only in 
music  improvisation  but  also  in  the  field  of  body and 
creative  movement.  The  platform  is  not  designed, 
however, to teach a specific instrument and instrumental 

1Copyright:  ©2013 First authors et al. This is an open access article  
distributed  under  the  terms  of  the  Creative  Commons  Attribution  
License 3.0 Unposted, which permits unrestricted use, distribution, and  
reproduction in any medium, provided the original author and source  
are credited.

1 The MIROR Project is coordinated by the University of Bologna. The 
Consortium is composed by Bologna, SONY France-Paris, University 
of  Genoa,  University  of  Gothenburg,  National  and  Kapodistrian 
University of Athens, University of Exeter and Compedia Ltd, Israel. 
For  more  information  on  the  project,  see  the  official  website: 
www.mirorproject.eu.

skills,  though it  can also be used with this aim. It  has 
been  conceived  rather  as  a  "device"  to  stimulate  and 
enhance musical creativity of children. 

2. TARGET GROUP SCENARIOS

The MIROR Platform is developed in the area of music 
and motor education of children aged from 2 to 10 years. 
Indeed, one of the challenges set by the MIROR proposal 
was  that  of  building  tools  of  technology  enhanced 
learning addressing very young children,  not only with 
regard  to  formal  music education  contexts,  but  also to 
foster children’s music and motor creativity in informal 
contexts, and in the school. The targets are a number of 
settings and contexts: from nursery, kindergartens and the 
primary school, to music schools, dance schools, children 
centres, children hospitals, and social inclusion contexts 
such  as  centres  for  immigrants  and  social  centres. 
Furthermore,  the  platform  is  also  conceived  for 
therapeutic  and  rehabilitation  settings  and  scenarios. 
Teachers’ training classes are another target group: both 
general  programmes  of  teacher  training,  and  classes 
aimed  at  the  formation  of  music  and  dance  teachers. 
Indeed, the platform can be used to foster the music and 
motor creativity of teachers, as well as a tool to learn how 
to use the reflexive interaction paradigm as a new way to 
teach music and dance.

3. CHILD/MACHINE INTERACTION IN 
REFLEXIVE ENVIRONMENT

The basic hypothesis of the MIROR Project is that 
“reflexive interaction”  enhances music learning and 
musical creativity in young children. According to Pachet 
[1, 4], the reflexive interaction paradigm is based on the 
idea  of  letting  users  manipulate  virtual  copies  of 
themselves,  through  specifically  designed  machine-
learning  software  referred  to  as  interactive  reflexive 
musical systems. The idea was to develop a machine that 
gives users the perception of interacting with something 
similar to themselves. In this case, the machine does not 
exactly  mimic  the  user's  proposal,  but  her/his  own 
musical  style,  or,  in  other  words,  her/his  own  musical 
identity. 

The subsequent experiments with adults, e.g., see [1], 
and  especially  with  children,  e.g.  see  [2],  immediately 
demonstrated the potential of these reflexive systems for 
the development of creative musical experiences. Despite 
the apparent simplicity of the mechanism, IRMS generate 
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very complex reactions, where the children are expected 
to  form  differentiated  judgements  about  “self”  and 
“others”.  In  literature,  these  forms  of  awareness  are 
considered crucial for the building of the child's identity. 
IRMS, by means of  its  mirror  effect,  help  towards the 
construction of a  “musical self”. One innovative feature 
of the IRMS is the creation of a natural, organic dialogue 
with the child. This dialogue is based on the mechanism 
of repetition and variation, which is, in fact, at the heart 
of  reflexive  interaction:  the  system's  repetition  of  the 
input given by the child allows the child to perceive the 
response  of  the  system  as  a  sort  of  sound  image  of 
him/herself. Moreover, this is the moment when the child 
shows  an  absolute  attraction  towards  this  other  that 
appears  similar  to  him/herself.  The interesting  thing  is 
that it is not a mere repetition/imitation/echo, but rather a 
repetition that is always constantly varied. It is precisely 
the co-presence of something that is repeated along with 
something  different  that  seems  to  make  the  reflexive 
interaction a sort of device of attraction first, and then of 
stimulation  of  interest  to  become  involved  in  the 
interaction. 

Starting from the observation of children interacting 
with  the  interactive  reflexive  musical  systems,  several 
theories  have  been  considered  to  explain  human 
behaviours  in  action  during  the  interaction  with  a 
reflexive  system.  From  a  systematic  perspective,  the 
theoretical  framework  of  the  reflexive  interaction 
paradigm could include references ranging from the myth 
of  Echo  (Ovid),  to  the  more  recent  semiological 
paradigmatic analysis [5, 6], and the theory of similarity 
perception  in  listening  to  music  [7].  The  capacity  to 
replicate  the  behaviour  of  others  is  to  a  certain  extent 
grounded on the non-conscious mechanisms of the mirror 
neuron  system  (MNS),  a  network  of  neurons,  which 
becomes active during the execution and observation of 
actions  [8].  The studies presented so far highlight the 
complexity of the processes set  in  place during an 
interaction  between  child  and  reflexive  machines: 
imitation, imitation recognition, self-imitation,  
repetition/variation represent processes that develop in 
the first months of life and which structure the Self of the 
child and her/his interaction  with the surrounding 
environment  [9, 10, 11].  Anzieu  [12], calls this kind of 
infant  experience  “musical  wrapping”  of  the  Self,  in 
which the Self is described like the first embryo of the 
personality  felt  as  a  unit,  an  individuality,  and  which 
expresses one of the more archaic shapes of repetition: 
the echo. Another important aspect that we can draw from 
this literature is the importance of reflexive interaction as 
a dynamic process: the experience of repetition/variation 
is carried out within  affective and emotional conditions, 
the amodal experience that Stern [13] calls “affective 
contours”, which are the outcome of the  child's 
interaction experiences.  The  mechanism  of 
repetition/variation  can  also  be  explained  by  recent 
studies in neuroscience, which underline the neural and 
cognitive  mechanisms that  allow one to  transform and 
manipulate  existing  representations.  Zatorre  [14], 
suggests that the dorsal pathway of auditory processing 
performs  equivalent  operations  on  musical  inputs.  The 

results allow new hypotheses about how novel musical 
ideas may emerge from pre-existing musical images.

4. REFLEXIVE INTERACTION MEETS 
BODY GESTURE ANALYSIS

An important extension of IRMS into the MIROR 
Platform is the pedagogical exploitation of the possibility 
of communicating with the machine through body 
“gestures”. These issues are addressed by introducing the 
expressive gesture analysis [3], implemented in the 
MIROR-Body Gesture prototype. The term “gesture” is 
an expression of the mediation between mind and 
physical environment, and it is distinguished from action, 
movement and motion because it refers to both of them in 
relationship with the meaningful level of human 
behaviours. The research in the field of embodied music 
cognition [15, 16], highlighted the fundamental role of the 
body in relation to human musical activities. The concept 
of "resonance" by Leman [16] has much in common with 
reflexive interaction and helps to better understand the 
relationship between reflexive interaction and perception 
of the body. 

5. REFLEXIVE INTERACTION 
REQUIREMENTS

A number of characteristics emerged as being the most 
interesting to retain and generalise for developing IRMS 
in the field of technology-enhanced learning. 

5.1 Technical Requirements  

According  to  Pachet  [1,  4],  the  following  technical 
requirements of IRMS can be listed:

Reflexive interactive systems are a particular “class of 
interactive  systems  in  which  users  can  interact  with 
virtual copies of themselves, or at least with agents that 
have  a  mimetic  capacity and can  evolve  in  an  organic 
fashion.”   [1,  p.  360]. Their focus is not on solving a 
given, well-defined problem, such as querying a database, 
but rather on helping users express hidden ideas.

“Similarity or Mirroring effect: The IRMS produce 
musical sounds like what the user is (…) able to produce. 
This similarity must be easily recognisable by the user, 
who experiences the sensation of interacting with a copy 
of her/himself.” [1, p. 360]

“Agnosticism: The system's  ability to reproduce the 
user’s personality is learned automatically and 
agnostically, i.e. without human intervention.” In the case 
of the Continuator, for instance, “no pre-programmed 
musical information is given to the system”.[1, p. 360]

“Scaffolding of complexity. Incremental learning 
ensures that the IRMS keeps evolving and consequently 
that the user will interact with it for a long time. Each 
interaction with the system contributes to changing its 
future behaviour. Incremental learning is a way to endow 
the system with an organic feel, typical of open, natural 
systems, as opposed to pre-programmed, closed-world 
systems. This scaffolding of complexity implies in turn a 
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number of technical constraints, such as the ability for the 
IRMS to store/retrieve models incrementally.” [1, p. 360]

Build virtual images of users: Designing systems that 
effectively build virtual images of users in several 
disciplines. These images are built with the help of real 
time machine-learning components, which build models 
of the users that are continuously updated.

Feedback by designing an image of the  user: unlike 
feedback systems, reflexive interactions do not consist of 
feeding back the output of a system to its input. They 
consist of influencing the actions of the user by providing 
her/him with a carefully designed image of her/himself.

Learn the behaviour of the user: RI software are 
essentially intelligent mirrors that learn the “behaviour” 
of the users. 

Technically, this image is most of the time imperfect, 
for many reasons, including the intrinsic limitations of 
machine-learning systems. However, it is precisely this 
imperfection  that  produces the desired creation of  side 
effects.

Side effect: target objects (e.g. a melody, a drawing, a 
taxonomy, etc.) are not produced directly by man-
machine interactions, but as side  effects of these 
mirroring interactions.

Collaborative production of object: Mirroring 
interactions can then take place in which the system 
continuously learns from the user, to collaboratively 
produce an object. 

The basic playing mode of the IRMS  is a particular 
kind of turn-taking between the user and the system 
governed by three principles:  1. Automatic detection of 
phrase endings. 2. The duration of the phrase generated 
by the IRMS should be set to be the same as the duration 
of the last input phrase. 3. Priority is given to the user.[4]

5.2.   User Requirements  

An empirical list of children user requirements 
concerning the reflexive paradigm has been derived from 
the results of the experiments with children [2, 17].

5.2.1   Modes of interaction

Repetition/variation (mirroring, reflexion): This is the 
“core”  of reflexive interaction. The particular ability of 
the system to imitate the style of whoever is playing 
generates dialogues based on repetition and variation. Or 
rather, we observed that a real dialogue between the child 
and the system actually begins as soon as the child 
recognises something from her/his own proposal in the 
system’s reply, and tries to answer by repeating and 
varying what s/he has just heard

Turn-taking: The children learn the implicit rule of 
turn-taking. They stop and listen to the system’s reply, 
respecting the “turn-taking” with the system. Turn-taking 
lets you hear and be heard, it is a rule of interaction that is 
applied intuitively. 

Regular timing of  turns: The duration of the phrase 
generated by the system was set to be the same as the 
duration of the last input phrase. Bullowa [18], sustained 
that in order to share meaning with the adult, rhythms 

must also be shared and that this sharing is at the basis of 
communication. 

Temporal contingency: the MIROR-Impro  detects 
phrase endings by using a (dynamic) temporal threshold 
(typically about 400 milliseconds). Research on 
infant/mother interaction supports these “requirements”: 
in  the presence of maternal stimulations that are non-
contingent (i.e. the mother does not respect the timing of 
the interaction), lacking in emotional sharing, or are 
excessive and intrusive, the behaviour of the child is 
characterised by passiveness or disorganisation.

Role-taking: this is the moment when one of the two 
interlocutors takes the partner into account and as a 
consequence regulates his/her  own behaviour according 
to that of the other. Children are, for example, able to 
adapt their language when speaking to children younger 
than them.

Co-regulation of the communication: during the 
dialogue, the child and the system adapt to each other and 
co-regulate the contents and the timing of the interaction 
[19].

5.2.2 User Experience

To interact and manipulate a virtual copy of themselves. 
The children are allowed to manipulate virtual copies  of 
themselves, and to reflect about their own musical style.

Imitation, self-imitation, imitation recognition: the 
children should be involved in several processes of 
imitation, self-imitation and imitation recognition and be 
able to control them for communicative purposes.

The life cycle of interaction: it deals with the temporal 
dynamic of the interaction, which is an  important factor 
for the children's musical experience. We noticed several 
moments in child/Continuator interaction,  characterised 
by  different  emotional  and  cognitive  states: Surprise, 
Excitement, Concentration and analytical attention, 
moments of Engagement and Readjustment, Relaunching, 
Exploration, Invention, Attunement.

Flow state [20]: it should be possible to observe 
higher level of flow experience in children interacting 
with the IRMS.

The invention of rules: The children learned the rules 
of the system: it replies by playing alone, it replies when 
you stop playing (turn-taking), it repeats what you play, it 
repeats with variations (or ‘errors’), it’s capable of 
establishing a dialogue made up of repetition/variation, it 
does not always respect the rules, you can teach the 
system, and the rules of the system can be taught to 
others. 

Joint attention: Of particular interest are the 
relationships established between two children playing 
together, and between them and the system: playing, 
listening, exploring together, watching the partner’s 
reactions, playing separately, alternating, or conflicting. A 
typical situation encountered was the phenomenon of 
‘joint attention’: more precisely, one of the children 
would force the other to stop playing in order to listen to 
the situation.
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The system develops and enhances self-regulated and 
self-initiated activities, self-efficacy, autonomy, and 
intrinsic motivation.

Music-maker in style: The system stimulated and 
reinforced conducts of an exploratory type, but it also 
prompted inventive conducts. Both in the exploration and 
in the improvisations themselves, we can see very 
personalised styles in the children’s approach to 
producing sounds, in their handling of the instrument and 
other equipment, and their working out plans of action to 
satisfy their own goals. The IRMS might be able to 
reinforce these individual styles, and allow their 
development and evolution.

6. PEDAGOGICAL CONCEPTS

According  to  the  requirements  above  introduced,  it  is 
possible to describe several pedagogical concepts of the 
reflexive  interaction  paradigm  and  of  the  MIROR 
Platform.  However,  one  of  the  results  of  the  research 
conducted in the framework of the MIROR Project is that 
even if some pedagogical theories can be used to define 
the  “reflexive”  pedagogy,  actually  the  reflexive 
interaction paradigm cannot be fully described by any of 
the pedagogical categories already existing. Instead, this 
paradigm proposes  a  novel  and innovative pedagogical 
perspective dealing with the child / machine interaction. 
The IRMS could represent a new and original application 
of technology-enhanced learning.

6.1. The pedagogical framework

Priority to children’s and Learner-centred learning:  the 
centre of the attention in the reflexive interaction process 
is  not  the end product,  but  the subject  engaged in the 
interaction.  Reflexive  interaction  naturally  produces  a 
learner-centred approach.

Adaptive: The system adapts itself constantly and in 
an organic way to the musical style of the user, that is to 
say to everyone's style. It  reinforces  the  children's 
musical style (both musical and learning style) 

The ‘teaching method’ is based on turn-taking and 
regular timing of  turns, on the strategies of mirroring, 
modelling and scaffolding [21, 22], and on starting up 
‘affect attunement’  [16], intrinsic motivation, 
collaborative playing and joint attention. 

Not to be programmed with fixed musical objectives,  
as  for  examples  software  for  ear training, chord 
recognition etc. Side effect: the musical products and the 
learning objects should be the result of the interaction, as 
a side effect.

The system possesses the properties of transparency, 
involving "a shift from the representation of music to the 
music itself" [23], the children only interact by playing, 
without other graphic or mechanical interfaces (e.g. 
mouse, buttons, switches etc.),  and reflection, in the 
sense that it is the system itself that helps the user to 
understand the mechanism of interaction; the rules are 
learnt during the interaction.

The factor of distance: the children are able to 
interrupt the game when they want, thus preserving the 

factor  of  “distance”  between  child  and  machine,  vital 
from aesthetic and pedagogical points of view [24].

The attractiveness. The IRMS avoid the monotony of 
mere repetition, by introducing variation  continuously, 
the “error”, as an “imperfect machine”.  The  only 
interface  is  the  keyboard.  The  findings  show  that  the 
attractiveness of IRMS is based on the conceptual  and 
technical features of the software rather than external or 
nicely designed interfaces.

Collaborative playing in classroom setting: the double 
role of an IRMS, as virtual partner and tutor, enhances 
music creativity in children based on exploration and 
socialisation: sharing the discoveries and the newly 
invented games with partner and teacher. Furthermore, 
classroom activities with the IRMS enhance the self-
regulation of the group of children in the use of the 
equipment and in managing the turns to play. 

Music  improvisation:  the improvisations  revealed 
rhythmic  and  melodic  patterns,  synchronisation on the 
same  pulse,  forms  of  song  and  accompaniment, 
individual  improvisation  styles,  brief  formal 
constructions based on imitation,  repetition,  alternation 
and contrast. With IRMS children learn to improvise by 
interacting with a computer, which is necessary if their 
teacher cannot, or does not want to improvise.

Creativity in child/machine interaction:  the reflexive 
interaction  paradigm  proposed  for  music  learning  and 
cognition,  and  its  connected  theories  (such  as  flow 
theory) could be applied not only to music education but 
also  as  a  novel  paradigm  to  the  studying  of  general 
cognitive and creative processes. “Reflexive” learning is 
not learning by imitation. On the contrary, during RI the 
learning mechanism is activated by the experience “to be 
imitated”.  

IRMS also exploit the Vygotskian concept of zone of 
proximal development (ZPD).  However,  the  difference 
with the Vygotskian concept of ZPD is that the IRMS are 
not  more capable  than  children:  they  are  agnostic 
systems and adapt themselves in an intuitive way to the 
child’s musical knowledge during the interaction. In this 
way, IRMS establish an interaction between pairs, where 
the mirroring reflection creates a balance between 
challenges and skills, a basis to create Flow experiences 
[20] and creative processes. This characteristic will 
enable the MIROR Platform to enhance self-regulation, 
self-initiated activities, and the learner-centred approach. 
IRMS support children in mixing old musical skills with 
new ones, in an original and autotelic way, according to 
the  “cognitive  fiction”  perspective  [25],  where  the 
innovative  technology  enables  the  subject  to  see  and 
listen  in  a  more  original  way,  bringing  out  previous 
childhood experiences. 

Finally,  the  MIROR  project  owes  to  the  Laban 
Movement  Analysis  (LMA),  elaborated  by  the 
Hungarian dance artist and theorist Rudolf Laban (1879-
1958). LMA has been widely used in the field of dance 
education and was applied also to music and movement 
education.  This  analytical  approach is  the basis  of  the 
expressive gesture analysis implemented by the MIROR-
Body Gesture application.
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6.2 Reflexive Listening

The listening behaviour of children interacting with the 
Continuator and MIROR Impro was particularly rich and 
varied: concentrated, analytical, but also symbolic. A 
particularly  interesting  aspect  is the quality of the 
children’s listening to their own productions while they 
played, heightened by the interactive element that 
encourages them to listen carefully so as to compare their 
own pieces with the reply and new proposal of the 
system, and to identify repetitions and differences. As 
already reiterated many times, in the world of teaching, 
listening to one’s own musical productions while playing 
is one of the main objectives of music education [e.g. 26]. 
Different types of listening stimulated by the reflexive 
interaction can be distinguished:

Attentive and analytical listening: children listen 
carefully to the system's  answers, they  seem  to  be 
seeking to understand the rules that govern them; 

Embodied listening: while listening to the system the 
children  dance and move  their body freely, interpreting 
the sounds they hear; 

Tutoring: In sessions in pairs, the child  who already 
knows the system usually guides her/his partner; 

Empathic listening: children follow the musical 
evolution of the system "affectionately" and treat it like a 
living thing; 

Joint listening: in games in pairs or in groups, 
listening becomes socialised; the children share the 
experience through looks, words, gestures; 

Ecstatic listening: sometimes listening achieves 
moments of genuine ecstasy, of pure aesthetic pleasure, 
followed by expressions of joy: "It's beautiful!"; 

Autotelic listening: in many cases, however, the 
listening becomes particularly intense, concentrated, 
deeply intimate, regardless of everything else; 

Listening by immersion or multi-modal listening: 
some children were seen to  participate with their whole 
body, bringing into play every single  electronic 
component available; 

Symbolic listening: children dramatise  a story or a 
character that mimics the response of the system, or 
invent a story while the system's  replies  serve as a 
soundtrack; 

Listening to their productions: the  children are 
encouraged  to listen carefully and compare their 
productions with the response of the system, to identify 
repetitions and differences; 

Listening "pseudo-distracted":  Interaction through 
moments of great effort and times when the interaction 
seems loose, but not interrupted; 

Virtual Listening: one of the most interesting acts 
observed was staring at an invisible point in space, a trait 
that  characterises  the conduct of enjoyment developed 
through the increasing use of means of reproduction, 
from the walk-man to the IPod; 

Intertextual  listening:  finally,  the  IRMS  could  be 
placed in an aesthetics of the fragment and of intertext, 
being  itself  by  definition  a  machine  that  produces 
intertexts.  Dialoguing  with  it  generates  a  kind  of 
intertextual  listening in children during which they are 
asked to interactively build and reconstruct the fragments 

of  their  own  musical  discourse,  relaunched  by  the 
system,  using  those  of  the  system's  answer  and  the 
friend's. And it is this variation which attracts the child 
and  motivates  her/him  to  produce  a  new  answer,  to 
develop a musical  idea:  ultimately,  to produce musical 
"meaning". 

6.3.  The MIROR Platform as a “device” for music 
and dance creativity

In the pedagogical field, the “device” has been defined as 
the concrete mediation that the teacher should individuate 
in reference to the specific situation, in order to allow 
children focusing their attention on the sound and the 
movements, and on their characteristics [26]. From this 
perspective, the MIROR platform can be defined as a 
“device”  to enhance musical and dance creativity and 
invention in children. That is a tool to enhance children's 
creative  conducts,  both  in  music  improvisation, 
composition and dance education. 

6.3.1 The Practices

Several  practices  can  be  implemented  with  the  3 
components of the MIROR Platform. We can distinguish 
3 kinds of practices:

Practice 1:  the children use the software applications 
of  MIROR  Platform.  This  is  properly  the  setting  of 
MIROR applications, that is the child/machine reflexive 
interaction.  In  this  kind  of  practice,  the reflexive 
interaction develops between child/ren and system.

Practice 2:  the  children  and  the  teacher  use  the 
MIROR  Platform  together.  In  this  practice the teacher 
acts  as mediator between  the  child/ren  and  the 
applications.   

Practice 3: the teachers use the MIROR Platform. In 
this  kind  of  practice,  the  reflexive interaction is 
established between teacher and system.  Indeed,  the 
MIROR platform can  also be used for  teachers’ music 
and dance education  (Figure 1).

Figure 1: Creative Practices with Children/Teacher/MIROR 
platform.

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

99



7. THE SOFTWARE APPLICATIONS: 
MIROR-IMPRO, MIROR-COMPO, 

MIROR-BODY GESTURE

The  MIROR  project  aimed  to  develop  3  software 
applications  of  the  MIROR  platform:  MIROR-Impro, 
MIROR-Compo and MIROR-Body Gesture.  They have 
been designed and developed by the engineers of Sony 
team  [27]  and  of  the University of  Genoa  [28, 29],  in 
cooperation  with  the  other  partners:  experts  in 
psychology  and  pedagogy  of  music,  which  are  the 
Universities of Bologna, Athens, Exeter and Gothenburg, 
and an expert in children educational software, which is 
Compedia Ltd.

7.1   MIROR-Impro

MIROR Impro software is linked to a normal midi-linked 
keyboard. When the children play something, making up 
a music phrase of their own and then pause, the software 
creates and immediately plays a “reflexive” reply that is 
based  on  the  child’s  input.  What  is  very  new  and 
interesting  about  this  software  is  that  the  children  can 
improvise  with  the  computer  as  a  kind  of  partner, 
discovering what elements in the replies stay the same or 
what  changes.  The  educational  aim of  this  software  is 
both to support children in learning to improvise and to 
encourage  their  aural  awareness  through play in which 
they  can  control  the  levels  of  challenge  by  their  own 
input.  The reflexive  interaction,  with  its  mechanism of 
repetition/variation, triggers a dialogue between the two 
partners  during  which  the  improvisation  process 
develops. 

7.2   MIROR-Compo

MIROR-Compo  allows  children  the  composition  of 
music:  it  acts  as  a  sort  of  “musical  scaffolding”  that 
allows the children the combination of  several  musical 
phrases on the basis of their own style and musical taste. 
In  this  MIROR  Platform  application,  the  reflexive 
interaction  paradigm  is  employed  so  that  the  software 
produces  musical  phrases  similar  to  the  opening 
sentences produced by the child.  The educational aim of 
this  software  is  to  support  children  in  creating  music, 
storytelling, and engaging in collaborative compositions 
in a classroom context as well as in the family.

7.3   MIROR-Body Gesture 

MIROR-Body Gesture was conceived so as to pick up the 
children’s movements and convert them into “reflexive” 
sound,  i.e.  sound  with  the  same  characteristics  of  the 
related movement (heavy/light, fast/slow, and so on). In 
this  way,  the  children  can  dance  and  create  music  via 
movement,  and  control  their  own  improvisations  and 
compositions.  The educational aim of this software is to 
support  children  in  discovering  musicality  through 
embodiment,  i.e.,  by  means  of  their  own  body,  its 
movement,  and  its  dynamic  nature.  MIROR-Body 
Gesture is composed by 2 components: BeSound and The 
Potter. 

 8. EXPERIMENTS WITH CHILDREN 
AND MIROR APPLICATIONS

A  vast  number  of  psychological  and  pedagogical 
experiments are being carried out in the framework of the 
MIROR project in order to implement the 3 applications - 
Impro, Compo and Body Gesture -  and test  them with 
children and teachers. 

8.1   Psychological experiments

The  Protocol  no  1,  “Music  making  with  MIROR-
Improvisation”, showed interesting results concerning the 
analysis  of  the  flow experience  of  children  interacting 
with the Miror-Impro [17]. In the field of human/machine 
interaction, Leman, Lesaffre, Nijs, and Deweppe [30] and 
Leman [21],  indicate the theory of flow as one of the 
areas of  expertise  which  should be  explored  to study 
human/machine  interaction. The experimental  results 
with children and MIROR-Impro showed that the  Flow 
emotional  state increases  not  only  when  children  play 
with the system, but also when they play using the set-up 
Same,  that  is  the  more  “reflexive”  set-up  used  in  the 
experiment,  as the system's output melody is musically 
much  closer  to  the  user's  input  melody. These  results 
would support, in terms of quantitative data, a wide range 
of qualitative observations related to the mechanism of 
mirroring, repetition/variation, imitation, turn-taking, co-
regulation,  which  characterise  reflexive  interaction, 
showing  that  they  are  able  to  create  flow  experience, 
well-being and creativity process. 

FIGURE 2. Percentage of the presence of flow with the set up A 
(same) and set up B (very different) in each task (set up A*set 
up  B: t =  8.151;  df  = 3;  p =.004).  T1=the  child  plays  the 
keyboard;  T2=the  child  plays  the  keyboard  with  MIROR-
Impro; T3= the child plays the keyboard with a friend; T4= the 

child plays the keyboard with the MIROR-Impro with a friend. 

The  results  of  the  protocol  no  1  also  raised  some 
problematic aspects  related to  the reflexive qualities  of 
the Impro's replies that should  be improved. Alexakis et 
al. [31] introduced a computer assisted music analysis, in 
order to assess the progress of children's creativity skills 
when  using  the  MIROR-Impro.  The  results  would 
suggest a potential  progress of several  variables,  which 
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might  be  indicative  of  creativity  advancement.  Other 
exploratory studies showed further scenarios in schooling 
contexts [e.g. 32, 33], nursery schools included [34], and 
suggested  several  recommendations  for  the 
implementation  of  the  applications,  according  to  the 
“spiral model” of collaboration adopted by the MIROR 
Consortium [e.g. 35]. 

8.2 Pedagogical experiments

In the second phase of the project, an extensive package 
of pedagogical experiments are being carried out by the 
partners and members of the Advisory and Liaison Board, 
in  several  European  countries,  in  order  to  validate  the 
MIROR  applications  in  different  scenarios,  therapeutic 
and rehabilitative settings included. The Protocol no 2, 
“Teaching to improvise” has been carried out in order to 
verify  if  the  reflexive  interaction  is  necessary  and 
sufficient  to  enhance  children's  ability  to  improvise. 
Focus  groups  with  university  students  have  been 
organised  to  explore  the  pedagogical  conceptions 
developed in the context of reflexive interaction. The data 
analyses are being carried out. See the official website of 
the MIROR Project for further information and update.

8.3 The User's and Teacher's Guides

The User's and Teacher's guides are pedagogical practices 
and  guides  for  teachers  and  children,  to  be  used  with 
MIROR applications.  The deliverable 6.2 is the first draft 
of  the  Guides,  composed  with  the  contributions  of  the 
partners expert in music and dance education: UNIBO, 
NKUA, UGOT and UNEXE. 

8.4 Theoretical contributions  

On  one  hand,  the  experimental  results  have  allowed 
supporting a series of theoretical hypotheses presented in 
the theoretical framework. On the other hand, they also 
raised  a  number  of  issues  regarding  some problematic 
aspects  of  the  reflexive  interaction  paradigm,  thus 
prompting further investigations in the field of embodied 
music cognition, pedagogical and multicultural contexts.

9. FUTURE STEPS AND CHALLENGES

In  concluding  the  MIROR  project,  3  software 
applications  (MIROR-Impro,  MIROR-Compo  and 
MIROR-Body  Gesture)  and  the  draft  version  of  the 
User’s and Teacher’s Guides have been accomplished.

The future challenge is to realise the MIROR platform 
by  designing  and  implementing  the  learning/teaching 
environment  and  related  architecture  and  technology 
tools  (platform  interface,  tutorials,  forum,  data  base, 
learning  objects,  etc.).  The  concept  of  the  MIROR 
platform architecture includes the following parts:

The  MIROR  Platform  interface:  The  interface  will 
introduce the links to each application and to the other 
tools of the Platform.

Software applications with related interfaces, manuals 
and  tutorials:  MIROR  Impro,  MIROR-Compo  and 

MIROR-Body Gesture. New software applications could 
be added in the future, based on the reflexive interaction 
paradigm. 

The  User's  and  Teacher's  Guides:  The  User's  and 
Teacher's guides are pedagogical practices and guides for 
teachers and children, to be used with MIROR Platform.

Practices for:  educational  settings  (nursery, 
kindergarten, primary school), music schools, schools of 
dance, at home, therapeutic settings, teacher training, etc.

Children_Log:  to  upload  interesting  children 
compositions, improvisations and choreographies.

Work  in  progress:  to  upload  interesting  practices, 
experiments and videos, documenting the research work 
in progress.

Forums: for teachers, for researchers, for children, for 
parents, for the MIROR community.

Feedbacks:  to  upload  feedback  for  software 
implementation, usability, user experience.

Publications:  to  upload  or  suggest  interesting 
publications.

News and Events: dissemination of the project results.

Figure  3: The  overview  of  the  MIROR  Platform 
architecture  showing  the  most  important  parts  as 
described in the section above. 
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ABSTRACT 
This paper presents an interface allowing users to intui-
tively interact with harmonic pitch space through gestures 
in physical space. Although harmonic pitch spaces are a 
well-defined concept within the circles of academic mu-
sicology, they often fail to engage with non-musicians or 
musicians outside academia. A three-dimensional tonnetz 
founded on root progression theories is conceived and a 
graphical representation rendered for visual feedback. 
Users navigate the tonnetz with two-handed gestures cap-
tured in three-dimensional space with a purpose built 
video colour-tracking system. Root transitions and pivot 
tone triads are used to navigate the tonnetz and trigger 
audio feedback generated with MIDI. 

Keywords: Harmonic pitch space, Interactive, Gesture, 
Tonnetz, Root progression theory.  

1. INTRODUCTION 
In musicology, the construction of harmonic pitch spaces 
as cognitive models for music perception has been a fruit-
ful area of research for the past four or so decades  [1]. In 
particular, various tonnetz models have become a useful 
spatial metaphor for tonal, harmonic and pitch relations 
[1, 2, 8, 12, 13]. However, for musicians outside of musi-
cological circles and non-musicians such constructs may 
seem unintuitive or abstract.  

We present a new interface for three-dimensional, two-
handed gestural interaction with a tonnetz model. Since 
the interface relies on simple gestures, it does not necessi-
tate musical instrument skills or music theoretical 
knowledge but aims to allow users to intuitively explore 
the underlying principles of tonal harmony. As such, the 
interface has strong didactic properties and will be of 
interest to music educators and students, as well as a wid-
er variety of performers, composers and even non-
musicians.  

 
 
 

 Related Works and Interfaces 1.1.

The current paper aims to build on the work of several 
related studies and interfaces. Simon Holland’s Harmony 
Space [6, 7] allows users to navigate a two dimensional 
tonnetz (Figure 1) with whole body gestures, working 
within the context of music education. The interactive 
system exists in two versions: [6] manually tracks users 
movements around a tonnetz projected onto a floor space 
and [7] captures footfalls and arm gestures with pressure 
sensors and accelerometers. Harmony Space’s tonnetz, 
derived from a cyclic group theoretic model [8] for musi-
cal pitch, can be summarised as a two dimensional grid 
ordering pitches by major thirds along the horizontal axis 
and minor thirds along the vertical. Two further im-
portant intervallic pitch structures can be derived from 
the two diagonals, corresponding to fifth and semitone 
relations respectively. Pitch-nodes within a diatonic scale 
are visually marked. For example, in Figure 1 the seven 
diatonic tones of D major are underlined; Harmony Space 
uses black and white backgrounds to identify diatonic 
tones. [6, 7] are fundamentally didactic interfaces, plac-
ing strong emphasis on the understanding of music and 
harmony implicitly with the aid of gestures, a fundamen-
tal concept of the current paper. 

 
Figure 1. A section of Harmony Space’s tonnetz, or-
dered by major and minor thirds.  

Similar matrix-based interfaces have been used to 
augment performance and improvisation on musical in-
struments [9]. Adeney’s HarmonyGrid consists of four 
grids controlling musical parameters (volume, rhythm, 
timbre and harmony) with a four-by-four matrix covering 
a floor area of approximately two meters squared. Per-
formers’ motions are tracked with an overhead webcam, 
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triggering and controlling audio in real time. The system 
is optimised for musical performance, and therefore the 
chord layout does not reflect any music theoretical con-
structs.  

A larger scale interactive interface for music education 
is presented in [10], tracking user location by GPS. A 
neo-Riemannian tonnetz governs physical distances be-
tween pitch-nodes with level of musical consonance. The 
planar tonnetz is mapped onto a physical space where 
pitch-nodes are placed approximately 80m apart and trig-
gered when users entered an ‘influence’ radius for each 
node. Overlapping ‘influence’ radiuses allow users to 
trigger more than one node at a time, generating various 
dyads and major or minor triads. The large-scale nature 
of the interface creates a novel interactive system for mu-
sic students. However, it is limited to the GPS resolution: 
an accuracy of 1-3 meters and a measurement every se-
cond. Given its scale, this is not necessarily problematic 
but it negates the possibility of using the interface in ‘real 
time’ since the rate of harmonic change would be slower 
than almost all styles and genres of music.  

Chew’s [11] MuSA.RT Opus 2 interactive system for 
tonal and harmonic visualisation differs from the above 
approaches in two significant ways. Firstly, tonal and 
harmonic space is navigated purely through performance 
as opposed to user gestures. Input from a MIDI stream is 
parsed with a tonal induction algorithm which controls 
the movement of long term and short term ‘centres of 
effect’, and ‘closest triad’ on the visualisation. Secondly, 
the tonal and harmonic space is represented with a so-
phisticated nested spiral array model in contrast to the 
matrix-based tonnetz models described above. The result-
ing interface allows performers and audiences to visualise 
in detail the tonal landscape of a piece of music as it 
evolves.  

 Relation to Previous Work  1.2.

With the above approaches in mind, we present an inter-
face for users to intuitively navigate a tonnetz model 
without the need for specific prior skills or knowledge. It 
is important for such interfaces to be founded on musico-
logically convincing harmonic pitch models as they give 
structure in the audio feedback to the user. Since Chew's 
Spiral Array model [11] is intended to visualise perfor-
mances, it does not seem a good candidate for a gestural 
interface. The complex nature of the spiral structure is 
unlikely to be easy to navigate intuitively with simple 
gestures.  [9] presents intuitive and simple interactions (in 
conjunction with performance) but does not seek to en-
gage with music theoretical concepts. [6] notes the di-
dactic importance of whole-body gestures, but reports the 
physical limitation they can entail on harmonic transi-
tions around a physical tonnetz. Therefore, we propose an 
interface with a richer set of gestures to navigate a har-
monic pitch space, thus reducing any physical limitations 
and giving users flexible and intuitive interaction. 

2. THE TONNETZ 

 Musicological Perspectives 2.1.

A brief overview of harmonic and pitch spaces is useful 
at this point. Both map chords or notes into a multidi-
mensional space such that objects close together in the 
space are closely related musically. However, whereas 
pitch space maps individual notes into a space [2], har-
monic space maps whole chords, typically represented by 
a root pitch [6]. Often useful systems are an amalgama-
tion of the two, with the objects in the space representing 
individual pitches that can be grouped into chords [12].  

 
Figure 2. A section of Longuet-Higgins’ infinite ton-
netz ordered by major thirds and perfect fifths. 

The dimensionality and complexity of harmonic spac-
es can vary considerably. Simple spaces map chords onto 
an infinite x-y plane [2] (Figure 2), referred to as a ton-
netz or tone grid, ordered by fifths or thirds. A more 
complex tonnetz is at the core of Neo-Riemannian theory 
and consists of tessellated equilateral triangles with triads 
formed from the pitches at points of each triangle. Here, 
chord progressions are described by a combination of just 
three core transformation functions [12].  The dimension-
ality of a tonnetz can be increased to form 5-dimensional 
toroidal spaces, accounting for octave equivalence [13]. 
Similarly, octave equivalence is often described with spi-
ral structures, as exhibited by [11].  

Since the proposed interface aims to be intuitive and 
easy to navigate with gestures, a complex, high-
dimensional harmonic space is rejected in favour of a 
simpler construct. It is important that a user can easily 
relate between the harmonic and physical spaces, so a 
three-dimensional matrix-based construct is presented in 
Section 2.3 as the musicological basis for the interface.  

 Root Progression Theories 2.2.

A simple three-dimensional harmonic space demands a 
compact music theoretical grounding, as a complex mod-
el for harmony would map poorly onto a low dimensional 
harmonic space. Root progression theories [3, 4, 5] are 
extremely compact and often powerful models for tonal 
harmony, collapsing harmonies to a single note (root)  [3] 
to explain harmonic progression. A permissible set of 
root transitions by consonant intervals (major thirds and 
sixths, minor thirds and sixths, and perfect fourths and 
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fifths) is defined [3] and subsequently categorised into 
symmetrically opposed groups: dominant and subdomi-
nant [4, 5], to explain tonal harmony. Compared to func-
tional approaches to harmony this generates a far more 
compact set of six (paired) permissible harmonic transi-
tions. This small set lend themselves to simple tonnetz 
architectures since the three pairs of transitions can be 
represented on three axes. As such, the proposed interface 
orders its three axes by major thirds, minor thirds, and 
perfect fifths. Each axis can be interpreted as representing 
dominant root progressions in one direction (e.g. a de-
scending fifth) and subdominant progressions in the other 
(e.g. an ascending fifth) [c.f 4]. 

 
Figure 3.  The 3D Tonnetz with the six labelled root 
progression vectors and pivot and triad notes in red and 
blue respectively.  

 The 3D Tonnetz 2.3.

The 3D Tonnetz forming the musical model for the inter-
face is based on an amalgamation of two common two-
dimensional tonnetze. Longuet-Higgins’ tonnetz [2] (Fig-
ure 2) consists of a matrix of major thirds and perfect 
fifths, whilst Harmony Space’s tonnetz [6] (Figure 1) 
comprises of major and minor thirds. Bearing intervallic 
invertibility in mind, these intervals form the set of per-
missible consonant root transitions outlined in Section 2.2 
[4]. Figure 3 maps this set of six root transitions as vec-
tors to form the 3D Tonnetz for this interface. Note that 
the x-y plane forms Harmony Space’s tonnetz [6], and the 
y-z plane Longuet-Higgins’ tonnetz [2].  

The 3D Tonnetz poses some interesting structural 
properties, lending it specifically to a musicologically 
grounded gestural interface. A single node can be select-
ed as a pivot note (red) from which six permissible transi-
tions to other nodes along the x, y or z-axes of the tonnetz 
can be made in accordance with [4]. From the pivot node, 
two triad nodes (blue) on the x-y plane can be selected 
from adjacent nodes to form six major or minor triads, 

expanding harmonic options available to users for crea-
tive purposes.  

For example, from the pivot note C (highlighted in red 
in Figure 3), E and G can be selected as triad notes (in 
blue) to form a C major triad, E♭ and G for C minor, and 
E♭ and A♭ for an A♭ major triad. In theory, diminished 
and augmented triads, as well as other non-diatonic sets 
of three pitches, could be selected from adjacent nodes, 
but for simplicity and usability, the proposed interface is 
restricted to major and minor triads. For visual clarity, 
selecting blue triad nodes adjacent on the z-axis is also 
prohibited.   

 Musicological Visual Analysis 2.4.

Harmonic pitch spaces are useful tools for visualising the 
harmonic landscape of a piece of music. The root pro-
gression architecture of the 3D Tonnetz lends itself in 
particular to visual musicological analyses for the Classi-
cal (strongly favouring cycle of fifths progressions) and 
Romantic eras (with a wider variety of harmonic progres-
sions). Two brief demonstrations are given below, map-
ping the root progressions of a few phrases onto the har-
monic space defined in Section 2.3.  

 
Figure 4.  A visualisation of Beethoven’s Piano Sonata, 
Op. 27 No. 2, bars 1-9.  

 

2.4.1. Beethoven’s Piano Sonata Op. 27 No. 2 

The opening two phrases of Beethoven’s ‘Moonlight So-
nata’ are a relatively straightforward example of how a 
tonal piece of music maps onto the 3D Tonnetz (Figure 
4). Although the initial root progression is a descending 
third (C# - A or i7 – VI), the majority of progressions 
operate along the fifths axis. The undulation between C# 
(i) and G# (V) in bars 5-7 gives way to a cycle of fifths 
towards a perfect cadence in E major, represented by a 
series of forward steps along the z-axis in the space. The 
progression from D (II♭) to G# (V) is conceived as a leap 
of two minor thirds along the y-axis, skipping F.  
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Figure 5. A visualisation of Brahms’ Clarinet Sonata, 
Op. 120 No. 1, bars 5-12. 

2.4.2. Brahms Clarinet Sonata Op. 120 No. 1 

By contrast, the first subject of Brahms’ Clarinet Sonata 
in F minor is strongly characterised by its movement 
around the x-y plane (Figure 5). The initial Brahmsian 
chain of falling thirds (F – D♭  – B♭  - G♭) manifests itself 
in a down - left - down motion in the harmonic space. 
The more adventurous romantic harmony requires a se-
ries of leaps from G♭  (II♭) to C (V) to D♭  (VI) and final-
ly to G (V of v). Although more complex than Figure 4 in 
terms of spatial movement, the movements along the z-
axis at the end give a clear visual indicator of the caden-
tial closure of the phrase.   

3. THE INTERFACE 
The interactive interface comprises of three distinct com-
ponents. A graphical representation gives users visual 
feedback of their position in the 3D Tonnetz (as de-
scribed in Section 2.3), a colour-tracking system captures 
two-handed gestures from users, and a simple system 
gives audio feedback over MIDI.  

 

Figure 6. The red and blue controllers in front of a pro-
jection of the 3D Tonnetz. 

The interface setup is comprised of the graphical rep-
resentation of the 3D Tonnetz (Figure 7) projected onto a 
black sheet, with the user holding two LED-lit Ping-Pong 

balls mounted on controllers each with on/off button 
switches (Figure 6). To aid users, a small graphic of the 
locations of both balls can be shown in the lower right of 
the display or on a separate screen (Figure 8).  

 
Figure 7. The graphical representation for the three-
dimensional tonnetz rendered in Processing. 

 Visualisation of the 3D Tonnetz 3.1.

The graphical representation of the harmonic pitch space 
was written in Processing1 with OPENGL rendering 
(Figure 7). Nodes built with object-oriented programming 
represent pitches, displaying the corresponding note 
names. Users are presented with Harmony Space’s ton-
netz [6] on the x-y plane of the matrix, with Longuet-
Higgins’ tonnetz [2] going ‘into’ the screen on the y-z 
axis. Note names update with respect to the pivot pitch, 
maintaining intervallic relations for adjacent pitches. 
However, non-adjacent pitches are written enharmonical-
ly with the fewest possible number of accidentals. Nodes 
selected as the pivot and triad nodes are lit red and blue 
respectively, with the corresponding x-y plane highlight-
ed. To give users the impression of moving though a 
physical space, the camera viewpoint tracks pivot note 
transitions with smooth glides.  

 Gestural Recognition 3.2.

A gesture tracking system for the interactive interface is 
required to recognise two-armed gestures in three-
dimensional space in real time and update the graphical 
representation. In selecting a tracking system, further 
preference was given to systems that were low-cost, pref-
erably to be run from a laptop with an in-built webcam. 
Three methods were trialled for the interface: Oliver’s 
[14] MANO controller, a detailed hand gesture recogni-
tion system; blobscanner2, a hand-tracking library written 
in the Processing environment; and a purpose built col-
our-tracking system written in the Max/Jitter3 program-
ming environment to track LED-lit hand-held controllers. 
The MANO controller is able to pick up detailed hand 
gestures without time lag, but requires a restrictive back-
lit, black background setup, which ties the user to a small 
area, in a similar manner to a touch-screen controller. 

                                                
1 http://processing.org/ 
2 https://code.google.com/p/blobscanner/ 
3 http://cycling74.com/products/max/video-jitter/ 
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Blobscanner is less restrictive in setup, but time lag 
makes it impractical for true real-time interactions with 
musical spaces. The purpose built Max/Jitter colour 
tracking system was chosen for the interactive system 
since it is unrestrictive in setup, fast and accurate, as well 
as being low-cost since it does not require specialised 
motion tracking equipment. Furthermore, button switches 
on the LED controllers provide additional functionality 
over hand gesture recognition systems as they can in-
stantly be turned on or off.  

 
Figure 8. The ‘clock face’ triad selection interface. 

The system tracks red and blue LED-lit Ping-Pong balls 
mounted on non-reflective controllers, held in each of the 
users hands. Video is captured with a webcam set to a 
low exposure time to maximize the difference in bright-
ness between the LED light and the background. For up 
down, left and right gestures, x and y co-ordinates are 
obtained by finding the centre point of a bounding box of 
all the coloured pixels defined within a specified RGB 
range. For example, the red bounding box selected pixels 
with red values of 0.5 – 1, blue: 0 – 0.2 and green: 0 – 
0.2. For forward gestures, the width of the bounding box 
is chosen to represent the size of the ball, and so move-
ment through the z-axis. An alternative solution is to take 
the area of the box to map onto the z-axis. However, 
since the area has an inverse-quadratic relationship with 
distance from the camera, and the width only an inver-
sionally proportional relationship, width maps better for 
the interface.  

To map gestures to navigate the red node (as described 
in Section 2.3) around the tonnetz, up, down, left, right 
and forward messages are triggered after the red ball 
passes a threshold, which incorporates hysteresis to avoid 
spurious repeat triggers. Messages are only triggered 
once, until the red ball passes back through the threshold. 
Back messages are triggered when the red ball is turned 
off.  

Gestures with the blue ball control the two blue nodes 
(described in Section 2.3) to select triads on the x-y plane. 
The angle between the blue ball and the centre of the 
screen is calculated, creating a ‘clock face’ interface with 
regions representing different triads (Figure 8). A region 
is selected when the blue ball moves into the region, or is 
turned on in that region. A ‘play’ message is triggered 
whenever the blue ball is turned on or when it has 
changed region.  

As such, the functions of navigation (the red ball) and 
triad selection (the blue ball) are separated between the 
controllers. When triggered, all messages are sent over 
Open Sound Control (OSC) to the graphical representa-
tion running on Processing.  

 Audio Feedback 3.3.

Audio output for the interface is governed by OSC mes-
sages sent from Processing to Max/MSP, which triggers 
various MIDI messages to an internal MIDI synthesizer 
application. Simply outputting the three notes of the triad 
selected in the tonnetz gives little control over inversion 
and creates weak voice leadings with parallel fifths 
whenever consecutive root position chords are played. To 
counteract this undesirable effect the triad is first con-
verted to root position and transposed to several octaves 
simultaneously, generating a total of 19 MIDI notes. The 
large quantity of notes (somewhat counter intuitively) 
reduces the impact of parallel movement since the notes 
all have the same timbre and, therefore, cannot be easily 
streamed into distinct channels.  

4. PRELIMINARY USER TEST 
A simple preliminary user test was conducted to judge 
the quality of the interface as an interactive tool. In par-
ticular, the test aimed to identify any weaknesses in the 
gesture recognition system for future development and 
provide an indicator of how intuitive the interface was as 
a whole. Four participants were selected who had not 
used the interface before, with musical experience rang-
ing from 0 to 8 years.  

The test comprised of four stages. Firstly, the user was 
taught each of the six gestures for the red and blue con-
trollers separately, making twelve gestures in total. For 
each gesture the number of attempts before a successful 
trigger was noted. In the second stage, four navigation 
tasks test how well the red pivot note can be moved 
around the 3D Tonnetz. The user was asked to move the 
red pivot note to a position up to two steps away, with 
any combination of up, down, left, right, forward and 
back gestures. Again, the number of attempts before suc-
cessfully completing each task was recorded. In the third 
stage, the user was asked to follow three typical harmonic 
sequences represented as vector maps, for example, a 
descending cycle of fifths, or a falling third rising forth 
sequence. Finally, the user was given the opportunity to 
freely explore the interface. 

 Results 4.1.

In general, the gesture recognition was successful for the 
novice participants: 79% of gestures triggering correctly 
on the first attempt and 98% by the second attempt for 
the initial instructional stage, which consisted of the user 
learning each gesture for each controller in turn (twelve 
in total). Of the four navigation tasks, one requiring a step 
forwards on the z-axis (a descending fifth) followed by a 
move in the x-y plane proved most difficult, with users 
requiring between 2 and 6 attempts. During harmonic 
sequence navigation tasks, forward steps (descending 
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fifths) also proved problematic with users making nearly 
twice as many errors in harmonic progressions with de-
scending fifths compared to progressions that did not.  

During the exploration stage, users exhibited a variety 
of gestural styles. The participant who had struggled most 
with the navigational tasks strongly preferred the blue 
‘clock face’ controller, keeping the red relatively static. 
Two participants combined arm gestures with leg move-
ment, either bending at the knees or lunging forwards 
with one leg to trigger the forward step.  

 Discussion 4.2.

Although the interface appeared to be relatively intuitive 
with a high success rate in the instructional stage, the test 
identified the forward gesture as difficult to operate. 
Since this gesture corresponds to a descending fifth, a 
crucial progression in tonal music, a quick solution might 
be to use the ‘red light off’ gesture to descend a fifth and 
the forward gesture to ascend a fifth. However, a more 
permanent solution would be to improve the colour track-
ing along the z-axis, either by counting red or blue pixels 
to determine the size or adding a separate camera to the 
side of the user and simply track location.  

5. CONCLUSIONS  
The main contribution of this work is to provide the basic 
framework for an interface allowing users to navigate 
harmonic pitch space with gestures in three-dimensional 
space. The 3D Tonnetz based on [2, 6] and [3, 4, 5] was 
proposed as a model of harmony for the interface. A sys-
tem to track two-handed gestures in real time was devised 
and simple audio feedback generated over MIDI. 

A preliminary user study showed that some aspects of 
gesture recognition worked well but others, particularly z-
axis motion (descending fifths), could be improved. 

The strong didactic properties of the installation [c.f. 6] 
can be utilised by music students and teachers in conjunc-
tion with music theory, analysis and composition studies.  

Furthermore, since the 3D Tonnetz is grounded firmly 
on root progression theories [3, 4, 5], the interface can be 
usefully applied to the field of music analysis. Empirical 
studies [5, 15] have shown that root progressions differ 
fundamentally between pre-tonal and tonal music. As 
such, the interface could provide an interesting visual tool 
to map these two genres of music for comparison.  

Finally, with development to the audio system, the in-
terface could be used in musical performances, both al-
lowing performers to use gestures rather than instruments 
and for audiences to visualise musical performances. 
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ABSTRACT

We present a study on the effect of auditory and vibrotac-
tile cues in a finger-pressing task. During a training phase
subjects learned three target forces, and had to reproduce
them during an experiment, under different feedback con-
ditions. Results show that audio-tactile augmentation al-
lowed subjects to achieve memorized target forces with
improved accuracy. A tabletop device capable of record-
ing normal force and displaying vibrotactile feedback was
implemented to run several experiments. This study is first
in a series of planned investigations on the role of audio-
haptic feedback and perception in relation to musical ges-
tures primitives.

1. INTRODUCTION

The synergy of tactile, auditory and kinesthetic cues gener-
ally plays a central role while performing on acoustic and
electro-acoustic musical instruments. Indeed, several stud-
ies [1–3] support the idea that tactile and kinesthetic feed-
back inform sophisticated control strategies which enable
experienced musicians to achieve top performance levels
(e.g. precise timing, accurate intonation), and support ex-
pressivity and self-monitoring.

Conversely, while modern digital musical interfaces
(DMIs) can track to different extent input gestures, they
provide haptic feedback only as by-product of their built-
in mechanics, if any. This missing physical link between
DMIs and performers prevents the latter to enter the en-
gagement and embodiment normally established in tac-
tual interactions with traditional instruments, and alters the
action-perception loop [4]. In this perspective, the addition
of advanced audio-haptic to future DMIs is expected to
offer enhanced playability, performance and expressivity.
Currently, however, the development of actuated musical
interfaces is often grounded on practice and intuition, lead-
ing to the production of one-of-a-kind devices [5], while
only rarely a systematic approach is taken into account [6],
or general guidelines are produced [7–9].

To overcome this, we suggest that a scientifically
founded, multidisciplinary approach is necessary, which
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should involve experts from fields such as human-machine
interaction, musical practice, applied psychology and en-
gineering. The present work belongs to a series of ongo-
ing investigations aimed at collecting novel qualitative and
quantitative results on the role of audio-haptic feedback
and perception in interactions with musical instruments
and digital musical interfaces. By following a systematic
bottom-up approach – starting with focus on gesture prim-
itives observed in instrumental practice (such as pressing,
plucking, sliding, etc.) that will be then combined in more
articulated ones – we aim at isolating cross-modal and mul-
tisensory phenomena, and at identifying gestures and tasks
where the auditory and tactile channels appear crucial to
musical performance. The long-term goal is to establish
well-grounded guidelines for the implementation of actu-
ated musical interfaces.

In this paper a study is presented, which investigates
the effect of audio-tactile cues on reaching target finger-
pressing forces that have been previously learned in a train-
ing phase. Despite considering simplified input gestures
and feedback stimuli, our experiment was designed to imi-
tate real-world playing conditions, where musicians would
learn the response of an instrument, and would then per-
form on it by relying on memorized standards (e.g. from
kinesthetic memory).

The present work is the continuation of a preliminary
study [10] which is here expanded by re-analyzing the
experimental data with more fitting and robust statistical
methods, and taking into consideration different groups of
subjects according to their musical skills. Moreover, an
original discussion of the new results has been added, and
the general coverage of the experiment extended.

Similar studies on the effect of haptic feedback on finger-
force control are e.g. [11, 12], however these do not take
into consideration auditory feedback, nor they rely on
memorized force targets.

Other studies which make use of actuated interfaces to
investigate the effects of auditory and vibrotactile feedback
in tasks related to musical performance are e.g. [13–16].

2. EXPERIMENT

The experiment considered the gesture of pressing with the
finger on a flat, rigid surface.

Our hypothesis was that auditory and tactile feedback
provided interactively by such surface would support sub-
jects in reaching target pressing-force levels.
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Figure 1. The touch box interface used in the experiment
for recording normal finger forces and providing vibrotac-
tile feedback.

2.1 Apparatus and signal flow

The experiment made use of a tabletop interface developed
for this purpose, and housed in a small 3D-printed plas-
tic box (see Figure 1). The touch box interface offers a
top panel embedding an Interlink 406 force sensing resis-
tor (FSR) which records normal force. The analog force
signal provided by the FSR is fed into an Arduino UNO
board which uniformly samples it at 1920 Hz with 10 bit
resolution [17]. The Arduino is connected via USB to a
host laptop running Pure Data, where the digital data are
recorded and used to control a sound synthesis algorithm
(see 2.2). The audio signal generated by the synthesis al-
gorithm is output through a RME Fireface 800 audio in-
terface, and used to provide both auditory and vibrotactile
feedback: the former is sent to a pair of Sennheiser HD 202
headphones, while the latter is sent to a battery-powered
audio amplifier feeding a HiWave HIAX13C02-8/RH au-
dio exciter which is attached to the touch box’s top panel.

The box construction was optimized so that the embed-
ded exciter produces vibrations on the touch panel with
minimum sound emission. This allows to segregate the au-
ditory and vibrotactile feedback separately.

Additionally, the experimental setup offered an ’OK’ but-
ton allowing the subjects to mark their currently applied
force (see 2.3).

The round-trip latency of a comparable system, which
used a similar software/hardware setup for force data ac-
quisition and audio-tactile feedback generation, was mea-
sured under 20 ms [17].

2.2 Stimuli and conditions

A simple sine wave was chosen as audio-tactile feed-
back signal, whose amplitude varied proportionally to the
pressing-force applied on the touch panel, thus implement-
ing a metaphor that is commonly found in musical practice,
and especially on DMIs. The maximum intensity of the vi-
brotactile stimulus – corresponding to the maximum force
manageable by the FSR – was empirically set to the high-

Figure 2. Characteristic showing input acceleration (g-
force) vs. sampled force values (10 bit ADC)

est level that could be produced by the amplifier-exciter
combination without perceivable distortion. Similarly, the
frequency of the sine wave was empirically chosen in order
to maximize the produced vibrotactile sensation [2] at any
output level, and consequently set to 200 Hz.

Four feedback conditions were considered in the experi-
ment: neutral condition (N), without active feedback; au-
ditory feedback only (A), provided through headphones;
auditory and vibrotactile feedback (AV); vibrotactile feed-
back only (V). In the latter condition, in order to cancel
any residual sound emission produced by the interface, a
masking noise signal was sent through the headphones.

The experiment was run under three target conditions
(standards), each corresponding to a different pressing-
force level. The targets were chosen empirically according
to low, medium and high pressing-forces, within the data
range of the interface (values within 0-1023, correspond-
ing to 10-bit resolution): the low target was set to 400, the
medium one to 650 and the high target to 850.

By combining the “acceleration-to-voltage” characteris-
tic of the Interlink 406 FSR, and the “voltage-to-ADC
values” characteristic of the Arduino UNO board, we ex-
tracted the curve shown in Figure 2. This allows one to
approximately figure out the acceleration (g-force) values
corresponding to the sampled force values output by the
Arduino’s ADC. Since the curve was obtained from gen-
eral characteristics provided by the products’ data sheet
rather than from actual measurements on our interface, it
has to be considered as a qualitative reference only.

2.3 Design and procedure

Fourteen subjects (average age 33 years old) participated
in the experiment: five of them were pianists, five other
musicians and four non-musicians. The musicians were
either professionals or in professional training, while the
non-musicians had no more than a couple of years of expe-
rience with any musical instrument. All subjects reported
normal hearing and sense of touch.

The task was to reach a given standard among low,
medium or high target forces, under one of the four feed-
back conditions (N, A, V and AV), thus leading to 12 possi-
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ble combinations of target forces and feedback conditions.
The test followed a 2-factor within subjects design, where
each subject was tested under each combination of condi-
tions. All combinations were repeated 10 times for each
subject, resulting in 120 trials that were presented in ran-
domized order.

The subjects sat at a desk, on which the touch box in-
terface and the ’OK’ button had been arranged, and were
instructed to lean their forearm (dominant hand) on a arm
rest and to press one finger on the interface’s top panel.
Also, they were asked to choose and use the same finger
throughout the experiment, and not to touch the box with
other fingers.

To begin with, the subjects entered a short training phase
(lasting 2-4 minutes) in which they had to learn the tar-
get pressing-forces, and could freely practice to reproduce
them. This was done by providing an additional audio sig-
nal through the headphones: three different beeping tones
– each corresponding to one target – signaled when the
applied force was within an acceptable range (±50 units)
around a target. During this phase, the AV and N feedback
conditions were alternated (1-2 minutes each), and when
the former condition was on, the subjects were instructed
to pay attention to the intensity of the vibrotactile and audi-
tory feedback. During the experimental session, after each
block of 30 trials, the subjects were allowed to shortly re-
train to refresh their memory.

During the actual trials the beeping tones signaling the
targets were removed, and the subjects had to adjust their
pressing-force “from memory”, until they believed they
had reached the asked target. At that point they had to
press the ’OK’ button with their free hand, while maintain-
ing the pressing-force on the touch panel.

The experiment was conducted in a sound-proof chamber
and each experimental session lasted approximately one
hour, including breaks and training.

3. RESULTS

To prevent the possible effect (reported by some of the
subjects) of having to press with both hands at the same
time, the dependent variable – i.e. pressing-force on the
touch panel – was measured as the average over a 10 ms
time window, starting 100 ms before the subject pressed
the ’OK’ button.

The measurements, amounting to 1344 different record-
ings, included 9 missing data points which were ignored in
the analyses.

The data considered for the analysis of each subject was
given by the mean over the last 8 repetitions of each combi-
nation of conditions, thus regarding the first 2 repetitions as
practice. These data are shown in Figure 3, which demon-
strates a common trend for both low and medium targets:
with audio-tactile feedback (condition AV) the mean re-
sults are nearest to the target, while they clearly overshoot
with no feedback (condition N); results for the audio-only
(A) and vibrotactile-only (V) conditions are somewhere
between these extremes.

A large difference in variance over the target force lev-
els was observed both within each subject’s 8 repeated

N A V AV N A V AV N A V AV
300

400

500

600

700

800

900

All subjects

Feedback condition x target force

Pr
es

si
ng

 fo
rc

e 
(A

D
C

 v
al

ue
s)

Figure 3. Mean results over all the subjects (errorbars:
95% CI, considering variability due to condition manip-
ulation only, according to [18]). Target forces given by
dashed lines: low = 400, medium = 650, high = 850).
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Figure 4. Box-plot of results for each target force (median
and 25th / 75th percentiles describing between-subjects
variability), collapsed over feedback conditions.

measurements and between subjects, shown in Figure 4.
This violates the assumption of variance homogeneity
for ANOVA. Therefore the data were analyzed using the
aligned rank transform, a nonparametric method for fac-
torial within-subjects analyses using ANOVA procedures,
generalized for n factors in [19].

The analysis shows a significant main effect for the feed-
back factor (F(3,143) = 16, p < 0.0001), when the force
data were normalized by subtracting the corresponding tar-
get force from each condition (i.e. respectively 400, 650
and 850 for the low, medium and high conditions). No
significant effect was observed for the target force level
(F(2,143) = 0.7, p = 0.52), but the interaction “feed-
back × target level” was significant with F(6,143) = 6.0,
p < 0.0001.

The interaction plots in Figure 5 show that for the low
target force, mean errors are much smaller in presence of
auditory or audio-tactile feedback (A, AV) than with no
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Figure 5. Interaction plots. Top panel: mean errors at the
three target forces, presented for each feedback condition.
Bottom panel: mean errors at the four feedback conditions,
presented for each target force level.

feedback (N). For the high target force, however, the re-
sults are almost equivalent at all feedback conditions.

Pairwise comparisons between the feedback conditions,
collapsed over the target force levels, were performed by
the Wilcoxon signed-rank test with Bonferroni correction,
for significance level cutoff α = 0.05/5 = 0.01. These
results show significantly different medians between the
N–AV pair (p < 0.0001), N–A (p < 0.0001), N–V (p <
0.0001) and V–AV (p < 0.0001), but not for A–V (p =
0.22) and hardly for A–AV (p = 0.007).

Finally, differences between groups of subjects accord-
ing to their musical skills were investigated, which are pre-
sented in Figure 6. General observations are that pianists
benefited most from auditory feedback at the low target
force level, while for other factor combinations they per-
formed only slightly better than non-musicians. An excep-
tion is the vibrotactile condition at medium target level,
where non-musicians performed clearly worse than either
of the musician groups. Other musicians performed evenly
well at all factor combinations, and at medium target level
even clearly better than the other two groups.

4. DISCUSSION

From the results described above for the employed setup, it
can be generally concluded that audio-tactile feedback, and
to a lesser degree auditory feedback alone, made it gener-
ally easier to reach a given target pressing-force, compared
to the condition when no active feedback was present. No-
tably the results also show that the addition of the vibro-
tactile component to the auditory feedback generally im-
proved the performance. The vibrotactile feedback alone
looks instead less effective than the audio-tactile one.

The lower variance at the high target force further sug-
gests that the task was easier with higher pressing force
and more difficult at lower pressing forces. Thus one may
accept the hypothesis that auditory, and especially audio-
tactile feedback facilitate reaching force targets in condi-
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Figure 6. Mean errors for non-musicians, pianists and
other musicians, for low (top panel), medium (middle
panel), and high (bottom panel) target forces.

tions where the task is difficult.
The performance of pianists – generally similar to that of

non-musicians and under par compared to other musicians
– may be explained considering that the task of pressing
continuously on the touch box interface was clearly distant
from that of hitting the keys on the piano. Moreover, in
their instrumental practice, pianists are not in direct con-
tact with the source of sound and vibration, which are in-
stead mediated through the keys and hammer mechanics.
This may result in less developed tactile sensitivity com-
pared to e.g. players of stringed instruments, who perform
by direct contact with the strings. In this regard, different
studies [1, 20] showed that vibrations on stringed instru-
ments are clearly perceivable by the player during perfor-
mance, while vibrations on the piano are generally hardly
felt at the fingers. It must be considered however that,
due to difficulties in recruiting subjects, our sample size
is small and it does not allow reliable statistical inference.
As an example, a Kruskal-Wallis test on the “N–low tar-
get” combination was faintly non-significant (χ2 = 4.86,
p = 0.09), giving no evidence for true differences in medi-
ans between the independent groups. Therefore it remains
a future task to test more thoroughly performance differ-
ences among classes of musicians and non-musicians.

4.1 Issues

The experiment proved somewhat problematic at the high
target force, where the results have a much lower variance
than at the other two targets. The same is true for intra-
subject variability: for all subjects the varying range of the
10 repetitions of each high-target conditions combination
was typically much smaller than for the low or medium tar-
gets. One explanation lies in the nonlinear sensitivity curve
of the touch box interface, shown in Figure 2), hence to
equal small changes in the pressing-force correspond ADC
values variations that are larger in the low range than in the
high one. In this regard we plan to linearize the system,
e.g. according to what suggested in [21]. Another expla-
nation is that subjects found it easier to be accurate when
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applying a hard rather than a soft pressing-force.
Fatigue was neither noticed in the recorded data, nor re-

ported by the subjects. Practice effects during the course
of the 10 repetitions of each combination of conditions
were not observed, except during the first two repetitions
for some subjects. However, future test designs should
address the possible learning and kinesthetic memory ef-
fects, e.g. by varying the standard randomly within a nar-
row force range and presenting it before each trial.

Concerning the auditory feedback, according to the stan-
dardized equal loudness curves (ISO226:2003), the per-
ceived loudness (phons) of a 200 Hz sine tone increases
somewhat faster than the sound pressure level (dB) in the
over 70 dB range than in the softer range, suggesting that a
difference of 1 dB causes a greater difference in perceived
loudness. However, in this occasion no loudness record-
ings could be performed, since at the time of writing we
do not have instrumentation suitable for measurements on
headphones.

Finally, it is known that sensitivity to vibrations de-
pends on stimulus location, stimulus frequency and contact
area [2]. In this regard, it is worth noticing that while most
subjects performed the experiment placing their finger-pad
on the touch panel, a few of them used their fingertip.

4.2 Other remarks

While visual feedback was not prevented explicitly, some
subjects chose to perform the experiment with their eyes
closed to better focus on the auditory and tactile sensations.

Related research involving memory in action-perception
tasks is reported by Morris et al. [22], who found that hap-
tic feedback enhanced force skill learning in sensorimotor
tasks. Their study concerned visual and haptic force feed-
back and focused on the effect of three training modalities
(visual only, haptic only, or both), while in the test phase
the subjects relied only on force recall. In the present study,
training was given to all subjects first without feedback and
then with audio-tactile feedback, thus the effect of training
on recall could not be measured. However it is expected
that, in a normal musical scenario, the player learns the be-
havior of the instrument in presence of both auditory and
haptic feedback.

An aspect requiring further measurements is that of the
relative importance of kinestethic and tactile feedback.
In the present study, tactile feedback was in fact always
present even in the neutral condition N through sensations
of the fingertip, augmented by a vibrotactile signal in the
V and AV feedback conditions. Thus it was not possi-
ble to completely separate the tactile and kinesthetic chan-
nels, as was done in a study by Srinivasan and Chen [23],
who repeated force tracking experiments in normal condi-
tions and with locally anesthetized finger tips. They found
that while absence of tactile feedback resulted in some-
what higher force tracking errors, absence of augmented
visual feedback increased the error with target force mag-
nitude, indicating that without augmented visual feedback
the force tracking task was more difficult with high tar-
get forces. This contradicts with our findings for high tar-
get forces, which indicate the smallest errors regardless of

feedback condition. Future experiments will be designed
taking this aspect into account, while pressing forces will
be measured in terms of Newtons instead of ADC values.

Also, we planned to perform vibration measurements on
our interface for the different experimental conditions, and
compare these data with known psychophysiological re-
sults [24].

Our choice of audio-tactile stimuli (sine wave) was mo-
tivated by the desire of keeping the setup as simple and
controllable as possible. In future implementation we plan
to consider the use of physically-based sound models that
react in a dynamic way to the user’s gestures. Nevertheless
this could introduce interference at a cognitive and percep-
tual level that might be difficult to isolate in an experimen-
tal setting.

5. CONCLUSION

A pilot experiment has been described, which investigated
the role of auditory and vibrotactile feedback in a finger-
pressing task. At each trial, subjects had to aim at one
of three memorized target pressing-forces, under different
feedback conditions (no active feedback, audio only, vi-
brotactile only and audio-tactile). Our analysis show that
the audio-tactile augmentation allowed subjects to reach a
given target force with the best accuracy.

The present work is first in a series of planned exper-
iments that will systematically measure performance for
various musically relevant gesture primitives, in relation to
auditory and haptic cues. In this way, we aim at providing
useful guidelines for the implementation of future actuated
digital musical instruments, that will enable improved per-
formance control (e.g. precise timing, accurate intonation,
articulation), expressivity and playability.
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ABSTRACT

This paper presents a singing recording system,VocaRe-
finer, that enables a singer to make a better singing record-
ing by integrating multiple recordings of a song he or she
has sung repeatedly. It features a function calledclick-
able lyrics, with which the singer can click a word in the
displayed lyrics to start recording from that word. Click-
able lyrics facilitate efficient multiple recordings because
the singer can easily and quickly repeat recordings of a
phrase until satisfied. Each of the recordings is automati-
cally aligned to the music-synchronized lyrics for compar-
ison by using aphonetic alignmenttechnique. Our sys-
tem also features a function, calledthree-element decom-
position, that analyzes each recording to decompose it into
three essential elements:F0, power, and spectral envelope.
This enables the singer to select good elements from differ-
ent recordings and use them to synthesize a better record-
ing by taking full advantage of the singer’s ability. Pitch
correction and time stretching are also supported so that
singers can overcome limitations in their singing skills.
VocaRefiner was implemented by combining existing sig-
nal processing methods with new estimation methods for
achieving high-accuracy robustF0 and group delay, which
we propose to improve the synthesized quality.

1. INTRODUCTION

When singers perform live in front of an audience they
only have one chance. If they forget the lyrics or sing
out of time with the accompaniment then these mistakes
cannot be corrected, though singing out-of-tune could be
fixed by using real-time pitch correction (e.g., Auto-tune
or [1]). However, when vocals are recorded in a studio
setting, the situation is quite different. Many attempts, or
“takes”, at singing the entire song, or sections within it, can
be recorded. Indeed, if time and cost are not an issue, this
process can continue until either the singer or someone else
(e.g.,a producer or recording engineer) is completely sat-
isfied with the performance. The vocal track which even-
tually appears on the final recording is often reconstituted
from different sections of various takes and, to a greater
and greater degree, subjected to automatic pitch correction

Copyright: c⃝2013 Tomoyasu Nakano et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-
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Figure 1. A comparisonof VocaRefiner with the standard
recording and editing procedure.

(e.g.,Auto-tune) to “fix” any notes which are sung out of
tune. What is left over at the end of this process is simply
discarded as it is of no further use. This “standard” process
of recording singing voice is summarized in the left side of
Figure 1.

Although this procedure for recording and editing vo-
cals is widespread, it has some drawbacks. First, it is ex-
tremely time-consuming to manually listen through mul-
tiple takes and subjectively determine the “best” parts to
be saved for the final version. Second, the manipulation
of multi-track waveforms through “cut-and-paste” and the
use of pitch correction software requires specialist techni-
cal knowledge which may be too complex for the amateur
singer recording music in their home.

To address these shortcomings, we have developed an
interactive singing recording system calledVocaRefiner,
which lets a singer make multiple recordings interactively
and edit them while visualizing analysis of the recordings.
VocaRefiner has three functions (shown in the right side of
Figure 1) which are specialized for recording, editing and
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processing singing recordings.

1. Interactive recording with clickable lyrics: This al-
lows a singer to immediately navigate to the part of
the song he or she wants to sing without the need to
visually inspect the audio waveform.

2. Visualization of singing analysis: This enables the
singer to see an analysis of the recorded singing
which captures three essential elements of singing
voice:F0 (pitch), power (loudness), and spectral en-
velope (voice timbre).

3. Integration by recomposition and manipulation:
This allows the singer to select elements among mul-
tiple recordings at the phoneme level and recombine
them to synthesize an integrated result. In addition
to the direct recombination of phonemes, VocaRe-
finer also has pitch-correction and time-stretching
functionality to give the user even more control over
their performance.

The use of these three functions draws out the latent po-
tential of existing singing recordings to the greatest degree
possible, and enables the amateur singer to use advanced
technologies in a manner which is both intuitive to use and
enhances creative possibilities of music creation through
singing.

The remainder of this paper is structured as follows. In
Section 2 we present an overview of the main motivation,
the target users for VocaRefiner, and the originality of this
study. In Section 3 we describe VocaRefiner’s functionality
and usage. The signal processing back-end which drives
VocaRefiner is described in Section 4 along with results on
the performance of theF0 detection method. In Section 5
we discuss the role and potential impact of VocaRefiner in
the wider context of singing, and finally, in Section 6 we
summarize the key outcomes from the paper.

We provide a website with video demonstrations of Vo-
caRefiner at http://staff.aist.go.jp/t.nakano/VocaRefiner/.

2. VOCAREFINER: AN INTERACTIVE
SINGING-RECORDING SYSTEM

This section describes the goal of our system and short-
comings of standard approaches. To achieve the goal and
to overcome the shortcomings, we then propose our origi-
nal solutions of VocaRefiner.

2.1 Goal of VocaRefiner

The aim of this study is to enable amateur singers record-
ing music in their home to create high-quality singing
recordings efficiently and effectively. Many amateur
singers have recently started making personal record-
ings of songs and have uploaded them to video and au-
dio sharing services on the web. For example, over
600,000 music video clips including singing recordings
by amateur singers have been uploaded to the most pop-
ular Japanese video-sharing serviceNico Nico Douga
(http://www.nicovideo.jp). There are many listeners who
enjoy such amateur singing which is illustrated by the fact

that, as of April 2013 on Nico Nico Douga, over 4250
video clips by amateur singers received over one hundred
thousand page views, over 190 video clips had more than
one million page views, and the top five video clips had
more than five million page views.

In Japanese culture, it is common for the singers not to
show their faces in video clips. In this way, their record-
ings can be appreciated purely on the quality of the singing.
In fact, amateur singers have become very well-known just
by their voices and released commercially-available com-
pact discs from recording companies. This is a kind of the
new culture for music creation and appreciation driven by
massive influx of user-generated content (UGC) on web
services like Nico Nico Douga.

This creates a need and demand for making personal
singing recordings at home. Most amateur singers record
their singing voice at home without help from other peo-
ple (e.g.,studio engineers). To fully produce the record-
ings, they must complete the entire process shown in the
left side of Figure 1 by themselves. To create high-quality
singing recordings, singers typically use traditional record-
ing software or a digital audio workstation on a personal
computer to recording multiple takes of their singing, again
and again until they are satisfied. They then cut-and-paste
multi-track waveforms and sometimes use pitch correction
software (e.g.,Auto-tune). This traditional approach is in-
efficient and time-consuming, and requires specialist tech-
nical knowledge which may be a barrier for some would-be
singers. We therefore study a novel recording system spe-
cialized for personal singing recording. Our eventual goal
with this work is to facilitate and encourage even greater
numbers of singers to create vocal recordings with better
control and to actively participate in UGC music culture.

2.2 Originality of VocaRefiner

In this paper we present an alternative to the standard ap-
proach of recording singing voice by providing a novel in-
teractive singing recording systemVocaRefiner. It has an
original efficient and effective interface based on visual-
izing analysis of singing voice and driven by signal pro-
cessing technologies. We propose a novel use of the lyrics
to specify when to start the singing recording and also pro-
pose an interactive visualization and integration of multiple
recordings.

Although lyrics have already been clickable on some mu-
sic players [2], they only allowed users to change the play-
back position for listening. VocaRefiner presents a novel
use of lyrics alignment for recording purposes.

Multiple recordings were also not fully utilized for in-
tegration into the final high-quality recording, with most
recordings being simply discarded if they are not explic-
itly selected. For example, recordings with good lyrics but
incorrect pitch and recordings with correct-pitch singing
but a mistake in the lyrics generally cannot be used in the
final recording. However, VocaRefiner can make full use
of bad recordings that would otherwise be discarded in the
standard approach.

Although there has not been much research into the as-
sistance of singing recording, some studies exist for visu-
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Figure 2. An example VocaRefiner screen. The recordings
are displayed as rectangles.

alizing analysis of singing voices to improve singing skills
[3, 4]. Singing analysis has also been used for other pur-
poses, such as time-stretching based on phase vocoder [5],
voice-conversion [6], and voice-morphing [7]. However,
we believe that no other research currently exists which
deals with both the analysis and integration of multiple
singing recordings as in VocaRefiner.

3. INTERFACE OF VOCAREFINER

The VocaRefiner system, shown in Figure 2, is built around
components which encapsulate the following three func-
tions:

1. Interactive recording by clickable lyrics

2. Visualization by automatic singing analysis

3. Integration by recomposition and manipulation

These functions can be used within the two main modes
of VocaRefiner, “recording mode” and “integration mode”,
which are selected using buttonA⃝ in Figure 2.

In recording mode the user first selects the target lyrics
of the song they wish to sing (which can currently be in
English or Japanese, markedB⃝) and loads the musical ac-
companiment.

To facilitate the alignment of lyrics with music and click-
able lyric functionality, the representation of the lyrics
must be richer than a simple text file containing the words
of the song. It must also contain timing information -
where each word has an associated onset time and the
lyrics must also include the pronunciation of each word. It

is possible to estimate this information automatically, how-
ever this process can produce some errors which require
manual correction. Given the normal text file of lyrics, we
therefore automatically convert it into the VocaRefiner for-
mat and then manually correct errors if any.

The accompaniment can include a synthesized guide
melody or vocal (e.g. prepared by a singing synthesis sys-
tem) to make it easier for the user to sing along with the
lyrics. In the case where the user is recording a cover ver-
sion of an original song they can include the original vocal
of the song for this purpose.

If the user is unable to sing the song in original key, they
can make use of a transposition function (markedC⃝), to
shift the accompaniment to a more comfortable range.

3.1 Interactive Recording with Clickable Lyrics

The clickable lyrics function, which is built around the
time-synchronization of lyrics to audio (described in Sec-
tion 4.1), enables a singer who makes a mistake in the pitch
or lyrics to start singing that part again immediately. Such
seamless re-recording can offer a new avenue for record-
ing singing, in particular for the amateur singer recording
at home. One case where this could be particularly useful
is when attempting to sing the first note of a song, where it
can be hard to hit the right note straight away. Using click-
able lyrics, the singer can repeat the phrase they will to
sing recording each version until they are happy they have
it right. By recording vocals in this way, a singer could also
easily try different styles of singing the same phrase (stor-
ing each one aligned to the accompaniment), which could
help them to experiment more in their singing style.

Because the lyrics and music are synchronized in time,
when the singer clicks the lyrics, the accompaniment is
played back on headphones (to prevent recording the ac-
companiment as well as the vocal) from the specified time
and the voice sung by the user is recorded in time with the
accompaniment. In addition, if the singer only wants to
sing a particular section of the song, this section can be
selected using the mouse.

The recording process can also be started by clicking the
“play-rec” button indicated by the red triangle (close toC⃝)
or by using the mouse to drag the slider located to the right
of the button.

With this type of functionality, the clickable lyrics com-
ponent can facilitate the efficient recording of multiple
takes, where a singer can repeat an individual phrase over
and over until they are satisfied. In this way, our work
extends existing work into lyrics and audio synchroniza-
tion [2], which has, up until now, only been applied to
playback systems which cannot record and align singing
input.

3.2 Visualization by Automatic Singing Analysis

Two types of visualization are implemented in VocaRe-
finer. The first of which addresses the timing information
of multiple recordings. Each separate recording is indi-
cated by a rectangle displayed atD⃝, as shown on Figure
2, whose length indicates its duration. The rectangles of
multiple recordings, which appear stacked on top of one
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another, can be used to see which parts of a song were sung
many times, and can be useful for singers to find challeng-
ing parts requiring additional practice.

The second visualization shows the results of analyzing
the singing recordings. This analysis takes place immedi-
ately after the each recording has taken place. First, the
recording is automatically aligned to the lyrics via the pro-
nunciation and timing using aphonetic alignmenttech-
nique. VocaRefiner estimates and then displaysthree el-
ementsof each recording:F0, power, and spectral enve-
lope using techniques described in Section 4.2. These el-
ements are used later for the recomposition of recordings
from multiple takes.

An example of the analysis is shown at the point marked
E⃝ in Figure 2. The location of the rectangles in Figure 2
shows the onset and offset time of each phoneme. The blue
line, the light green line, and the darker green line indi-
cate trajectories of selected part used for integration ofF0,
power, and voice timbre changes, respectively. The super-
imposed gray lines (which correspond to other recordings)
are parts not selected for integration.

Such superimposed views are useful for seeing differ-
ences between the recordings without the need for repeated
playback. In particular this can highlight recordings where
the wrong note has been sung (without the need to listen
back to the recording), and also show the singer the points
where the timbre of their voice has changed.

3.3 Integration by Recomposition and Manipulation

The integration can be achieved by two main methods: “re-
composition” and “manipulation” along with an additional
technique for error repair. Their operation with VocaRe-
finer are described in the following subsections, and the
technology behind them in Section 4.3.

3.3.1 Recomposition

The recomposition process involves direct interaction from
the user where the elements they wish to use at each
phoneme are selected with the mouse. These selected ele-
ments are used for synthesizing the recording.

In the situation where multiple recordings have been
made for a particular section, VocaRefiner assumes that

drag

&

drop

Figure 4. Time-stretchinga phoneme. The length of the
final phoneme /u/ is extended, and itsF0, power, and voice
timbre are also stretched accordingly.

drag

&

drop

drag

&

drop

Figure 5. F0 and powercan be adjusted using the mouse.

the most recently recorded take will be of good quality,
and therefore selects this by default.

3.3.2 Manipulation

Two modes of manipulation are available to the user,
one which modifies the phoneme timing and the other
which modifies the singing style. The modification of
phoneme timing changes the phoneme onset and duration
(via time-stretching), and the manipulation of singing style
is achieved through changes to theF0 and power.

A common situation requiring timing manipulation oc-
curs when a phoneme is too short and needs to be length-
ened. Figure 4 shows that when the length of the final
phoneme /u/ is extended, theF0, power, and spectral en-
velope of the phoneme are also stretched accordingly. On-
set times can also be adjusted without the need for time-
stretching.

Figure 5 shows thatF0 and power can be indepen-
dently adjusted using the mouse. In addition to these lo-
cal changes, the overall key of the recording can be also
changed (Fig. 6) by global transposition.

3.3.3 Error Repair

Because occasional errors are unavoidable when recompo-
sition and manipulation are based on the results of auto-
matic analysis, it is important to recognize this possibility
and provide the singer the means for correcting mistakes.
The most critical errors that could require correction relate
to theF0 estimation and phonetic alignment. Such errors
can be easily fixed through a simple interaction, as shown
in Figure 7.

When an octave error occurs inF0 estimation it can be
repaired by dragging the mouse to specify the correct time-
frequency range. In fact, octave errors can be eliminated by
specifying the desired time-frequency range after record-
ing. The more recordings of the same phrase there are, the
easier it is to determine the correct time-frequency range,
because the singer can make a judgement from manyF0

trajectories, where most have been correctly analysed.
Phonetic alignment errors are repaired by dragging the

mouse to change the estimated phonetic boundaries. Fig-
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ure 7 shows the correction of the wrong duration of a
phoneme /o/. Moreover, estimation results from other
recordings can be used to correct errors by a simple copy-
and-paste process. This function can be used to correct the
situation where the alignment of a recording has many er-
rors, for example, when a singer chose to hum the melody
instead of sing the lyrics.

4. SIGNAL PROCESSING FOR THE
IMPLEMENTATION

The functionality of VocaRefiner is built around advanced
signal processing techniques for the estimation ofF0,
power, spectral envelope and group delay in singing voice.
While we make use of some standard techniques for this
analysis,e.g., F0 [8, 9], spectral envelope [8], and group
delay [10], and build upon our own previous work in this
area [11,12] we also present novel contributions forF0 and
group delay estimation to meet the need for very high ac-
curacy frequency and phase estimation in VocaRefiner. In
evaluating the newF0 detection method for singing voice
(in Section 4.4), we demonstrate that our method exceeds
the current state of the art.

Throughout this paper, singing samples are monaural
solo vocal recordings digitised at 16 bit / 44.1 kHz. The
discrete analysis time step (1frame-time) is 1 ms. Time
t in this paper is the time measured in frame-time units.
All spectral envelopes and group delay are represented by
4097 frequency bins (8192 FFT length).

4.1 Signal Processing For Interactive Recording

Methods for estimating pronunciation and timing informa-
tion and for transposing the key of the accompaniment are
required for interactive recording. Phoneme-level pronun-
ciation of English lyrics is determined using the CMU pro-
nouncing dictionary1 , and the pronunciation of Japanese

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 8. Overviewof F0-adaptive multi-frame integra-
tion analysis.

lyrics is estimated by using a Japanese language morpho-
logical analyzer MeCab2 .

Timing information is estimated by first having the singer
sing the target song once. The system then synchronizes
the phoneme-level pronunciation of the lyrics with the
recordings. This synchronization is calledphonetic align-
mentand is estimated through Viterbi alignment with a
monophone hidden Markov model (HMM). Two HMMs
were trained with English and Japanese songs, respec-
tively. The English songs came from the RWC Music
Database (Popular Music [13], Music Genre [14], and
Royalty-Free Music [13]) and the Japanese songs are in
the RWC Music Database (Popular Music [13]).

When a singer wishes to transpose the key of the ac-
companiment in VocaRefiner, we use a well-known phase
vocoder technique [5], which operates offline.

4.2 Signal Processing For Visualizing

A phonetic alignment method and three-element decom-
position method are required for implementing this func-
tion. The phonetic alignment method is the same as that
described above.

The system estimates the fundamental frequency (F0),
power, and spectral envelope of each recording.
F0(t) values are estimated using the method of Gotoet

al. [11]. F0(t) are linear-scale frequency values (Hz) es-
timated by applying a Hanning window whose length is
1024 samples (about 64 ms) and resampling at 16 kHz.

Spectral envelopes are estimated usingF0-adaptive
multi-frame integration analysis [12]. This method can es-
timate spectral envelopes with appropriate shape and high
temporal resolution. Figure 8 shows an overview of the
analysis. First,F0-adaptive Gaussian windows are used for
spectrum analysis (F0-adaptiveanalysis). Then neighbor-
hood frames are integrated to estimate the target spectral
envelope (multi-frame integrationanalysis).

2 http://mecab.sourceforge.net/
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The power is calculated from the spectral envelope by
summation of the frequency axis at each time frame.

4.3 Signal Processing For Integration

For high-quality resynthesis, the three elements should be
estimated accurately and with high temporal resolution.
For this purpose we propose a newF0 re-estimation tech-
nique, calledF0-adaptiveF0 estimation method. It is
highly accurate and has the requisite high temporal reso-
lution. To generate the phase spectrum used in resynthesis
we also propose a new method for estimating group de-
lay [10].

4.3.1 F0-adaptiveF0 estimation method

Using the technique in [11] we perform an initial estimate
of the F0 which we call the1st F0 and use this as in-
put to theF0-adaptiveF0 estimation method. The basic
idea behind our new method is that high temporal reso-
lution can be obtained by shortening the analysis window
length forF0 estimation as much as possible. Moreover
we exploit the knowledge that harmonic components at
lower frequencies of the amplitude spectrum of FFT can be
used to estimateF0 accurately, as they contain relatively
reliable information whereas aperiodic components often
dominant at higher frequencies.

To obtain high accuracy and high temporal resolution, we
propose a harmonic GMM (Gaussian mixture model). We
fit the GMM to the FFT spectrum estimated by anF0 adap-
tive analysisthat usesF0-adaptive Gaussian windows and
uses the 1stF0 used as an initial value. Hereafter, the 1st
F0 is described asm(0).

We designed anF0-adaptation window by using a Gaus-
sian function. Letw(τ) be a Gaussian window function
of time τ defined as follows, whereσ(t) is the standard
deviation of the Gaussian distribution andF0(t) is the fun-
damental frequency for analysis timet.

w(τ) = exp(− τ2

2σ(t)2
) (1)

σ(t) =
α

F0(t)
× 1

3
(2)

To set the valueof α, we follow the approach for high-
accuracy spectral envelope estimation in [15] and assign
α=2.5.
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A harmonic GMM G(f ;m, ωk, σk) for frequencyf is
designed as follows:

G(f ; m, ωk, σk) =

K∑
k=0

ωk√
2πσ2

k

exp(− (f − (m × k))2

2σ2
k

) (3)

whereK is the number of harmonics, forwhich K=10
was found to provide a high quality output. The Gaus-
sian function parametersm, ωk, andσk can be estimated
using the well-known expectation and maximization (EM)
algorithm, which is fitted to theF0-adaptive FFT spectrum
in the frequency range[0, (K × m(0)) + m(0)/2]. In the
iteration process of the EM algorithm,σk can be replaced
with a range constraint,[ϵ,m], whereϵ = 2.2204× 10−16.
The estimatedm is used as the new estimatedF0(t).

4.3.2 Normalized Group Delay Estimation Method Based
onF0-Adaptive Multi-Frame Integration Analysis

To enable the estimation of the phase spectrum for resyn-
thesis, we propose a robust group delay estimation method.
Although the previous method [12] relied upon pitch marks
to estimate the group delay, the proposed method is more
robust because it does not require them. The basic idea
of this estimation is to use anF0-adaptive multi-frame in-
tegration analysis based on the spectral envelope estima-
tion approach in [12]. To estimate group delay, theF0-
adaptive analysis and a multi-frame integration analysis are
conducted. In the integration, maximum envelopes are se-
lected and their corresponding group delays are used as the
target group delays. The group delay at each time can be
estimated by using the method described in [10]. Figure 10
shows an example of extracting the maximum envelopes
and corresponding group delays.

The estimated group delay has discontinuities along the
frequency axis caused by the fundamental period. The
group delaŷg(f, t) is therefore normalized with the range
(−π, π] and will be given bysin andcos functions as fol-
lows:

g(f, t) =
mod (ĝ(f, t) − ĝ(β × F0(t), t), 1/F0(t))

F0(t)
(4)

gπ(f, t) = (g(f, t) × 2π) − π (5)

gx(f, t) = cos (gπ(f, t)) (6)

gy(f, t) = sin (gπ(f, t)) (7)

Here mod (x, y) is a residual. The ĝ(f, t) −
ĝ(β × F0(t), t) component is used to eliminate an offset
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of the analysis time, andβ is set to1.5 (an intermediate
frequency between the first and second harmonics) as set-
ting β=1.0 (the fundamental frequency) allowed undesir-
able fluctuations to remain.

There are also discontinuities along time axis. These are
smoothed along both the time and frequency directions us-
ing a 2-dimensional FIR low-pass filter. Since the esti-
mated group delay of frequency bins underF0 is known
to be unreliable, we finally smooth the group delay of bins
underF0 so that it can take the same value of the group
delay atF0.

4.3.3 Singing Synthesis Using Normalized Group Delay

The singing-synthesis method used to make the final
recording needs to reflect integrating and editing results.
Our implementation of singing synthesis from spectral en-
velopes and group delays is based on the well-knownF0-
synchronous overlap-and-add method (Fig. 11).

The normalized group delaysgx(f, t) and gy(f, t) are
adapted to the synthesized fundamental period1/F0(t)syn

as follows:

g(f, t) =
1

F0(t)syn
× (gπ(f, t) + π)

2π
(8)

gπ(f, t) =
tan−1(

gy(f,t)

gx(f,t)
) (gx(f, t) > 0)

tan−1(
gy(f,t)

gx(f,t)
) + π (gx(f, t) < 0)

(3 × π) /2 (gy(f, t) < 0, gx(f, t) = 0)

π/2 (gy(f, t) > 0, gx(f, t) = 0)

(9)

Then the phase spectrum used to generate the synthesized
unit is computed from the adapted group delay. The phase
spectrum can be obtained by integration of the group delay,
as in [10].

4.4 Experiments and Results

To evaluate the effectiveness of the iterativeF0 estimation
method we examine its use when applied as a secondary
processing stage on three well-known existingF0 meth-
ods: Goto [11]3 , SWIPE [9], and STRAIGHT [8]. In each
case we provide our iterativeF0 estimation method with
the initial output from these systems and derive a newF0

result. The frequency range is used as[100, 700] Hz for all
the methods.

3 The 1st author reimplemented Goto’smethod for speech signals.
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Figure 12. Estimation accuracies (meanerror value) of
the proposed re-estimation method (described as “2nd”)
compared with those of Goto [11], SWIPE [9], and
STRAIGHT [8].

Estimation accuracy is determined by finding the mean
error value,ϵf , defined by

ϵf =
1

Tf

∑
t

|fg(t) − fn(t)| (10)

fn(t) = 12 × log2

F0(t)

440
+ 69 (11)

whereTf is the number of voiced frames, andfg(t) is the
ground truth value. Thefn(t) andfg(t) are log-scale fre-
quency values relative to the MIDI note number.

To compare the performance of the algorithms, we use
synthesized and resynthesized natural sound examples in
the RWC Music Database (Popular Music [13] and Music
Genre [14]). To prepare the ground truth,fg(t), we used
singing voices resynthesized from natural singing exam-
ples using the STRAIGHT algorithm [8].

Results in Figure 12 show that theF0 estimation across
each of the methods is highly accurate, with very low,ϵf ,
both for male and female signing voice. Furthermore we
can see that, for each of the three algorithms, the inclusion
of our iterative estimation method improves performance.
In this way, our iterative method could be applied to any
F0 estimation algorithm as an additional processing step
to increase accuracy.

Regarding the estimation of spectral envelope and group
delay, it is not feasible to perform a similar objective anal-
ysis. Therefore in Figure 13 we present a comparison
between the estimated spectral envelope and group delay
from a singing recording and a synthesized singing voice.
By inspection it is clear that both the spectral envelope and
group delay between the two signals are highly similar,
which indicates the robustness of our method.

5. DISCUSSION

There are two ways to make high-quality singing content
currently and in the future. One way is for singers to im-
prove their voices by training with a professional teacher
or using singing-training software. This can be considered
the “traditional” way. The alternative is to improve one’s
singing “expression” skill by editing and integrating,i.e.,
through practice and training with software tools. This pa-
per presented a system for expanding the possibilities via
this new emerging second way. We recognise that these
two ways can be used for different purposes and have dif-
ferent qualities of pleasantness. We also believe that, in
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the future, they could become equally important. A high-
quality singing recording produced in the traditional way
can create an emotional response in the listeners who ap-
preciate the “physical control” of the singer. On the other
hand, a high-quality singing recording improved using a
tool like VocaRefiner can reach listeners in a different way,
where they can appreciate the level of expression within
a kind of “singing representation” created through skilled
technical manipulation. In both cases, there is a shared
common purpose of vocal expression and reaching listen-
ers on a personal and emotional level.

The standard function of recording vocals has only fo-
cused on the acquisition of the vocal signal using mi-
crophones, pre-amps and digital audio workstations, etc.
However, in this paper we explore a new paradigm for
recording, where the process can become interactive. By
allowing a singer to record their voice with a lyrics-
based recording system opens new possibilities for inter-
active sound recording which could change how music is
recorded in the future,e.g.,when applied to recording other
instruments such as drums, guitars, and piano.

6. CONCLUSIONS

In this paper we present an interactive singing recording
system called VocaRefiner to help amateur singers make
high quality vocal recordings at home. VocaRefiner comes
with a suite of powerful tools driven by advanced sig-
nal processing techniques for voice analysis (including
robustF0 and group delay estimation), which allow for
easy recording, editing and manipulation of recordings.
In addition, VocaRefiner has the unique ability to inte-
grate the “best parts” from different takes, even down to
the phoneme level. By selecting between takes and cor-
recting errors in pitch and timing, an amateur singer can
create recordings which capture the full potential of their
voice, or even go beyond it. Furthermore, the ability to
visually inspect objective information about their singing
(e.g.,pitch, loudness and timbre) could help singers better
understand their voices and encourage them to experiment
more in their singing style. Hence VocaRefiner can also
act as an educational tool.

In future work we intend to further improve the synthe-
sis quality and to implement other music understanding
functions including beat tracking and structure visualiza-
tion [16], towards a more complete interactive recording
environment.
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ABSTRACT

The design and implementation of an interactive mu-
sic system is a difficult task. It necessitates the de-
scription of complex interplays between two design
layers at least : the real time synchronous layer for
audio processing, and the symbolic event based layer
for interaction handling. Tiled programming is a re-
cent proposal that aims at combining with a single
metaphor: tiled signals, the distinct programmatic
features that are used in these two layers. The lib-
Tuiles experiment presented in this paper is a first ex-
perimental implementation of such a new design prin-
ciple.

1. INTRODUCTION

1.1 Background

Nowadays, many specialized languages can be used for
the design and implementation of musical systems. Be
them textual like Supercollider/Chuck [1] or Faust [2],
or visual like Max/Msp or PureData [3], these lan-
guages mostly inherit from the synchronous program-
ming language paradigms that allow for powerful de-
scriptions of signal processing mechanisms.
However, programming interactive musical systems

remains a delicate task. In particular, maintaining the
time/rhythmic coherence of musical systems govern
by the unpredictable arrival of asynchronous events
is a difficult task. This can be partly explained by
the heterogeneous time scales or layers at which such
systems need to be described. Audio processing ne-
cessitates low level real time synchronous program-
ming mechanisms while interaction handling necessi-
tates high level event based system design tools.
Such a difficulty, partially adressed by the GALS de-

sign style [4], remains a challenging issue. Despite
considerable effort, there is still a lack of high level
metaphors or paradigms allowing for a hierarchical,

Copyright: c©2013 David Janin et al. This is an
open-access article distributed under the terms of the
Creative Commons Attribution 3.0 Unported License, which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

multi-scale and modular description of dynamic time
structuring mechanisms.
Among other proposals, the i-score sequencer [5] in-

tegrates an explicit specification mechanism that al-
lows for the high level description of the relative posi-
tioning of musical objects, hence their potential over-
lapping. Together with explicit input control points
and dynamic mechanisms for solving position cons-
traints, the i-score sequencer thus already offers an
abstract description of dynamic time structuration.
However, by lack of additional control flow structures
such as conditionals and loops, its applicability re-
mains limited.
Independently, in the lines of the structuralist ap-

proach developed for musical linguistic [6], recent stud-
ies [7] emphasize the fact that, for computer assisted
music systems, a key issue lays in the precise mod-
eling of behaviors overlaps that recurrently occur in
such (multi-agent) musical systems. Further studies,
more oriented towards abstract and untimed models,
provide evidences that an entire and well-developed
mathematical field, inverse semigroup theory [8], is
suitable for developing an associated language theory
of overlapping structures [9–11].

1.2 Outline

The work presented here aims at combining the high-
level time specification mechanisms offered by the i-
score approach with the modeling power provided by
languages of overlapping structures, and with the ef-
ficient signal processing provided by the synchronous
languages.
Implementing an advanced synchronization algebra

of audio or musical patterns [12], the libTuiles, first
appears as a fairly versatile multi-scale and hierarchi-
cal mixing tool. In the long run, the libTuiles also
aims at becoming the first execution engine for the T-
calculus [13] : the programming language theoretic
counterpart of the experiment presented here.
The libTuiles can be connected to the real time syn-

chronous audio thread provided by the JACK audio
server. An additional granular synthesis module for
producing audio signals that can be stretched makes
it even more easy to use with tiled sound files. It is also
linked with other existing tools such as the Faust [2]
synchronous programming language.
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Last but not least, a graphical interface, the LiveTu-
iles, inspired by live looping interfaces such as Drile
[14], allows for live performance experiments of the
underlying metaphors and concepts.

2. MODELING OF MUSICAL PROCESSES

Modeling musical system behaviors, be them on time
when systems are running, or off time when systems
are being designed, one faces the long standing and
complex question of musical objects representation.
Many proposals, often incomparable, are available.
The libTuiles presented in this paper is based on a
rather formal model : tiled signals, that have been
formalized as an attempt to clarify the situation.

2.1 The structure space of musical objects

There already exist many formalisms applicable to the
modeling of music. Each of them provides answers
for specific application perspectives, usage constraints
and thus approximates the musical objects that are
described. An immediate difficulty is therefore to un-
derstand what the characteristics of these models are
and which one of their features we truly need for de-
signing interactive music systems.
For instance, in a western music score, notes and

rhythms are pictured in such a way that, in particu-
lar, the fast reading of melodic and rhythmic lines by
musicians is made easier. In particular, bars and met-
ric structures indicate on every system how musicians
should synchronize their plays.
When modeling music for designing a music system,

the visual aspect of music score is probably of a fairly
low interest. However, there already appear two di-
mensions of some abstract modeling space where the
various models of music lay. The first one, the time
axis (T), is depicted by the sequence of notes, the suc-
cession of bars, and so on. The second one, the parallel
axis (P), appears in the many music systems that are
to be played in parallel by musicians.

Analyzing further music scores such as, for instance,
popular melody annotated with chords as in jazz mu-
sic scores, a third dimension appears, the abstraction
dimension (A). Indeed, music is often described at var-
ious level of abstractions such as melodic lines, chords
progressions, stylistic annotations, and so on.
Though often implicit, a fourth dimension also ap-

pears when modeling interactive (or improvised) mu-
sic. It is the interaction (or alternative) axis (I) that
allows, for instance, the descriptions of how musicians
(say in a jazz band) can adapt their plays to the real
time performance of a given soloist according to some
stylistic rules.
In other words, music models adapted to the design

of interactive music systems lay in an at least four
dimensional space that is depicted in Figure 1.
Of course, such a four dimensional modeling space

for musical objects is highly debatable. Even more,
there may be some description of music that mix so

much these dimensions that it no longer make sense
to distinguish them. Still, positioning a given musical
model in such a space may help clarifying our un-
derstanding of its features. Then, a complex musical
object can be abstracted as some partial function

M : (A)× (I)× (T )× (P )→ V

from that structure space to some set of values V .

For instance, the structure of standard piano roll
that are displayed on computer screens typically lay in
the two dimensional space formed by the time axis (T)
and the parallelism axis (P). Another typical example
is the musical transcription and analysis of a recorded
performance. As all possible interactions have been
resolved during the performance, it lays in the three
dimensional space formed by time (T), parallelism (P)
and abstraction (A).

•

(A)

(T)

(I)

(P)

Figure 1. The 4D structure space of music

Interactive pieces of music just like reactive systems
can be modeled by branching structures (or input/
output discrete automata) that describe, in every state,
the potential behaviors of those systems that depend
and evolve with the external events that are received.
Such branching structures typically lay in the two di-
mensional space formed by the (abstract) time axis
(T) and the interaction axis (I).

Another important feature of this structure space is
that the nature of scales changes with abstraction.
This is especially clear in the time axis (T). At the

lowest level, we have a synchronous real-time, signal
based, layer, almost continuous. The time scale is just
a sequence of regular time clicks, e.g. one click per
1/44000s with standard quantization. Above, at the
interaction level, the time scale is more irregular. For
instance, at the interaction level, the time scale mod-
els the arrival date of events, and its precision hardly
goes below 1/100s. This is the asynchronous real-time,
event based, layer.
On the opposite side, at the most abstract level, the

time scale is a sequence of totally ordered musical
events, e.g. the alegro, adagio, scherzo and sonata
movements of a symphony. In between, times scales
can be defined as partially ordered sets of events
(causally ordered), or sets of partially overlapping in-
tervals (melodic lines), or even mixture of these two
models. . . These are various symbolic time, event-
based, layers.
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One can observe that such an abstraction dependent
heterogeneous nature of scales also appear in the other
axis. Interaction events, modeling for instance musi-
cians’ gestures, can vary from discrete events, e.g. a
click on a pedal, from almost continuous finite signals,
e.g. pitch pend modulation.
Designing tools for the conception of computerized

music systems therefore requires to handle the com-
bined modeling of all these heterogeneous scales.

2.2 The synchronization algebra

In every music system, be it for mixing signals, or
more generally for arbitrary multi-channel signal pro-
cessing, one of the most fundamental operation con-
sists in positioning in time, one relative to the other,
the signals to be processed. This feature is depicted
in Figure 2. Such an operation, that lays in the two

A
B

s

Figure 2. External synchronization

dimensional space of time (T) and parallelism (P), is
often performed by means of an external synchroniza-
tion mechanism where the relative positioning of the
signals depends on the result of their combined anal-
ysis, for example relying on onset detections.
Commonly used by sound engineers in music stu-

dios, such an approach however lacks compositional-
ity. Some audio or musical analysis may need to be
performed again and again each time a new signal (or
musical object) has to be positioned with respect to
the previous ones. In order to avoid such a useless
repeated analysis, audio processing applications are
thus equipped with various and somehow adhoc no-
tions of time stamps or sync. marks that annotate the
tracks onto which these signals are positioned. It oc-
curs that such technical tricks can be formalized with
great benefits via the notion of tiled signals. Indeed,
tiled signals appear when one wants to internalize such
synchronization marks.
Simply said, a tiled signal is a signal equipped with

two additional bars that delimit what are called the
synchronization window of the tiled signal. By con-
trast, the position in time of the entire signal is called
the realization window. More formally, for every sig-
nal A, the relative positioning of the synchronization
window with respect to the realization window can be
modeled by specifying two values : the left offset lA
and the right offset rA, as depicted in Figure 3. With
sA the duration of the synchronization window, the
resulting duration of the realization window is given
by lA + sA + rA. The resulting triple (lA, sA, rA) is
called the synchronization profile of the tiled signal
A. With this model, synchronizing two tiled signals
only amounts to positioning the second bar of the first

lA sA rA

A

Figure 3. Synchronization vs realization windows

tiled signal right at the same time as the first bar of
the second timed signal. This is depicted in Figure 4.
The resulting synchronized product of two tiled sig-

A

lA sA rA

B

lB sB rB

sA;BlA;B rA;B

Figure 4. Internal synchronization

nals A and B is denoted SEQ(A, B) or simply A; B.
An immediate observation is that the synchronization
product A; B of two tiled signals A and B is indeed
compositional since, as depicted in Figure 4, the newly
built signal is again a tiled signal.
It occurs that the synchronization product A; B de-

fined above over tiled signals is an associative opera-
tion over tiled signals. The resulting algebraic struc-
ture is thus a semigroup. Aiming at defining interac-
tive signal handling, with signals that are dynamically
received, processed or synthesized, this is a much wel-
come property.
From a programing paradigm point of view, the syn-

chronized product A; B of two tiled signals A and B
can be understood in two ways:

• at an abstract event-based layer : A; B means
that “event” A is followed by “event” B,

• at the concrete synchronous layer: A; B means
that “signal” A is synchronized with “signal” B
with possible overlaps.

In other words, depending on the chosen time scale,
every tiled signal can be seen both as an asynchronous
event (on the logical time scale) or as a synchronous
signal (on the synchronous realtime scale). In other
words, the tiled signal approach is multi-scale.
The resulting algebra is described further in [12]. It

is shown, in particular, that additional left and right
Resync operators can be derived from the structure of
tiled signals. They are depicted in Figure 5. Together

R(A)

A

L(A)

Figure 5. Right and left Resync operators
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with the sequential product, these resets operators
considerably increase the expressive power of tiled sig-
nal expressions.
Indeed, one can define Fork(A, B) = R(A); B with a

synchronization of A and B at the beginning of their
synchronization windows. This situation is depicted in
Figure 6. One can also define Join(A, B) = A; L(B)

R(A)
B

Figure 6. The derived operator Fork

with a synchronization of A and B at the end of their
synchronization windows. This situation is depicted in
Figure 7. In other words, handling multi-channel sig-

A
L(B)

Figure 7. The derived operator Join

nals that can seen both at the synchronous scale and
at the event-based scale, our proposal thus provides
descriptions of musical object in the three dimensional
space (T )×(P )×(A). The way the interaction dimen-
sion (I) is handled and experimented is the purpose of
the remaining sections.
Remark. In the T-calculus presented in [13], the
synchronization algebra is extended further with addi-
tional typed operators that can be applied to synchro-
nized products of tiles. Rather subtle signal processing
operators can then be derived.

3. IMPLEMENTING THE ALGEBRA

In this section, we describe the software components
of the libTuiles library. In particular, we present the
libTuiles API, the synchronous sound engine that is
controlled by the asynchronous execution of the tu-
iles, and an object-oriented architecture dedicated to
messaging between musical threads.

3.1 LibTuiles: building and playing trees of
tiles

LibTuiles is a C++ software library that allows for the
creation and the execution of trees of synchronized
tiles. In these trees, each tile is given an unsigned
integer as unique identifier. The following methods of
the class TuilesManager are used to build and play the
tiles.
addLeaf(const float& d, unsigned int& id) cre-
ates a new leaf tile with an initial length set to d and
assigns its identifier to the id variable.
addLoop(const unsigned int& idChild, unsigned
int& loopID) creates a new tile by applying the Loop
operator to the tile with the idChild identifier and as-
sign the new identifier to the loopID variable.

addSeq(const unsigned int& idChild1, const un-
signed int& idChild2, unsigned int& opID),
addFork(. . . ) and addJoin(. . . ) create a tile by ap-
plying respectively the Seq, Fork and Join operators
to the tiles with the identifiers idChild1 and idChild2.
The id of the resulting tile is assigned to the variable
opID.
setTuileLength(const unsigned int& id, const
float& l) applies the Stretch operator with value l to
the tile identified by id.
setTuileLeftOffset(const unsigned int& id, const
float& lo) applies the Resync operator in order to set
the left offset of the synchronization window of the tile
with the id identifier.
setTuileRightOffset(const unsigned int& id,
const float& ro) applies the Resync operator in or-
der to set the right offset of the synchronization win-
dow of the tile with the id identifier.
setBpm(const float& bpm) sets the tempo at which
the tree is played.
setRoot(const unsigned int& id) sets the tile with
identifier id as root of the tree.
play() et stop() respectively starts and stops playing
the tree.
removeTuile(const unsigned int& id) removes the
tile with identifier id from the tree.
clear() removes all the tiles from the tree.

Internally, the manipulation and execution of the
tree are done in a separate thread, in order to avoid
slowing down when computations are done in the main
application thread, for example using a graphical in-
terface. The inter-threads communication mechanism
is described in section 3.3.
When playing the tree, the temporal progression is

computed in the root tile and spreads down the tree.
Each operator computes the progression of its children
based on the parameters of their synchronization and
realization intervals. The play position in each tile
is computed at any time t. Therefore, it is possible
to know the absolute position of each tile within the
tree. Because the temporal progression is computed
for each node of the tree relatively to its parent node,
it is also possible to dynamically modify the tree while
playing it.
Activation and deactivation commands are sent from

the playing thread respectively when tiles enter and
leave their realization intervals. Lengths commands
are also sent when Stretch operators are applied or
when the main tempo is modified. Absolute position
commands are also sent whenever the tree is modified.
Therefore, a synchronous audio synthesis/processing
engine, such as the one described in section 3.2, re-
ceives all the commands required to temporally man-
age the processes associated to tiles.
Tiles properties can be accessed by calling the method
getTuileProps(const unsigned int& id) which re-
turns a structure associated to the tile with the identi-

126

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



fied id. This structure contains the various properties
of the associated tile such as the length of the realiza-
tion interval, the left and right offsets of the synchro-
nization interval and the absolute position in the tree.
This mechanisms allows for example for the update of
tiles representations in a graphical user interface, as
these properties may be impacted by manipulations of
other tiles of the tree.

3.2 A synchronous engine for temporal
structuring of musical processes

LibTuiles is connected to a synchronous synthesis/
processing engine based on the JACK sound server.
This engine receives tiles activation/deactivation/
length commands sent by the libTuiles. It then corre-
spondingly activates/deactivates processes associated
with the leaf tiles, these processes being nodes of an
audio rendering graph.
Mainly two types of processes are handled by this

engine. Sound file processes allow for the reading of
sound files of any format handled by the libsndfile li-
brary. They also handle time stretching in order to
match the changes in tempo and in tiles length with-
out impacting the pitch of the sound, by relying on
granular synthesis. At the initial speed, grains over-
lap by half and the position step between two grains
is equal to half a grain. When the length of a tile in-
creases, grain overlapping is increased and the step be-
tween grains is reduced and combined with a random
offset in order to avoid artificial frequencies created
by the proximity of grains. On the contrary, when the
tile length decreases, the position step is increased to-
gether with the overlapping between grains in order to
reduce amplitude variations between successive grains.
This synthesis method, despite its quality being lower
than other common time stretching methods, allows
for both real-time stretching at a very low processing
cost and also for click-free repositioning in sound files.
Leaf tiles may also be associated with FAUST pro-

cesses. Connections can then be made between pro-
cesses or with the sound card inputs and outputs.
Processing is only done when the input process and
FAUST process temporally overlap, i.e. when the as-
sociated tiles are both active. Therefore the compo-
sition and properties of tiles allow for a fine temporal
adjustment of the audio rendering graph.

3.3 Multi-scale object oriented system
architecture

One important aspect of the libTuiles architecture is
the use of Commands, as depicted on Figure 8. These
software modules allow for efficient communication be-
tween the event-based scale, the asynchronous real-
time scale and the synchronous real-time scale, each
of these scales being handled by a separate thread.
In particular, the synchronous real-time thread that
renders the audio signal does not tolerate interrup-
tions that might be created by memory allocations
and locking mechanisms. The proposed architecture

CommandsHandler

Emitter
Thread

Receiver
Thread

Command

clone
clone
clone
clone

<- RingBuffer

RingBuffer ->

pop
add

clean all commands

run all commands

Figure 8. Software architecture for passing com-
mands between two threads at different time scales.

relies on well-known object-oriented design patterns
among which are the Prototype, the Abstract Factory
and the Command. It also makes use of the ring buffer
mechanism provided by the JACK library.
An instance of the CommandsHandler class handles

the creation and manipulation of instances of classes
that inherit from the Command class as well as their
transmission from a sender thread to a receiver thread.
This instance is therefore shared between the two
threads. Mappings between commands names and
commands are first added to this class. For example
the synchronous engine CommandsHandler includes
commands such asActivateProcess andDeactivatePro-
cess. When a mapping is added, a prototype of the
Command class is created. This prototype creates and
holds a list of pointers to clones. In turn, each clone
keeps a pointer to its prototype. For each message
that needs to be passed from one thread to the other, a
command can be simply defined by inheriting from the
Command class and by redefining the run() method
in order to manipulate data structures handled by the
receiver thread, for example activating / deactivating
processes.
During runtime, the emitter thread gets a pointer to

a clone of a specific Command by calling the popCom-
mand(commandName)method of the CommandsHan-
dler. The requested instance is then removed from the
list of clones in the Command prototype and can be
tweaked with various parameters, in our case the tile
identifier, the new length of the tile and so on. As
all clones are generated beforehand, no memory allo-
cation is done in this call. The pointer to the clone
is then given to the CommandsHandler and shared
with the receiver thread using a ring buffer, in order
to avoid locking mechanisms.
The receiver thread periodically calls the runCom-

mands() method of the CommandsHandler. This me-
thod reads the Commands in the ring buffer, calls
their run() method and send them back to the emit-
ter thread through a second ring buffer. Finally, the
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emitter thread periodically calls the cleanCommands
of the CommandsHandler which reads pointers from
the second ring buffer and puts each clone back in the
list of available clones of its prototype.
This object-oriented software architecture allows for

passing commands between threads without memory
allocation nor locking mechanisms. In addition, only
pointers are passed through the ring buffer thus mini-
mizing the memory consumption and transferring time.
The Commands architecture is therefore particularly
efficient for applications mixing different time scales,
especially if these do not tolerate interruptions.

4. INTERACTIVE EXPERIMENTS

In this section we describe the interactive experiments
conducted with the libTuiles. This is done via the
LiveTuiles interface. Completing the text given be-
low, a presentation video of this interface is also pro-
vided 1 .

Figure 9. Screen shot : LiveTuiles with four leaf tiles
among witch are three sound file tiles and one FAUST
tile.

4.1 The LiveTuiles Interface

As depicted on Figure 9, LiveTuiles is an application
that allows for the experimentation of temporal com-
position of sound processes, relying on libTuiles and
on the synchronous engine described in the previous
section.
This application sets a Loop tile as the root of a

tiles tree, with a first leaf as child. All the other tiles
added in the application are synchronized with this
first leaf tile. Its synchronization interval, dynami-
cally manipulable, defines the synchronization inter-
val of the loop and therefore the looped interval when
playing the tree. LiveTuiles allows one to create tiles
associated with sound files and FAUST dsp files and
to combine these tiles in order to build the tree using
a drag and drop metaphor. These files are dragged

1 http://hitmuri.net/LiveTuiles

from a file browser and dropped onto the score. Ei-
ther they are placed freely on the score and internally
composed using a fork operator with the root tile, or
they are placed in fork, seq or join composition with
an existing tile and properly inserted in the tiles tree.
The interface also allows for tweaking the FAUST ef-

fects parameters and for defining the connections be-
tween processes. The tree can then be played and
dynamically modified by applying the Resync and
Stretch operators directly on the graphical tiles.

4.2 Monitoring tiled inputs and conditional
tiles

Interactive dynamic tree manipulations are made pos-
sible by the use of monitoring tiles. These tiles are
attached to listener processes that receive flows of au-
dio samples or of MIDI or OpenSoundControl events
and compares them with a number of predefined con-
ditions. When one of these conditions is matched, a
command can be sent to the TuilesManager to control
either a monitor tile or a switch tile.
The monitor tile allows for dynamic sequential com-

position of tiles. It is similar to what can be done with
trigger points in the i-score sequencer. When acti-
vated, this tile waits for a trigger event (or for the end
of its realization interval). During that time, it does
not play its child tile. When the event arrives, the
monitor tile sets the length of its synchronization in-
terval so that the end is at the current position, it then
sequentially composes its child tile, and plays it when
the child enters its realization window. The monitor
tile therefore provides a way to adapt the progression
in the composed tree to external events, for example
coming from a musician or from the conductor.
The switch tile only plays one of its children, set by

a method or command, and uses the synchronization
interval of the chosen child. Therefore, this tile allows
for dynamic selection of a subtree among several sub-
trees, which is interesting for example in the case of
structured improvisation with conditional branchings.

4.3 Loop tiles

A Loop tile is defined as an infinite sequential com-
position of a child tile with themselves. However, this
tile does not only repeatedly play its child, and there-
fore the associated subtree, within the synchronization
interval. It also allows for interesting overlapping ef-
fects as described in [12], when a Resync operator is
applied to its child. In the case of sound processes, this
overlapping results in multiple instances of the audio
result being played at the same time. It is therefore
essential to provide a polyphony parameter for loop
tiles. Interestingly, this parameter somehow provides
a control over the resulting musical complexity. On
the contrary to existing loop based formalisms such
as the hierarchical live-looping [14] and to looping im-
plementations in popular software instruments, here
the looping mechanisms inherits from the properties
of the composition operation defined within the tiles
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model, allowing for rich musical variations of simple
patterns.

4.4 A LiveTuiles session

A simple example session of LiveTuiles with interac-
tive editing and real time playing is depicted in Fig-
ure 10. From two tiled signals of drums d1 and d2

(1)
Loop

d1

(2)
Loop

d1
d2

(3)
Loop

d1
m

d2

Figure 10. Live editing/playing

and from a lead tiled signal m, we start the session, at
stage (1) by playing Loop(d1), i.e. repeatedly playing
the tile d1 synchronized with itself.
By dropping the tiled signal d2 at the right of the

Loop operator, we reach stage (2) and we play
Loop(Seq(d1, d2)), i.e. repeatedly playing the com-
bined tile d1; d2.
Last, by dropping the lead tile m at the left of the

drum tile d1, we reach stage (3) and we play
Loop(Seq(Fork(m, d1), d2)), i.e. repeatedly playing
the combined tile d1; d2 together with playing the lead
tile m in parallel at every loop.
Provided the synchronization windows of the tile d1

and the tile d2 are of equal length, the underlying
pulse is preserved in all three stages, regardless of the
length of (the synchronization window of) the lead tile
m. Tiled faust effects can also be added and applied
still preserving the underlying pulse.

5. CONCLUSION

We described the implementation of an advanced syn-
chronization algebra for audio or musical patterns.
This software library, called the libTuiles, allows for
the interactive creation, manipulation and execution
of trees of tiled signals that embed a synchronization
mechanism. Furthermore, it offers new musical possi-
bilities, thanks to the underlying algebra, which can
be experimented through a dedicated graphical inter-
face LiveTuiles. One of the perspectives of this work
is to adapt the libTuiles so that it becomes the exe-
cution engine for the T-calculus [13] that extends the
synchronization algebra.
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ABSTRACT 
We present a significant extension to our work in the 
field of Brain-Computer Music Interfacing (BCMI) 
through providing brainwave control over a musical score 
in real time. This new approach combines measuring 
Electroencephalogram (EEG) data, elicited via generating 
Steady State Visual Evoked Potentials (SSVEP), with 
mappings to allow a user to influence a score presented to 
a musician in a compositional and/or performance setting. 

Mind Trio is a generative BCMI composition based 
upon a musical game of 18th century origin. It is designed 
to respond to the subjective decisions of a user allowing 
them to affect control over elements of notation, ultimate-
ly directing parameters that can influence musical drama-
turgy and expression via the brain. We present the design 
of this piece alongside the practicalities of using such a 
system on low-cost and accessible equipment. 

Our work further demonstrates how such an ap-
proach can be used by multiple users and musicians, and 
provides a sound foundation for our upcoming work in-
volving four BCMI subjects and a string quartet. 

1. INTRODUCTION 
The aim of our research is to develop musical systems 
with creative applications for users of all physical abili-
ties. Specifically, we are concerned with the control of 
brain signals and the application of this feature for musi-
cal performance and composition.   
 The idea of applying brainwaves to music is not 
new. Experimental composers of the 1960’s incorporated 
amplified brain signals measured via EEG into their work 
after the reported discovery of voluntary alpha wave 
(electrical signals of approximately 8-12Hz) control by 
Dr Joe Kimaya [1, 2]. The composer Alvin Lucier ap-
plied this method of neurofeedback in his 1965 piece 
Music for a Solo Performer, and David Rosenboom ex-
panded the field of biofeedback and the arts throughout 
the 1970s [3].  Until recently using alpha and other low 
frequency rhythms as input to a musical system dominat-
ed applications of music performance technologies and 
composing with brainwaves [4] [5]. 

The last decade has brought about strong advances 
in the fields of Brain-Computer Interfacing (BCI) and 
brain signal processing techniques to the extent that com-
puter based musical engines can now be directly con-
trolled via harnessing EEG signals in real-time. Brain-
wave control of musical parameters has already been re-
searched in [6] [7], and the SSVEP technique we present 
here has previously been used in musical applications for 
therapeutic and creative purposes [8] [9]. In Sections 4 
and 5 of this paper we outline some considerations in our 
design of a portable BCMI platform, and introduce a 
proof-of-concept composition using SSVEP to affect a 
musical score, for presentation to a pianist.  

 

2. BCMI SYSTEMS 
BCMI systems vary in regard to the nature of human-
computer interactivity. Computers in user-orientated sys-
tems attempt to learn the meaning of the input, a users’ 
EEG, in an attempt to adapt to its behaviour. These sys-
tems are useful when variable or unpredictable brain in-
formation exists; variable either by lack of control, indi-
vidual user differences in response to stimuli or the type 
of the input signal being read. For example a time locked 
Event Related Potential (ERP) such as a P300 response 
may vary across a range of amplitudes per user [10], or a 
generative musical system could be designed based on 
unpredictable activity across a range of frequency bands. 
Early musical systems with EEG input are regarded as 
user-orientated systems, such as Richard Teitelbaum’s In 
Tune [11] whereby an analogue synthesiser adapts to the 
incoming alpha via the EEG, albeit via a human operator. 
Computer-orientated systems require a user to adapt to 
the functions of the computer; the success of the system 
relies on the users’ ability to learn how to perform the 
tasks that translate to musical control. Mutually-
orientated systems are a combination of the previous two.  

If user control of a system’s input range is achieva-
ble then a computer-orientated approach can be deemed 
suitable for systems designed with finite control in mind. 
The system presented here adopts this computer-
orientated approach; a user controls the notation through 
the pre-determined rules of the computer’s mappings. In 
our future work aside from the aforementioned use of 
user-orientated systems for interpreting non-meaningful 
data recording, incorporating a mutually-orientated ap-
proach to measure other unpredictable, but perhaps mean-

Copyright: © 2013 First author et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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ingful information, such as emotional arousal [12] within 
EEG may provide further layers of musical expression.  

2.1 Musical Applications of BCMI 

Musical engines of BCMI systems are designed for either 
the sonification or musification of EEG data, or for musi-
cal control. Some complexity can be added to systems 
through applying a combination of these approaches, de-
pending on the objective. Sonification, the process of 
mapping data to sound, is often used in medical BCMI 
systems, for example to audibly identify deficiencies or 
abnormalities in brain signals; in a way not too dissimilar 
to the function of a stethoscope amplifying a heartbeat. 
This approach has been used in research into treating 
illnesses such as ADHD [13] and epilepsy [14]. Musifica-
tion of brainwave information is the process of mapping 
brain signals to musical parameters and this is often the 
case when brain signals are largely uncontrollable and 
random in nature. Musical control systems utilise a user’s 
cognitive ability to affect control over their brain waves. 
This provides a framework for designing BCMI tools that 
can respond to the subjective choices of a user, a mental 
gesture, so to speak. 

2.2 BCMI Components 

Our BCMI system is built using the following elements: 
• EEG Input – Electrodes placed on the scalp, in 

the form of a headband. 
• EEG Analysis - Amplification of electrical activ-

ity, and data extraction to isolate meaningful in-
formation. 

• Transformation Algorithm - Mapping EEG in-
formation to control parameters within a musical 
engine. 

• Visual Stimuli – This elicits the EEG data and 
provides real-time feedback to the user. 

• Musical Engine – This is the musical interpreta-
tion of the EEG data, which is presented as a 
score to a musician. 

 
Figure 1. The components of the Brain-Computer Mu-
sic Interfacing system. This diagram illustrates how 
EEG data is mapped to a separate computer screen for 

displaying the score, and a stimuli display with visual 
feedback. 

3. SSVEP 
Aside from the use of alpha rhythms BCMIs have utilised 
other techniques of harnessing brainwave information to 
control music. These include stimulating P300 ERPs 
[15], auditory imagery [16] and different methods of data 
classification [6] [17]. A recent survey of BCI techniques 
by the commercial company G.tec has validated SSVEP 
as currently the most accurate and responsive method for 
BCI user control [18] confirming it to be ideal for real-
time control over precise values.  

The issue of interpreting meaning in EEG sig-
nals for control has long been a focus within BCMI re-
search [7]. The SSVEP technique allows for such precise 
control that meaning can be injected into the design of a 
system, allowing for simplicity or complexity dependant 
on the requirements of the application.  

3.1 Eliciting Potentials 

ERPs are spikes of brainwave activity produced by per-
ception to stimuli presented to a subject. They are time 
locked to the event of the stimuli and as such the ERP 
response to a single event is problematic to detect in EEG 
on a single trial basis, as it becomes lost in the general 
noise of on-going electrical brain activity. However, if a 
user is subjected to repeated visual stimulation at short 
intervals (at rates approximately between 5Hz – 30Hz), 
then before the signal has had a chance to return back to 
its unexcited state the rapid introduction of the next flash-
ing onset elicits another response. Further successive 
flashes induce what is known as the steady-state re-
sponse, a continuously evoked amplification of the 
brainwave [19]. This negates a need for performing nu-
merous delayed trials as the repeated visuals are consist-
ently providing the stimuli required for a constant poten-
tial, translated as a consistent increased amplitude level in 
the associated EEG frequency. 

This technique, SSEVP, was adopted in a BCMI 
system designed for testing with a patient with locked in 
syndrome [8] as a tool for providing recreational music 
making. Here four flashing icons (between 6 – 15Hz) 
were presented on a computer screen, their flashing fre-
quencies relative to the frequencies of corresponding 
brainwaves.  A user selects an icon by gazing at one and 
as a result of this action the amplitude of the correspond-
ing brainwave frequency, measured in the visual cortex, 
increases. Here the EEG is analysed continuously, look-
ing for amplitude changes within the four frequencies.  
The icons represent four choices, always available to the 
user at the same time. These icons are in turn mapped to 
commands within a musical engine providing explicit 
meaning to each icon. The instantaneous speed of the 
EEG response to the stimuli offers real-time control of a 
BCMI, which requires no user or system training beyond 
the task of visual focusing. When the analysis software 
detects an increase in an SSVEP channel a control signal 
is feedback to the visual interface providing feedback to 
the user. 
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3.2 Amplitude Control 

As well as the selection of commands a second dimen-
sion of control was gathered through the level of visual 
focusing. This elicited a relative linear response within 
the amplitude of the corresponding brain wave. This al-
lows users to employ proportional control methods akin 
to intrinsically analogue tasks such as pushing a fader or 
turning a dial. This differs from previous selective, more 
digital tasks in BCMIs, such as a switch or a toggle func-
tion. In previous implementations we utilised this control 
to trigger a series of defined notes within a scale [8] and 
for more complex mapping techniques [9].  
 Our SSVEP approach requires the presence of 3 
electrodes (using the 10-20 placement system), training 
comprising verbal instructions and a calibration time of 
approximately 2 minutes per user. 
 

 
Figure 2. The visual stimuli screen as presented to a us-
er. Note the differences in spatial frequency of checker 
patterns and the feedback ring around the left hand icon 
which increases in size and colour intensity relative to 
the power of the corresponding EEG frequency. 

4. PRACTICALITIES IN BCMI DESIGN 
We are keen to take BCMI research out of the laboratory 
and into more practical settings. Consequently, for the 
system presented here we were keen to use portable lap-
top computers and EEG systems with wireless electrodes. 
Currently high-end medical EEG systems are expensive, 
delicate and inefficient to transport and setup. In recent 
years headsets aimed at the pro-sumer market from com-
panies such as NeuroSky and Emotiv offer affordable 
EEG platforms, but at the expense of accuracy. We have 
therefore bypassed more advanced amplitude control, 
discussed in Section 3, in favour of a simpler method 
using single threshold values where a value rising over a 
set threshold acts as a switch. In the system presented 
here we have adopted the Emotiv headset with bespoke 
signal processing software to drive the JMSL MaxScore 
notation platform.  

4.1 Visual Interface Considerations 

To elicit SSVEP a stable visual interface is required that 
updates precisely, without frame drops or variations in 
frequency. A good quality graphics card can, by todays 
standard, provide the processing required for this, but for 
laptop computers (high-end gaming laptops aside) this 
can be a struggle.  

There are two options available for SSVEP stimuli de-
sign. Single graphics stimuli have icons that alternate 
between a pair of colours (black and white and red and 
green being the two pairs most suitable). These flicker 
between two alternations per frequency cycle. Pattern 
reversal icons with a checkerboard pattern only require 
one alternation per cycle, whereby the pattern is reversed 
[20]. Icons that use pattern reversal require particular 
attention to the spatial frequency of the patterns used, and 
this should be optimised for best results with each fre-
quency band. The icons in Figure 2 display different spa-
tial frequencies for different frequency bands; a larger 
spatial frequency for faster flashing rates and vice versa 
[21]. 

 
Figure 3. Diagram displaying the frame combination to 
elicit a 12Hz SSVEP response with single graphics 
stimuli and pattern reversal. 

Calculating the rate of flashes in both cases requires di-
viding icon onset instances into integers of the screen’s 
refresh rate [22]. For example a 12Hz single graphics 
stimuli with a 60Hz screen refresh rate would complete 
one full cycle (two alternations) every 5 frames, whereas 
pattern reversal stimuli would require only one alterna-
tion over the same period to elicit SSVEP (see Figure 3). 
As shown in Figure 3 there are 50% fewer alternations 
required per cycle using the pattern reversal stimuli. This 
reduction diminishes the graphics processing required 
providing a more stable technique for the laptops we 
used. 

5. MIND TRIO 
Musikalisches Würfelspiel, a music style of German 
origin, can be considered as an early form of generative 
music that was popularised in 18th Century Europe. 
Composing employed a system that used dice to random-
ly select small sections of pre-composed music resulting 
in a piece that would differ upon every iteration. Mozart’s 
K6.516f, for  instrumental trio, is widely thought to be 
derived from this method, and in another work attributed 
to him the score’s accompanying commentary begins its 
instructions with the line ‘To compose, without the least 
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knowledge of music, so many [scores] as one pleas-
es…’[23]. We have adapted this idea and twisted our 
interpretation to allow for composing with knowledge of 
what one is doing to the music. 

The BCMI user plays the part of composer in 
Mind Trio, arranging the structure of the musical score. 
The purpose of our game is to choose from a selection of 
musical phrases, which in turn builds the score of the 
piece. From user selection via icon gazing a score is ar-
ranged then visually updated on a separate computer 
screen at regular intervals in time. 
 Figure 4 illustrates the concept of the composi-
tional game. With the current musical phrase set to 56 the 
four icon choices represent the next four possibilities in 
the pathway matrix. By selecting the left hand icon 
Phrase 73 is selected as the next element in the composi-
tion, and the game repeats. With Phrase 73 as the current 
Phrase the icons will then switch to represent choices of 
phrase 59, 42, 54, 16, and so on. 
  

 
Figure 4. The compositional strategy for playing Mind 
Trio shows how to build a continuous score from Phrase 
56 to Phrase 73. Note that the diagram shows only an 
excerpt of the pathway matrix.  

5.1 System Design 

Mind Trio is a musical piece designed for BCMI user and 
solo pianist. The BCMI user, wearing a wireless headset, 
sends EEG data to a primary laptop. Signal processing 
software analyses the incoming EEG data stream as-
sessing relevant SSVEP activity using Fast Fourier 
Transform (FFT) analysis of frequency bandwidths held 

in the stimuli. EEG data is converted into a control signal 
sent to the visual interface displayed to the performer via 
the primary laptop. The control signal is sent to a second-
ary laptop where the transformation algorithm handles 
the mappings of the control data to direct the notation, 
which is presented for the pianist via the laptop’s display 
screen (see Figure 1).  

5.2 Real-Time Notation 

For Mind Trio an array of 96 pre-composed mu-
sical phrases are allocated sequentially into four path-
ways in the pathway matrix. During playback the BCMI 
user selects a pathway using the associated icon and the 
score presented on screen updates to shift to this pathway 
at the next display onset time. Here, the musician does 
not know what is on the next page until it is automatically 
(digitally) turned.  

In order for a system with a continuously updat-
ing score to function successfully a musician must be 
able to read musical segments of at least a few seconds at 
once. The display is divided into two lines of two bars, 
and with a mean tempo of 60bpm and a 4/4 time signa-
ture the page display onset time equates to approximately 
8 seconds; thi is adequate for a musician of a professional 
standard to work with. 

     As the mapping of icons to pathways 
is relatively straightforward there is little computation 
time required, allowing the BCMI user a large window 
during each page display during which to make their se-
lection. The piece begins in pathway 1 and during any 
window if no selection is made then the current pathway 
remains. If a pathway reaches the end of its 24 phrases it 
simply continues in a circular style from the beginning.  

It is worth noting that in more complex mapping 
systems the selection window may need to be shortened 
to account for algorithmic processing as well as account 
for multiple selections over a range of parameters. Also a 
more complex score is likely to coincide with less accu-
racy from a musician. This is also owing to the fact that 
there is no possibility to rehearse an exact piece, as each 
composition will differ from the last. 

 

 
 

Figure 5. A prototype of the notation system in action. 
The user gazes at the icons on the left hand screen, 
which, seconds later, updates the score on the right hand 
screen. 
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6. MULTIPLE BCMI USERS 
To further our work integrating BCMI users and musi-
cians we aim to build a system whereby multiple users 
can control multiple scores within the same piece. We 
have successfully trialled a version of our system with 
multiple users controlling musical parameters of pre-
composed electronic music. Figure 6 below shows two 
subjects affecting elements of the same electronic com-
position as a way of composing together, expanding the 
concept of neurofeedback. Here, feedback not only exists 
in single loops between subjects and computers as the 
paths of neurofeedback loops change as they influence 
and combine with other subjects at different times. The 
musical outcomes of this setting pose an exciting play-
ground for experimentation and creative music making. 
Our aim is to integrate this collaborative approach into 
our notation system whereby four BCMI users control 
micro, meso, and macro features of a score for a string 
quartet. We hope to have this system ready for perfor-
mance by early 2014. 
 

 
Figure 6. Two subjects enjoy composing music in a 
multi-user scenario. Each subject is controlling parame-
ters of a group of instruments via the mappings of each 
icon. User 1 controls percussive sounds and user 2 con-
trols melodic phrases. 

7. DISCUSSION 
Our research successfully demonstrates the suitability of 
the SSVEP technique for eliciting control over musical 
notation in the continuous fashion required for acoustic 
music performance. Furthermore our system highlights 
that SSVEP control is achievable using portable and af-
fordable equipment that is subsequently more practical 
for use in real-world environments; it requires minimal 
calibration, apparatus and setup time. By harnessing brain 
signals in this manner the neurofeedback loop that is cre-
ated between the BCMI user and the resulting music is 
extended to include a musician. This is a significant step 
in the design of new BCMI tools. We have demonstrated 
how SSVEP interfaces can be designed for consumer 
level laptop computers, widening access to the technolo-
gies required for BCMI, as well as for users with limited 
motor capabilities. 
In practice the current iteration of the system is straight-
forward to use. The nature of MindTrio requires a user to 
be familiar with the musical pathways for the results of 
decisions to be pre-determined. For future iterations that 
affect more complex elements of notation the user inter-

face requires adaption to translate the decisions simply 
alongside or within the stimulating icons. 
There are still key issues that plague the stability of com-
posing with brainwaves, which affect the usability and 
accuracy of measuring brain signals with this technology, 
more significantly than high-end medical systems and 
outside of the controlled environment of the laboratory.  
Non-invasive EEG measures brain waves through elec-
trodes placed on the scalp. Yet amplifying very low level 
electrical signals (as low as only a few microvolts) that 
are filtered through the skull, membrane, hair and skin 
results in significant noise levels alongside interference 
from other electrical sources and the continual electrical 
activity of non-related EEG. Although SSVEP provides 
relative high accuracy extracting meaning within EEG 
signals still requires complex signal analysis tools and is 
also largely reflected in the quality of the hardware com-
ponents.  
The system we have constructed here offers a compro-
mising solution to these difficulties. The interface and 
signal processing software is robust and performs well in 
response to the real-time EEG data, but the Emotiv hard-
ware offers a less stable interface for measuring accurate 
brain signals than more expensive and less portable plat-
forms. This accuracy is noticeable in practice but is toler-
able for MindTunes as real-time feedback is certainly 
present providing the response and feeling of control to a 
user. We predict that for embedding more complex con-
trol systems beyond straightforward selection then issues 
may arise. 
Mind Trio presents a simple proof-of-concept system that 
paves the way for more advanced compositional tech-
niques and mapping strategies using digital notation pre-
sented to musicians. By injecting more complex meaning 
within the design of such systems, higher levels of musi-
cal complexity can be offered and subsequently con-
trolled. For example, a well as directing structural path-
ways, more expressive parameters and nuances such as 
harmonic structure, playing technique or dynamic and 
rhythmic changes, can be chosen via the BCMI. This 
expansion, coupled with multiple users poses an exciting 
platform for creative composition and BCMI design. 
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ABSTRACT

The authors report on composing a piece for RoadMusic,
an interactive music project which generates and manipu-
lates music for the passengers and driver in a car, using sen-
sor information gathered from the surroundings and from
the movements of the car.

We present a literature review which brings together re-
lated works in the diverse fields of Automotive UI, musical
mappings, generative music and sonification. We then de-
scribe our strategies for composing for this novel system,
and the unique challenges it presented. We describe how
the process of constructing mappings is an essential part
of composing a piece of this nature, and we discuss the
crucial role of mapping in defining RoadMusic as either a
new musical instrument, a sonification system or genera-
tive music.

We then consider briefly the extent to which the Road-
Music performance was as we anticipated, and the relative
success of our composition strategies, along with sugges-
tions for future adaptations when composing for such an
environment.

1. INTRODUCTION

Creating sound environments for automobiles is a complex
and rich area of industrial and creative research. Histor-
ically, certain cars, notably Italian sports cars, are known
for their unique engine and exhaust sound. Aftermarket ex-
haust pipes are a cottage industry where hobbyists can fine
tune the sound of their cars. This was famously picked up
by the manufacturer Mazda in the 1980s when they applied
Kansei principles (emotional engineering to the sound pro-
duced by their MX5 Miata convertible) [10].

Silence is as important as the sound a car produces. While
some manufacturers focus on the sound of a car, others fo-
cus on silencing exterior noise in the passenger compart-
ment. Manufacturers like BMW use state of the art audio
analysis and phase inversion noise cancellation technolo-
gies to create quieter environments for driver and passen-
ger alike. A separate problem arises with the advent of
the electric car where the car lacks a combustion engine to

Copyright: c©2013 Adam Parkinson et al. This is an open-access article distributed
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the original author and source are credited.

provide familiar points of reference for those inside, and
outside the car.

For the driver, this means that there is no audio feed-
back from a revving engine to give a sense of acceleration
and speed. More dangerously, the lack of external noise
means that pedestrians simply do not hear the electric car
approaching [12]. This problem has not gone unnoticed
by electric car manufacturers, who have embarked ambi-
tious development projects to create external sonification
of electric cars.

While car sonification is a task that entails auditory dis-
play and sonic design for purposes of feedback (interior)
and alerting (exterior), there is an enormous creative op-
portunity to create interesting, pleasant, yet useful sounds
for the car. In effect, Mazdas Kansei engineering could be
re-examined completely in the digital domain to produce
personalizable, custom automobile audio habitats. Beyond
sonic effects, principles of sonification could intersect with
interactive music techniques to produce musical environ-
ments that are sensitive to a cars state and conditions on
the road.

This paper reports on compositional strategies for an ex-
isting interactive car music system, RoadMusic, contextu-
alising it within a discussion about the differences between
sonification, generative music and the practices of devel-
oping new musical instruments [18]. We first describe re-
search challenges, present related work, then describe the
technical system. We finish by a discussion of the car as
instrument, and strategies for composing for such a system.

2. COMPOSING FOR CARS?

RoadMusic is an interactive car music system developed
by the sound artist Peter Sinclair. It deploys Pure Data on
a single-board computer having roughly the same size and
form factor as a car navigation system or radar-detector.
It is attached with a standard suction cup typically used
for this kind of automotive accessory to the windshield of
the car. A range of sensors provides the computer with
real time data generated during a drive. The data is pre-
processed by Sinclairs host patch, and passed on to a mu-
sical patch that generates music. The computers audio out-
put is connected to the car sound system. The RoadMusic
hardware and software in effect replace the car stereo with
an interactive music system.

Sinclair sought to create a platform from RoadMusic that
could host a variety of different musical works composed
for the system. With the idea to create a repertoire of
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car music, he created a modular software architecture that
allows composers to create their own musical Pure Data
patches that receive sensor data from the host RoadMusic
data processing patch. In completing this composer/repertoire
model, Sinclair commissioned a number of composers to
compose pieces for the system, and presented them to-
gether as a body of work at the 2013 edition of the Reevox
festival at the GMEM in Marseilles France.

The present authors were amongst the group of composers
commissioned by Sinclair for the premier of RoadMusic.
We were provided with a prototype hardware system and
the common data-processing host patch given to all the
composers. Within this context, we had carte blanche,
or complete musical liberty, to create a musical piece that
would be presented in a series of 20 minute drives in a fleet
of cars during the festival.

This sets the context within which the research reported
in this paper is situated. To what extent could we take
the commission/composer paradigm as a guide to create
a work for the RoadMusic system? What would our com-
positional strategies be? Would the musical output be gen-
erative, sonification-based, or interactive? Is RoadMusic a
musical instrument, and if so, is the driver the performer?
What areas of research in sound and music computing,
such as mapping and interaction, could we apply to this
context?

3. RELATED WORK

3.1 Automotive UI

Alongside the industry-led and creative applications men-
tioned above, Automotive User Interfaces is a growing area
of HCI research. The Automotive UI conference began in
2009, and addresses all aspects of user interaction, thinking
of the cars as complex interactive systems. [17] We have
reported on the RoadMusic system within the context of
Automotive UI concerns at the Automotive UI conference
[18]. Within this community, there is also research into
how much we can infer about a car’s environment based
upon sensor data gathered from that car: machine learning
and data mining techniques have been used to classify road
types based upon sensor data gathered from cars [20].

3.2 Sonification

Sonification is in many ways the default approach to mak-
ing electric cars sonorous. Sonification allows for the transcod-
ing of non-audio data and extra-musical phenomena into
sound. An overview of the techniques and research areas
of this representative mode of sonificiation, and the related
area of auditory dispays, is given by Hunt et al [7].

Ben-Tal and Berger describe uses of sonification to rep-
resent data where visualization would be ineffective. By
taking advantage of both the temporal nature of sound and
human auditory perception capabilities, they suggest that
sonification can facilitate pattern detection [2]. Software
environments have been created to allow non-musicians to
sonify data in this way: SonEnvir is aimed at users from
scientific domains, enabling sonification for the presenta-
tion and analysis of data [3].

We also see the transformation of data into music in the
field of generative music and algorithmic composition. Nick
Collins provides an overview of generative and algorithmic
musics, contemplating the ontological status of the soft-
wares and creative potentials that might be realised as the
composer/ performer’s role changes [4].

There is a blurred area between generative composition
and sonification. Similar to recent developments in data
driven art that diverge from strict scientific visualization,
Polansky notes a significant difference between artistic and
scientific sonification, the former of which he calls mani-
festation. Describing how sonification might be used ar-
tistically, he suggests that a composer might use the Gaus-
sian distribution not to hear the Gaussian distribution as
much as we want to use the Gaussian distribution to allow
us to hear new music. [14] Barrass and Vickers contextu-
alise the relationship between the functional role of sonifi-
cation and aesthetic concerns and the , proposing a design-
oriented approach which integrates the two, enabling soni-
fication to be a medium wherin data can be understood and
even enjoyed [1]. Doornbusch also considers this artis-
tic or creative end of sonification identifying as a salient
example of this Xenakiss Pithoprakta, which used Brown-
ian motion, amongst other phenomena, to score glissandi
for strings. Importanly, Doornbusch (and Xenakis) consid-
ered this type of sonification as a form of composition [5].
Ben-Tal and Berger describe using sonification creatively
in work in which they deliberately avoid representational
aspects, with the data imparting a more organic feel to the
music, helping to provide rich and varied textures of sound,
a technique we came to use in our composition. [2]

3.3 Mapping

The relationship between data input and sound output is
described by data mapping. While most literature covers
the mapping of performer gesture to sound synthesis , these
techniques can be extended to other sources of data, such
as we encounter in sonification and related practices.

An overview, taxonomy and analysis of gesture mapping
are provided by Hunt and Wanderley [9] Importantly, they
note that mapping can actually be said to define the inter-
active instrument. In this sense mapping takes its place
alongside interface hardware and sound synthesis software
to comprise the make up of a new musical instrument. [8]

Doornbusch addresses the role of data mapping in algo-
rithmic compositions and generative musics, noting differ-
ences with mapping in instrument design. Doornbusch de-
scribes how mapping in algorithmic composition is not a
discrete process like it is in instrument design, rather it is
an integrated part of the composition process and a pro-
cess of experimentation [5]. However, this might depend
upon the specific workflows of composers, performers and
instrument designers (who might be one and the same per-
son). Essl has looked at mapping in mobile music, arguing
that on-the-fly construction of mapping become part of the
creative music making process. [6]

137

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



3.4 Interactive car art

Cars have been the topic of interactive art works. Andreyev
has explored the cars potential role in a work that draws on
Situationist concepts in her project Four Wheel Drift [21].
stergren and Juhlins Sound Pryer used mobile technology
and wireless networks to allow car users stuck in traffic
to hear snippets of what other users in close proximity to
them were listening to. [13]

3.5 Performance environments

Salter takes an environmental view of novel musical per-
formance environments. He takes the notion of perfor-
mance outside classical frontal stage setups, to think of im-
mersive spaces that are ludic and playful. Roles of listener
and player begin to merge, and the definition of the musical
instrument extends beyond the sensor system worn by any
one participant, to begin to include the smart or responsive
space [16].

4. SYSTEM ARCHITECTURE

The RoadMusic hardware consists of sensors (3D accelerom-
eter and webcam) fitted on a fitPC single-board computer,
with audio output feeding the cars stereo system. The com-
puter runs a Linux Mint distribution operating system, and
Pure Data Extended software with some Pure Data exter-
nals, in particular the Gridflow library which is used to pro-
cess the video input. The Pure Data host framework patch,
out of which the composers work, can be broken down into
three main components, a Sensor Engine, an Audio Engine
and a Mapping Engine [Figure 1].

The accelerometers provide a continuous stream of data
representing the acceleration and deceleration of the car,
its movement around bends or over bumps, and general
changes in the road surface. This data is analyzed to detect
prototypical events such as a curve, slowing down or an
acceleration of the car. These real-world events are used to
send on-off messages to the software or to trigger events in
the audio.

The system also keeps a log of the number of recorded
events over time periods. This generates a slower stream
of data that might describe something more general about a
road, a driver or a journey, such as the number of stops and
stars, the bumpiness or the bendiness of a road, etc. Sin-
clairs data cooking extracts further thresholds from these
averages, turning them into events according to the char-
acteristic of the drive, so a bendy journey will trigger an
event in pure data for the bendiness event. There is also an
event trigger sent when no change in input data has been
detected over a time period.

In addition to the data from the accelerometers, visual
information about the journey is picked up using the we-
bcam which is positioned so that it is looking out of the
front windscreen. The first level of this data is the relative
RGB (red, green, blue) color balance. The images from
the camera are also analyzed and blob tracking techniques
are used. The system detects large moving objects, and
outputs their relative x, y and z coordinates. The system
also performs threshold detection, and outputs an event

Figure 1. System Architecture.

trigger when there is a large change in the RGB levels,
which might be indicative of transition from a built up or
enclosed area onto an open road. [18].

We used Sinclairs Sensor Engine, but used our own Map-
ping Engine to connect this to our own Audio Engine, run-
ning on the fitPC, noted by the dotted lines demarcating
different system components in Figure 1. At the heart of
our Audio Engine is a granular synthesizer, a version of
Nobuyasu Sakondas original patch for Max MSP which
we have modified and ported to PD and which will play
back, loop, and time stretch samples, with pitch and speed
both being independently adjustable, and a freeze mode,
which captures and repeats small fragments of the sample.

Other parts of the Audio Engine include a beat slicer, de-
veloped by one of the co-authors as the tutorial for sample-
accurate beat displacement and re-ordering in the commer-
cial MaxMSP distribution. A percussion synthesizer gen-
erated analog-like kick, hat and and snare drum sounds.

5. COMPOSITIONAL STRATEGY

Building a mapping environment that was idiomatic to the
interactive system in question in turn defined the music
composition environment. It is through combining very
specific mappings and transformations with certain choices
of samples that different sections of our work for the Road-
Music system were created. For this, we needed a Map-
ping Engine which allowed for quick experimentation with
different mappings and transformations, and the ability to
quickly save and recall mapping combinations.

In our Mapping Engine, the data is first transformed ac-
cording to different scalings using objects and abstractions
developed by Steiner [19]. These allow for different map-
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ping modes: for instance, inverse relations, or exponential
curves, describe the transformation of the input data before
it is sent to a parameter. Data can thus only be sensitive
in certain input ranges (for instance, only sudden slowing
down might affect a parameter). The output range of the
data can then be constrained, so that the input data will
only affect certain ranges of a parameter. The data can then
be smoothed, with different degrees of filtering. This pro-
cessed data can then be mapped to musical parameters in
the patch, with mapping combinations saved (and recalled)
as presets.

This permitted us to work in a trial-and-error, improvisatory
process of composition with this Mapping Engine. Sinclair
had provided all the commissioned composers with exam-
ple recordings of prototypical drives. These were archived
sensor data and webcam video saved as a QuickTime movie,
played back in a special simulator module of the Road-
Music host program. Sinclairs simulator combined with
our Mapping Engine preset system enabled us to explore
different combinations of mapping, transformations, and
samples. We found different parameter combinations, and
preserved these as presets and messages within the patch.

The composition is a series of these different mapping
presets coupled with sample changes. We created a broad
timeline for the different sections. In order to achieve a
balance of control over the general structure of the piece
whilst still having things being controlled by the data, we
created systems of arming data, whereby a fixed timeline
(score) armed sensors to execute musical section changes
in response to specific driving events (eg a bump or a turn)
only within specific time windows during the drive. This
allowed us to impose a compositional trajectory to the piece,
all while leaving the work responsive to events specific to
a particular drive, and - we hoped- flexible to adapt to dif-
ferent drivers, cars, and routes.

6. DISCUSSION

6.1 Interaction, Sonification or Generative?

We conceived of three different yet related ways in which
one might work with the RoadMusic system, defined by
the mappings one would write: it could be treated as a new
performance instrument, as a sonification system, or as a
generative system. We found these models to be useful ref-
erents as we composed with RoadMusic and sought to in-
tegrate our own musical practices and compositional intent
with the specifics we imagined that the car-as-instrument
would demand. [Table 1].

6.1.1 RoadMusic as Performance Instrument

In this instance, the mappings would be used to create
clear, immediate gesture-like correlations between the move-
ments of the car and changes in the audio. For instance, ac-
celerating might cause a sound to increase in pitch or am-
plitude, or a left turn might cause the music to pan to the
right. Such correlations would be immediately perceivable
to the driver and passengers, and the experience of driving
the car with RoadMusic might feel akin to playing a mu-
sical instrument, as the drivers actions have an immediate

effect on the sound.
This mode of mapping raises an immediate initial con-

cern about safety. We were reluctant to encourage anyone
driving the vehicle to make sudden maneuvers for the pure
sake of musical satisfaction. This belongs to an area of
general concern for those in the field of Automotive UI
and a problem specific to the car-as-instrument which af-
fects how we must think about composing for it. Interac-
tive systems in the car must not be distracting, or encourag-
ing of bad driving practice which could infringe upon road
safety [11, 15]. In addition to safety concerns, Sinclair has
suggested that from his previous work, clearly perceivable
mappings can become rapidly incessant and uninteresting
[18].

6.1.2 RoadMusic as Sonification

Another way of understanding RoadMusic is as a sonifi-
cation system, understanding sonification here as the sonic
representation of data; this would be the scientific sonifi-
cation that is referred to by Polansky [14]. Some of this
might be immediate, as a bumpy road could affect some
synthesis parameter, or some of it might be revealed over
time, such as the general bendiness of a journey.

To an extent, this corresponds with certain artistic inten-
tions informing Sinclairs design and use of the RoadMusic
system. Sinclair suggests that the system might commu-
nicate information to a user in a subliminal manner. This
will only happen over time and long term use, as Sinclair
notes; through the global recognition of a previous sim-
ilar sound experience as opposed to the immediate, con-
scious tracking of a given signal. Furthermore, this may be
through somewhat intangible parameters rather than sim-
ple, observable mappings and relations, expressed to the
driver through the feel of the music as much as anything
[18].

In debating how to work with the RoadMusic paradigm,
we made a deliberate choice not to opt for any representa-
tive, data sonification, Our reasoning behind this was artis-
tically and compositionally informed: we were attempting
specifically to make a short (20 minute) piece of music,
presumably to be experienced by individual listeners once:
not long enough to begin to notice correlations between
type of journey, feeling of road, and sound.

6.1.3 RoadMusic as Generative Composition

This category clearly blurs with Polansky’s manifestation,
or the creative- rather than scientific and representational-
use of sonification [14]. While there is a degree of soni-
fication in our RoadMusic composition, our own use of
mapping for RoadMusic falls mostly within this category.

The generative nature of our work does not involve any
algorithmic processes. Instead, incoming data is used to
shape textures and trigger events, to add, as Ben-Tal and
Berger [2] do, an organicness to textures that would other-
wise be static, but without the intent to explicitly or sub-
consciously communicate anything to the listener about
the car, the road or the journey through such sonic effects.
Data is not generated by automatic computer processes, but
by the drive itself, and shapes the piece, and may create
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INSTRUMENT SONIFICATION GENERATIVE
CORRELATION correlation between drivers

actions and sound perceiv-
able

correlation between car
movements and web-
cam/road data and sound are
perceivable

correlation between car
movements and sounds may
be unclear

EXPRESSION expressive for driver expresses data expresses intent of com-
poser

MAPPING legibly relates movements to
sound

legibly translates data into
sound

abstracts data before it af-
fects sound

Table 1. Comparing Instrument, Sonification and Generative Composition.

musical formations that the composer would not otherwise
have created, but there is no intentional representative cor-
relation between data and sound. This is achieved through
creating layers of abstraction within the mapping.

6.2 Mapping Strategies

We utilized two main techniques in order for the map-
ping to be a layer of abstraction between the sensor data
and the sound produced, blurring many perceivable cor-
relations for the driver/performer and avoiding representa-
tive sonification. These techniques were looping data se-
quences and limiting ranges that the data affected.

Looping data involves using the data to write sequences,
which are then repeated and can be sent to any parameter
within the Audio Engine. This is based on one of Peter
Sinclairs techniques, which involves continuously writing
g-force data into tables which are used as the wavetables
within the synthesizers and thus affect the timbre and tex-
ture of sounds. Sinclair records 13 seconds of data into a
132 sample wavetable. We use an event-trigger from the
Sensor Engine to periodically take low-resolution snap-
shots of these tables, reducing the 132 sample long table
to a 16 sample long table. This is then treated as a 16 beat
musically loop, continually read through.

Some of this data is used to trigger drum samples: val-
ues in certain ranges triggering synthesized kick, snare and
hi-hat sounds, transforming into a two bar drum loop, the
sequence for which is periodically rewritten. These tables
are also used to change musical parameters and loop these
changes over two bars. For instance, the pitch of the syn-
thesized kick could be changed over the two bar loop, or
another parameter, such as the grain-duration of a granu-
lar synthesizer, could be changed. This technique also al-
lows for us to use patterns and repetition within the piece,
which will always vary on each different performance of
the piece.

Another technique we used to abstract the data in the
mapping is choosing the ranges that the data can affect,
or in which the data has the most effect. If the data is only
affecting a small range of a parameter, it can have the ef-
fect of introducing small, continuous variation which may
help add richness and a feeling of organicness to a tex-
ture, without there being any perceivable correlations be-
tween movement of the car and the sound produced for the
driver/performer.

7. PRESENTATION AND EVALUATION

Our piece was presented at the Reevox festival of the Groupe
de Musique Experimantal de Marseilles (GMEM) on the
9th February 2013. There were 6 cars, each carrying up to
7 people (including the driver) on one of two twenty five
minute journeys around Marseille, with a rotating program
of 6 pieces written for RoadMusic. This ran from 2pm
until 7pm. The different cars, different drivers (with dif-
ferent driving styles), different routes (incorporating small
city streets, motorways and tunnels), different audiences
(ranging from young children to the elderly) and changing
traffic conditions put our composition to the test.

This presentation was our first chance to test our afore-
mentioned compositional strategies with a real audience in
a real world setting. Like a composer writing a piece with
no orchestra at their disposal and no chance for rehearsals,
our first experience of the piece in a car was actually during
the first performance itself. Only having being able to test
the piece using recordings of data proved to be insufficient
preparation for the experience RoadMusic inside a moving
car. The experience is highly embodied, and jolts from the
road, or the act of g-force upon the body, may be accom-
panied by a sonic experience. Without being in the car, it
is difficult to understand the effectiveness of the mappings
or the relationship between the sensor data and the sound.

We had adopted different compositional strategies from
the other pieces. These generally involved more tangi-
ble correlations between sensor data and music, often with
quite noticeable difference being brought about by stop-
ping, by starting the car after pauses at traffic lights, or by
bumps in the road surfaces. It felt as though the sensor data
was sufficiently abstracted by our Mapping Engine, as in-
tended, but it also became clear that there was perhaps too
little correlation between sensor data and sound events in
our piece. Anyone hearing the piece multiple times would
hear that it was different each time and intimately tied to
the data, but anyone hearing the piece only once may find
little to distinguish it from a fixed piece of music. Further
work on the piece might involve rewriting the mapping to
provide some more legibility in correlations between the
car’s movements or the webcam footage and the sound.

Furthermore, our piece was in a minority that had used a
timeline, and the timeline proved to be problematic. Some
drives ended up being shortened, meaning that only the
first part of our piece was heard by the audience. Also, a
rewrite of the piece will be necessary should anyone wish
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to listen to the piece for anytime longer than 25 minutes.
Replacing a strict timeline with a method for organically
moving between different sections, would be a more ap-
propriate method of composing, albeit one that might sac-
rifice some compositional control over structure. We also
intend to investigate ways of using the data to provide the
structure.

On the whole, the drivers followed the routes as though
they were a score in a relatively straightforward way. How-
ever, we observed the drivers being expressive with Road-
Music pieces, contrary to our assumptions. They would
look for ways of being expressive, perhaps by driving slightly
faster at speed bumps or taking corners harder. Correla-
tions between sound, mapping and driving styles are more
complex than we anticipated within the context of Road-
Music.

These offer tangible challenges and future work for com-
posing for this unique platform, that lies between being an
expressive musical instrument, a system of sonification and
a generative composition.

8. CONCLUSION

This paper documented the thoughts behind composing for
a novel sound environment, RoadMusic, an interactive mu-
sic system fitted in car. Mapping is an essential part of the
artistic and compositional process. It is an integral part of
the programming process (a versatile Mapping Engine has
to be programmed), it forms part of an improvisatory com-
positional process (different mappings are experimented
with and successful experiments preserved). It defines the
difference between a new musical instrument, sonification
and a generative composition, and through the mappings
we created a generative composition, based upon our ex-
isting Audio Engine. However, there remains work to do
be done in understanding the most effective manners of
composing for this novel system.
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ABSTRACT 
 
In our research project trees: Rendering Ecophysiologi-
cal Processes Audible, we are working on the acoustic 
recording, analysis and representation of ecophysiologi-
cal processes in plants and studying the acoustic and 
aesthetic requirements for making them perceptible. 
Measurements of acoustic emissions in plants are only 
interpretable in relation to climatic and physiological 
dynamics such as microclimatic conditions, sap flow and 
changes in trunk radius and water potential within the 
plants—all measurement data that is not auditory per se. 
Therefore, our work involves analysing the acoustic 
emissions mathematically, on one hand, and sonifying 
ecophysiological data on the other. How can phenomena 
that are beyond our normal perception be made directly 
observable, creating new experiences and opening a new 
window on the processes of nature? The sound installa-
tion trees: Downy Oak, exhibited at swissnex in San 
Francisco in summer 2012, is a first approach to a spatial 
audio sonification and research system. Our experiments 
show that immediate and intuitive access to measure-
ment data through sounds and their spatial positioning is 
very promising in terms of new forms of data display as 
well as generative art works.  
 

INTRODUCTION 
 
The link between trees and various climatic processes is 
usually not immediately apparent. Plants, in general, do 
not live merely on moisture from rain, sunlight (which 
drives gas exchange) and nutrients from the soil: they 
also absorb carbon dioxide from the air and produce the 
oxygen that we breathe, maintaining our climate and 
biosphere. Hence the interest in cooperation between a 
biologist and an artist to conduct research and measure-
ments to study the complex relationship between tree 
physiology and the climate on one hand and to explore 
the possibilities of acoustic and artistic representations of 
ecophysiological processes in trees on the other. Render-
ing audible the way in which water transport or trunk 
diameter, for example, are influenced by sunlight, hu-
midity and wind allows us to identify and better under-
stand plants’ responses to climatic processes. 
 
1.1 “Phytoacoustics” 

 
Plant physiologists have known that plants emit sounds 
for several decades now 0. Many of these sounds are of 
transpiratory/hydraulic origin 0 and are therefore related 
to the circulation of water and air within the plant as part 
of the transpiration process. The frequencies of these 
acoustic emissions lie mostly in the ultrasonic range, 
depending on the species-specific characteristics of the 
plant tissues. 

 

Fig. 1: An acoustic sensor (under the yellow tape) and a sap 
flow sensor (covered by reflective insulation material) 
mounted on a branch of a Scots pine in the Swiss Alps in 
summer 2012. 

Some of the acoustic emissions are indications of embol-
ism in the water transport system, which occurs when a 
plant is subjected to drought stress and desiccation 0. 
The excessive water tension in the water-conducting 
system leads to the rupture of the water columns in the 
plant vessels. Many studies have analysed these acoustic 
emissions in quantitative terms (number of emissions 
over time) 0 but few have focused on the signal proper-
ties (frequencies, waveforms and amplitudes) so far 0 or 
on the spatial distribution within the plant. 
Each plant species—in fact each plant individual—has 
its own acoustic signature, related to its structure and to 
the local climatic conditions. Investigating the acoustic 
emissions of a tree in response to dynamically changing 
climatic conditions might reveal biological or physical 
properties that place them in a broader ecophysiological 
context and enable us to explain processes that are not 
yet fully understood.  
 
Various artistic projects have subjected plant sounds to 
an artistic investigation with a view to revealing a world 
that is normally inaudible. These include Justin Ben-
nett’s Hoor de Boomen  0, Alex Metcalf’s Tree Listening 
0 and Christa Sommerer and Laurent Mignonneau’s 
Data Tree 0 to name just a few. Our project (which is 
situated between the domains of artistic research and 
natural science) examines the aesthetic means of il-
lustrating phenomena in nature but also aims to generate 
new knowledge through exploration using artistic and 
sound technology tools, systems and practices. 
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Fig. 2: Acoustic emissions of a sunflower fully exposed to 
sunlight. The high frequency signals represent the supposed 
cavitation pulses. 

1.2 Sonification of ecophysiological data 
The representation of data using sound (among other 
means) can help to exploit the effectiveness of our sense 
of hearing in grasping complex contexts both through 
immediate orientation in space and intuitive classifica-
tion of sound characteristics 0. Sonification offers a 
deep and broad insight into multidimensional data, en-
abling us to recognize patterns and providing an aes-
thetic and emotional experience of scientific discover-
ies. 
 
Gathering ecophysiological data (i.e. conducting meas-
urements of the local climatic and environmental condi-
tions and of the physiological processes within a plant in 
response to these) has become an important method in 
research on climate change and vegetation dynamics. It 
helps to determine physiological thresholds of plants in 
terms of increasing temperature and consequently 
drought stress. A downy oak in the central Alps, for 
example, is able to withstand the current climatic condi-
tions of the air and soil whereas a Scots pine is pushed 
beyond its physiological limits despite the fact that both 
tree species have coexisted there for thousands of years 
0. Consequently, shifts in the abundance of tree species 
are observed, and the ecophysiological knowledge ac-
quired explains the underlying processes 0. 
 
In our project, we began by combining field recordings 
of meteorological phenomena, recordings of acoustic 
emissions in trees and acoustic representations (sonifica-
tions) of ecophysiological data in a single auditory ex-
perience and making their correlation acoustically and 
aesthetically experienceable and explorable. We con-
ducted a number of sonification experiments based on 
ecophysiological data collected by Roman Zweifel 
(WSL) and Fabienne Zeugin of the Swiss Federal Insti-
tute of Technology (ETH) on an ongoing basis on a 
downy oak (Quercus pubescens) at Salgesch in the 
Swiss mountains in 2003 and 2004. Zweifel and Zeugin 
measured relative air humidity, sap flow, stem radius 
changes and ultrasonic acoustic emissions (UAE) 
throughout an entire tree growth cycle and recorded the 
data at ten-minute intervals throughout the day and 
night.  

 
Fig. 3: Typical diurnal courses of acoustic emissions (UAE; 
cycles) in relation to branch sap flow rate (line) of a downy 
oak (Quercus pubescens) at Salgesch from 24 to 25 June 
2004. 

 
As the data relating to the ecophysiological processes 
was multidimensional, an analytical system was needed 
that focused on the key factors and the interrelations 
between these and rendered them intuitively perceptible. 
In terms of sound technology, the use of a spatial audio 
system immediately suggested itself for the sonification 
experiments as a means of spatially separating, distribut-
ing and conveying sounds and sound sequences. We 
were aware of comparable systems being developed at 
the Institute for Electronic Music and Acoustics (IEM) 
in Graz (Data Listening Space) 0 and at the ZKM in 
Karlsruhe (Cube) 0.   
 

2. DOWNY OAK: A PROTOTYPE  
OF A SPATIAL AUDIO SONIFICATION 

SYSTEM 
The sound installation trees: Downy Oak, exhibited at 
swissnex in San Francisco in summer 2012, is a pre-
liminary approach to our intended research system and a 
work of art at the same time. It is the prototype of a spa-
tial audio matrix that we will use during our future soni-
fication experiments. 

2.1 The audio system 
The system (the trees: Downy Oak installation) consists 
of a grid of 36 self-built omni-directional speakers. It is 
designed as a cube matrix with an additional layer of 
speakers on top. Visitors can walk around the installa-
tion freely and explore it. 
 
The Institute for Computer Music and Sound Technol-
ogy has conducted research and development in Ambi-
sonics-based surround technology since its foundation in 
2005 0. One of the limitations concerning placement 
and moving of virtual audio sources in an Ambisonics 
sound field is that the perceived positions of the sources 
remain outside the speaker system. The virtual sound 
sources are projected onto the surface of a virtual (usu-
ally) half sphere, which is mapped on and distributed 
through a multichannel speaker system. The perceptual 
situation is comparable to listening to what is going on 
outside through an open window: An Ambisonics sys-
tem is not able to project virtual sound sources onto a 
spot within the system’s boundaries. 
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Fig. 5: The sound installation trees: Downy Oak at swissnex 
in San Francisco in summer 2012. 

Our idea consisted in creating a three-dimensional 
speaker array in which virtual sound sources could be 
moved and placed within a defined space, allowing lis-
teners to walk around inside the system. The speaker 
matrix that we developed for the trees: Downy Oak in-
stallation is currently a hybrid sound system: The Ambi-
sonics sound field is mapped onto the outer surface of 
the cube matrix. The vertical speaker line in the middle 
is driven discretely. Our goal with newer versions of the 
system is to implement cross-fading algorithms between 
the speakers of the matrix so as to allow free placement 
and movement of virtual sound sources within the cube. 

2.2 Downy Oak: Data sonification 
The sonification system is based on a combination of 
different sonification techniques, i.e. playback of audifi-
cations 0 of original acoustic emission recordings (by 
transposing them into the audible domain) and param-
eter mapping sonification 0, whereby the sound param-
eters of a sample player (amplitude, pitch and filters) 
and the sound distribution system (spatial position or 
movements of virtual sound sources) are controlled by 
the data flow.  
 
The different sonification modules are implemented in a 
set of Max Patches, which replays the measurement data 
of a downy oak throughout an entire growth cycle 
(April-October 2004). For an adequate (temporal) ex-
perience of the key processes, the speed of the running 

system is increased up to 36 times the normal speed to 
take into account the ten-minute measuring intervals. 
Environmental data is mapped onto the outside of the 
cube, while tree data is played back on the vertical 
speaker line in the middle of the array.  
 
A larger number of ecophysiological and meteorological 
phenomena do not manifest themselves acoustically, 
and it was a challenging task to generate metaphorical 
sounds to portray a single phenomenon, such as sunlight 
or air humidity effectively. The following table shows 
the phenomena (i.e. the data), the kind of sounds that 
represent them and the individual playback parameters, 
controlled by the data flow and mapping: 
 
Data Sound  

characteristics 
Playback  
parameters 

Sun position 
[azimuth, alti-
tude]; sunlight 
[W/m2] 

String-like,  
synthetic sound 

Spatial position; 
amplitude 

Temperature 
[°C] 

- Main  
volume 

Rel. air hu-
midity [%] 

Water-like,  
synthetic sound  

Pitch, amplitude 

Rain [mm] Field rec.: rain Amplitude,  
spatial position 

Wind [m/sec., 
azimuth] 

Field rec.: wind Amplitude,  
spatial position 

Soil water po-
tential [kPa] 

Field rec.:  
seeping water 

Amplitude 

Tree trunk di-
ameter [µm] 

- High pass filter, 
applied on sap 
flow sound 

Tree sap flow 
[g H20/h] 

Floating water, 
transposed up 
and filtered  

Amplitude 

Tree ultrasonic 
acoustic emis-
sions/cavitation 
pulses [dB] 

Field rec.: ultra-
sonic acoustic 
emissions, 
transposed 
down 

Amplitude 

 

3.  PRELIMINARY CONCLUSIONS 
For us as well as for visitors, it was and still is a fasci-
nating experience to spend time in the system, listening 
to the interplay of sounds and the related phenomena 
throughout an entire growth period, which lasts about 40 
minutes. Besides the diurnal course of the tree’s re-
sponse to sunlight, there are many other recognizable 
patterns: As it gets drier in the summer, the cavitation 
events become longer, sometimes lasting deep into the 
night; the stressed plant needs more time to refill with 
water from the soil. In addition, the number of cavita-
tion sounds is greater when a plant is well drained and 
exposed to full sunlight than in very dry periods. 
 
Immediate and intuitive access to measurement data 
through sound and its spatial positioning is very promis-
ing as it offers new forms of data display and observa-
tion of processes in nature as well as generative art 
works. The representation and sonification of our tree 
data needs to become more complex: At present, there 
are just three parameters mapped onto a single vertical 
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line of the audio matrix: sap flow, cavitation and trunk 
diameter, measured at the stem of the tree. We would 
like to include more information about the spatial distri-
bution of the acoustic emissions and the related physio-
logical measurements within a whole plant, including 
the crown, the root and some branches at various loca-
tions on the tree.  
 
Our intention in presenting a first prototype of the soni-
fication system at a public exhibition was to determine 
whether or not our initial experiments would be com-
prehensible to a broader audience, i.e. whether or not the 
ecophysiological phenomena and their interrelations 
could be identified through the chosen sounds and the 
design of our experiential space. Visitors had no major 
problems identifying most of the field recordings, but it 
became evident that the different sounds and their mean-
ings needed to be explained. We set up a computer with 
a blog explaining the sounds and corresponding phe-
nomena and their interplay. In addition, visitors were 
encouraged to leave comments about their experience of 
the installation. We also realized that additional ele-
ments were needed within the installation, particularly 
information about the time of day and season. We 
solved that problem on site by projecting the date and 
time of the sonified measurements onto the floor next to 
the installation. 
 
Regarding the further development of our system, we 
are currently examining different forms of visual infor-
mation as supportive elements. We think it would be 
helpful to have video information about the time of day, 
the coarse of the sun, the weather conditions etc. Daniel 
Bisig and Jan Schacher have been working on immer-
sive audio-visual environments since 2010 0. In their 
recent research project Immersive Lab at the ICST, they 
are experimenting with an audio-visual setup that offers 
haptic interaction with generative art pieces. Alongside 
further development of our 3D speaker-matrix, we in-
tend to integrate our sonification processes with the Im-
mersive Lab installation adding panoramic/hemispheric 
video recordings. 
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ABSTRACT 

Current Digital Audio Workstations include increasingly 

complex visual interfaces which have been criticised for 

focusing user’s attention on visual rather than aural mo-

dalities. This study aims to investigate whether visual 

interface complexity has an influence on critical listening 

skills. Participants with experience mixing audio on com-

puters were given critical listening tests while manipulat-

ing Graphical User interfaces of varying complexity. Re-

sults from the study suggest that interfaces requiring the 

use of a scroll bar have a significant negative effect on 

critical listening reaction times.  We conclude that the use 

of scrolling interfaces, by requiring users to hold infor-

mation in working memory, can interfere with simultane-

ous critical listening tasks. These results have implica-

tions for the design of Digital Audio Workstations espe-

cially when using small displays.  

1. BACKGROUND 

In current Digital Audio Workstation (DAW) design, 

unlimited track counts, multiple effects plug-ins and a 

large number of conceptual additions have resulted in 

increasingly complex interfaces [1]. It has been suggested 

that this increased interface complexity risks focusing 

user’s attention on the visual display to the cost of aural 

engagement [2], with many DAW users opting to turn off 

the VDU at times during mixing [3]. 

 

This paper highlights some of the perceptual and creative 

implications of mixing using screen based interfaces then 

proceeds to report the findings from a study designed to 

quantify the influence of Graphical User Interfaces (GUI) 

design on aural acuity. Participants with experience mix-

ing audio on computers were given critical listening tests 

while manipulating GUIs of varying complexity. The 

results were analysed to see whether the visual presenta-

tion style influenced the critical listening skills typical of 

those required in audio mixing workflows. 

2. INTRODUCTION 

The increasing visual complexity of current DAWs has 

potential consequences for the successful mixing of au-

dio. In creative terms, the need to navigate through sever-

al windows risks inhibiting the engagement and ‘flow’ of 

the mixing process. For example, they may impede the 

user’s ability to make requisite adjustments such as pan, 

level and effects changes [4].  Furthermore, the interface 

may compromise the realisation of creative ideas, which 

due to their fleeting nature are ‘lost’ when the user has to 

negotiate a badly implemented GUI. [5].  

In perceptual terms, the large amount of information on 

the screen and the navigation required to access it across 

multiple windows can place high cognitive load on short-

term and working memory [6] and overload the limited 

capacities of the visual mechanism [7]. The large amount 

of visual detail within the interface may also bias the per-

ception of auditory information in favour of visual infor-

mation [8]. For example, Macdonald and Lavie [9] found 

that when test subjects made either a low or high-load 

visual discrimination concerning a cross shape (respec-

tively, a discrimination of line colour or of line length 

with a subtle length difference) the participant’s ability to 

notice the presence of a simultaneously presented brief 

pure tone was significantly reduced (79% in the high-

visual-load condition, significantly more than in the low-

load condition). In a similar study Dehais et al [10] found 

a link between complexities of the GUI and reduced aural 

awareness. In flight simulations 57 % of trained pilots 

failed to notice auditory alarms under high visual load 

conditions. The authors suggest that visual information 

processing interfered with concurrent appraisal of audito-

ry alarms, thereby inducing ‘Inattentional Deafness’ [9]. 

In order to ameliorate the effect of visual overload when 

using these GUIs, they suggest a temporary simplification 

of the user interface (Cognitive Countermeasures) to re-

dress this problem [11]. 

Given the complex visual presentation of many contem-

porary DAWs (with scrolling and window switching a 

major part of the interface navigation) and the increased 

use of small screen displays for music and audio mixing 

(such as Cubasis, Auria, Nanostudio and FL Studio Mo-

bile) it may prove insightful to quantify how GUI com-

plexity influences the speed and accuracy of critical lis-

tening tasks typical of audio mixing workflows. In so 

doing it is hoped that heuristics may be realised that 

acknowledge the perceptual limitations of the user, de-

crease cognitive load and minimise the extraneous com-

plexity of the interface encroaching on the intrinsic com-

plexity of the user’s main task [12].  
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3. STUDY DESIGN 

3.1 Participants 

There were eighteen participants recruited (eight from the 

Centre for Digital Music, Queen Mary, University of 

London and ten from second year ‘A level’ Music Tech-

nology Students at City and Islington College, London). 

All participants were experienced using DAWs.  All gave 

informed consent to participate in the study. The study 

was conducted in accordance with the guidelines of the 

University. The Ethics Committee of Queen Mary, Uni-

versity of London, approved the details of the study.  

3.2 Procedure 

Participants were played an excerpt of a mix of eight au-

dio tracks which they monitored on headphones. They 

were asked to listen to specified instruments from the mix 

(strings, guitar and tambourine) to ascertain which of 

these instruments was being panned (changing the appar-

ent position of the sound between the headphone speak-

ers). All files began panned centrally (pan position 0) and 

one of the three specified files was panned over the dura-

tion of the excerpt (two minutes) till it was panned hard 

left or right (pan position -60 or +60). The participants 

were asked to respond to the panning by pressing one of 

three response button (labelled strings, guitar or tambou-

rine) as a timed response task. The excerpt was played 

twelve times in total, during which each of the specified 

instruments was panned three times. 

At the same time as completing this critical listening task, 

the participants were asked to match the frequency curves 

of a four band equaliser (the target) with a pre-equalised 

four band equaliser (the source) so that the target and 

source frequency curves were as visually close as possi-

ble. This was done using four interfaces (figures 1-4): 

Control interface: This consisted of a play button and 

three response buttons labelled guitar, strings and tam-

bourine. There was no source or target equaliser, and the 

participants were not required to complete any interface 

manipulation task during the excerpt other than selecting 

a response button.  

Interface one:  This consisted of a play button, the three 

response buttons and the source and target equalisers. 

Interface two: This consisted of a play button, the three 

response buttons, a source and target equaliser and three 

moving meters (a gain meter, a phase meter and a fre-

quency analyser) placed between the source and target. 

Interface three: This consisted of a play button, the three 

response buttons, the source and target equaliser as well 

as five additional equalisers placed between them. Due to 

the additional equalisers the source and target equalisers 

did not fit on the same screen and participants were re-

quired to scroll between them. 

Participants were asked to begin matching the source and 

target as soon as they pressed the play button, but were 

informed they could stop at any point at which they clari-

fied which instrument was panning, even if they had not 

completed matching the target equaliser curve to the 

source curve. Prior to the study participants were given a 

test patch so they could acquaint themselves with manip-

ulating the equaliser. 

The four interfaces and panning file types were arranged 

in a randomised order and presented to the participants. 

The time it took to respond to the panned file was record-

ed for each interface, though this information was not 

visible to the participants and they were not told they 

were being timed. 

Due to the increased aural acuity required to hear small 

panning amounts and the potential distraction of visual 

feedback, it was hypothesised that interfaces which im-

pact negatively on critical listening skills would result in 

participants taking longer to hear the panning (which be-

comes easier to identify at extremes). 

Figure 1: Control interface only displays response but-

tons. 

 

Figure 2: Interface 1 includes the addition of source and 

target equalisers. 

 

Figure 3. Interface 2 includes the addition of moving 

meters between the source and target equalisers.  
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Figure 4. Interface 3 includes the addition of several 

equalisers, requiring scrolling. 

4. ANALYSIS  

Of the eighteen participants recruited, four were dis-

counted due to incorrectly identifying some of the pan-

ning instruments, one was discounted due to an inability 

to clearly hear the panning instruments within the mix, 

and a further participant was discounted for failing to 

attempt matching the source and target equalisers. 

Of the twelve remaining participants the time taken to 

correctly identify panning was compared between the 

four interface types. As all three of the specified instru-

ments (tambourine, guitar and strings) were panned in 

each of the interface types it was possible to directly 

compare the response times for each instrument across 

interface types.  

The mean time and standard deviation was calculated for 

the response times of all the interfaces and file types (see 

table one). A dependent t-test was then conducted be-

tween the control interface and the independent variable 

interfaces. The dependent t test generated a P value, 

where values of 0.05 or less reject the null hypothesis 

(that the interfaces design does not have any effect on 

critical listening skills). 

5. RESULTS 

While Interfaces one and two had slower response times 

across all three of the specified instruments compared to 

the control, none of these were statistically significant, 

with P values from the dependent t-tests being greater 

than 0.05 (p>0.05). See table two.  

However there were significantly slower response times 

for all three instruments in interface three (requiring 

scrolling) compared to the control interface. The depend-

ent t-test consistently generated P values less than 0.05, 

thereby rejecting the null hypothesis at the 95% confi-

dence level.  

The time difference between the Control and the interfac-

es was also calculated to discern how the interface affect-

ed the ability to complete the task. The analysis (table 

three) shows that interface 3 (at 95% confidence level) 

has a range for the true population mean that is greater 

than the control across all three file types.   

The analysis also reveals that overall the Control provid-

ed the fastest response for the majority of participants on 

all file types (overall being the quickest interface 58 % of 

the time), while interface 3 provided the quickest re-

sponse only 4% of the time (figure 5).  
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Table 1. Mean time for task completion using the different in-

terfaces. 

 

Figure 5. Occurrences of interface types being fastest across all 

participants and file types. 
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Table 2. The P values for time difference between Control and 

interface type. 

6. DISCUSSION 

The analysis of the data suggests that increased visual 

load by itself does not have a statistically significant ef-

fect on reaction time to the critical listening, though it is 

interesting to note that the control interface had the 

quickest reaction time across all the files. This result con-

firms a previous study by the authors [13] and aligns with 

research which postulates the independence of attentional 

resources for vision and audition [14, 15, 16].  

 

However, as noted, introducing a scrolling interface has a 

significant effect on participant’s critical listening reac-

tion time. This may be due in part to the ergonomic issues 

of having to access information ‘off the page’, and future 

work will explore the influence of improving interface 

ergonomics on mixing workflow (see below). However, 

the negative effect on critical listening skills invoked by 

scrolling may be compounded by further cognitive issues, 

which require consideration. For example, Janata et al 

[17] found that attentive listening to multi-channel music 

employs neural circuits underlying ‘multiple forms of 

working memory, attention, semantic processing, target 

detection, and motor imagery’ (page 9). Thus, attentive 

listening to music appears to be enabled by areas that 

serve general functions rather than by "music specific" 

areas. In this way the use of working memory and atten-

tion to process the visual task may consume most of at-

tentional capacity, leaving little or none remaining for 

processing other modalities [18]. This notion is further 

supported by Tano et al [5] who consider the fragility of 

Short Term Memory (STM) as being at odds with com-

plex Graphical User Interfaces, especially in creative 

support software (ibid). They suggest that software built 

for creativity support (in their case Design software) 

should be designed with the ‘fragility’ of STM as a cor-

ner stone of the design process.  

 

Another factor to consider is the disorientation caused by 

scrolling, which may compound the problems of STM.  

Sanchez and Wiley [19] found disorientation an issue 

with scrolling interfaces since they lack a static ‘place on 

a page’ [19, p.731]. The context switching between the 

two views may result in users becoming disoriented or 

lost during reading. In a more recent study, Sanchez and 

Branaghan [20] found that by simply rotating small 

screen device displays by ninety degrees, and thus mini-

mising the need to scroll, reasoning was significantly 

improved.  

Table 3. The time difference for task completion between Con-

trol and interface types. 

 

Being aware of the cognitive and perceptual factors of 

GUIs may contribute to the optimal use of DAWs, espe-

cially when limited display area is a factor. In so doing it 

is hoped that the users will be better able to engage in 

“high-level planning, integrative thinking, and problem 

solving” rather than being sidelined by the interface itself 

[12, p.3]. 

7. FUTURE WORK 

Future studies will explore the design and use of scrolling 

interfaces against modifications or alternatives that re-

duce STM load and disorientation. As noted in section 6, 
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the problems of access caused by scrolling may contrib-

ute to disrupting the mixing workflow. To measure this 

influence, future studies will use alternative scrolling 

designs (such as vertical scrolling) which support the use 

of the scroll wheel. Additionally Overview + Detail de-

signs will be evaluated to quantify to what extent this 

may reduce any disorientation caused by scrolling [19].  

User definable displays will be trialed to reduce the 

amount of information on screen, thereby reducing the 

need to scroll. Future studies will also explore other inter-

face objects frequently found in DAWs, such as dials and 

faders, so that a broader range of interface elements can 

be investigated. By so doing it is hoped further refine-

ments can be made toward possible design heuristics for 

interfaces which allow monitoring of multiple sources of 

visual information while simultaneously supporting criti-

cal listening. 
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ABSTRACT

An isomorphic layout can be used to position pitches on a
grid of hexagons. This has many beneficial musical prop-
erties such as consistent fingering and spatial harmonic
consistency. A Unified Isomorphic Layout (UIL) format
is presented in order to create a common specification for
describing hexagonal isomorphic layouts. The UIL format
provides an unambiguous description of relative pitch ori-
entations and is easily visualized. The notion of complete
and degenerate isomorphic layouts (along with a proof) is
introduced to narrow down the number of valid isomorphic
layouts used for exhaustive evaluations.

1. INTRODUCTION

There are many ways to arrange the available notes on a
tone-centric musical instrument. A piano uses a linear lay-
out of notes with a subset of notes (the accidentals) ver-
tically offset. A guitar has a relatively consistent layout
with the notes increasing by a semitone in one direction
(along each string) and a perfect fourth in the other direc-
tion (from one string to the next) with the exception of one
string at a major third. With these irregular note layouts,
the musician has to learn a different set of fingerings for
each key they play in. Piano students must practice scales
in multiple keys, but the scales themselves are musically
identical regardless of key, with the same pattern of musi-
cal intervals (tones and semitones, for example) from one
note in the scale to the next. The difficulty of learning mul-
tiple scales stems from the note arrangement itself.

Some instruments (such as bass guitars) use a note layout
that is isomorphic, which means that the distance (i.e. the
number of keys) and direction of any musical interval is the
same no matter which note you start on. A bass player can
transpose to any key just by moving the fingerings being
used to play a sequence of notes. This property of isomor-
phic layouts means that fingerings for playing a musical
construct (such as a specific type of chord or scale) is in-
dependent of the root key. The “shape” of a major triad is
the same for every major triad, which is why these layouts
are called “isomorphic” (iso = same; morph = shape).

A hexagonal isomorphism is an isomoprhic arrangement
of notes on a hexagonal grid rather than a rectangular grid.

Copyright: c©2013 Brett Park et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Each note has six adjacent tones allowing for more com-
pact note layouts. Although hexagonal isomorphisms have
been around for hundreds of years, there is not a lot of pub-
licly available information on the many possible layouts
and their properties. As well, only a few researchers are
actively studying isomorphisms. In this paper, we present a
unified framework for studying isomorphic layouts, which
we call the Unified Isomorphic Layout (UIL) specification,
This specification helps to identify and compare character-
istics of layouts. We apply this framework to a number
of “standard” isomorphic layouts, and present a method
to guarantee completeness of any isomorphism. We also
present a visualization system which allows detailed ex-
ploration of any isomorphism.

2. BACKGROUND

Hexagonal isomorphic layouts appear to have great po-
tential, and many researchers have explored aspects of a
set of specific layouts, but there is limited summative re-
search bringing the field together as a whole. One of the
biggest concerns with the existing hexagonal isomorphic
research literature is that individual researchers have their
favourite layouts, and commercial products tend to be fo-
cused on one particular isomorphism. There is, as yet,
no public central repository of descriptions, evaluations,
and visualizations of the many possible layouts. The re-
search literature is sparse, and significant portions of the
information are found within patents rather than research
papers. We have created a tablet application that allows
users to experiment with any possible isomorphic layout,
and through public access to this application (Musix [1])
we have encountered many people who are interested in
isomorphic layouts and are looking for more in-depth in-
formation. The focus of this paper, then, is a framework
around which to centralize, summarize and visualize exist-
ing layouts, and to generate detailed analytical information
about any hexagonal isomorphic note layout.

This paper continues with an itemized list of existing re-
search (and researchers) into isomorphic layouts and their
utility; a motivation of isomorphic research in a musical
context; a proposal for a unified isomorphic layout nota-
tion to describe any layout and (more importantly) describe
the relationships between different layouts; and a proof of
isomorphic completeness both for and beyond western 12-
tone scales; followed by a number of examples of common
layouts described in the new UIL notation.
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2.1 Research into Hexagonal Isomorphisms

Hexagonal isomorphic musical note layouts have been of
interest for decades, although individual researchers have
tended to focus on a specific layout or layouts, and much
of the information available is presented in patents rather
than research papers.

2.1.1 Harmonic Table

Peter Davies was awarded the patent for the Harmonic Ta-
ble layout [2] which he filed in 1990. The harmonic table
layout is equivalent to the Euler’s Tonnetz [3] described
in 1739, and is currently in use in the C-Thru AXiS com-
mercial device. Davies discovered the layout during his
analysis of notes contained in augmented and diminished
chords. Although the patent describes information about
his finding for the harmonic table, there is no known pub-
lic material on his original analysis of other layouts.

2.1.2 Wicki-Hayden

Brian Hayden is credited with a patent for the Wick-Hayden
layout [4] which was issued in 1986. The layout was devel-
oped for use on a concertina and was previously patented
by Kaspar Wicki in 1896 (Swiss patent no. 13329). Sev-
eral published conversations with Hayden can be found on
the internet where he discusses concertina layouts [5] as
well as describing a number of possible isomorphic layout
combinations [6]. Hayden’s research remains largely un-
published aside from his conversations with a few websites
and magazines.

In Hayden’s discussion with Woehr [6], he introduces an
ordering of a largest absolute interval, smallest absolute in-
terval, and the difference of the two as a method of describ-
ing layouts. Hayden concludes that only eleven interesting
layouts exists and that their mirrors are not fundamentally
different.

2.1.3 Notation and Alternate Tunings

Andrew Milne, William Sethares, and James Plamondon
are important contributors to current research on isomor-
phic keyboards especially in the areas of isomorphic no-
tation [7] and alternative tunings [8]. Their research goes
into depths in regards to properties of layouts that make
them good candidates for alternative tunings, compactness,
and generic description. Tunings are described by peri-
ods, generators, syntonic commas, and temperament maps.
A complete physical layout can be specified by a number
of basis vectors and a series of matrix representations for
button-lattices, layouts, and transformations. Proofs are
also provided for their mappings in regards to linearity and
transposition invariance [9]. Their description of isomor-
phic layouts is robust but does not easily allow the layouts
to be visualized or implemented using the matrices.

Milne et al describe the isotone axis and the pitch axis
of a layout. The isotone axis is a line that intersects all
pitches of the same tone. The pitch axis is orthogonal to the
isotone axis and shows the direction of uniform increasing
pitch (from one isotone, say C to the next, say C]). This
allows a user to immediately visualize the “direction” of
the layout without having to know which layout they are

in. The pitch axis also has the property that the distance
from the isotone axis along the pitch axis is equal to the
pitch of the note.

2.1.4 Analysis and Reconfigurable Instruments

Brett Park, David Gerhard, Steven Maupin have been ex-
ploring hexagonal isomorphisms [10] based on their musi-
cal properties (melodic and harmonic) and fittings for spe-
cific musical styles. The analysis of layouts was conducted
based on directions and distances for diatonic scales as
well as major and minor triads. In addition to layout anal-
ysis, Park and Gerhard have been developing the commer-
cially available isomorphic layout software called Musix [1]
as well as creating a physical isomorphic keyboard with
the ability to dynamically change isomorphic layouts while
providing visual feedback. The device is named the Rain-
board [11].

2.2 Why isomorphic layout research

Isomorphic note layouts have many potential advantages
over non-isomorphic layouts such as transpositional invari-
ance (fingerings are identical for different musical keys)
and spatial / interval consistency (a relative interval is al-
ways in the same physical location relative to the base
note). Hexagonal isomorphic layouts provide the tight-
est possible clustering of musical intervals [12]. Because
of the many beneficial properties of hexagonal isomorphic
layouts, they may provide the best opportunity for democ-
ratizing music creation.

Although many layouts have been “discovered” or ana-
lyzed, very few have empirical evidence to justify choosing
one layout over another, and the benefits claimed by most
researchers for their particular layout are, in fact, benefits
of hexagonal isomorphisms in general. Most layouts are
justified as being “good” because they group common mu-
sic patterns in a close physical area. Although this may be
true, there is no empirical evidence given that such group-
ings improve playability, learnability or other features of
the instrument. As well, the layouts are generally consid-
ered to be unique based on the interval numbers that make
up the layout. Additional properties, such as interval di-
rection, are often not considered when evaluating layouts,
however, the direction of the intervals can have a signif-
icant impact on playability and fingering. In fact, there
exist some distinct traditional layouts are directional trans-
positions of each other, as will be shown later. Additional
properties besides the identifying intervals should be con-
sidered as they may contribute to the ergonomic efficiency
of the instrument.

2.3 Studying and evaluating all isomorphic layouts

There are two types of valid isomorphic layouts: complete
and degenerate. Complete layouts contain at least one in-
stance of every note in the given tonal system. For ex-
ample: in a 12-tone musical system, all twelve tones will
appear somewhere on the layout for the layout to be con-
sidered “complete”. This does not guarantee playability or
proximity of the notes, just that they will be present. The-
oretical considerations can be made to prove completeness
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of a particular isomorphic layout, and therefore to list all
complete layouts. Degenerate layouts, on the other hand,
do not contain an instance of every tone in a musical sys-
tem. Depending on the neighbouring intervals to a specific
note, there may be no way to create all notes in the given
tonal system. Even though some of the tones may be miss-
ing, however, the layout is still considered a valid isomor-
phism (based on the previous definition) in that fingerings
are still identical in different keys and relative intervals are
always in the same location.

Degenerate isomorphic layouts have limited musical util-
ity, although they should not be completely discounted.
When a scale is degenerate, note intervals will be miss-
ing in regularized patterns, due to the underlying isomor-
phic nature of the system. For example, it is possible to
create an isomorphism of a 12-tone equal tempered scale
where only every third semitone is present, resulting in a
sequence of minor thirds, or a diminished 7th chord. This
makes sense in the context of isomorphic note layouts, be-
cause the diminished 7th chord is root-ambiguous. Most
musical scales (i.e. specified subsets of a given tonal sys-
tem) are not equally distributed (like the diminished 7th
is), instead consisting of a pattern of whole tones and semi-
tones (the counter-example of course being the whole tone
scale itself).

2.3.1 Classes of Degenerate Layouts

The number of possible degenerate layouts depends on the
intervals which are missing in the layout, or alternatively
which present interval is the smallest. Because of the prop-
erties of isomorphisms, this interval must be a divisor of
the number of tones in the system. This is not to say that
the smallest interval is necessarily adjacent to the root note.

For a 12 tone system, there are 4 classes of degenerate
layouts. If the smallest available interval is the semitone,
the layout is complete. If the smallest interval is 2 semi-
tones (i.e. the semitone interval is missing from the iso-
morphism), then the layout is a whole tone scale. If the
semitone and whole tone are both missing, the result is a
diminished chord layout; if the minor third is also miss-
ing, the result is the augmented triad; if all intervals but the
tritone are missing, the result is a two-note layout, and if
all intervals are multiples of the octave, then only one note
is available. Because these degenerate layouts are missing
some notes, there are also a number of sub-classes of each
degenerate layout depending on which notes are present.
For the whole tone scale, there are two subclasses: scales
which include C and those which include C].

Since degenerate layouts provide a significant limitation
to an isomorphism, it is useful to be able to test for com-
pleteness or to generate layouts that are complete. We
therefore develop a proof of completeness, presented in
Section 7, based on co-prime intervals. This proof also al-
lows all possible complete layouts to be generated by using
a series of increasing co-primes.

Theoretically, there are an infinite number of isomorphic
layouts, since intervals greater than the octave can be rep-
resented. In order to compare, represent, and evaluate these
layouts, it is important to have an unambiguous represen-

tation for each layout that allows it to be placed in context
with other layouts. Brian Hayden has suggested a repre-
sentation method which labels the greatest interval as G,
the lowest non-negative interval as L, and the difference
between the smallest and the largest as D. By using the
intervals G and L, the intervals composing the layout can
be determined, but this description does not specify the di-
rection of G or the relative direction of L. In order to fur-
ther disambiguate between layouts, we have developed a
complete notation which can fully specify any hexagonal
isomorphic layout. Given a disambiguated layout format,
the location and orientation of relative pitches should be
unambiguous, allowing comparison between different lay-
outs.

Once an exhaustive list of layouts with a reasonable in-
terval range (less than a few octaves) can be generated and
represented in an unambiguous manner, it is possible to
begin analyzing their properties in a more formalized man-
ner, taking isomorphic research from individual conjecture
to empirical truth.

3. A UNIFIED ISOMORPHIC LAYOUT (UIL)
NOTATION

In order to unambiguously describe hexagonal isomorphic
layouts, a Unified Isomorphic Layout (UIL) notation is
presented , based on Hayden’s initial GLD notation. The
UIL format adds to Hayden’s specification by also speci-
fying interval listing order, rotation, mirroring, and shear,
and allows for microtonal layouts and non-12-tone scales.
The interval directions for a base representation of the LGD
format, as well as a mirrored, rotated version, are shown in
Fig. 1.

G

-L-D

D

-G

L
G

-D

-L L

-G

D

Figure 1. LGD format. (a) base representation; (b) mir-
rored and rotated by 30◦.

The UIL notation format specification. L,G,D;RMS;T

L. The lowest positive interval value. For the base layout,
L is in the north-west direction and is to the left of G.

G. The greatest positive interval value. For the base lay-
out, G will always point north. For all layouts (both com-
plete and degenerate), the direction of G will be between
the directions for L and D, since the interval values L and
D must sum to G for the isomorphism to be valid.

D. The difference between G and L. It is possible for D =
L. For the base layout, D is in the north-east direction and
is to the right of G.
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R. The clockwise rotation of the layout, in degrees (for
both mirrored an non-mirrored layouts). R = 0 when the
interval G is pointing directly north.

M. Indicates if the layout is mirrored. In a mirrored lay-
out, the L and D axis are swapped, mirroring the layout
about G.

S. Indicates the amount of shear after rotation as described
by A. Prechtl et al [13]. In most cases, the shear will be
0 and may be omitted. A rotation can be applied to create
the same result as a shear, with the only limitation being
the shape of the note actuators (which can be stretched or
otherwise modified under shear).

T. Indicates the number of tones in the scale. Other tun-
ing parameters such as temperament can also be written
directly after T . In the standard western 12-tone equal
tempered case, (T 12T ET ), the T value can be omitted.

Base Representation. A UIL layout representation where
R = 0 and the layout is not mirrored.

3.1 Special cases

Two special cases exists for UIL layouts. The first is when
G = D, which only happens for intervals 0,1,1. We refer
to this as the zero case. In this case L = 0 and D = 1, and
G is equal to the interval 1 that occurs between 0 and 1.

The second special case occurs where L = D and is re-
ferred to as the equality case. The only equality case which
results in a complete layout is 1,2,1. In this case the inter-
val direction chosen for L or D is irrelevant.

In both the zero case and the equality case, the mirror
designation is meaningless.

4. REASONINGS FOR UIL FORMAT

One of the motivations for establishing a UIL format is to
show when two layouts which may seem different are, in
fact, within a rotation and mirroring of each other. It is
therefore important to impose a restriction on the order-
ing of the LGD parameters so it is easier to identify re-
lated layouts. Without a strict ordering of intervals, rota-
tion would be defined by both the degrees of rotation and
interval order. The ordering restriction serves to disam-
biguate the rotation and mirroring of a layout, when given
three intervals. Two layouts with the same LGD (within the
same tuning) will have identical musical construct shapes
(to within a rotation and mirroring). The use of L,G, and D
also have some historic precedence from their use by Brian
Hayden [6] although his definition was not order-restricted.

It is possible to represent the musical relations of the lay-
out with only L and G since D = G−L. We chose to leave
the D value in the format as it allows the adjacent intervals
to be immediately visible without mentally performing the
calculation for D. The inclusion of D also makes the inter-
val directions visually similar to the interval directions in
the base representation.

Although the inter-note relationships of a layout are com-
pletely specified by L,G,D, more information (mirroring
and rotation) is required to fully define the physical layout.

Layout Name UIL Format L G D R M
Wicki-Hayden 2,7,5;R30M 2 7 5 30 1
Harmonic Table 3,7,4;R0 3 7 4 0 0
Gerhard 1,4,3;R60 1 4 3 60 0
Park 2,5,3;R90M 2 5 3 90 1
Janko 1,2,1;R90 1 2 1 90 0
C-System 1,3,2;R270M 1 3 2 270 1
B-System 1,3,2;R270 1 3 2 270 0
Bajan 1,3,2;R90M 1 3 2 90 1

Table 1. UIL notations for common isomorphic layouts. L
= Least, G = Greatest, D = Difference, R = Rotation, M =
Mirrored.

The mirroring and rotation parameters allow manipulation
of the ergonomic aspects of the layout which may have a
significant impact on playability. The size of the hexagons
is not included in the UIL specification, since it simply in-
troduces a scalar distance between intervals that is constant
for all interval relations. It should be noted, however, that
different layouts benefit from different hexagon sizes based
on the compactness of the layout. A compact representa-
tion may need bigger hexagons to improve playability.

Scale intervals were chosen as the standard unit of LGD
since it shows the musical relationship to the surrounding
hexagons and allows for quick completion validation. If
two of the interval values of the LGD are co-prime, then the
layout will contain all intervals in the scale and be consid-
ered complete. A proof of this completeness is presented
in Section 7.

4.1 Common UILs

Most interval sets that create a complete layout (with a rea-
sonable interval size) have been named or patented. Some
of the more common isomorphic layouts are listed in UIL
format in Table 1, and are visualized in Section 6.1. An
example of “different” layouts with the same LGD are the
C-System, B-System, and Bajan layout. The difference be-
tween the three layouts can easily and clearly be seen by
looking at the rotation and mirror properties of the three
layouts.

4.2 Non 12-TET Scales

For the 12-tet scale the values for LGD are simple semi-
tone intervals between 0 (unison / octave) and 11 (Ma-
jor 7th), but nothing in the UIL format requires a 12-tone
scale. This representation is useful for determining valid
layouts and visualizing their relation, however, alternate
equivalent representations of LGD can be given for differ-
ent purposes. In these cases the values of LGD can be rep-
resented as cents, ratios, or roman numerals. The interval,
roman, and shorthand format may be useful for musicians
familiar with these notational systems. The cent and ra-
tio representations are useful for comparing layouts across
different tunings and will be suitable for microtonal music.
Example alternate formats can be found in Table 2.
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UIL Interval Format (12TET) 2,7,5;R30M
UIL Interval Format (7TET) 1,4,3;R30M;T7
UIL Interval Format (19TET) 3,11,8;R30M;T19
UIL Cent Format 200,700,500;R30M
UIL Ratio Format 9:8,3:2,4:3;R30M
UIL Roman Format II,V,IV;R30M
UIL Shorthand Format M2,P5,P4;R30M

Table 2. Alternate UIL LGD representations for interval
representations and tunings

5. INFERENCES FROM UIL

5.1 Horizontal and Vertical alignment

Two common ways of visualizing a grid of hexagons is in
a horizontal or vertical alignment [10]. The hexagon align-
ment can easily be discerned from the rotation angle of the
UIL (Fig. 2). Vertical alignment occurs when the layout is
rotated in increments of 60 degrees (0,60,120,180,240,300)
and horizontal alignment occurs when the layout is rotated
in increments of 60 degrees plus an initial 30 degree offset
(30,90,150,210,270,330).

G

-L-D

D

-G

L

0°

G

-L

-D D

-G

L

30°

L

D-G

G

-L

-D

60°

L

D

-G G

-L

-D

90°

Figure 2. Vertical grid alignment (left) at 60 degree incre-
ments and Horizontal grid alignment (right) at 60 degree
increments plus an initial 30 degree offset

5.2 Isotone and Pitch Axis

The isotone axis defines a line in an isomorphic layout
which passes through all notes of a particular pitch [8].
If you draw a line between two instances of “A4” and ex-
tend that line to infinity, all other instances of A4 will ap-
pear only on that line. Further, all isotones are parallel.
One important property that derives from the isotone axis
is that the orthogonal distance of any note from this axis is
directly related the pitch of the note. This orthogonal line,
called the pitch axis [8], denotes the general direction in
which pitches ascend.

Due to the strict interval order of the LGD, it is possible to
infer information about the pitch axis and distance between
isotones. In LGD base format (no rotation or mirroring),
the pitch axis will always be between 0 and 30 degrees
(Fig. 3). This results in the pitch axis being between R
and R+30 degrees for non-mirrored layouts and the pitch
axis being between R− 30 and R for all mirrored layouts.
The precise pitch axis angle (relative to R) can be can be
calculated by 30∗ D−L

G . Since the pitch axis and the isotone
axis are orthogonal, the isotone axis angle is equal to the
pitch axis angle plus 90◦.

-L-D

D

-G

L

G
Pitch	
Axis	
Range

Mirro
red	


Pitch	

Range

Isotone	

Axis	

Range

Mirrored	

Isotone	

Range

Isotone	

Axis	

Range
Mirrored	

Isotone	

Range

Figure 3. Normal and mirrored ranges for the pitch axis
and isotone axis (without rotation).

6. VISUALIZATION OF LAYOUTS

Using the codebase we initially developed for the Musix
iOS app, we constructed a system that allows the visu-
alization of any isomorphic layout, including the isotone
and the pitch axis, as well as the parallelogram which con-
tains a single complete 12-note octave. This visualization
is particularly useful for judging alignment of pitch axis,
compactness of the representation, and similarity to other
isomorphisms. The results of this visualization, as well as
a set of example layouts and their analysis, are presented
here.

6.1 Examples

The following figures present visualizations of some of the
more common hexagonal isomorphic layouts in use today,
as well as representations in the base UIL format. In these
figures, notes are coloured with the root note of the scale
in red, intervals in the major scale of that key coloured
in white, and the other intervals coloured in black. Notes
are labeled as Ni

o, where N is the the number of semitones
from the root note, o is the octave of that note, and i is
the common interval abbreviation. For example, 6tt

4 is the
tritone in the 4th octave, 6 semitones from the root.
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Figure 4 shows Wicki-Hayden, a popular layout discussed
in Section 2.1.2. This layout collects “white” notes to-
gether, making whole tone and pentatonic melodies easy to
play. Figure 5 shows the Janko keyboard, an early isomor-
phic layout related to the piano. Like the piano, pitches as-
cend to the right. The base UIL format visualization shows
the pitch axis rising to the north. The harmonic table lay-
out (Figure 7), discussed in Section 2.1.1, is already in base
format, and makes plain one of the complaints about this
layout: while major and minor triads are compact, whole
tones are quite distant, and the layout as a whole is not as
compact as, for example, the Bajan.

Figure 6 shows that three traditional isomorphic layouts,
the Bajan, C-system, and B-system, are in fact mirrored
and rotated versions of the same base layout. Figure 8
shows two additional layouts, the Gerhard and the Park,
which have been studied in detail by the authors.

Figure 4. Wicki-hayden layout: 2,7,5;R30M (top) and the
corresponding base representation 2,7,5;R0

7. PROOF OF ISOMORPHIC COMPLETENESS

In the following proof, hexagonal isomorphic intervals are
listed as x, y, and z. The UIL format of LGD is a sub-
specification of any hexagonal isomorphism, and L, G, and
D can each be any one of x, y, and z.

In order to create a valid hexagonal isomorphism (H),
three note intervals x, y, and z are chosen that represent
the neighbouring interval distances for each linear direc-
tion. The sum of these three intervals must be zero,

H = {x,y,z ∈ Z | x+ y+ z = 0} (1)

Figure 5. Janko layout: 1,2,1;R90 (top) and the corre-
sponding base representation: 1,2,1;R0

since progressing once in each of three directions will re-
turn to the original note. By simplification, z =−x− y.

Theorem 7.1. Isomorphic Completeness: Given two inter-
val vectors x,y that define a unidirectional isomorphism,
the isomorphism is complete (contains all note intervals) if
and only if x and y are co-prime.

Proof of Isomorphic Completeness. An isomorphism is com-
plete if and only if some scalar combination of x,y,z exists
such that all integers can be produced

(∀n ∈ Z)(∃a,b,c ∈ Z) | ax+by+ cz = n (2)

First lets consider the case where n = 1.

ax+by+ cz = 1 (3)

We can simplify equation 2 to hx+ iy = 1 by the following
process:

1 = ax+by+ cz

1 = ax+by+ c(−x− y)

1 = ax+by− cx− cy

1 = x(a− c)+ y(b− c)

Let h = a− c

Let i = b− c

1 = hx+ iy

(4)

Two cases then exists: x and y are coprime (they do not
share a positive factor other than 1) or they are not coprime.

157

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



Figure 6. Bajan (top), C-system, and B-system, all of
which use the intervals 1,3,2 with different rotations and
mirrorings. C-system and B-system are mirrored versions
of each other.

Figure 7. Harmonic Table layout: 3,7,4;R0

Figure 8. Gerhard (top): 1,4,3;R60; Park: 2,5,3;R90M
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Case 1: (x and y are coprime)
If x⊥ y then hx + iy = 1 by Bézout’s identity 1 .

Case 2: (x and y are not coprime)
If x and y are not coprime they must share a prime factor

e such that x = e j and y = ek where j and k are integers.

(∃e, j,k ∈ Z) | x = e j,y = ek (5)

If we assume this is true for the case where n = 1:

1 = he j+ iek

1 = e(h j+ ik)

Let m = h j+ ik

1 = me

e = 1/m

since e ∈ Z, m =±1
e =±1

(6)

Then we can substitute and simplify to determine e=±1.
Since the only positive common factor is e = 1, x and y are
coprime which contradicts the assumption.

We must now extend the proof for all n. Equation 3 can
be multiplied by an integer scalar t in order to produce the
entire range of integers for n.

(∀n ∈ Z)(∃t ∈ Z) | t(ax+by+ cz) = t ∗1 = n (7)

If x,y,z can be multiplied by integer scalars to equal 1, then
the scalars can also be multiplied by any integer t in order
to produce the entire integer set n.

8. CONCLUSIONS AND FUTURE WORK

By considering the notion of complete and degenerate lay-
outs, along with formalization of the criteria for each type
of layout, it is possible to iterate through intervals that cre-
ate complete layouts. These intervals can then be repre-
sented in UIL notation in order to disambiguate musical
properties and pitch orientation. The Unified Isomorphic
Layout notation provides an unambiguous textual repre-
sentation of an isomorphic layout that can be easily visual-
ized, resulting in a useful tool for isomorphic research.

Now that the UIL is established, we plan to iterate through
all of the non-degenerate base layouts and explore their
properties independent of rotation and mirroring. Such
properties include pitch axis angle, isotone axis angle, iso-
tone axis length (between two notes), pitch axis length
(orthogonal distance for an octave), octave parallelogram
area, and parallelogram squareness. After these proper-
ties are calculated, ergonomics of the layouts will be eval-
uated for various intervals, rotations, and mirrors. The er-
gonomic data will be used to develop a suggested fingering
for playing in various UILs, as well as a recommendation
system for which specific isomorphic layout would be best
suited to any particular musical context or task.

1 http://en.wikipedia.org/wiki/Bezout’s_
identity
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ABSTRACT 
Alternative interfaces that imitate the audio-structure of 
authentic musical instruments are often equipped with 
sound generation techniques that feature physical 
attributes similar to those of the instruments they imitate. 
Amarok Pikap project utilizes an interactive system on 
the surface of an automobile that is specially modified 
with the implementation of various electronic sensors 
attached to its bodywork. Sur-faces that will be struck to 
produce sounds in percussive instrument modeling are 
commonly selected as distinctive surfaces such as 
electronic pads or keys. In this article we will carry out a 
status analysis to examine to what extent a percussion-
playing interface using FSR and Piezo sensors can 
represent an authentic musical instrument, and how a new 
interactive musical interface may draw the interests of the 
public to a promotional event of an automobile campaign: 
Amarok Pikap. The structure that forms the design will 
also be subjected to a technical analysis. 

Keywords: Interaction, Physical Computing, Human-
Technology Interaction, Outdoor Interfaces, Musical 
Interfaces, Music Performance 

1. INTRODUCTION 
Throughout history, musical instruments have been 
ordered and classified according to methods of playing, 
or their sound intervals. However, DIY productions and 
hard-ware hacking techniques that are now increasingly 
widespread as information technologies rapidly become 
part of everyday life in the 2000s have led to a 
differentiation of standards and allowed for the wider 
production of musical instruments that do not conform to 
convention. Musical instruments could also be described 
as sound generators; and the means of technology allow 
sound generation to be carried out not only through 
acoustic methods, but also with a sensor structure 
triggering a sound that exists in the processor to generate 
sound. One criterion of success in sound synthesis 
methods is the degree of semblance to the original sound 
of the sound generated by the triggering of the sound 
sensor. 
 
The sound sampling method used widely today in sound 
synthesizing is based on the principle of playing back 
pre-recorded sounds, and is thus used in generating 
simulated sounds. However, a recorded sound library 

features limited options. Potential sounds that musical 
instruments may produce can vary according to the 
approach and interaction of the performer with the 
instrument. As for percussion instruments, many factors, 
ranging from the impetus of the force exerted on the 
surface that generates the sound, to the material qualities 
of the object that is used to establish contact with the 
surface serve to increase the number of possible timbres. 
Since various gestures may generate different sounds 
from musical instruments, the number of recorded sounds 
depending on probable scenarios in instrument modeling 
is theoretically infinite. However, although interactive 
units known as gestural controllers allow the transfer of 
the movements of the performer to the digital instrument 
[1] the number of gestural movements achieved via 
sensors still remains limited. Therefore, although the 
modeled new instrument features common attributes with 
the original instrument it imitates in terms of its sound, it 
is nevertheless impossible to compare these two 
instruments on a one-to-one basis other than according to 
their fundamental features. 
 
Attempting to produce the same performance as a 
traditional percussion instrument using the different 
surface of a simulated instrument poses a number of 
difficulties for the performer. Often, the surfaces of the 
percussion instruments played using hands do not fully 
absorb the impact exerted upon them and respond with 
their own physical tension to the hand that carries out the 
movement. Therefore, certain interactive surfaces, such 
as pads, that are designed to simulate such events, are 
made of materials that feature natural-like qualities. 
However, the reaction of the playing surface to the 
surface that applies the pressure may be different from 
that of the original musical instrument, and such 
differences must be considered both with their 
advantages and their disadvantages [2]. As we observed 
in the Volkswagen Amarok Pikap Truck project, 
musicians who play a percussion instrument can easily 
develop mastery of the new types of instruments that are 
produced by the application of a different interface by 
blending different techniques. 

2. MOTIVATION 
The Amarok Pikap Project that we examine in this 

article aimed at developing a concept that would allow it 
to become the focus of attention at events organized for 
product promotion –for a reason other than its most 
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significant feature as a transport vehicle. The aim was to 
dispel the prejudice that since Amarok was a pickup, it 
would not be the vehicle of choice for metropolis 
dwellers. The design was planned so that users would 
physically interact with the various sensors installed on 
the outer shell of the car to play percussion with an 
interface they were not accustomed to. The purpose of 
this study was to determine how participants’ interaction 
with this new musical interface is empowering the 
perception of the promotional campaign of the product. 

3. RELATED WORK 
There are various examples of making music using the 

automobile as an object. In Alessandra Camnasio’s 
project titled Music From A Car [3], acoustic sounds 
retrieved by strikes to the outer surface of an automobile 
are recorded using various microphones to form a sound 
library; and these sounds are then used to compose a 
predominantly rhythmical musical piece. Another project 
is featured in the music video for the band OK Go’s song 
Needing/Getting [4] where various extensions in-stalled 
on the outer surface of the automobile in motion collide 
with the surfaces around the automobile and produce a 
variety of sounds. The objects in the environment of the 
automobile have been pre-organized, and as the 
automobile drives through the planned-route, the musical 
composition is performed. However, in both projects, the 
sounds produced are acoustic sounds that ‘belong’ to the 
automobile. A similar approach can be observed as in the 
Smack Attack project. In Smack Attack [5] a peripheral 
device is attached to the wheel of a car, and the device is 
connected to the hi-fi system via Bluetooth. Several 
sensors on the peripheral device enables the users to 
produce musical sounds while driving. 

4. CONCEPT DESCRIPTION 
Two different types of sensors were used on the surface 
of the automobile. At the front of the automobile, on the 
hood of the engine, Force Sensing Resistor (FSR) sensors 
were used to allow sensitive response to the finger strikes 
of the performer; these sensors also did not form an extra, 
thick layer on the hood. FSRs act as analogue 
transformers of the applied force into variable resistance 
of electrical current. FSRs are usually used for such 
applications as input devices, musical instruments, or 
interactive applications. 

 
Figure 1. FSR Sensors. 

For the Amarok Pikap Project several holes were 
drilled in the hood for cable pas-sage to carry out cable 
connections for the FSR sensors fixed to the outer surface 
of the hood. The fourteen FSR sensors fixed to the hood 
transmit the data they obtain to the computer in the car 
via their connection cables that are hidden under the 
surface of the cabinet. 

 
In addition to the sensitive sensor system on the front 

shell of the car, Piezo sensors were affixed to the front 
and back windows on both sides of the car, the shell area 
below the windows and the shell area above the rear 
wheels. Piezo sensors feature a system that transforms 
vibrations on the surface into electrical energy. However, 
they do not provide the same level of sensitivity as FSR 
sensors. Also, since the interaction surface of Piezo 
sensors is not restricted to the surface of the sensor as in 
FSR sensors, undesired data might be collected from 
other, causing cross talk between the neighboring 
sensors.    

  

 
Figure 2. Sensor Positioning. 

 
In order to obtain different gestures from the 

percussion played with the new inter-face, because of the 
restricted perception qualities of the sensors, parameters 
such as the attack duration and pitch of the force applied 
to the sensors are used in producing different alternatives 
when recalling the sound sample stored in the sound 
library. It might prove insufficient if sensors that source 
the spectrum of sound operate with an on-off logic, 
therefore an analogue structure allows for a wealth of 
data production. The sensors applied to the front part of 
the automobile allowed for a certain level of sensitivity in 
the playing of the instrument. This was not the case for 
the Piezo sensors used on the sides. Since the data 
produced due to the interaction of the users on the sides 
of the car did not allow for sensitivity because of reasons 
stated above, an on-off logic was deemed suitable for 
their use, and for values over a certain threshold, the 
contribution to the music of single-strike sounds in the 
percussion family such as a bell or a whistle were 
introduced. 
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Participants were given the chance to accompany with 
percussion sounds the high-tempo music played during 
the event from the DJ booth that was installed in the 
luggage department of the automobile. This allows for 
the automobile to become, in addition to its main use as a 
vehicle of transport, a sound-generating instrument –a 
veritable surprise for the viewers.  

 
Amarok Pikap project, thanks to the car’s ability to 

move easily, enabled the project to be a center of 
attention and to reach a wider audience in several places. 
The project has circulated in different public spaces 
where thousands of people experienced with amusement. 
Participants explained their experience extraordinary and 
as being at a level close to the real experience of playing 
a percussion instrument. Moreover professional 
percussion players also noted that the system works much 
better than they have expected in realizing gestural 
sensitivity. 

 

5. DEVELOPMENT 

Force data obtained when performers strike the sensor 
areas with their fingers –‘play’ a percussion instrument- 
is transformed into digital data in the Arduino 
development card. Then, the digital data is transformed 
into Midi data in the Max/MSP/Jitter application and a 
valid protocol standard for sound generation is achieved. 
The obtained midi data is transferred via Max/MSP/Jitter 
to the Ableton Live application and the percussion 
simulator that operates as a plug-in of the application is 
transformed into percussion sounds. 

 
 

Figure 3. Max/MSP Jitter Patch. 

 
The system progresses as a series of data transformation 
and transfers; and the obtained interaction data is 
transmitted to the Midi transformer application not via 
Serial Protocol but by OSC (Open Sound Control 
Protocol), so the delay in the sound that responds to the 
physical interaction is very short. The performance 
features of the sound module and the computer are 
factors that influence the delay parameter. The interactive 
system produced for the Amarok Pikap Project received 
highly positive feedback for its performance from various 
users including professional percussionists. 

  

 
Figure 4. Signal Flow. 

Amarok Pikap, the interactive percussion-playing 
automobile, was showcased in four beaches (Burç Beach, 
Alaçatı, Bodrum, Caddebostan) in Turkey during the 
summer months of 2012, switched location easily thanks 
to being a vehicle, and the interactive percussion system 
was easily set up and presented for use very easily set up 
and quickly presented for use. Although the temperature 
levels of the surface areas were quite high due to direct 
sun light exposure, there was no failure of FSR sensors. 
In addition to the outdoor popularity of the activity, the 
event documentation video was viewed over a thousand 
times in a month on Youtube, and the project has been 
listed third on Cycling74’s Popular Projects website. 

6. CONCLUSION 
In interaction design, the presentation of familiar 

phenomena in unfamiliar ways results in a human-
technology relationship that swiftly produces results; 
since it creates curiosity in users at a level they are 
accustomed to. New interfaces produced for sound 
generators allow attractive implementations in brand 
promotions that create significant surplus value. 

  

 
 

Figure 5. User Interaction. 

 
At the end of the project, a distinct increase in brand 

awareness in terms of poten-tial buyers was observed. 
Today, music is among methods most widely used to 
con-vey a message to the masses. In this context, to allow 
the user/potential buyer to get involved in the event was 
among the main success criteria of the project that 
created difference. 
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The Amarok Pikap Project that presents a new interface 
for percussion, a widely used family of musical 
instruments, is important since it is the first of its kind. 
There are various examples of making music via acoustic 
sounds generated by striking various surfaces of an 
automobile. However, research has revealed no previous 
examples of playing a real instrument via strikes to the 
body of the car. 
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ABSTRACT 
This article analyses two interactive compositions of my 
own authorship: both include live instruments and a 
fully automated programming of live electronics using 
MAX. On the one hand, the paper introduces 
Intersections (memories) for clarinet in Bb, (2007/8); on 
the other hand, a comparison is offered, about how 
Confluences (Rainbows II) for flute, clarinet, violin, 
cello and piano (2010/12), is an amplification of the 
former piece with regard to not only its compositional 
further development, but also as a much more complex 
case of full automated live-electronics. The subject of 
full automation, including a historical perspective is 
explained in an article by the author in 2010 [1]. From a 
purely compositional perspective, both works share also 
a similar type of music dramaturgy due to their common 
something to hold on to factors (STHotF), as described 
by Landy [2], and later, also by Weale [3]. Hence, the 
poiesis and aesthesis [4] of both compositions are also 
hereby shortly introduced, to shed more light about the 
reasons for the full automation of their electronic parts, 
as these two aspects are solidly united to the electronics 
used and their relationship to the intended dramaturgy 
embedded in the two works. 

1.  INTRODUCTION 
This article explains the technical and compositional 
facts that surround the pieces Intersections (memories) 
for clarinet in Bb, from the years 2007/8 and 
Confluences (Rainbows II) for quintet (flute, clarinet, 
violin, cello and piano) from 2010/12, both 
compositions by the author of this paper. The latter 
composition is actually an amplification of the first 
piece, with several changes in the instrumentation, 
composition and electronics, although the main core 
structure of the original piece is maintained. 

The main reason for the utilisation of complete 
automation of the live-electronics processes in both 
pieces rely upon the facts already explained in a former 
article of my authorship, Raising Awareness About 
Complete Automation of Live-Electronics: a Historical 
Perspective [1], and I would refer the reader to that 
article for full details. Herewith enunciated however, 
the main reasons therein exposed, which demonstrate 

clear advantages in the usage of fully automated live-
electronics:  
a. Concentration and reduction of unnecessary activities 

during the performance, allowing the performer or 
performers to purely concentrate on the musical 
aspects of the performance. 

b. Relative independence of the electronics from the 
composer’s presence during the performance, as the 
live electronics do not need further manipulation 
during the performance, just to be activated at the 
start of the piece. 

c. Better combination of processes and lesser risks 
during the actual performance, as full automation 
allows for accurate and more complex combinations 
of different real-time processes such as multiple 
textures made of several simultaneous layers of real-
time DSP functions, which are rather limited in those 
cases in which only manual manipulation is applied 
during a performance. 

d. Principal means for the synchronisation is the usage 
of time-code (SMTPE) to follow events specified 
with an exact time position on the music score with 
the help of a SMPTE display on the stage (and 
eventually, a mirror of SMPTE times on the 
computer). 

e. Accurate synchronisation of events and processes at 
the time of performing the pieces such as, for 
example, an accurate recording of a specific music 
motive or melody. A typical example of this case the 
case can be found in the first bar of Confluences 
(Rainbows II). 

f. Effective way of testing electronics beforehand: if the 
different DSP functions run steadily at the exact same 
set-times, they can be entirely tested while the work is 
being programmed and composed, resulting in less, or 
even no danger of exceeding, for example, CPU’s or 
memory limits, as the real-time electronics can be 
fully monitored beforehand. 

g. Frequent distribution of interactive pieces for 
performance purpose: thanks to the evolution of 
computing technology since the 1990s, pieces using 
full automation of their live-electronics have the 
advantage of an easier, costless, more effective and 
more frequent distribution, as the only requirements 
for their performance are the score and the 
patch/software. These advantages have also a 
beneficial impact on rehearsals and their organisation, 
as the full automation should normally allow for 
faster set-up times as well as faster rehearsal times. 

Copyright: © 2013 First author et al. This is an open-access article 
dis- tributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original author and 
source are credited. 
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In spite of the fact, that there are minor disadvantages 
in the usage of full-automated live-electronics, which 
are referred to in full in the article alluded to above [1], 
I shall not develop on them herewith, as they are not 
relevant to this article.  

It is however important to stress upon the absolute 
accuracy of the programming required for a fully 
automated electronic part. Although this is already the 
case for Intersections (memories), the addition of four 
more instruments in Confluences (Rainbows II), turns 
the programming of the electronics into a much more 
complex process, in the particular case of this piece, 
with a total of more than 1000 function calls. Both 
compositions include several different types of DSP 
processes for a constant output in 5.1 surround image, 
such as surround diffusion, different types granulation, 
pitch shifting, several reverberation effects (including a 
variation of the Schroeder reverberation), spectral 
multiplication (convolution), pitch recognition, ring 
modulation of comb filtered sources and several 
recordings of each of the instruments into separate 
buffers for further manipulation during the 
performance.  

Both compositions follow the same pattern for the 
writing of the general score: there is one staff for each 
instrument, another staff for the SMPTE times and a 
final staff, reserved to described the DSP functions 
occurring at precise times in the live-electronics part. 
Figures 1 and 3 below show examples of this in 
Intersections. The inclusion of the description of DSP 
functions in the score is meant hereby for information 
purposes only, as, due to the full automation of those 
processes, such indications are not needed for the 
performance of the piece to take place.  

In order to finish this introduction, it is also worth 
mentioning, that the programming of the automatic real-
time processes is absolutely entwined with the intended 
dramaturgy embedded in the pieces, and therefore, it 
must be seen as an essential and indissoluble 
component of the compositional process, as it is 
explained in section 2 below. 

2. DRAMATURGY AND 
COMPOSITIONAL TECHNIQUES IN 

BOTH COMPOSITIONS 
Revisiting the last topic of the former section, it must be 
stated upfront, that the composition processes in both 
works –and therefore their full dramatic content (as it is 
also the case in any other work of my authorship)– are 
conceived as a full unity, in which the full automation 
of the real-time processes does not only offer all of the 
advantages mentioned above, but also, that the absolute 
accuracy of them happening in exactly the way the have 
been programmed/composed is a constitutive part of the 
intended dramaturgy, notwithstanding the type of 
electronic DSP functions used in each particular case. 

Although different similar meanings to the verb 
‘intersect’ can be found in English, the title of the first 

piece indicates something sharing a common area.1 The 
composition has its origin in a secret story, which is 
therefore not immediately apparent to the listener: there 
are three musical motives representing two different 
characters, all of which interact with one another 
forming new motives by intersecting at different points 
of the piece, with the results still sharing the original 
materials (their genetic identity) of each one in these 
combinations. Two of these motives represent the first 
character, the first one being of predominantly melodic 
nature, constituted by the pitches A, B, B, Bb, A and 
Eb, whilst the second motive for this character is purely 
rhythmical. The second character is represented by only 
one motive, which includes rhythmic and melodic 
attributes.  

The story is based upon a real life experience of 
human relationship of a love affair, thus the reason for 
the two characters with their own motives and the 
transformations acting upon each other through time, 
forming in some cases, –as displayed in figure 4 later in 
this section– a new unity by the merge of those motives 
intersecting with one another. The three motives for the 
two characters can be found in figures 1 to 3. 

 
Figure 1. First character: motive No 1 (melodic) 

 
Figure 2. First character motive No 2 (rhythmic) 

 
Figure 3. Second character motive  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 ’Intersect: to share a common area’. (http://www.merriam-
webster.com/dictionary/intersect) 
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There is also a third character, which appears 
transformed at different times during the piece. One of 
the most important of these transformations is the 
dissection of this third character melody into its 
constitutive notes, played isolated by the clarinet at 
different moments, each of which is recorded separately 
and individually by the electronics into a cumulative 
buffer; toward the end of the piece, this motive is 
played for the first time in its original full form only by 
the electronics, with the addition of granular synthesis, 
revealing the first Leitmotiv from the opera Parsifal by 
Richard Wagner (Liebesmotiv)2. This is one of the 
several examples in these two pieces of the indissoluble 
relationship during the composition process between 
writing the music and programming the full automated 
electronic. In this case, such a cumulative buffer adds 
events that are played across the first and middle parts 
of the piece, merging them together in order to play 
Wagner’s melody in full length and in granulated form 
(bar 49 of the score). Without the accuracy of full 
automation, examples such as the one just explained, 
which require the full reconstruction of 18 separate 
recordings into one single melodic motive, would be 
difficult or even impossible to achieve with the 
precision required by its dramatic intention.  

The musical motives cannot be taken as significant 
STHotFs for this piece though, as they are not evident to 
the listener, although the constant repetition and 
transformation (and intersections) of these three 
elements (the Leitmotiv and the two musical characters) 
may allow for the listener to perceive them in a rather 
recursive manner, becoming increasingly familiar with 
them during the performance of the piece. For those 
listeners familiar with Wagner’s work, the Leitmotiv 
included herein should be a strong point of reference 
with regard to the dramaturgic intention of the piece 
though. 

Following the idea of an act of merging,3 Confluences 
(Rainbows II) keeps the main dramatic core of the 
clarinet piece, but enhances it not only with the addition 
of four new instruments, but also with the amplification 
of the motivic textures highly enriched by a rather 
complex programming of real-time DSP functions in 
the live-electronics part, as it is explained in full detail 
in the next section. In this piece, the Parsifal motive is 
removed from the piece, one of several issues that 
insure that, in spite of the shared core, the two works 
should be listened to as separate and individual entities. 
As it can be gathered from the above, in both cases, the 
most significant STHotF is the title of each of the 
compositions, mostly the first word, although the 
second word helps to give an idea of what else can be 
expected.4 The love story suggested in the first piece is 
replaced by the confluence of several ‘voices’ of those 
characters in the second, which, possessing different 
timbres (due to the richer instrumentation), form a much 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Love motive. 
3 Confluence: ‘a coming or flowing together, meeting, or gathering at 
one point’.  
(http://www.merriam-webster.com/dictionary/confluence) 
4 This, of course, without mentioning, that a possible program note in 
a concert could make the idea clearer to the listener. 

more complex net or context, rather than the sole 
existence of two main characters and what unifies them 
(Wagner’s Leitmotiv) intersecting with one another, as 
in the first composition.  

According to another article of my authorship [5], 
based upon the concept of Intention/Reception in music 
by Weale and Landy [3], I amplified the intention and 
reception aspects of music dramaturgy by adding 
subcategories to both of them. The intention, called 
therein Intrinsic Dramaturgy [5], is divided into two 
subgroups: a-priori and a-posteriori. The first subgroup 
–a-priori– includes those works in which the dramatic 
elements of the piece are known beforehand by the 
listener, such as, for example, in the case of an opera or 
due to the text of a song.5 The second subgroup –a-
posteriori– includes those pieces where the dramatic 
element is not evident to the listener, and therefore 
additional information (such as STHotFs) is required for 
a minimal understanding of the intended dramatic plot. 
The two pieces herein explained belong to this second 
subcategory of Intrinsic Dramaturgy.  

From the point of view of the instrumental techniques 
utilised, although more obvious in the clarinet piece, the 
two compositions rely mostly on the usage of advanced 
techniques, many of which are conceived in order to 
blend with the programmed electronics. The most 
common techniques utilised are: micro-intervallic; 
multiphonics (including multiphonic-trills); toneless 
articulation (woodwind instruments); key strokes; 
toneless playing (blowing through the clarinet, with an 
embouchure not enough to produce the fingered normal 
pitch); slap-tongue notes; playing notes with teeth on 
the reed of the clarinet with flutter tongue (which 
should produce a high pitch whistling sound); very fast 
tremolo over all 4 strings at the same time (for violin 
and cello, as in Berio's Sequenza VI for viola); playing 
with the hair of the bow on the side of the bridge of the 
cello, and so forth.6 

Figure 4 shows not only an example of some these 
techniques for the clarinet in bars 29 and 30 in 
Intersections, but also the intersections of the three 
main motives of the two characters into one single 
motive in bar 29. 

 
Figure 4. Example of advanced techniques (both bars) 
including and intersection of motives in Intersections 
in bar 29. 

3. REAL-TIME DSP IN BOTH 
COMPOSITIONS – USE OF FULL 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 I thereafter divide this subcategory into three further subgroups: 
stage drama, non-stage drama and preconceived musical forms. 
6 A full description of these techniques is offered in each of the scores 
of these two compositions. 
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AUTOMATION IN THE 
PROGRAMMING OF THE 2 WORKS 

The main reasons for the usage of full automation in 
these two compositions have been already explained in 
the former sections, hence, this section is dedicated to 
the explanation of how the fully automated electronics 
work, with a description of some of the DSP functions 
involved and how the automation in each case proves 
extremely useful for both dramatic and musical 
purposes. 

However, before discussing some of those processes, 
a general description of how the full automation works 
in both cases must be introduced.  

The two pieces were composed and programmed in 
order to completely avoid any type of extra-musical 
activity on the stage for the solely purpose of activating 
the electronics, such as pressing pedals or keys, 
manipulation of faders and so on during the 
performance. Hence, the audience can concentrate on 
the music played by the instrumentalist eliminating in 
this manner distraction or even loss of interest (avoiding 
therefore Delalande’s sixth listening behaviour [6])7 
caused by extra activities on the stage not related with 
playing a musical instrument. With regard to the 
dramaturgic aspect of this, it is my goal, that the 
performance of this type of pieces must create an 
environment allowing listeners for a full concentration 
on sound, mostly on its morphological, dramaturgical 
and spatial aspects.  

In order to achieve that set of goals in these pieces, the 
computer is not on the stage, but with a second person 
(normally the composer) sitting at the mixing desk. The 
only device required on the stage is a SMPTE8 display, 
showing the time-code send by MAX, which permits 
the player to follow it while reading the score of the 
piece.9 The MAX patch begins by pressing a ‘start’ 
button (sending a MAX ‘bang’) and from then onwards, 
no further manipulation on the computer is necessary. 
The MAX patch is provided its own full score10, in 
which each and every DSP function is thereafter 
automatically started, as a chain reaction to the initial 
‘bang’. After the start point is activated, there are 
fifteen seconds (beginning by SMPTE 23:59:45:00) 
before the piece begins, which give more than enough 
time to the musician/s to prepare for the performance. 
Thus, any DSP function programmed for the 
composition starts at SMPTE 00:00:00:00, the actual 
start of the piece.  

The person in charge of activation the live-electronics 
and balancing the overall sound via the mixing desk 
(normally the composer, but, as indicated before, full 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7  Delalande categorised the listening experience in six different 
behaviours, where the sixth is called ‘non-listening behaviour’. 
8 The SMPTE is read by MAX in a subpatch, which contains the 
byphase modulated signal  already recorded in an AIFF audio file.  
The output of the audio file comes out of the audio interface from a 
7th channel and enters the SMPTE display on the stage, which 
decodes the information of the audio byphase modulated signal. 
9 See figures 1, 2 and 3, which shows examples how the musical score 
is written. 
10 The score in MAX consists of different timelines, which trigger 
each DSP function at the given time in the general music score. 

automation allows for anyone to perform this role) is 
required only to follow the SMPTE on the MAX main 
patch (a mirror of what is being sent to the SMPTE 
display) and concentrate purely on the input and output 
levels on the mixing console, in order to achieve the 
best possible sound balance inside the concert hall. 
Hence, automation allows here potentially for an 
optimal overall sound result, as the focus is on the 
sound balance during the performance, and not on the 
activation of several DSP functions. 
Having said that, this section continues with a 
description of some of the DSP functions utilised in the 
pieces, with a fair amount of detail about how they were 
programmed and an explanation about how full 
automation is invaluable for an overall satisfactory 
performance of these two compositions. 

3.1 – Surround sound (5.1) 

Both compositions have a final output of a typical 5.1 
Surround sound (L, C, R, SR, SL and LFE11). The LFE 
becomes the signal of all other channels via a low-pass 
filter with a cut-off frequency of 120 Hz although it can 
too, if required, process its own, independent low 
frequency signal.  

The panning system between the 5 loudspeakers is 
programmed with an automatic combination of 
algorithms, which can either (a) maintain a constant 
time in the panning speed or (b) constantly change the 
time of circulation of sound between the speakers using 
a linear function between two given durations (in 
milliseconds): the start and end inter-speaker-times. The 
panning movement can be programmed in two 
directions: clockwise and anticlockwise. A third option 
is the random selection of one loudspeaker at a time, 
with the same options for time manipulation formerly 
explained (a and b) in this paragraph.  

It should be made clear to the reader, that surround 
panning (despite the inclusion of joysticks in some 
advanced digital mixers such as the Yamaha DM2000, 
which offer some flexibility in the matter) is rather 
difficult to be manually controlled when several and 
simultaneous events are at work. Thus, automation is a 
solid and flexible option to obtain a constant speed 
between changing speakers, especially in cases of very 
short inter-speaker-times, which are impossible to be 
reproduced manually due to their short duration. The 
advantage of automation offers herewith the following 
options: 
-‐ effective and full control of the panning speed: the 

constant change of inter-speaker-times can be 
controlled from fast to slow or vice-versa (or even be 
left at a fixed rate), whilst very fast panning 
movements of less than 150 milliseconds produce a 
spatial granulation of the diffused sounds; 

-‐ control of the panning direction: clockwise, 
anticlockwise or random; 

-‐ increase and decrease of panning speed: by 
controlling the panning speed, imperceptible changes 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 LFE is the short version of Low Frequency Effect, basically the 
signal sent to the subwoofer of the 5.1 system. 
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in the panning speed can be introduced, which 
respond in absolute accuracy to the parameters 
programmed; 

-‐ the already mentioned avoidance of manual surround 
panning, which is rather unpredictable and not always 
possible. 

-‐ smooth and constant change of channel/speaker in the 
surround panning, by the addition fade-in/fade-out 
envelopes for each channel, which make a constant 
crossover at any change of channel, whether 
clockwise or anti-clockwise or in random motion. 
Particularly for the two pieces explained in this paper, 

the implementation of the surround sound and therefore, 
of the surround image in 5.1 is rather different in each 
case: while in Intersections, the surround movement 
and image is only at the end of the output chain, just 
before reaching the DAC, Confluences is so 
programmed, that several of the DSP functions in the 
MAX patch, such as pitch-shifting, ring modulation of 
comb filtered signals, multiple sample playback, and 
spectral multiplication (convolution), all possess their 
own individual surround options, which can be played 
simultaneously, therefore creating a texture of different 
surround/panning  layers with different panning speeds 
within the general 5.1 image. This is impossible to be 
achieved without the aid of a fully automated 
programmed panning system. Figure 5 below, shows 
and example of the pitch-shifting function in 
Confluences.  

 
Figure 5. Automatic panning in 5.1 surround sound 
sub-patch (MAX 5) in Confluences (Rainbows II) 

The results of this MAX sub-patch are sent 
subsequently directly to the general 5.1 output in the 
main patch. The main dramatic reason for the presence 
of surround textures, as explained above for 
Confluences, is the amplification of the environment in 
which the five different instruments develop their 
dramatic network of different combinations of the main 
motives, showing different aspects, which are not 
intended to be exposed in such a way in Intersections. 

3.2 - The usage of a cumulative buffer in 
‘Intersections (memories)’ for sample playback 

This case applies only to the former piece, and not only 
depends on full automation, but also the precision 

required herewith cannot be achieved by any other 
means. Parsifal’s Liebesmotiv (as described by Kurt 
Pahlen [7]) is the first to appear in the Overture of 
Wagner’s work. It is shown in figure 6. 

 
Figure 6. Liebesmotiv from the opera Parsifal, by 
Wagner. The numbers below each note indicate the 
duration of each note in quavers, which are translated 
into seconds in MAX for a cumulative buffer made of 
single recordings of each note during the performance. 

In order to be able to record all of these notes in the 
right order and duration, each of the pitches from this 
melody needed to be composed within Intersections, 
not only with regard to their individual duration, but 
also taking under consideration, that the dynamic 
(amplitude level) of each note had to be as similar as 
possible to allow for a full playback of the Leitmotiv by 
the computer alone. Each time one of these notes is 
played at different moments between SMPTE: 
00:02:10:00 and 00:08:17:00, the clarinet is 
accompanied only by a smooth reverberation of each 
note, which accentuates its intended dramatic meaning 
by extending its duration in time and at the same time, 
in the space.  

MAX allows for a cumulative buffer to be used, 
which, from a first sample, recorded at the start of the 
buffer, all of the other notes are appended one after the 
other. In this way, a forty-five seconds long buffer is 
finished after 18 samples have been recorded (the final 
sample is recorded in bar 48, at SMPTE: 00:08:17:00), 
shortly afterwards, at SMPTE: 00:08:35:00, the 
electronics play it alone and repeatedly in full duration, 
granulating each note in a circular surround panning.  

The required precision for the recording of each note, 
so that the duration and the sound of each note are 
recorded, was only possible by the implementation of 
full automation in MAX: while the clarinettist has only 
to follow the SMPTE displayed on the stage in order to 
play the notes accurately on the given time and without 
having to care about the activation of each recording 
(and therefore, allowing for a maximum in 
concentration on how to play those tender notes, 
marked always mf and dolce in the score), the 
electronics record and append each note/sample 
automatically into the buffer, adding in the process a 
short fade-in and fade-out of 195 milliseconds, in order 
to avoid clicks. Hence, the dramatic intention of playing 
the Leitmotiv in its complete and original form toward 
the end of Intersections is completely fulfilled, 
something which may not be possible if automation is 
not utilised. At this particular point, the musical score 
gives a very strong STHotF, by quoting Kurt Pahlen’s 
words [7] at bar 49.12 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 "Das erste Motiv ... bedeutet ... eine höhere, sublimierte Liebe, die 
durch eine Vereiningung mit Gott ihre Erfüllung erfährt." Translated 
freely into English: "The first motive ... means ... a higher, sublime 
love, which experiences its fulfillment through its union with God". 
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3.3 – Dynamic delays 

The usage of this type of delays is already a common 
issue in several pieces I composed before these two. 
Although each piece uses them in different ways, the 
main idea of this DSP function is to produce delays 
across the 5.1 diffusion system, which, normally from 
the front to the rear, delay the sound by a random 
amount of time, which is herewith given in samples, 
and therefore dependant on the actual sampling rate for 
their actual time in ms13. The amplitude of each delay in 
the chain decreases (between 10% and 15% each time), 
and the algorithm works in such a way that, in spite of 
the random time selected by each activation of the 
patch, the second delay will always be longer than the 
first, the third longer than the second, and so forth. The 
output of each delay is sent thereafter to an individual 
reverb unit (slightly different for each of the five 
outputs) and further sent to a fixed output in the 5.1 
surround image. Hence, this process is not included in 
any surround movement, as the surround image is fixed. 
Figure 7 shows the interior of this patch. 

 
Figure 7. Dynamic Delays sub-patch in MAX, 
showing the calculation of each delay time in samples, 
the decrease of each subsequent delay in amplitude 
and the five individual outputs, corresponding to the 
5.0 surround image. The smooth envelopes just before 
the output are there (line~ objects) in order to avoid 
possible clicks. 

Again, as shown in the former examples, this type of 
DSP function requires a level of precision in its 
activation, calculation and diffusion, which can only be 
achieved completely satisfactorily with the usage of full 
automation.  

The intended dramaturgy embedded in this effect is to 
emphasise the second word of the title of the 
composition: memories, which seem to fade away with 
each repetition, as time passes by. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13  Both pieces use a 44.1 kHz sampling rate, and therefore, the 
number of samples shown in Fig. 7 for each delay correspond to that 
rate. For example, the first delay showing a random caculation of 
8548 samples, is, at a SR of 44.1 Khz, ca. 194 ms. long. 

3.4 – Real Time Random Granulation using Pitch-
Tracking and Phase modulation 

The Real Time Random Granulation utilised herewith is 
a complex process which includes phase modulation in 
one of the three granular generators, whilst the overall 
grain generation depends on the incoming microphone 
signal(s) (from the live instruments), which is/are pitch-
tracked by a pitch-recognition algorithm (external 
fiddle~ object in MAX). 

The granulation occurs between the interaction (ring 
modulation) of the incoming microphone signal and the 
sum of three cosine oscillators. These three oscillators 
are combined in such a manner, that the first receives 
the actual pitch value from the microphone signal from 
the pitch-tracker, while the second receives the same 
information, but this time multiplied by factor 2.5; the 
third oscillator receives its frequency input information 
directly from the output of oscillator No 2. All of these 
three oscillators are additionally phase modulated by the 
microphone signal. The output of the addition of these 
three oscillators is thereafter ring modulated with the 
incoming microphone signal, before being sent to the 
grain envelope generator, which calculates not only the 
grain time, but also the inter-grain times. Before the 
grains are sent to their output, they are filtered by a 
filter bank (the MAX object svf~), a combination of 
low-pass + notch + high-pass + band-pass filters, and 
then sent to a stereo output via delays (so that each 
channel has its own grain) and also to a reverb unit, 
with the purpose of adding some final colour to the 
overall sound. The reason for the stereo output from this 
patch, is that this granulation has the musical function 
of a rather established cloud within the surround image. 
Hence, the signal from each of the two channels is 
diffused only in quadrophony, in a crossing stereo 
image between the loudspeakers pairs L, R and SR, SL.  

Thus, grains are a combination of multiple events, in 
which their frequency is mainly determined by the 
incoming frequency played by the live instruments, 
while the colour of the grains is mainly affected by the 
phase modulation and afterwards, by the ring 
modulation, whilst the filters add to the colour and 
create a certain illusion of multiple grain voices. The 
grain shape is a Gaussian-like envelope stored in a 
buffer, which also includes the inter-grain time.  

It must be said though, that the last part of the chain, 
including the filter-bank, the delays and the final reverb 
were added for Confluences, while in Intersections, 
these features are missing (except for the filter-bank, 
which is nevertheless reduced to only a low-pass and a 
notch filter). In both cases however, the effect is of a 
smooth cloud of isolated grains appearing at each time 
in which there is an impulse coming from the live 
instrument(s). In Confluences, this type of granulation 
appears for the first time in bar 43, at SMPTE 
00:06:03:00, triggered by the signals of the violin and 
the cello, whilst in Intersections, the first appearance is 
at SMPTE 00:01:17:00. Automation helps herewith for 
accurately switching on and off this DSP function at 
very exact moments without further notice. The sound-
cloud formed by this specific type of granulation creates 
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a rather ethereal atmosphere, which helps to underline 
the main dramatic ideas set by the music played by the 
instruments at those precise instances.  

Figure 8 below shows the sub-patch for this type of 
granulation.  

 

 
 

Figure 8. Real Time Random Granulation sub-patch 
in MAX. Most of the processes described above can 
be recognised in this figure. The pitch-tracking 
algorithm however is not included herewith, as it is an 
external sub-patch placed just before this one. 

3.5 – Special Reverb Design for ‘Confluences 
(Rainbows II)’ 

A special reverb was specially programmed for 
Confluences.  

Although the main schema of the utilisation of a chain 
of all-pass filters (see Figure 9 below) for the reverb 
model is applied herewith –in a similar way as used in 
the Schroeder reverb, a combination of comb filters 
followed by a chain or normally five all-pass filters– 
there are special differences compared to the original 
Schroeder model. These differences are mostly evident 
in the lack of comb filters at the start of the chain, which 
creates a slightly different reverb effect, but far from the 
tap effect, which was sought to be avoided herewith.  

The reverb design for Confluences is made of eight 
all-pass filters, which are accessed by the original 
signal at once and in chain, with in some cases, 
feedback on some of the filters (between filter 4 and 1, 
see Figure 9). The result is a rather smooth and natural 
reverb, due to the fact that all-pass filters transmit all 
frequencies of steady state signal equally well [8]; 
therefore the amplitude response is 1 at each frequency, 
while the phase response, which determines the delay 
versus frequency, can be arbitrary, as Smith states [9].  

In Intersections, on the other hand, only taps with 
feedback –basically comb filters without the feed-
forward property of all-pass filters– are used, which 
result in frequency cancellations which, in spite of 
being in a position to imitate rather closely room 
effects, they can also yield ringing and instability, and 
therefore, are unfortunately not as satisfactory as the 
system described above.  

 

 
Figure 9. Reverb system in Confluences, made of 

eight all-pass filters. 

In both pieces however, reverb is used for the 
dramatic purpose of creating a special environment 
independent from the natural reverberation of the 
eventual venue. In particular, reverb is used herewith to 
keep the sound of the instrument(s) in the concert space 
longer after the player(s) have ceased to play those 
notes. In this manner, those sounds are projected into 
the 5.1 surround image independently from their 
original source, particularly in Intersections, alluding to 
the ‘memories’ in the title. As the special reverb design 
for Confluences was only programmed in 2012, it is 
possible, that Intersections will use it too in future 
performances, due to its obvious advantages, most 
compatible with its dramaturgic intention rather than the 
taps with feedback of the original version. 

As the reverb parameters change throughout the 
length of both pieces, there is the constant danger of 
feedback occurring during the performance. Despite a 
fixed input value for each of the different microphones 
given automatically within the MAX patch in both 
compositions, there is still the need for additional 
manual level control during the performance from the 
mixing desk in order to avoid feedback, which is the 
only exception of automation for both pieces.  

4.  CONCLUSIONS 
The aim of this article –as it was in my former writings 
about the topic of full automation of live electronics 
[1]– is, on the one hand the fact that applying complete 
automation to the real-time processes of the electronics 
of a piece of music has a tangible beneficial impact on 
the performance of interactive works as much as on the 
achievement of their dramaturgical intentions; and, on 
the other hand, there is also an evident beneficial impact 
on the rehearsal of such pieces and on their eased 
circulation in different venues. Herewith, the usage of 
full automation of DSP functions is described 
extensivelly through the comparison between two 
different practical examples.  

This article shows also the required progression of the 
complexity embedded in this type of programming 
between a solo and an ensemble piece: Confluences 
(Rainbows II) is up to date the most complex example 

170

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



	  

of automation of live-electronics in my production. As 
demonstrated in those examples in section 3, several 
and simultaneous complex DSP processes were 
programmed in both compositions with no restrictions 
apart from those given by the CPU performance (and/or 
memory capacity) of the computer employed. And with 
the strong performance of computers in the past ten 
years, this has indeed ceased –in most cases– to be a 
limitation.  

Moreover, the synchronisation between the performer 
(or performer) 14 and the electronics in these 
compositions is achieved with extreme simplicity by 
following a SMPTE display on the stage showing a 
precise time-code which is written periodically in the 
score every time DSP functions are automatically 
activated. As a result, much more demanding activities 
on stage such as, for example, activating pedals or the 
usage of click-tracks with headphones (and the usual 
leakage of sound that accompanies it) can be simply 
avoided.  

The benefits for both the musical performance and the 
staging of these pieces are evident, as less attention can 
be dedicated to the synchronisation of several DSP 
events and nevertheless, those DSP functions can be 
played with extreme accuracy in real time without the 
need of further requirements or activities. In this 
manner, performers can focus much more (or 
exclusively) on the musical aspects of the pieces and 
much less (or not at all) on those technological aspects, 
therefore, enhancing the chances of a satisfactory 
delivery of the intended dramaturgy and an optimum 
result for the output of the algorithms utilised in the 
electronics. 

The paper also demonstrates with diverse examples, 
that the dramaturgy intended in the pieces depends 
strongly on the absolute accuracy of the electronic 
processes, and therefore, these pieces cannot be 
performed as intended without a full automation of their 
electronics. Said in other words, as Landy remarks in 
Understanding the Art of Sound Organization [4], 
Molino’s approaches to analysis, the poiesis (related to 
the construction of the work) and the aesthesis (related 
to the reception of the piece) cannot be completely 
fulfilled with regard to these two compositions if any 
other type of electronic activation were to be used. 

Intersections (memories) had its premiere at the 18th 
(and last) Annual Florida Electroacoustic Music 
Festival (University of Florida, USA) in April 200815. 
Confluences (Rainbows II) was premiered in September 
2012 in Ljubljana, Slovenia during the ICMC 2012.16 

 
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Or even conductors, as in the case of the premiere of Confluences) 
15 The clarinet part was played by Jorge Variego. 
16 The premiere was performed by: Anja Brezavšček (flute, Slovenia); 
Matjaž Porovne (violin, Slovenia); Jože Kotar (clarinet, Slovenia); 
Milan Hudnik (cello, Slovenia); Nina Prešiček (piano, Slovenia); 
Steven Loy (conductor, USA). 
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ABSTRACT 
The MoCap Toolbox is a set of functions written in 
Matlab for analyzing and visualizing motion capture data. 
It is aimed at investigating music-related movement, but 
can be beneficial for other research areas as well. Since 
the toolbox code is available as open source, users can 
freely adapt the functions according to their needs. Users 
can also make use of the additional functionality that 
Matlab offers, such as other toolboxes, to further analyze 
the features extracted with the MoCap Toolbox within the 
same environment. This paper describes the structure of 
the toolbox and its data representations, and gives an in-
troduction to the use of the toolbox for research and anal-
ysis purposes. The examples cover basic visualization 
and analysis approaches, such as general data handling, 
creating stick-figure images and animations, kinematic 
and kinetic analysis, and performing Principal Compo-
nent Analysis (PCA) on movement data, from which a 
complexity-related movement feature is derived. 

1. MOTIVATION AND OVERVIEW 
The MoCap Toolbox is a Matlab1 toolbox dedicated to the 
analysis and visualization of motion capture (MoCap) 
data. It has been developed for the analysis of music-
related movement, but is potentially useful in other areas 
of studies as well. It is open source, distributed under 
GPL license, and freely available for download at: 

www.jyu.fi/music/coe/materials/mocaptoolbox. 
The MoCap Toolbox is mainly intended for working 

with recordings made with an infrared marker-based op-
tical motion capture system. Such motion capture systems 
are based on an active source emitting pulses of infrared 
light at a very high frequency, which is reflected by 
small, usually spherical markers attached to the tracked 
object (e.g., a participant dancing or playing an instru-
ment). With each camera capturing the position of the 
reflective markers in two-dimensional, a network of sev-
eral cameras can be used to obtain position data in three 
                                                             
1 www.mathworks.com 
 
 
 
 
 
 
 
2 www.c-motion.com/products/visual3d/ 

 
 
 
 
 
 
 

dimensions. Besides optical motion capture, the MoCap 
Toolbox can also be used for analyzing data captured 
with other tracker technologies, such as inertial or mag-
netic trackers. However, some features of the toolbox will 
be limited, since such trackers do not produce position 
data, but derivative data, (e.g., acceleration). Further-
more, the toolbox is optimized for the use of 3-
dimensional position data, so using data with six degrees 
of freedom (position and rotation) might require custom-
ized adjustments of functions. 

There are proprietary (closed source) software solutions 
available for motion capture analysis and visualization, 
such as Visual3D2 or MotionBuilder3, and applications 
that are primarily used for recording data (such as Qual-
isys Track Manager4 or Vicon Nexus5). However, such 
applications are usually either too limited in their func-
tionality, too focused on visualization and/or too restric-
tive to adapt to the needs of the researcher, such as devel-
oping new movement features useful for their individual 
research questions. To overcome these issues, we imple-
mented this toolbox in Matlab, a generic scientific com-
puting environment, and made it available to other re-
searchers to be used in favor of their needs. The Mocap 
Toolbox is not the only Matlab toolbox available for mo-
tion capture analysis; one other toolbox worth mentioning 
is the toolbox created by Charles Verron [1]. This toolbox 
is more limited than the MoCap Toolbox, but offers a 
graphical user interface (GUI). 

Matlab offers pre-built visualization opportunities and 
gives access to a large range of other functionality. Some 
functions included in the MoCap Toolbox use, for exam-
ple, the Signal Processing Toolbox provided by Math-
Works, or the FastICA package6, a freely available third-
party toolbox for Independent Component Analysis. Fur-
thermore, the users themselves can make immediate use 
of the additional functionality and toolboxes provided by 
Matlab, for example the Statistics Toolbox, to further 
analyze features extracted with the MoCap Toolbox with-
out the need to switch between different applications. 
MoCap Toolbox code is written using the generic Matlab 
syntax and is openly assessable, so users can add and 
adapt functions to their own needs. 

                                                             
2 www.c-motion.com/products/visual3d/ 
3 www.autodesk.com/motionbuilder 
4 www.qualisys.com/products/software/qtm/ 
5 www.vicon.com/products/nexus.html 
6 www.cis.hut.fi/projects/ica/fastica/ 

Copyright: © 2013 Burger et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License 3.0 Unport-
ed, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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The MoCap Toolbox supports various motion capture 
data formats, in particular the .c3d7 file format (which, 
e.g., Vicon8 or OptiTrack9 optical motion capture systems 
can produce), the .tsv format and the .mat format, both 
produced by the Qualisys motion capture system10, and 
the .wii data format produced by the WiiDataCapture 
software11.  

The MoCap Toolbox provides 64 functions for analyz-
ing and visualizing motion capture data. The main cate-
gories can be summarized as data input and edit func-
tions, coordinate transformation and coordinate system 
conversion functions, kinematic and kinetic analysis 
functions, time-series analysis functions, visualization 
functions, and projection functions. Furthermore, it uses 
three different data structures, the MoCap data structure, 
the norm data structure, and the segm data structure. To 
convert between the different data representations and 
enable certain visualizations, three different parameter 
structures are used, the m2jpar, the j2spar, and the anim-
par structures. Both the data and the parameter structures 
will be discussed and explained in the next section. 

2. DATA REPRESENTATIONS 
The MoCap Toolbox uses three different data structures, 
the MoCap data structure, the norm data structure, and 
the segm data structure. A MoCap data structure in-
stance is created when mocap data is read from a file to 
the Matlab workspace using the function mcread. A 
MoCap data structure contains the 3-dimensional loca-
tions of the markers (in the .data field) as well as basic 
information, including the type of structure, the file 
name, number of frames of the recording, the number of 
cameras used for the recording, the number of markers in 
the data, the frame rate, the names of the markers, and the 
order of time differentiation of the data. Additionally, the 
MoCap data structure contains fields for data captured 
with analog data, such as EMG. Finally, the time stamp 
of the recording and the data type (e.g., 3D) can be add-
ed. 

A MoCap data structure instance is also created when 
the function mcm2j is used. This function transforms a 
marker representation to a joint representation. These two 
representations use the same data structure, although they 
are conceptually different: the marker representation re-
flects the actual marker locations, whereas the joint rep-
resentation is related to locations derived from marker 
locations. A joint can consist of one marker, but it can 
also be derived from more than one markers. It can, for 
example, be used for calculating the location of a body 
part where it is impossible to attach a marker. The mid-
point of a joint, for instance, can be then derived as the 
centroid of four markers around the joint. 

The norm data structure, created by the function 
mcnorm, is similar to the MoCap data structure, except 
that its .data field has only one column per marker. 
This column contains the Euclidean norm of the vector 
                                                             
7 www.c3d.org 
8 www.vicon.com 
9 www.naturalpoint.com/optitrack/ 
10 www.qualisys.com 
11 www.jyu.fi/music/coe/materials/mocaptoolbox 

data from which it was derived. If, for instance, mcnorm 
is applied to velocity data, the resulting norm data struc-
ture holds the magnitudes of velocities, or speeds, of each 
marker. 

The third data structure, the segm data structure, is not, 
like the other two, related to points in space (markers or 
joints), but to segments of the body (see, e.g., [2]). The 
function mcj2s performs a transformation from a joint 
representation to a segment representation and produces 
as output a segm data structure instance. Most fields of a 
segm data structure are similar to the ones of a MoCap 
data structure, however, the .data field is replaced by 
four other fields. The .parent field contains infor-
mation about the kinematic chains of the body, i.e., how 
the joints are connected to form segments, and how seg-
ments are connected to each other. The fields 
.roottrans and .rootrot store the location and 
orientation of the center of the body, the root. The 
.segm field consists of several subfields that store the 
orientation of the body segments in several ways. The 
.eucl subfield contains for each segment the Euclidean 
vector pointing from the proximal to the distal joint of the 
segment. The length of each segment is stored in the .r 
subfield. The .quat subfield includes the rotation of 
each segment as a quaternion representation (see, e.g., [3] 
and [4]). Finally, the .angle subfield contains the an-
gles between each segment and its proximal segment. 

To convert between the different representations and to 
enable certain visualizations, the MoCap Toolbox offers 
three different parameter structures: m2jpar, j2spar, and 
the animpar structures.  

The m2jpar structure is used by the function mcm2j 
and contains the information needed to perform the trans-
formation from marker to joint representation. Besides 
fields holding the number of joints and the names of the 
joints, it includes a field with the numbers of the markers 
defining the location of each joint.  

The j2spar structure is used by the function mcj2s and 
contains the information needed to perform the transfor-
mation from joint to segment representation. Besides the 
fields containing the segment names and the number of 
the root (center of the body) joint, it includes fields with 
the numbers of the three joints that define the frontal 
plane of the body and a vector indicating the number of 
the parent segment (the segment that is proximal in the 
kinematic chain) for each segment. 

The animpar structure is used by the functions 
mcplotframe and mcanimate and contains the in-
formation needed to create frame (stick figure) plots and 
animations. The structure includes fields for the screen 
size, limits of the plotted area, viewing angles, marker 
sizes, plotting colors, connection line configurations and 
widths, and plotting of marker and frame numbers. Addi-
tionally, the structure contains fields related to creating 
animations, such as the frames per second, a substructure 
for perspective projection parameters, and settings for 
plotting marker traces. 
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3. USING THE TOOLBOX 
In what follows, we will give an introduction to the use of 
the toolbox for research and analysis purposes. 

The MoCap Toolbox manual, provided with the down-
load of the toolbox, offers an example chapter with elev-
en demos explaining the basic usage of the toolbox. Ad-
ditionally, a demo data set called mcdemodata, includ-
ing motion capture data and associated parameter struc-
tures, is provided with the download. The MoCap data 
structures dance1 and dance2 used below are availa-
ble in the mcdemodata data set. 

3.1 Reading Data and Filling Gaps 

Recorded motion capture files can be imported into 
Matlab using the function mcread storing the content of 
the file as a MoCap data structure, i.e.,  
 
d = mcread('file.tsv'); 
 

An essentially useful first step is usually to check for 
missing frames in the recording. Taking the mocap data 
structure d, we can use 

 
mcmissing(d) 

 
to detect missing frames in the recording. In case of 

missing data, we can fill them using linear interpolation 
with the function mcfillgaps: 

 
d = mcfillgaps(d); 

 
From this point onwards, we will use the two MoCap 

data structures dance1 and dance2 from the 
mcdemodata. Since they are already available as 
MoCap data structures and do not contain missing data, 
both importing and gap filling are not required anymore. 

3.2 Visualizing and Animating Data 

A good approach to get an overview of the data is to vis-
ualize and animate data. Using the MoCap Toolbox, 
mocap data can be plotted in different two ways: as a 
time series or as single frames. As a function of time, 
marker location data can be plotted with the function 
mcplottimeseries, e.g., 

 
mcplottimeseries(dance1,[1 20 28], 
'dim',3)  
 
which plots the third/vertical dimension of markers 1, 

20, and 28 (left front head, right hand, and right foot) (see 
Fig. 1). 

Marker locations as single frames can be plotted using 
the function mcplotframe (using the (x,y) projection 
of the markers): 

 
mcplotframe(dance1,450); 
 

 
Figure 1. Marker location data plotted as function 
of time using mcplottimeseries.  

 
This call, plotting the 450th frame of the recording (see 

Fig 2a), uses the default animation parameter structure. 
However, if a customized animpar structure is used, we 
can, for instance, set the connection lines between the 
markers to obtain a visualization that is easier to under-
stand and that looks more human-like (see Fig. 2b): 

 
ap = mcinitanimpar; 
ap.conn = [1 2; 2 4; 3 4; 3 1; 5 6; 9 
10; 10 12; 11 12; 11 9; 8 9; 8 10; 8 
5; 8 6; 5 9; 5 11; 6 10; 6 12; 7 11; 
7 12; 7 5; 7 6; 5 13; 13 15; 13 16; 
16 19; 15 19; 6 14; 14 17; 14 18; 17 
20; 18 20; 9 21; 11 21; 10 22; 12 22; 
21 23; 23 25; 23 26; 25 26; 22 24; 24 
27; 24 28; 27 28]; 

mcplotframe(dance1,450,ap); 
 

In case users collected the data with a Qualisys motion 
capture system and created a bone structure during the 
labeling process in the Qualisys software, they can export 
the so-called label list (which contains the marker con-
nections) and use this file to create the connection matrix 
by employing the function mccreateconnmatrix. 

We can change the general color scheme and the colors 
of individual markers, connector lines, traces, and num-
bers by adjusting the values of the respective fields of the 
animpar structure, for example (see Fig. 2c): 

 
ap.colors = 'wrbgy'; 
ap.markercolors = 'bmgyrrrrrrrrkk'; 
mcplotframe(dance1,450,ap); 

 

 
Figure 2. Marker location data plotted as frame 
using mcplotframe: a) using the default pa-
rameters; b) using a connection matrix; c) chang-
ing colors; d) joint transformation. 
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The function mcanimate is used to create animations: 
 

mcanimate(dance1,an); 
 
The MoCap Toolbox produces the single animation 

frames as .png files. They have to be compiled into a 
movie using other software, such as QuickTime Pro on 
Mac, or MovieMaker on Windows.  

Animations can be created as 2D projections in two 
ways, either orthographic (default) or perspective, the 
latter one by including the perspective projection parame-
ter: 

 
mcanimate(dance1,an,1); 

3.3 Kinematic Analysis 

Kinematic variables, such as velocity and acceleration, 
are estimated using the time-derivative function     
mctimeder: 

 
d1v = mctimeder(dance1,1); %vel. 
d2v = mctimeder(dance2,1);  
d1a = mctimeder(dance1,2); %acc. 
d2a = mctimeder(dance2,2);  

 
To analyze such time series, we can calculate their 

means and standard deviations using mcmean and 
mcstd (ignoring eventual missing frames). For this 
sample analysis, we will take the norm data, that is, the 
magnitudes of the 3-dimensional data of velocity and 
acceleration. To simplify the approach, we first combine 
the data from marker 1 (left front head) of the four 
MoCap data structures using mcconcatenate: 

 
dva = mcconcatenate(d1v,1,d1a,1,d2v,1, 
d2a,1); 

dva_mean = mcmean(mcnorm(dva)); 
dva_std = mcstd(mcnorm(dva)); 

 
The results (see Table 1) show that both mean and 

standard deviation of velocity and acceleration of the left 
front head marker are higher for dance2 than for 
dance1, so the dancer in dance2 moved faster and at a 
wider range of speeds and also used more and larger di-
rectional changes. 

 
  mean SD 

velocity dance1 235.85 110.79 
dance2 520.24 192.27 

acceleration dance1 2233.66 1326.55 
dance2 3347.21 1423.19 

Table 1. Means and standard deviations of veloci-
ty and acceleration (magnitudes) of the left front 
head marker data of dance1 and dance2. 

 
The cumulative distance travelled by a marker can be 

calculated with the function mccumdist (returning a 
norm data structure): 

 
d1dist = mccumdist(dance1); 
d2dist = mccumdist(dance2); 

We use the Matlab function barh for plotting markers 
1 (left front head), 20 (right finger), and 28 (right foot) 
(see Fig. 3): 

 
figure, barh([d1dist.data(1500,[1 20 
28]); d2dist.data(1500,[1 20 
28])],'b'); 

 

 
Figure 3. Cumulated distance travelled by mark-
ers 1, 20, and 28 of mocap data dance1 and 
dance2 (labels and title were added separately). 

 
We can see in Figure 3 that the three markers, especial-

ly the right hand marker, travelled more for dance2 than 
for dance1, so we can assume that the amount of 
movement was higher in dance2.  

A measure related to the amount of movement is the ar-
ea covered by the movement, which can be calculated 
using mcboundrect. If we want to calculate the bound-
ing rectangle of the four hip markers, we do: 
br1 = mean(mean(mcboundrect(dance1,[9 
10 11 12]))); 

br2 = mean(mean(mcboundrect(dance2,[9 
10 11 12])));12  
 
The bounding rectangle value for dance1 equals .1806 

and for dance2, it equals .9724. Since the value for 
dance2 is higher, dance2 not only had a higher 
amount of movement, but also used more space than 
dance1. The bounding rectangle measure was found to 
be a relevant movement feature in [5] and [6]. 

We can also calculate distances between markers using 
mcmarkerdist. The standard deviation of the distance 
between left and right finger, 

 
md1 = std(mcmarkerdist(dance1,19,20)); 
md2 = std(mcmarkerdist(dance2,19,20)); 

 
gives us information about the variability of the marker 

distance. The standard deviation of the finger marker 
distance for dance1 equals 49.0 and for dance2 
175.65, so the fingers in dance2 exhibited more varia-
ble distances. 
 

Periodicity of movement can be estimated using the 
function mcperiod. It is based on autocorrelation, and 
                                                             
12 mcboundrect uses window decomposition. The function output 
here is averaged across the windows and the four markers. 
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either the first or highest peak of the autocorrelation func-
tion is taken as periodicity estimation dependent on the 
parameter input. With 

 
d1m1 = mcgetmarker(d1a,20); 
d2m1 = mcgetmarker(d2a,20); 
[per1 ac1 eac1] = mcperiod(d1m1,2, 
'highest'); 

[per2 ac2 eac2] = mcperiod(d2m1,2, 
'highest'); 
 
we calculate the periodicity of the acceleration of the 

right finger marker. mcperiod resulted in a periodicity 
estimate for each dimension being [1.04, 0.53, 0.52] for 
dance1 and [1.04, 1.01, 1.06] for dance2. While the 
first dimension is similar, the second and third dimen-
sions are roughly half for dance1, suggesting that in this 
case the finger moved in double tempo in y and z direc-
tions.  

A more accurate periodicity analysis can be performed 
using windowed autocorrelation: 
 
[per1 ac1 eac1] = mcwindow(@mcperiod, 
d1m1,2,0.25); 

[per2 ac2 eac2] = mcwindow(@mcperiod, 
d2m1,2,0.25); 

 
To allow visual inspection of the time development of 

the periodicity, the enhanced autocorrelation (eac) matrix 
can be plotted as an image (see Fig. 4). The colors indi-
cate the regularity of periodic movement, with warm col-
ors corresponding to regions of regular periodic move-
ment in the period-time plane: 

 
figure, imagesc(eac1(:,:,3)), axis xy 
set(gca, 'XTick',0:4:46, 'XTickLabel', 
0.5*(0:4:46), 'YTick',[0 30 60 90 
120], 'YTickLabel',[0 0.5 1 1.5 2.0]) 

figure, imagesc(eac2(:,:,3)), axis xy 
set(gca, 'XTick',0:4:46, 'XTickLabel', 
0.5*(0:4:46), 'YTick',[0 30 60 90 
120], 'YTickLabel',[0 0.5 1 1.5 2.0]) 

 

 
Figure 4. Enhanced autocorrelation function of 
the vertical components of the right finger accel-
eration in dance1 and dance2. 

 
We can see in Figure 4 that the vertical component of 

the right finger acceleration of dance1 shows quite clear 
periodic movement with a period of about 500 millisec-
onds, whereas the periodicity for dance2 is weaker and 
more irregular.  

3.4 Kinetic Analysis 

The MoCap toolbox offers the possibility to calculate 
kinetic variables using Dempster’s body-segment model 
[7]. To make our present data compatible with Demp-
ster’s model, we first have to reduce the amount of mark-
ers from 28 to 20. We will accomplish this with a marker-
to-joint transformation, implemented in the function 
mcm2j. The m2jpar parameter structure required for this 
transformation is created like this: 
 
m2j = mcinitm2jpar; 
m2j.nMarkers = 20; 
m2j.markerNum = {[9 10 11 12],[9 11], 
21,23,26,[10 12],22,24,28,[7 8 7 8 9 
10 11 12],[5 6],[1 2 3 4],5,13,[15 
16],19,6,14,[17 18],20}; 

m2j.markerName = {'root', 'lhip',   
'lknee','lankle','ltoe','rhip',   
'rknee','rankle','rtoe','midtorso', 
'neck','head','lshoulder','lelbow', 
'lwrist','lfinger','rshoulder',  
'relbow','rwrist','rfinger'}; 

 
The joint 'root', for example, is obtained by calcu-

lating the centroid of markers 9, 10, 11, and 12. The 
marker-to-joint transformation is carried out as follows: 

 
d1j = mcm2j(dance1,m2j); 
d2j = mcm2j(dance2,m2j); 

 
Figure 2d visualizes frame 450 of the joint representa-

tion of dance1. The next step is to do the joint-to-
segment transformation. The j2spar parameter structure 
required for the transformation is created like this: 

 
j2s = mcinitj2spar; 
j2s.rootMarker = 1; 
j2s.frontalPlane = [6 2 10]; 
j2s.parent = [0 1 2 3 4 1 6 7 8 1 10 
11 11 13 14 15 11 17 18 19]; 

j2s.segmentName = {'lhip','lthigh', 
'lleg','lfoot','rhip','rthigh', 
'rleg','rfoot','ltorso','utorso', 
'neck','lshoulder','luarm','llarm', 
'lhand','rshoulder','ruarm','rlarm', 
'rhand'}; 
 
The joint-to-segment transformation is accomplished 

using the function mcj2s: 
 
d1s = mcj2s(d1j,j2s); 
d2s = mcj2s(d2j,j2s); 
 
In order to calculate kinetic variables, such as energy, 

each body part has to be associated to its parameter (i.e., 
masses and lengths) specified by the Dempster model. 
Therefore, a variable is created specifying the types of the 
segments13: 

 

                                                             
13 For a list of the segment types, see the MoCap Toolbox manual. 

176

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



s_ind = [0 0 8 7 6 0 8 7 6 13 12 10 11 
3 2 1 11 3 2 1]; 
 
This variable associates each joint with a segment type. 

Each component indicates the type of body segment for 
which the respective joint is a distal joint. Joints that are 
not distal to any segment have zero values.  

The parameters for each body segment can be then ob-
tained using the function mcgetsegmpar: 

 
spar = mcgetsegmpar('Dempster',s_ind); 
 
With this body-segment representation we can estimate 

kinetic variables for each segment individually. The time-
average of the kinetic energy of the whole body, for ex-
ample, can be calculated like this: 

 
[trans1 rot1] = mckinenergy(d1j,d1s, 
spar); 

[trans2 rot2] = mckinenergy(d2j,d2s, 
spar); 

kinEn1 = sum(mcmean(trans1)) + 
sum(mcmean(rot1)); 

kinEn2 = sum(mcmean(trans2)) + 
sum(mcmean(rot2)); 

 
The value for the overall kinetic energy of dance1 

equals 2.21, and the value for dance2 is 11.37, thus 
more energy was used in dance2, which supports our 
argumentation drawn earlier, that there is more move-
ment in dance2 than in dance1.  

3.5 Principal Component Analysis (PCA) 

Principal component analysis can be used to decompose 
motion capture data into components that are orthogonal 
to each other. By using 

 
[pc1 p1] = mcpcaproj(d1j,1:5); 
[pc2 p2] = mcpcaproj(d2j,1:5); 
 

we calculate the first five principle component projec-
tions of the position data (as joint representations) of d1j 
and d2j. p1.l and p2.l contain the amount of vari-
ance explained by each component. From these vari-
ances, we can derive, for instance, a measure of move-
ment complexity, defined as the cumulative sum of the 
proportion of explained variance contained in the first 
five PCs (see, e.g., [5] and [8]):  
 
pcapropvar1 = cumsum(p1.l(1:5)); 
pcapropvar2 = cumsum(p2.l(1:5)); 

 
The results, presented in Table 2, indicate that, in case 

of pcapropvar1, most movement is already explained 
with the first component, and the first five components 
explain almost all movement. In case of pcapropvar2, 
however, only about 50% of the movement is explained 
with the first component, and the first five components 
explain less than the first five components of 
pcapropvar1, so more components are needed to fully 
explain the movements of dance2. Such a movement 

would be characterized as complex, since a high number 
of PCs is needed to explain the movement sufficiently, 
whereas a low proportion of unexplained variance 
(dance1 case) implies a simpler movement. 

 
 pcapropvar1 pcapropvar2 
cumsum(1) 0.79 0.48 
cumsum(1:2) 0.90 0.78 
cumsum(1:3) 0.95 0.85 
cumsum(1:4) 0.97 0.90 
cumsum(1:5) 0.98 0.93 

Table 2. Cumulative variances of the first five principle 
components for dance1 (pcapropvar1) and 
dance2 (pcapropvar2). 

 

4. CONCLUSION 
The MoCap Toolbox is a Matlab toolbox dedicated to the 
analysis and visualization of motion capture data. It has 
been developed for the analysis of music-related move-
ment, but is potentially useful in other areas of studies as 
well. It has attracted researchers’ attention working in 
various fields and has been downloaded for being used in 
a wide range of different research purposes; music-
related, but also, for instance, face recognition, sports, 
gait, or biomechanics research. It has also gained attrac-
tion in artificial intelligence research, such as robotic 
motion, human-robot interaction, and machine learning.  

The MoCap Toolbox has continuously been developed 
further since its first launch in 2008 by both the authors 
and the users, whose bug reports and suggestions for new 
functionality has greatly helped to improve and extend it.  

In the future error handling will be improved, for in-
stance, when wrong data structures are used. Toolbox 
functions usually recognize the mistake, but in the pre-
sent version, some functions do not return sufficiently 
clear error messages. 

Furthermore, some functions will be adapted to stand-
ard Matlab conventions, as it is already done in, for in-
stance, mcplottimeseries (specifying the plotting 
parameters as a strings-value combination). 

Individual functions will be improved, such as 
mcfillgaps, that would benefit from the implementa-
tion of more advanced gap-filling methods than linear 
filling, for example spline interpolation. Additionally, 
more body segment models besides Dempster’s model 
will be included, such as models proposed in [9] or [10]. 

As commercial tools (e.g., Visual3D) commonly pro-
vide GUIs instead of operating on a command-line basis, 
a graphical user interface could also be implemented for 
the MoCapToolbox. It would make the toolbox more us-
er-friendly – for example, connection matrices of stick 
figures could be drawn in the GUI, or gap filling could be 
graphically supported. 
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ABSTRACT 
The tendency to move to music seems to be built into 
human nature. Previous studies have shown a relationship 
between movement and the degree of spectral flux in 
music, particularly in the lower sub-bands. In this study, 
listeners’ perceptions of a range of frequency-restricted 
musical stimuli were investigated in order to find rela-
tionships between perceived musical aspects (rhythm, 
melody, and fluctuation) and the spectral flux in three 
different frequency bands. Additionally, the relationship 
between the perception of features in specific frequency 
bands and participants’ desire to move was studied. Par-
ticipants were presented with clips of frequency-restricted 
musical stimuli and answered four questions related to 
musical features. Both perceived strength of the rhythm 
and the propensity to move were found to correlate high-
ly with low-frequency spectral flux. Additionally, a lower 
but still significant correlation was found between these 
perceived musical features and high-frequency spectral 
flux. This suggests that the spectral flux of both low and 
high frequency ranges can be utilized as a measure of 
perceived rhythm in music, and that the degree of spectral 
flux and the perceived rhythmic strength in high and low 
frequency bands are at least partly responsible for the 
extent to which listeners consciously desire to move 
when listening to music. 

1. INTRODUCTION 
When listening to rhythmic music we tend to move our 
bodies with it. Movements induced by music might be 
subconscious, with almost indistinguishable trappings, or 
deliberate, strong and intentional. The proclivity to move 
with music seems to be built into human nature, which is 
described in the literature as groove (see, e.g., [1]-[3]). 
These studies propose that the functional role of rhythmic 
music and the construct of groove are related to the evo-
lution of entrainment and social behavior and state that 
synchronizing is the simplest form of entrainment from a 
psychological point of view. “Synchronization” is also 
the concept that Leman [4] suggests as the most funda-

mental component in bodily engagement with music. He 
proposed three concepts of (co-existing) corporeal articu-
lations – “Synchronization”, “Embodied Attuning”, and 
“Empathy” – that differ in the degree of musical in-
volvement and in the kind of action-perception couplings 
involved. “Synchronization” forms the fundamental com-
ponent, as synchronizing to a beat is easy and spontane-
ous. As the first step in engaging with the music, move-
ments could be used for imitation and prediction of beat-
related features in the music. The second component, 
“Embodied Attuning”, concerns the linkage of body 
movement to musical features more complex than the 
basic beat, such as melody, harmony, rhythm, tonality, or 
timbre. Following this idea, movement could be used to 
reflect, imitate, and navigate within the musical structure. 
Finally, “Empathy” is seen as the component that links 
musical features to expressivity and emotions. 

Thus, music-induced movements seem to be associated 
with rhythmic features of music, such as periodic and 
regular patterns of beats and pulses.  In basic western 
popular music settings the rhythm section (the drummer 
and bass player) are responsible for providing the rhythm. 
Van Dyck et al. [5] studied the effect of the dynamics of 
the bass drum on dancers in order to find if the bass drum 
is a feature that dominates music-induced movements. 
The authors concluded that the dynamic changes of the 
bass drum have an underlying effect on the intensity of 
movement while dancing. Burger and colleagues (see [6] 
and [7]) conducted a motion capture study, in which par-
ticipants were asked to move to various pop music stimu-
li. They performed computational feature extraction on 
both the movement and the music data and found several 
relationships between movement characteristics and 
rhythm- and timbre-related musical features. Their results 
indicate that clear pulses in the music encouraged partici-
pants to move their whole body with low spatial com-
plexity, while spectral flux in the low and high frequency 
ranges was more distinctly related to certain body parts. 
With an increasing amount of flux in the low and high 
frequencies, the authors discovered an increase in head 
and hand movement as well as an increase in temporally 
regular movement synchronized to different metrical lev-
els, whereas more complex, irregular rhythmic structures 
resulted in temporally less regular movement. The au-
thors concluded that spectral flux was related to the per-
ception of rhythm of the music – flux of the low frequen-
cies being associated with kick drum and bass guitar and 
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high frequency flux being influenced by hi-hat and cym-
bal sounds – and therefore considered important for in-
ducing movement. However, the perceptual dimension of 
spectral flux of restricted frequency bands has only been 
studied so far in connection to polyphonic timbre (see [8] 
and [9]) and music information retrieval related applica-
tions, such as automatic classification (see [10] and [11], 
both slightly differing in their technical implementation), 
but not strictly in relation to rhythm perception.  

The spectral flux of restricted frequency bands, or sub-
band flux, is a computational measure indicating the ex-
tent to which the spectrum changes over time. When 
computing this feature (see [8]), the stimulus is divided 
into 10 frequency bands, each band containing one octave 
in the range of 0 to 22050 Hz. After that the sub-band 
flux is calculated for each of these ten bands by taking 
the average of the Euclidean distances of the spectra for 
each pair of two consecutive frames of the signal (for 
more information about the derivation of the feature, see 
[8]). Two spectrograms of sub-band no. 2 (50-100 Hz) 
are displayed in Figure 1 to show the difference between 
high and low amounts of sub-band flux. 

The purpose of this study was to investigate listener's 
perception of a range of frequency-restricted musical 
stimuli. The original versions of the stimuli have already 
been used in the movement studies cited previously (see 
[6] and [7]), however the present study included both the 
original version and three different frequency restricted 
versions of the original stimuli (low, mid, and high fre-
quencies). We aimed to find relationships between specif-
ic musical aspects (such as rhythm, melody, and fluctua-
tion) and the spectral flux in the different frequency 
bands. Additionally, we were interested in the relation-
ship between the perception of musical features in specif-
ic frequency bands and participants’ desire to move. We 
hypothesized that the perceived strength of the rhythm is 
positively correlated with the spectral flux, especially for 
the stimuli restricted to low frequencies (sub-band 2), so 
participants would perceive the low-frequency sub-band 
flux as being related to rhythm. Furthermore, we assumed 
positive correlations between the desire to move and the 

spectral flux for sub-band 2 and 9, as the spectral flux in 
these bands was found to be related to several character-
istics of human movement (see [6] and [7]). 

2. METHOD 

2.1 Participants 

A total of 38 participants (26 females; average age: 
26.42, SD of age: 4.95) took part in the experiment. Par-
ticipants were international students from the University 
of Jyväskylä, Finland. Participants were compensated 
with a movie ticket. 

2.2 Stimuli 

The stimuli consisted of 30-second segments from 30 
different popular songs from various genres including 
Techno, Pop, Rock, Latin, Funk, and Jazz (the same mu-
sical stimuli as in [6] and [7] – a list of stimuli is included 
in these publications). They were all non-vocal and in 4/4 
time, but differed in their rhythmic complexity and pulse 
clarity. In order to present participants with frequency-
restricted stimuli, each clip was modified using 
MATLAB MIRToolbox 1.4 (see [12]): The clip was first 
divided into ten frequency bands, each band containing 
one octave in the range of 0 to 22050 Hz. Then the sub-
bands of interest (sub-band 2: 50-100 Hz, sub-band 6: 
800-1600 Hz, and sub-band 9: 6400-12800 Hz) were ex-
tracted and saved as .wav files. 

2.3 Apparatus 

To gather the perceptual ratings, a special patch was cre-
ated in Max/MSP 5, a graphical programming environ-
ment, running on Max OS X. The setup enabled the par-
ticipants to repeat excerpts as often as they wished and to 
move forward at their own speed. The stimuli were 
played back through active studio monitors (Genelec 
8030A). The participants could themselves adjust the 
volume to a preferred level. 

Figure 1. Spectrograms of sub-band no. 2 (50-100 Hz) (sec. 10 to 20 of two stimuli used in the study presented). (A) High 
amount of temporal change (red represents high energy at the respective time and frequency, whereas blue represents low 
energy; see color bar) resulting in high value for Sub-Band Flux. (B) Low amount of temporal change resulting in low 
Sub-Band Flux. 
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2.4 Procedure 

The experiment was divided into four sections: one sec-
tion containing the stimuli restricted to sub-band 2, a se-
cond section containing the stimuli restricted to sub-band 
6, a third section containing the stimuli restricted to sub-
band 9, and a fourth section containing the original stimu-
li. Each section was presented separately; first, the three 
sub-band restricted sections in random order, followed by 
the section containing the original clips. This section was 
always presented last to avoid a biased rating due to 
knowing the whole stimuli. The stimuli were also ran-
domized within each section. Participants accomplished 
the experiment individually. They were asked to answer 
four questions, rating each on a seven-step scale (from 
“not at all” to “very much”): 

1. How prominent is the rhythm? 
2. How prominent is the melody? 
3. How much fluctuation is there in the music 

(How much is “going on” in the music)? 
4. How strongly does it make you want to move? 

Preceding the experiment, there was a practice section 
with one example to allow participants to become famil-
iar with the interface and the questions. The average du-
ration of the experiment was 75 minutes.  

2.5 Spectral flux extraction  

For each of the four versions of each stimulus (three fre-
quency-restricted and the original stimuli), the spectral 
flux was computed (using MATLAB MIRToolbox 1.4 
[12]) by calculating the Euclidean distances of the spectra 
for each pair of consecutive frames of the signal, using a 
frame length of 25 ms and an overlap of 50% between 
successive frames. Subsequently, we averaged across the 
resulting time-series of flux values to receive one value 
for each of the four versions of the stimuli. 

3. RESULTS 
The first step of the analysis comprised checking the con-
sistency of the ratings of the participants by calculating 
intraclass correlations (cf., [13]) for each question and 
stimulus type separately. The results are presented in Ta-
ble 1. 
 

 SB 2 SB 6 SB 9 Orig. 
Question 1: 
rhythm? .95 *** .97 *** .96 *** .96 *** 

Question 2: 
melody? .94 *** .95 *** .93 *** .95 *** 

Question 3: 
fluctuation? .87 *** .90 *** .88 *** .93 *** 

Question 4: 
movement? .93 *** .93 *** .91 *** .94 *** 

*** p < .001     

Table 1. Intraclass correlations for each question and 
stimulus type. 

As these correlation coefficients indicate sufficiently 
high inter-participant consistency, we averaged the rat-
ings across participants to receive one value per stimulus. 
Such high intraclass correlations, especially for question 
1 (“How prominent was the rhythm?”), also suggest that 
the concepts of rhythm and melody were understood in a 
coherent way by the participants (despite findings related 
to cultural dependencies of rhythm perception, see [14] 
and [15]). Worth noting is that the correlation coefficient 
for question 3 (“How much fluctuation is there in the 
music”) showed the lowest value for each stimulus type. 

To investigate the relationship between the spectral flux 
data (calculated for each of the four versions of the stimu-
li as described in section 2.5) and the perceptual evalua-
tions of the stimuli, we correlated the rating scores of the 
four questions for the music clips per stimulus type (av-
eraged across participants) with the respective flux data. 
The results of the correlations are displayed in Table 2. 
Correlations with significance values less than p < .01 are 
indicated with asterisks. 

 
 SB 2 SB 6 SB 9 Orig. 

Question 1: 
rhythm? .79 ***  .20 .47 ** .54 ** 

Question 2: 
melody? -.01 -.28 .27 .03 

Question 3: 
fluctuation? -.15  .01 .37 .11 

Question 4: 
movement? .65 ***  .20 .52 ** .57 *** 

** p < .01, *** p < .001 

Table 2. Correlations between spectral flux and rat-
ings on questions 1-4 for each stimulus type. 

The strongest correlation (r(30) = .79, p < .001) for 
question 1 (“How prominent is the rhythm?”) was found 
for the sub-band 2 stimuli. Question 4 (“How strongly 
does it make you want to move?”) was also relatively 
highly correlated (r(30) = .65, p < .001) to these stimuli. 
Not quite as strong – though still significant – were the 
correlations between the same two questions and sub-
band 9 flux (r(30) = .47, p < .01, for question 1, and r(30) 
= .52, p < .01, for question 4, respectively) and between 
these two questions and the flux of the original stimuli 
(r(30) = .54, p < .01, for question 1, and r(30) = .57, p < 
.001, for question 4, respectively). As all correlations 
were positive, these results suggest that participants rated 
stimuli with an increasing amount of flux in both low and 
high frequency ranges and overall flux with higher prom-
inence of rhythm and with higher desire to move to the 
presented stimuli.  

Meanwhile, the values for question 2 (“How prominent 
is the melody?”) showed non-significant correlations with 
flux data of all stimulus types, suggesting that there is no 
relationship between the perceived melody prominence 
and the amount of (sub-band) flux in the stimuli. 

Interestingly, the values for question 3: “How much 
fluctuation is there in the music (How much is “going 
on” in the music)?” showed no significant correlation to 
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the (sub-band) flux data. This suggests that there was no 
relation between the fluctuation participants perceived in 
the stimuli and the computationally extracted flux in the 
sub-bands and the original clips. 

Subsequently, we performed correlations between the 
ratings, segregated by each stimulus type. The results are 
shown in Figure 2. 

 

 
The correlations between the questions show a similar 

pattern across the different stimulus types: for all stimu-
lus types, question 1 (“How prominent is the rhythm?”) 
correlated positively with question 4 (“How strongly does 
it make you want to move?”) (sub-band 2: r(30) = .86, p < 
.001; sub-band 6: r(30) = .78, p < .001; sub-band 9: r(30) 
= .72, p < .001; original: r(30) = .86, p < .001) suggesting 
that the perception of a prominent rhythm was related to 
participants’ eagerness to move to such stimuli regardless 
of its frequency range. For sub-band 6 and 9, additional-
ly, question 2 (“How prominent is the melody”) correlat-
ed moderately high with question 4 (“How strongly does 
it make you want to move?”)  (sub-band 6: r(30) = .50, p 
< .01; sub-band 9: r(30) = .49, p < .01). Thus, in the 
stimuli restricted to both the mid and high frequencies, 
the melody also appears to contribute to the willingness 
to move to such stimuli. The remaining correlations were 
non-significant. 

4. DISCUSSION 
We conducted an experiment to investigate partici-

pants’ perceptions of rhythm, melody, fluctuation, and 
the desire to move in full-frequency and frequency-
restricted musical stimuli. The participants’ answers were 
consistent with our hypothesis: for stimuli restricted to 
the low frequency band (sub-band 2), stimuli having a 
higher amount of sub-band flux were perceived as being 
stronger related to the rhythm of the music than stimuli 
with a lower amount of sub-band flux, as suggested by 
the high correlations of flux data in sub-band 2 with the 
question “How prominent is the rhythm?”. These correla-
tions are likely due to the frequency range of specific 
rhythmic instruments in this sub-band, such as kick drum 
and low bass notes. Additionally, a greater amount of low 
frequency spectral flux would induce the desire of 

movement in participants, as was suggested by the posi-
tive correlation with the question “How strongly does it 
make you want to move?”. 

In addition, these two questions were also highly corre-
lated to the spectral flux in sub-band 9. These correlations 
are likely due to the frequency range of specific rhythmic 
instruments in sub-band 9, such as hi-hat and some snare 
drum partials. These findings corroborate the results re-
ported in [6] and [7], which showed higher amounts of 
specific bodily movements related to the amount of spec-
tral flux in sub-bands 2 and 9. Spectral flux in sub-bands 
2 and 9 may therefore be potentially more effective than 
spectral flux in other sub-bands in encouraging people to 
move to music. 

The low correlations for question 3 (“How much fluctu-
ation is there in the music (How much is “going on” in 
the music)?”) with all sub-bands, however, showed that 
participants could not perceive the amount of fluctuation 
in the stimuli. There are two possible explanations for 
this: 1) the participants were simply unable to accurately 
and consistently hear the amount of fluctuation in the 
individual sub-bands; or 2) participants did not under-
stand the concept of fluctuation in this context. The intra-
class correlation results for this question (see Table 2) 
showed that the answers for this question were less con-
sistent compared to the other questions, so the latter ex-
planation seems likely. Interestingly, none of the partici-
pants asked about the term during the data collection, 
thus it could be assumed that the participants understood 
the term fluctuation, but that this notion differed across 
participants. Future studies on a similar topic should 
make certain that the concept of fluctuation is clearly 
understood by participants.  

Rhythmic content has been found to be strongly related 
to movement (see [5]-[7]). The high correlations between 
the questions “How prominent is the rhythm?” and “How 
strongly does it make you want to move?” for all the four 
stimulus types suggests that the perception of a prominent 
rhythm is related to participants’ eagerness to move to 
stimuli regardless of its frequency range. Future studies 
could analyze the actual differences of participants’ 
movement for specific frequency ranges, for instance in a 
motion capture setting. 

The relationship found between perceived rhythm and 
desire to move (see previous paragraph) could also serve 
as support for Leman’s theory of corporeal articulations 
[4]. Stimuli that participants rated to contain a strong 
rhythm, were also rated high on desire to move, suggest-
ing a connection between both. That could be seen as 
being in line with the concepts of “Synchronization” and 
“Embodied Attuning”, in which beat/musical features, 
such as the rhythm, are proposed to induce body move-
ment.  

There was a weaker – but still apparent – correlation 
between the two questions “How prominent is the melo-
dy” and “How much does it make you want to move?”, 
which points to a relationship between melodic strength 
and music-induced desire to move. The effect of melodic 
content on movement could also be the subject of future 
studies. 

It could be argued that some of the participants’ an-
swers (especially to question 4: “How much does it make 

Figure 2. Correlations between the four ratings for each 
stimulus type separately. 
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you want to move?”) may have been skewed by prior 
experience with the particular stimuli since the stimuli 
used were clips from western popular music. However, it 
could be assumed that the wide range of backgrounds of 
participants, as well as the modification of the sub-band 
clips to within a certain frequency range (which often 
made the source music difficult to distinguish), helped to 
minimize the possible effects of familiarity on the ratings. 
Nevertheless, it might be valuable for future data acquisi-
tions to include collecting both familiarity and preference 
ratings of the stimuli. This would give more insight into 
relationships between music characteristics and move-
ment propensity, as it could be assumed that participants 
still rate certain stimuli high on “desire to move” alt-
hough they do not like them. 

We excluded extreme genres in our stimuli selection – 
such as death metal for example – as such music might be 
more prone to familiarity and preference than other popu-
lar music. Although musical styles such as death metal 
could contain high spectral flux and be considered 
rhythmic, not everybody would probably feel the urge to 
dance to such music. Thus, if such extreme genres were 
considered in the stimuli selection, relationships between 
spectral flux and movement propensity might be less lin-
ear than presented in this paper. 

The presented analysis utilized one value – the average 
of the flux time-series – as measure for the spectral flux. 
As such, this could be regarded as an over-generalization, 
since taking the mean disregards information about the 
temporal regularity that the flux series should exhibit in 
order to induce movement. In general, a random use of, 
for instance, the kick drum would also result in a high 
amount of low-frequency flux, but it would fail to evoke 
a sensation of rhythm or movement in the listener. How-
ever, our stimuli were throughout the whole stimulus 
duration all metrically regular, had a sensation of pulse, 
and were steady in most of the musical characteristics. 
Thus, we believe that temporal averaging of the flux 
time-series was a suitable way to receive a relevant 
measure of spectral flux for each stimulus. 

In conclusion, the results of this study show that for 
stimuli being restricted to low frequencies and, to a lesser 
extent, for stimuli being restricted to high frequencies, a 
high amount of spectral flux was perceived as having a 
more prominent rhythm. This suggests that the sub-band 
flux of both low and high frequency ranges can be uti-
lized as a possible measure of perceived rhythm in music. 
Furthermore, the significant correlation between the an-
swers to the questions “How prominent is the rhythm” 
and ”How much does it make you want to move” to the 
spectral flux in sub-bands 2 and 9 point to an important 
role of the spectral content in these sub-bands; in essence, 
it suggests that the degree of flux and the perceived 
rhythmic strength in sub-bands 2 and 9 are at least partly 
responsible for the extent to which listeners consciously 
desire to move when listening to music. This is consistent 
with previous research (see [6] and [7]) that identified 
spectral flux in these particular sub-bands as correlating 
with various characteristics of bodily movements. 
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ABSTRACT

INSCORE is an environment for the design of interactive
music scores that includes an original event-based interac-
tion system and a scripting language for associating arbi-
trary messages to these events. We extended the previous
version by supporting scripting languages offering a great
flexibility in the description of scores and in the interac-
tions with scores. The textual format is directly derived
from the OSC message format that was defined in the orig-
inal INSCORE version. This article presents the scripting
language and illustrates its ability to describe interactions
based on events, while remaining in the temporal space.
It also introduces the IRCAM gesture follower and how it
is embedded into INSCORE to provide gestural interaction
capabilities.

1. INTRODUCTION

INSCORE is a dynamic music score viewer that can be con-
trolled in real-time via OSC messages as well as using
OSC based scripts. It supports extended music scores [1],
combining symbolic notation with arbitrary graphic ob-
jects. All the objects of a score have a time dimension
and can be synchronized in a master/slave relationship i.e.
any object can be placed in the time space of another ob-
ject [2]. It can be used in concert, notably for interactive
music pieces, for music analysis, for pedagogical applica-
tions, etc.

INSCORE has been designed in response to a lack of com-
puter tools for music notation, which did not evolved in
proportion to the new forms of musical creation (see eg
[3] [4]). In particular, there is a significant gap between
interactive music and the way it is statically written.

Music notation generated in interaction with live perfor-
mance exists for more than a decade. As mentioned by
Freeman [5], numerous approaches exist: selection of pre-
determined score excerpts [6], mixture of symbolic and
graphic elements [7], use of unconventional graphical no-
tation [8], complex staff based notation [9].

These works are based on custom tools, sometimes de-
signed using Max, that are generally specifically suited to
a composer approach. Didovsky used JMSL [10] to design
interactive scores, but JMSL should be considered more as
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a programming language for Java applications developers
than an environment for composers. Baird is using Lily-
pond [11] for audience interaction [12], that can’t be con-
sidered as a real-time environment for generating music
scores, although it works in Baird’s context due to relaxed
time constraints.

With the recent Bach [13] or MaxScore [14] environ-
ments, the symbolic dimension of the music notation starts
to be accessible to interaction, first using Max and next the
Live environment. However, they are not designed to sup-
port unconventional graphical notation, although it could
be implemented in Max using Jitter for example.

A unified environment, covering symbolic and graphic
notation, opened to real-time interaction is missing and IN-
SCORE aims at fulfilling the needs emerging from the con-
temporary creation.

Designed to be controlled by OSC messages, INSCORE

is naturally turned to an interactive use. The approach to
music score programming is also supported by a scripting
language based on an extension of the OSC messages, and
providing interaction primitives based on events. These
events are similar to those typically available for user in-
terfaces management (e.g. via Javascript DOM [15]), with
an extension in the time domain.

The next section shows two examples of interactive scores,
implemented in recent creations using INSCORE. Then it
presents the message system and the interaction events,
that allow both to describe the music score and to inter-
act with it. Examples of uses are finally given, to illustrate
the expressive capabilities of the system.

2. INTERACTIVE MUSIC SCORES

Today, interactive music is subject of convergent artistic
and scientific interests. Interaction raises issues for the
artistic work composition, description and performance as
well. These issues are addressed in the temporal aspects
of interactive scores [16] or control [17], and are related to
the music piece computation.

For interactive pieces notation, two recent works have
used INSCORE to create dynamic scores with original ap-
proaches, that also reflect the needs of the contemporary
music creation. These works are Calder’s Violin and Alien
Lands.

2.1 Calder’s Violin

Calder’s violin, composed by Richard Hoadley, has been
created in Cambridge in October 2011. The piece is de-
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fined as a composition for violin and automatic piano. Dy-
namic symbolic music notation is generated algorithmi-
cally and presented to the musician (figure 1) in real-time.
This score is played by the musician in parallel to sounds
generated by the computer. The technological environment
includes SuperCollider for the audio programming and IN-
SCORE for the music notation. For more details, you can
refer to [18].

Figure 1. Calder’s Violin: sample of music notation.

2.2 Alien Lands

Alien Lands is a set of pieces for percussions and string
quartet, composed by Sandeep Bhagwati. The interactive
version of the pieces has been given in Montreal in Febru-
ary 2011. Use of INSCORE falls in 4 categories:

• traditional music score with automatic page turning,

• music score including automatic choices made by
the computer: order of the measures, staves selec-
tion,

• complex automatic music score, including elements
generated algorithmically (figure 2),

• complex interactive music score, where the dynamic
element are generated at musician request.

Figure 2. Alien Lands : a complex automatic music score.

3. MUSIC SCORE DESIGN USING MESSAGES

The basic principle for the description of a music score
consists in sending OSC messages to the system to cre-
ate the different score components and to control their at-
tributes, both in graphic and time spaces.

3.1 Format of the messages

The global format of the INSCORE messages is illustrated
in figure 3 in a syntax diagram specified in EBNF. It con-
sists in a specialization of the OSC specification that may
be viewed as object oriented, where the address indicates
the target object of the message, method indicates a method
of the target object and params, the method parameters.
An INSCORE message could be viewed as a method call of
an object of the score.

OSC address method params

Figure 3. Format of the INScore messages.

The system includes messages to control the objects graph-
ical attributes (position, color, scale, rotation, effects ...) to
control their temporal attributes (date, time), to express the
relationship between graphic and time spaces, to synchro-
nize different score components, to draw graphic signals,
and to manage interaction events.

Example 1
Changing the x position of an object named obj. The ad-
dress describes the objects hierarchy: obj is embedded in
a score named scene that is included in the application
which address is ITL.

/ITL/scene/obj x -0.5

3.2 Scripting

Although intended to be sent as packets over a network,
the OSC messages can be expressed under a textual form,
which constitutes the file storage format of a score. This
textual form has been extended to enforce the scripting ca-
pabilities of the system. The INSCORE viewer supports
loading or drag & drop of scripts files, which is equiva-
lent to send the enclosed or evaluated OSC messages to
the system.

3.2.1 Extended adresses

The OSC addresses have been extended to support target-
ing external applications and/or stations (Figure 4). It al-
lows to initialize both the music score and external re-
sources as well using the same script.

OSC address
hostname:port

Figure 4. Addressing scheme extension.

Example 2
Initializes a score with a Guido Music Notation file [19]
and sends a message to an external application listening on
port 12000 on a station named host.adomain.net. The
semicolon (;) is used as a message terminator in a script.

/ITL/scene/score set gmnf ’myscore.gmn’;

host.adomain.net:12000/run 1;
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3.2.2 Variables

Variables have been introduced to allow sharing of param-
eters between messages. A variable associates an identifier
and a parameter list or a list of messages (Figure 5). Vari-
ables can be used as message parameter using the form
$identifier.

identifier = param 

variable

messages( )

Figure 5. Variables.

Example 3
Variable declaration and use. The exclamation point (!)
starts a line comment.

color = 200 200 200;

! using the previous color variable

colorwithalpha = $color 100;

/ITL/scene/obj color $colorwithalpha;

3.2.3 Languages

INSCORE scripts support programming languages like java-
script (default) or lua. The corresponding sections are in-
dicated by angle brackets as in html (Figure 6). The code
is evaluated at parse time and the output of the evalua-
tion should be a set of INSCORE messages that will be next
parsed in place of the corresponding section.

<? javascript 

lua

code  ?>

Figure 6. Languages.

4. EVENTS BASED INTERACTION

Interaction is based on associations between events and
messages. The messages are sent when the event occurs.
The general format of the messages to create such associa-
tions is described in Figure 7.

address watch event messages( )

Figure 7. Format of an interaction message.

4.1 Events typologie

Events defined by the system are basically 1) typical user
interface events (e.g. mouse click and mouse move) and 2)
events defined in the time domain (table 1). This typology

has been extended to gesture events, described in section
6.3.

Graphic domain Time domain
mouseDown timeEnter

mouseUp timeLeave
mouseEnter durEnter
mouseLeave durLeave
mouseMove

Table 1. Main events of the system.

In the time domain, an event is triggered when an object
date enters (timeEnter) or leaves (timeLeave) a time in-
terval defined by 2 dates, or when an object duration enters
(durEnter) or leaves (durLeave) an interval bounded by
2 durations.

4.2 Contextual variables

A contextual variable is a variable which value depends
on an event context (unlike script variables that are eval-
uated when loading the script). Most of these variables
concern the graphic domain and are associated to user in-
terface events; they give the mouse position at the time of
the event occurrence and expressed in different reference
spaces ($x $y $sx $sy). A variable can also give the
date corresponding to the current mouse position ($date).
When an event occurs, the associated messages are evalu-
ated because they may refer to contextual variables.

Example 4
Asking an object to follow the mouse down. The comma
(,) is used as separator in a messages list.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj x ’$sx’,

/ITL/scene/obj y ’$sy’ );

4.3 Managing interaction states

Every score component includes a stack to store interaction
states. The methods push and pop are provided to push the
current interaction state to the stack and to pop and restore
a state from the top of the stack. Examples are given in
section 5.3.

5. USE CASES

5.1 Page turning

A simple use case consists in automatic page turning. An
object can watch the time intervals corresponding to the
different pages and recall a page when it enters its time
interval. Time is specified in music time where 1 is a whole
note. Note that the obj object could be a cursor moving on
the score as well.

187

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



! first page duration is 12 whole notes

/ITL/scene/obj watch timeEnter 0 12

(/ITL/scene/score page 1);

/ITL/scene/obj watch timeEnter 12 24

(/ITL/scene/score page 2);

etc.

5.2 Sequence of interactions

Interaction messages described in figure 7 accept arbitrary
messages to be associated to an event. Thus it is possible to
associate an interaction message to an event and to describe
sequences of interaction.

Example 5
Decription of an interaction sequence based on mouse clicks:
the first click changes the object color, the second affects
the scaling, the third rotates the object, the fourth modifies
the scale too...

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 100 100 255,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj scale 1.4,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj angle 45. ,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj scale 0.8 ))));

5.3 Looping a sequence of interactions

A sequence of interactions can be executed n times using
the push and pop methods.

Example 6
Executing a sequence of 2 interactions 3 times.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 255 0 0,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 0 0 255,

/ITL/scene/obj pop ))

/ITL/scene/obj push;

/ITL/scene/obj push;

Example 7
Executing a sequence of 2 interactions in an infinite loop.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj push,

/ITL/scene/obj color 255 0 0,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 0 0 255,

/ITL/scene/obj pop ))

5.4 Interaction in the time domain

The sequence of interactions described above (section 5.2)
could be defined in the time domain using associations be-
tween messages and time events and by moving the object
in time. With this approach, it is possible to access the
events in a random order but also to control the time flow
of the events.

This kind of description combines event based approach,
non-sequential access and temporal control.

Example 8
Description of an interaction sequence using time events
that are triggered when the object enters consecutives time
zones, which duration is a whole note.

/ITL/scene/obj watch timeEnter 1 2

(/ITL/scene/obj color 100 100 255);

/ITL/scene/obj watch timeEnter 2 3

(/ITL/scene/obj scale 1.4);

/ITL/scene/obj watch timeEnter 3 4

(/ITL/scene/obj angle 45.);

/ITL/scene/obj watch timeEnter 4 5

(/ITL/scene/obj scale 0.8);

6. INTERACTION WITH GESTURES

INSCORE may embed the IRCAM gesture follower as an
external plugin. The corresponding objects are similar to
signals from input viewpoint. They provide specific inter-
action events and may also generate streams of messages.

6.1 Principle of the gesture follower

The IRCAM gesture follower if a tool to perform template-
based recognition [20, 21]. Technically, the algorithm is
available as a C++ library that can be implemented in var-
ious environments (up to now the objet called gf was the
most common instantiation of the library in the Max en-
vironment). The gestures can be any type of temporal
multidimensional times series, that must be regularly time-
sampled. Typically, a drawing is a two-dimensional signal,
but other signal types can be used such as three, six or nine
dimension data obtained from inertial measurement units.

The gesture follower, as most recognition system, is based
on two steps. The first step, called learning, corresponds
to setting a series of ”templates”. Each template is used to
set a Markov Chain modeling the times series. The sec-
ond step, called following, corresponds to ”compare” in-
coming data flow with the stored templates. Technically,
the decoding is based on the forward procedure to estimate
likelihoods of the incoming data to match each templates
(note that the forward procedure is incremental compared
to a standard Viterbi algorithms). The gesture follower also
outputs the position (or temporal index) that is an estima-
tion of the corresponding current position within the tem-
plates, and the estimated speed (relative to their templates).

6.2 Gesture follower object

Provided that the corresponding plugin is available, a ges-
ture follower object may be embedded in a score. It is
created with a fixed set of named gestures to be recognized
and thus, its address space is automatically extended to the
set of named gestures.

Example 9
Address space of a gesture follower named myFollower
created to handle 2 gestures named gestureA and gestureB
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/ITL/scene/myFollower

/ITL/scene/myFollower/gestureA

/ITL/scene/myFollower/gestureB

A gesture follower may take 3 states: a learning state, a
following state and an idle state. It receives values that are
stored to the corresponding gesture when in learning state,
analysed to recognize a gesture when in following state and
ignored when idle. Each time the follower receives data in
the following state, it produces a set of likelihood, position
and speed for each of the gestures.

6.3 Gestures events

Specific events are available from gestures and depends on
the gesture state. A gesture may be active or idle: it is
active when its likelihood is greater or equal than a given
threshold, otherwise it is idle (figure 8).

Gesture states active

idle
likelihood threshold

gfEnter

gfLeave

Figure 8. A gesture states and events.

Two specific events are associated to gestures :

• gfEnter: triggered when a gesture state moves from
idle to active,

• gfLeave: triggered when a gesture state moves from
active to idle.

6.4 Gesture streams

A gesture supports messages streaming, depending on its
state. Figure 9 presents the send method that associates a
list of messages to the active or idle state of a gesture.
The messages are sent when the gesture follower state is
refreshed i.e. when it is in following mode and each time
it receives data.

gesture address send messages

active

idle

Figure 9. Associating messages to gesture states.

6.5 Variables defined in the context of gestures

Specific variables may be used by messages associated to
gesture events or streams:

• $likelihood : gives the current gesture likelihood,

• $pos : indicates the current position in the gesture,

• $speed : indicates the current speed of the gesture.

These variables support scaling and translation of their val-
ues when suffixed using an interval. The values denoted by
$pos[1,5] represents the current position scaled between
1 and 5.

Example 10
Using a gesture to move a cursor date from 0 to 1.

/ITL/scene/gf/gesture send active

(/ITL/scene/cursor date $pos);

7. CONCLUSION

Using the OSC protocol to design a scripting language con-
stitutes an original approach which is simple to apprehend
for people familiar with OSC. While none of classical pro-
gramming languages constructs exists in INSCORE scripts,
programming capabilities emerge from the objects behav-
ior and leads to new conceptions of music score design.

The association of messages to events reveals to be a sim-
ple, powerful and homogeneous way to describe dynamic
music scores. A single textual script serves the need of
both the static and dynamic parts of the score, leading to
new kind of programming e.g. moving of objects in the
time domain using an external application when these ob-
jects are designed using behaviors linked to time intervals.

This system opens a new dimension to the score com-
ponents that were previously passive objects: they could
react to messages but didn’t send messages by themselves.
While becoming active and able to send messages, autonomous
dynamic behaviors emerge and since each object may em-
bed its own behavior, the system may be viewed as a par-
allel programmable music score.

However, an external application or the user interaction
is necessary to move objects in time. This is currently not
considered as a limitation since external applications re-
main also necessary for the music itself.
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ABSTRACT

In electronic music, it is often useful to build loops
from discrete events, such as playing notes or trigger-
ing digital effects. This process generally requires us-
ing a visual interface, as well as pre-defining tempo
and time quantization. We present a novel digital
musical instrument capable of looping events with-
out using visual interfaces or explicit knowledge about
tempo or time quantization. The instrument is built
based on a prediction algorithm that detects repeti-
tive patterns over time, allowing the construction of
rhythmic layers in real-time performances. It has been
used in musical performances, where it showed to be
adequate in contexts that allow improvisation.

1. INTRODUCTION

Drum machines are electronic instruments frequently
used to create rhythm sections in musical pieces using
loops of drum notes. A generalization of this concept
involves looping not simply drum notes, but generic
discrete-event-related messages, allowing the periodic
execution of actions such as switching timbre or trig-
gering audio effects. To build a loop sequence, it is
common to use a grid interface, like the one shown
in Figure 1, which is also used to define the desired
tempo and the time quantization in the excerpt.

In order to properly interact with other musicians,
a drum-sequencer player must pre-define (or, at least,
detect) the musical tempo and an adequate time quan-
tization. This aspect is also present in novel interfaces
that do not use the grid display but use the same
paradigm, such as the Rhythmicator [2] or the Sinka-
pater [3]. Those interfaces are used to plan beats and
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Figure 1. Drum sequencing interface in Hydrogen [1]
software.

beat sequences, which is significantly different from
playing drums or even tapping rhythms.

Another technique that can be used to create mean-
ingful repetitions is to apply carefully arranged delay
lines and feedback so that an audio sample is played
in a pattern defined by the musician, as in Rhyth-
mDelay [4] or SDelay [5]. Using this technique, a mu-
sician can build audio loops on-the-fly, without the
need of a grid interface. However, delay lines lack
the symbolic-level flexibility of drum machines, as it is
hard to change events (for example, changing all kick
drums for cymbals) or to modify the musical tempo
without affecting the timbres.

In this paper, we present a novel digital musical in-
strument that is capable of looping general event se-
quences that are played by the musician, without pre-
defining or quantizing tempo. The instrument may
be played using any interface that generates discrete
events, from high-end MIDI drum interfaces to low-
cost game controllers. It is implemented as a patch
for PureData [6] and can be freely downloaded.

The event looping process is based on an online-
learning algorithm that is used as follows. As the
musician plays a sequence of events, a continuation
for that is predicted by a string matching algorithm.
When the user triggers the automation, the system
starts yielding the predicted continuations and feed-
ing them back into itself, creating an event sequence
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that corresponds to continuing the pattern played pre-
viously by the musician, without any explicit inputs
regarding tempo or time-quantization.

The proposed method relies on a discrete-symbol rep-
resentation for audio, which means that it possesses
the flexibility of drum machines. To use it, however,
the musician must employ skills that are closer to play-
ing drums or tapping rhythms than to using visual
interfaces. Also, the implementation in a free, open-
source environment allows it to be used in several cre-
ative ways.

This paper is organized as follows. In Section 2, pre-
vious approaches on the automatic detection of pat-
terns in music are presented. The event forecasting al-
gorithm is described in Section 3, and implementation
issues are discussed in Section 4. Experiments showing
advantages and limitations of the proposed instrument
are discussed in Section 5. Section 6 brings further dis-
cussions on the results. Last, Section 7 brings some
conclusive remarks.

2. PREVIOUS WORK

The metaphor of a grid-looping environment, such as
the usual drum machine [1], has been employed in
many innovative systems. Two remarkable examples
are the Rhythmicator [2], which uses a probabilis-
tic model to create drum tracks directly from audio
analysis, and the Sinkapater [3], which allows each
drum track to use a different measure length, creating
polyrhythms that are usually hard to be played by a
human being [7]. In both cases, there is an inherent
need to predefine tempo and beat, which, as discussed
above, is a skill that is foreign to the playing of drums
itself.

To avoid using these concepts – tempo and beat – it
is necessary to automate the process of building the
event loops. As shown in early studies by Shannon [8]
and Solomonoff [9, 10], sequences of symbols can be
predicted, as long as they present a certain degree of
repetition. This assumption is fit for event loops, as
the same pattern is, in general, repeated many times
over a musical piece.

Assayag et al. [11] developed a system capable of
forecasting continuations for melodies. In their work,
a codebook built from a data corpus is used to predict
plausible continuations for a given piece. The out-
comes of this system were evaluated as “repetitive”,
which may be expected from the deterministic nature
of the prediction system. Also, building a codebook is
a slow process that cannot be done in real time, and
the system only supports quantized tempo.

To avoid the repetition problem, there has been an
effort towards developing systems capable of learn-
ing rhythms from a corpus and predicting new pat-
terns. Techniques such as rule-based probabilistic re-
combination [12], artificial life [13] and genetic algo-
rithms [14] were used in this context. This gives rise to
another form of human-computer interaction, in which
the machine yields unpredictable outcomes.

A characteristic that is common to all musical pre-
diction methods cited above is that they rely on an
exact timing precision. This can be achieved if strict
timing quantization is used. However, the quantiza-
tion implies in a pre-definition of tempo and beat.

We propose a system that receives as input a se-
quence of events and yields a possible continuation for
these events. The yielded events may be re-inserted
into the system using feedback, thus creating a loop of
events that do not rely on explicit definitions of tempo
or beat. The continuations are quickly learned, so the
system may be used in real-time performances, and its
behaviour is highly predictable, which gives the user
great control of its outcomes.

A thorough explanation about the algorithm is pre-
sented in the next section.

3. PROPOSED SYSTEM

The proposed system assumes that events repeat within
a particular piece or excerpt. This assumption allows
simple, intuitive interactions with the system, as the
process of designing a new loop becomes similar to
that of showing a rhythmic pattern to a human being.
Hence, the musician can have great control on the out-
comes of the system, as if the usual grid interface was
being used.

In the context of this work, each musical event n is
represented by its onset sn, that is, the time it hap-
pens, and its label ln, which identifies the event. Using
labels, events may be related to any description of dis-
crete musical gestures desired by the musician, such as
“play cymbal”, “strongly play cymbal”, “play random
drum” or “activate reverb effect”. As will be shown,
the flexibility of the event label allows many creative
uses of the system.

The system receives event-related messages through
any device that yields discrete messages (such as MIDI
instruments, OSC controllers or HID devices). The la-
bel and onset of the events are stored in an internal
buffer of arbitrary size. The information in the inter-
nal buffer is used to predict the following event, as
described below.

The forecasting algorithm is based on the assump-
tion that the musician is playing a loop, a condition
that has to be intentionally caused. When the user
desires, the predictions may be used as inputs to the
forecast system, creating a feedback loop and allowing
the continuation of the event sequence. Preliminary
tests showed that adding a reset functionality, which
clears the internal buffer, made it easier to switch be-
tween different beats.

In the context of the prediction algorithm, two events
n and m are considered equivalent if their label is
the same (ln = lm) and their inter-onset intervals
(IOIs), that is, the difference between their onset and
the previous onsets, are within an allowed deviation
(‖sn − sn−1 − (sm − sm−1)‖ ≤ α). The algorithm,
shown in Figure 2, aims at searching, within the last
N recorded events, the longest subsequence [M −K+
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1 ... M ] whose events are equivalent to those in the
subsequence [N −K + 1 ... N ]. After the subsequence
[M −K + 1 ... M ] is found, it is reasonable to assume
that the continuation of the recorded excerpt (that is,
event N + 1) will be equivalent to that of the subse-
quence (event M + 1).

1: procedure Forecast(N, s, l, α)
2: d← array of N zeroes
3: for M = N − 1 to 2 do . Search for

repetitions
4: k ← 0
5: while M − k > 0 and lN−k = lM−k and
|(sN−k − sN−k−1)− (sM−k − sM−k−1)| < α do

6: k ← k + 1

7: dM ← k
. Check if a subsequence was found

8: if Max(D) > 0 then . If found
9: M̂ ← arg maxD

10: else
11: M̂ ← N

. Yield events
12: sN+1 = sM̂+1 − sm + sN
13: lN+1 = lM̂+1

14: return

Figure 2. Pseudo-code for event forecasting.

Figure 3 shows an example of a possible execution
of the forecasting algorithm. The left column shows
the internal buffer after the user has yielded a series
of events, arbitrarily labeled “hit drum” and “switch
reverb”. After triggering event E9, the forecasting
system detects that, if the buffer is delayed by three
events, events E9 and E6, as well as the previous five
events, are equivalent, which is a higher number of
equivalent events than if any other delay was used.

In this example, event E7 is chosen as the most plau-
sible continuation for the delayed sequence, generat-
ing the estimated E10 and is being used to build the
yielded event. If event E10 is used by the system as
an input, the next event to be yielded would be a
“hit drum”, then a “switch reverb”, then a “hit drum”
again, creating a cycle of repetitions. Hence, feedback
may be used to create event loops in real time.

Next section discusses implementation and usability
issues.

4. IMPLEMENTATION ISSUES

The proposed instrument was implemented as a patch
for PureData [6]. This allows users to employ their
favorite interfaces and sound designs, as well as their
own compositional ideas. It is an open-source project,
which means that the algorithm may be easily ported
to other contexts.

The patch works in two modes: observation, or
manual, and prediction, or automatic. In the ob-
servation mode, the system receives inputs from the
user and tries to predict the next event that will be
received. When the prediction mode is triggered, the
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Figure 3. Example of a possible execution of the
forecasting algorithm.

system receives its own predictions, instead of user-
generated events, as inputs.

Additional functionality may be easily implemented
by the user, but not as part of the system itself. Sev-
eral predictor instances in parallel, for example, may
be used to achieve polyrhythms. Also, the actions re-
lated to an event must be defined by the user: playing
a drum sample or switching the configurations of an
effect, for example.

5. EXPERIMENTAL PERFORMANCES

The experiments in this section aim at highlighting in-
teresting features and also drawbacks of the proposed
system, gathering information on how it can be help-
ful to musicians and how it may be improved. For
this purpose, the system was used in a solo and an ac-
companied performance. The recorded audio material
can be listened to at the URL http://www.dca.fee.

unicamp.br/~tavares/Looper/index.html.
The first performance – solo – aimed at showing the

main capabilities of the instrument. The piece was
intentionally composed so that a drum sequence and
an effect switch were independently looped, allowing
another layer of percussion to be freely played. Spec-
trograms are used to show the most important parts.

The second performance – duo – had the goal of
showing that the drum loops could be quickly arranged
and played in an arbitrary tempo. The piece was an
improvisation in which digital effects were manually
played while drums were looped using the proposed
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system. The piece was analyzed based on the impres-
sion of both musicians and on auditory characteristics
of the recording.

5.1 Solo performance

The first experiment was based on composing and
playing a short piece using the proposed instrument.
The composer and performer was one of the authors of
this paper. A low-cost gamepad controller was used
to tap rhythms and to control the behaviour of the
prediction algorithm.

The piece is based on two drum synthesizers that
yield samples to a clip-based distortion that, in turn,
yields a change in timbre. The drum onsets and the
use of the distortion are controlled by the musician
and can be individually looped using separated in-
stances of the proposed system. By looping drum pat-
terns, a base rhythm for the piece can be generated,
whereas looping switches in the distortion creates dif-
ferent electronic ambiences that give more variations
to the piece.

Figure 4 shows the instant the looping process is trig-
gered by the musician as a vertical black line – the pre-
vious events are manually controlled. After triggering
the prediction mode, the musician stopped playing.
As it can be seen, the algorithm successfully contin-
ued the manually-played pattern.

Figure 4. Spectrogram showing the prediction of a
drum loop.

Figure 5 depicts the results of looping the distortion
switch, which is triggered in the moment displayed as
a vertical black line. As it can be seen, when the dis-
tortion is used more harmonics are present. This adds
to the drum loops, creating a more complex rhythm.

Figure 5. Spectrogram showing the prediction of dis-
tortion triggers.

Last, Figure 6 shows a particular excerpt in which
both the drum and the effect loops are active. The
musician manually plays a new layer of drum events.
These events are not looped, but contribute to create
a rhythm that would be hard to achieve by manual

playing without the overlap of automated loop pat-
terns.

Figure 6. Spectrogram showing the use of an ad-
ditional percussion layer on top of the event and the
percussion loops.

In the audio recording, it could be noted that the de-
veloped rhythms tend to sound natural, despite of the
lack of dynamics caused by the use of a low-cost con-
troller. The transitions between musical sections were
smooth, which is a consequence of having to play each
new loop pattern that would be used – this prevented
sudden transitions between complex patterns. These
characteristics were also observed in the accompanied
performance, as shown below.

5.2 Accompanied performance

In the second experiment, the proposed system was
used in a guitar-electronics duo. The electronic per-
cussion accompaniment, based on two tabla samples,
was played over an improvised guitar. The guitar and
the electronic parts were played, respectively, by an
invited musician and by one of the authors of this pa-
per, who used a low-cost gamepad controller to tap
rhythms and control the behaviour of the prediction
algorithm.

The guitar player stated that, while playing, there
was no need to explicitly think about tempo or mu-
sical sections, because they emerged naturally from
playing. According to the statement, this flexibility
allowed the musician to enhance the focus on other
musical aspects, such as dynamics and phrasing. Ul-
timately, this lead to a feel of flow, which is frequently
not the case when playing with drum sequencers, as
they are bounded to pre-defined tempo, swing and
measures.

The electronics player observed that, as it is easy to
switch between the automatic and the manual modes
of operation, the percussion parts could be quickly re-
arranged. The interaction with the guitar player felt
more natural than if a grid interface was used, because
using the system with a game controller is more sim-
ilar to tapping rhythms. Also, while the automatic
operation was used, other actions could be performed
– manually playing another percussion layer or trig-
gering other digital effects.

In the audio recording, it was noticeable that the
feeling of steadiness, often present when using drum
machines, was only present in few passages. Hence
the proposed instrument allows using steady beats,
but not as a requirement of the instrument. In spite
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of the tempo flexibility, there was no variation in the
loudness of the drum beats, as the physical interface
(a game controller) did not capture dynamics.

In the audio recording, the feeling of steadiness, caused
by the quantized tempo often present when using grid
interfaces, was significantly reduced. Hence, the pro-
posed instrument allows for a steady rhythm, but not
as an imposition of the instrument (as it would be the
case for a grid interface). However, due to the na-
ture of the game controller used, no information on
dynamics was gathered, so the percussion is clearly
played with the same loudness at all times.

6. DISCUSSION

This section discusses characteristics of the proposed
instrument, highlighting the main differences regard-
ing the previous approaches.

A feature that must be considered is that the in-
strument does not pre-define a physical interface for
usage nor a sound design. These parts of the interac-
tion must be composed by the user, which allows for
great flexibility, but also require the user to employ a
certain level of expertise. A possible way to solve this
is by developing pre-set configurations for common use
cases, but it must be considered that developing own
interfaces and sound designs is frequently an impor-
tant part of modern musical composition processes.

The instrument allows a quick development of rhythm
loops and does not require a visual interface or any
pre-definition of tempo or beat. Also, the same inter-
face that is used to develop the loops can be used to
build a layer of freely improvised drums. This means
that a the instrument is potentially more useful in
contexts that allow for flexibility and improvisation.

Since there is no visual interface or explicit notations,
there is no way to store rhythms for later use. This
also indicates that the instrument is suitable for flex-
ible and improvised scenarios. On the other hand, its
applications in offline composition are limited, as there
is no visual feedback regarding the stored sequences.

The instrument delivers great control of the sequence
that will be played, because it simply continues pat-
terns played by the musician. This behaviour is close,
but not exactly the same as, the one yielded by the
method proposed by Assayag et al. [11], as it is de-
terministic and learned from data yielded by a human
being in real-time. Hence, the system does not aim at
generating new sequences as the previous approaches
discussed above [12–14].

However, it is possible to change the outcomes al-
gorithm by increasing the onset tolerance α to val-
ues that are close to a typical inter-onset interval. In
this case, the algorithm can yield unexpected contin-
uations for a sequence. Although this is not the orig-
inal purpose of the system, interesting sequences can
emerge from this phenomenon.

Overall, the proposed system has presented great
musical potential in improvised performances. It re-
inforces the paradigm of using multiple layers to build

a piece. However, its applications to offline musical
composition are limited, as there is no interface al-
lowing the user to review the current content of the
buffer.

Next section presents conclusive remarks.

7. CONCLUSION

We presented a novel digital instrument aimed at se-
quencing events without the need for visual interface
or pre-definitions of tempo, measure or time quantiza-
tion. The core of the instrument is a string matching
algorithm that quickly learns patterns played by a hu-
man musician and continues them in real-time. The
instrument was used in two musical performances, one
solo and one duo, and was evaluated both by its user
and by the accompanying musician.

The proposed instrument is shown to be adequate to
improvised contexts, in which its quick response may
be employed at its best. It allows the rapid generation
of multi-layer rhythmic figures, as well as the automa-
tion of effect triggers. Also, allows using abilities that
are closer to playing acoustic drums, such as tapping
rhythms, which greatly favours its use in accompanied
improvisation.

An aspect of the instrument that remains unexplored
is the possibility of transforming its data, thus gen-
erating new sequences from user inputs. Doing this
without using explicit time quantization and, at the
same time, preserving the user’s intention, is a topic
that should be studied in future work.
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ABSTRACT

This paper presents an audio-based game for mobile de-
vices, designed to develop rhythmical and timing abili-
ties in elementary-school-aged children. Developing such
skills is believed to be very important for social interac-
tion and interpersonal coordination. Moreover, increasing
evidence suggests that rhythmicity has a direct influence
on other cognitive abilities such as motor coordination and
sustaining attention. The game makes exclusive use of
motion-based input and non-verbal audio feedback, being
therefore equally enjoyable by children which might speak
different languages and might or might not have visual im-
pairments. The game logic is inherently collaborative and
multiplayer, in order to promote a sense of inclusion of
the child among the group of players. The game design is
heavily inspired by observations of children’s activities in
schools, which are usually characterized by strong rhyth-
mical patterns.

1. INTRODUCTION

Music plays a fundamental role in the life of every human
being. Like verbal and visual languages, the art of orga-
nizing sounds has developed in every part of the world.
There is wide agreement among music theorists and psy-
chologists that our understanding of music is for the most
part pre-cultural and wired in the structure of our auditory
perceptual grouping [1].

Musical abilities are already present in very young chil-
dren: even in the pre-kindergarten years children love to
sing, play instruments, dance and listen to music [2]. As
they grow up songs, rhymes and musical games become a
crucial part of their social interactions and learning, with
other children as well as with adults. Elementary-school-
aged children eagerly sing full-voice songs learnt by their
peers, by adults or through the media. They use musical
utterances to make their playing activity more immersive
and convincing, support the coordination of their move-
ments with rhythmic chants or counting out loud. Those
behaviors are found not only in organized games but also
during free play, classroom work and any other kind of ac-
tivity [3].
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Figure 1. Children playing a rhythmic chant in the play-
ground. Image courtesy: Mary Ann Moss

The value of these musical expressions often lays more in
the social process they trigger rather than in the produced
sound itself. To use the words of Christopher Small the
act of musicking [4], namely the participation in a music-
making activity in any capacity (for example by perform-
ing, listening, practicing, composing, or dancing), helps to
create meaningful relations among all the participants. A
performance which creates the right connections and ful-
fills the expectation of everyone involved, can be a very
powerful framework to embed other activities such as teach-
ing concepts belonging to different subjects, promoting pos-
itive social behaviors among the group, maintaining chil-
dren physically and mentally engaged or asking for their
attention.

Observing musical activities made by children, one of the
most striking aspects is that they are characterized by very
strong rhythmical patterns. Moreover, the rhythm is im-
posed not only through the production of sounds but also
with the physical movement of the whole body. Starting
from the 1920s, musical educators such as Dalcroze [5]
and Orff [6] became aware of this, and started to base their
teaching methods on these particular features of children
play. Nevertheless, the importance of developing a good
sense of rhythm and timing goes well beyond the context
of playing games or music: work from Bernieri and Rosen-
thal shows how being rhythmically “in tune” with other
people improves social relationships and what they call in-
terpersonal coordination [7]. There is also evidence that
rhythmicity directly influences other cognitive abilities like
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sustaining attention, controlling impulsivity and coordinat-
ing motion [8].

It is important to remember that in addition to actual world
activities, like running in the playground or playing a musi-
cal instrument, today’s children are getting more and more
engaged with activities happening inside the digital world.
A 2011 survey about 0 to 8-year-old children’s media use
in America indicates that while TV continues to be by far
the most consumed medium by that age group, more than
a quarter of screen time is spent on digital devices. At
least half of all children now have access to a mobile de-
vice at home, and more than a quarter of all parents have
downloaded apps for their children to use [9]. The motion-
sensing and multimodal feedback capabilities offered by
smartphones and tablet PCs open the possibility to develop
digital games featuring a rich musical rhythmic interaction,
which is so favored by children during their physical world
activities.

2. RELATED WORK

From a Human Computer Interaction (HCI) perspective,
rhythmical aspects and sound design for children are both
relatively unexplored fields. In the work of Jylhä and Erkut
[10], the potential of rhythmic interaction is investigated
through the design of an application which uses rhythmical
patterns generated by hand clapping to manipulate musical
content. Their approach proves to be effective, especially
in those cases where an eyes-free interaction is needed or
desirable. Applications for mobile devices may fall in this
category, because of the limited size of their display and
because of the greater freedom of movement gained when
performing motion-based gestures if the user is no more
required to look at the screen.

The most promising efforts in sound design for children
have probably been made in the context of audio-based
games, namely computer games which rely on sound rather
than on visual information as their primary feedback to the
user. Eriksson and Gärdenfors [11] propose a set of guide-
lines for the design of computer games for visually im-
paired children, which they put into practice in the devel-
opment of a collection of games for the Swedish Associa-
tion of Talking Books and Braille. Even if not specifically
addressed to children, research presented in [12] and [13]
is interesting in that it investigates the use of non-verbal
audio feedback in audio-based games. Avoiding spoken
language allows the design of a game which is enjoyable
by children who are not yet able to speak or which speak
different languages.

The work of Michalowski et al. [14] concentrates on the
relevance of rhythmic movements in general social inter-
action, through the design and implementation of a danc-
ing robot for children. The system is capable to dance
following a dominant rhythm, which can be extracted by
the acoustic and visual information captured by its micro-
phones and cameras. Observations of children’s interac-
tions with the robot at a public installation showed that
when it was dancing in sync with the underlying music,
users tended to spend more time with it and to behave
themselves in a more rhythmically organized way.

Figure 2. The Whack-A-Mole arcade game

Digital systems focusing on rhythmic interaction are also
being used for rehabilitation purposes. One example is
the Interactive Metronome R© [8], which combines motion
sensing features, acoustic and visual feedbacks to provide a
series of exercises designed to improve the timing abilities
of the patients. The authors claim that training the sense of
rhythm leads to appreciable improvements in many other
skills like coordinating motion, sustaining attention, man-
aging impulsivity and collaborating with others, and that
patients suffering from disorders related to those skills (i.e.
ADHD, dyslexia, autism and other similar conditions) ben-
efit greatly from such a treatment.

3. GAME DESIGN

The work presented in this paper is a game which exploits
rhythmic interaction to develop and improve children’s mu-
sical abilities, sense of timing and social interactions. Par-
ticular efforts have been put in designing an experience
which should be enjoyable per se but also suitable for ba-
sic musical education and ear training. To achieve this
goals, design choices were driven by observing and try-
ing to mimick the interactions that normally occur in self-
organized playground games.

As already stated in section 1 sound production and rhyth-
mic movement of the whole body are the most relevant
aspects of such playground games, thus the decision to
develop an application based on motion gestures as input
and auditory feedback as output. This style of interaction
seems to have great potentials in terms of ear training and
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enhancement of one’s listening capabilities [15], enables
accessibility to visual-impaired users [16] [17] and has rel-
atively low requirements in terms of processing power com-
pared to its visual-based counterparts [18] [19]. This last
element makes audio-based games well suited for mobile
or other embedded devices, which often have limited com-
puting capabilities and very small displays.

Like children playground activities, the designed game
needs to be played by multiple players at the same time. It
should also engage children in a collaborative rather than
competitive activity, in order to foster inclusion of every
single member in the playing group and positive, construc-
tive social connections. This is also one of the distinguish-
ing features of the act of making music together: every
single element contributes with his or her individual effort
to build the common “voice” of the whole group.

The game logic needs to be simple enough to be immedi-
ately understandable and enjoyable by young children, yet
provide for an engaging and amusing experience. In order
to achieve that, we used the Whac-A-Mole arcade game
(see Figure 2) as a source of inspiration. This all-time
classic is around from the mid seventies, and since then
has gathered a tremendous success in the physical as well
as in the digital world. Lots of versions have been made,
changing the subject to whack (moles, cartoon characters,
celebrities and so on) or the “weapon” used to whack them
(hammers, cakes, shotguns and much more). The notori-
ety of this game and the simplicity of its rules played a key
role in the decision of using it as the starting point of our
design.

The resulting game design is therefore an auditory vari-
ant of the Whac-A-Mole game for mobile devices. Chil-
dren have to shake their devices whenever they hear a note
coming from their speakers, and stay still when they hear
notes coming from their neighbors. The goal is to “whack”
as many notes as possible in sequence without mistakes in
order to unfold the whole melody. Missed notes result in
a failure sound and the restart of the melody from its be-
ginning, while a full successful sequence triggers a high
quality recorded version of the nursery rhyme as a reward
sound.

4. IMPLEMENTATION

The game client is an app developed in Objective-C for
iOS 4.3 or later, and communicates with a custom server
developed in Python via text-based TCP messages. The
client presents a minimal Graphical User Interface (GUI)
(see Figure 3) consisting of two views: the main view
is merely a wallpaper image occupying the whole screen,
which serves mainly for aesthetic purposes and to give
some visual feedback about the fact that the game is run-
ning. The settings view contains the controls to perform
the match making: users can create a new game or join an
already existing group. All in-game information is given
uniquely by sound.

Gesture recognition is done processing raw data coming
from the embedded accelerometer. When the sum of the
magnitudes of the x, y, and z acceleration components
raises above a certain threshold, a shake is detected. While

Figure 3. The Graphical User Interface of the game. Right
side: the GUI, left side: the settings view.

the device keeps moving fast, no other gestures can be trig-
gered. When the same quantity stated above goes under
another threshold (lower than the previous one), quiet is
detected and other gestures can be triggered again. Al-
though iOS provides higher-level methods to detect device
shakes, we decided not to use them in order to keep the
system more flexible and to allow future detection of dif-
ferent kind of gestures (swings, rolls, thrusts and so on).

Musical notes are synthesized in real-time using the libpd
framework [20]. This library enables the loading and pro-
cessing of PureData patches inside the mobile application,
providing a powerful, flexible and easy to program sound
synthesis engine. Musical parameters like pitch, dynam-
ics and timbre can be manipulated in different and creative
ways, and other sound effects can be generated to reflect
the performed gestures or just to add a funny, cartoonish
touch to the game.

5. PRELIMINARY EVALUATION

The presented work is just in its preliminary steps and no
extensive testing of the platform has been made yet. A pre-
liminary evaluation was performed by presenting the game
to First two four-year old girls and one six-year old boy
and observing their behavior. Observations showed that
the game was quite hard for them to play. The first proto-
type handled errors in a draconian way, making the melody
stop and restart from the beginning as soon as a single note
was missed. The fact they could never win the game was
very frustrating for them, and after just a couple of min-
utes they got bored and stopped playing. Possible improve-
ments might be allowing a greater number of errors before
stopping the melody, or relaxing the time boundaries in
which a note can be “hit”.
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6. CONCLUSIONS AND FUTURE WORK

This paper presents the first steps towards the development
of rhythmic based collaborative sonic interaction games for
children, that use current mobile technologies. It is impor-
tant for the technology to be meaningful as part of the game
and enhance the gaming experience.

This can be achieved by adding further developments of
the games will include the recognition of a greater num-
ber of gestures, which will then be used to drive the sound
synthesis engine and manipulate notes and sound effects
accordingly. Another interesting feature to is the possi-
bility for teachers to add new melodies to the game, by
extending the existing mobile application and/or through
a web-based interface. Groups of children and teachers
could sing and record their favorite tunes, then make them
available in the game to be discovered and enjoyed by other
groups of children and teachers all around the world.
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[19] N. Röber, “Playing audio-only games: A compendium
of interacting with virtual, auditory worlds,” 2005.

[20] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H. Steiner, “Embedding pure data with
libpd,” in Proc Pure Data Convention 2011, 2011.

200

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



PLUCKING BUTTONS: AN ALTERNATE SOFT BUTTON INPUT
METHOD ON TOUCH SCREENS FOR MUSICAL INTERACTION

Edward Jangwon Lee
Audio & Interactive Media Lab

Graduate School of Culture Technology, KAIST
291 Daehak-ro, Yuseong-gu, Daejeon, Korea

noshel@kaist.ac.kr

Woon Seung Yeo
Audio & Interactive Media Lab

Graduate School of Culture Technology, KAIST
291 Daehak-ro, Yuseong-gu, Daejeon, Korea

woony@kaist.edu

ABSTRACT

This article introduces plucking buttons, an alternate method
of interacting with soft buttons on touch screens that can
provide more sound parameters that are expected to en-
hance expressiveness in digital music. Rather than pushing
buttons, users are required to start and end touches inside
and outside of the button, respectively, in order to activate
the button. This gesture is similar to flicking (swiping)
gestures on touch screens and plucking strings on musi-
cal instruments. Advantages of this button and gesture
include providing extra sound parameters, preventing ac-
cidental input, and not requiring additional screen space.
The largest challenge of this gesture to be used in music
is the possible delay and inaccuracy of input due to rela-
tively complex interaction, and this is tested by comparing
two input types: plucking vs. pushing buttons. Test results
suggest that plucking can be used, but can be efficiently
used after training. Melodic musical tasks are also exe-
cuted, and users were able to successfully play a simple
song.

1. INTRODUCTION

The introduction of programmable touch screen interfaces
has provided a versatile platform to build various types of
digital musical interfaces with a very low production cost.
Moreover, nowadays touch interfaces are widely adopted
on mobile devices, such as smartphones and tablet PCs,
and offers high computation power – powerful enough to
synthesize and play real-time audio [1], and this has en-
abled digital musicians to have a powerful, programmable,
and yet affordable digital musical interface with extreme
mobility.

The versatility of touch screen programming and contin-
uous multitouch features of these devices enabled the de-
velopment of various types of user interface control com-
ponents and input gestures. Nevertheless, buttons, that
require tapping interaction in a predefined and restricted
space on screen, seem to be the most popular control in
touch screens. However, buttons on touch screens (soft

Copyright: c�2013 Edward Jangwon Lee et al. This is
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buttons) differ from their real-life counterparts (hard but-
tons), as most devices do not provide haptic feedback and
are not pressure-sensitive. The absence of pressure sensing
leaves buttons prone to accidental input and also exhibits
a loss of touch information. In a musical context, touch
screen buttons have a risk of playing unintended notes, and
the loss of information results in less sound parameters,
which in turn can imply reduced expressiveness.

As a remedy for these weaknesses, this research proposes
an alternate method of interacting with soft buttons on touch
screens: plucking, which involves swiping gestures from
inside to outside of the button. Requiring the touch to start
inside a button and to end outside is expected to prevent ac-
cidental touches, while providing extra touch information
that will grant additional expressiveness. However, as the
proposed gesture is more complex than tapping, user tests
are required to determine whether this gesture is usable for
musical needs.

2. PLUCKING GESTURES

Unlike traditional musical instruments with strings, touch
screens do not have strings that can be plucked. This sec-
tion describes the plucking gesture in traditional music,
and sets an alternate definition of plucking that can be ap-
plied on touch screens.

2.1 Plucking Gestures in Musical Instruments

In music, plucking is done to generate sound by applying
force on a string of instruments, such as the guitar. This
force can be applied either by using fingers or plectrums
(picks). In detail, the plucking gesture can be divided as
a threefold process: (a) holding, (b) pulling, and (c) re-
leasing. Holding initiates a pluck by selecting and holding
a string that is to be excited, and pulling repositions the
string to a different location, thereby accumulating force.
Finally, releasing the string finalizes the gesture and sets
the string into vibration, which is transferred throughout
the instrument to emit sound. Figure 1 illustrates the pluck-
ing process.

Normally, musical instruments in the chordophone fam-
ily maintain a high tension their stretched strings. There-
fore, a minimum amount of force is required to accumulate
enough force to generate sound. This enables the second
step of plucking – pulling – to be a very short distance, and
this causes the plucking process to go through the three
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Figure 1. Holding, pulling and releasing.

steps almost instantly. However, varying the technique of
any step results in tonal variety, which grants expressive-
ness and nuance to the player.

In terms of interaction, each step of plucking has its own
role. Holding selects the target of interaction (string to be
plucked), pulling determines the result variation (loudness
and other tonal attributes), and releasing indicates that the
user is ready to output a result, based on the two previous
steps (set strings into vibration and generate sound).

2.2 Plucking Gestures in Touch Screens

In the context of touch screen environments, the threefold
definition of plucking gestures – holding, pulling, and re-
leasing – can be interpreted in terms of touch events: touch
down (or touch start), touch move, and touch up (or touch
end). Although this is a general lifespan of touchscreen in-
teractions, the implications of each phase follow the three
plucking stages. Starting a touch selects the control to
be activated, moving the touch determines additional at-
tributes, and finally, releasing the touch outputs a result
calculated from the two previous steps.

The main difference between real string instruments and
touch screens is that there is no real string to be plucked.
Therefore, the user cannot feel any force being accumu-
lated during the pull, nor the strings themselves. This char-
acteristic can be used as an advantage to plucking gestures.
While real strings normally are not to be pulled over adja-
cent strings, in touch interfaces, after a touch start point is
decided, the touch can be pulled over other controls with-
out activating them (Figure 2). This implies that no addi-
tional screen space is required to implement plucking ges-
tures in touch screens – buttons, which serve as touch start
(holding) points, can be placed nearly as that of ordinary
types.

Figure 2. Plucking on touch screens. (a) Button 1 is
pressed (touch down or held), (b) additional information
is gathered while touch moves (touch move or pull), and
(c) releasing triggers output combining Button 1 and the
touch move data (touch end or release). Button 2 does not
interact during the touch.

3. POSSIBILITIES OF PLUCKING GESTURES AS
A MUSICAL GESTURE ON TOUCH SCREENS

In this section, we further discuss the qualifications of pluck-
ing gestures on touch screens, which is defined in the previ-
ous section. We believe that plucking grants additional mu-
sical expressiveness while not requiring extra screen space,
and that users can easily execute plucking gestures, due to
the similarity of plucking gestures to swiping.

3.1 Additional Sound Parameters

Nowadays, in the professional music industry, there is a
trend of releasing touch interface versions of their previ-
ously released musical instruments. While this movement
allowed users to purchase instruments at a more affordable
price, the limitations of touch interfaces prevented those
from the successful translation of certain aspects of the
original hardware. For example, the well-known sampler
AKAI MPC has its Apple iPad version, named iMPC. Al-
though it is offered at a very low price, several features of
the original MPC had to be omitted: velocity (pressure on
pad when first pressed) and aftertouch (changing pressure
during press). These two features use pressure informa-
tion and enable users to input additional sound parameters
when and while pressing a pad. However, the iPad version
does not support this, as the device does not have sensors to
dynamically measure pressure applied by users. As a rem-
edy, AKAI sells an optional hardware named MPC FLY,
which has external trigger pads with pressure sensors and
an interface to the iPad and iMPC software (Figure 3). 1

Figure 3. (left to right) AKAI MPC, iMPC and MPC Fly.
Limitations of touch interfaces cause loss of gestural infor-
mation, and external devices are in the market to mitigate
such losses.

The example of iMPC – the AKAI MPC on iPad – illus-
trates the loss of gestural information during the translation
from dedicated musical hardware to touch interface tablet
PC software. Rather than fully using the pressure changes
during pressing trigger pads, the tablet version generates
sound upon touch events and prolonged touches can only
control the length of sound – that is, on and off.

However, actual touch events convey more information
than touch start and end. Between the beginning and end-
ing of a touch, the touching finger is able to move to an-
other location, and this movement contains a vast amount
of information that can be used in designing a more com-
plex interaction.

Dobrian (2006) argues that “expressive control relies on
more sophisticated use of the control input information”

1 Photographs of the MPC products are retrieved from AKAI Profes-
sional website, http://akaipro.com.
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[2]. Pushing buttons and generating sound upon touch start
on touch interfaces clearly discards gestural information
that is generated after the touch starts. The most attrac-
tive aspect of plucking gestures on touch interfaces is that
the three phases of touch events (touch down, touch move
and touch up) are fully usable. Plucking gestures can in-
corporate touch movements and touch ending events as ad-
ditional sound parameters, and thereby offer more expres-
siveness.

Compared to preexisting velocity simulation techniques
such as touch size detection (harder touches activates a
larger area on the screen) or accelerometer value changes
(harder touches cause more movement of the device), pluck-
ing is a different approach. That is, rather than capturing
the touch force itself, plucking requires additional interac-
tion (pulling and releasing) in order to collect more data
from one gesture.

3.2 Widely Used Gesture on Touch Interfaces

Although the proposed plucking gesture seems to be more
complex than pressing buttons, the gesture itself is only
a marginal cost added to flicking. Flicking gestures, which
are mostly used in turning pages, takes all touch data (start,
move and end) into account and accordingly scrolls the
screen. Usually, flicking requires the user to move the
touch quickly, and the velocity of movement should not
decrease near touch end. The user executes flicking by
touching an arbitrary point within the content, move to
touch quickly towards a desired direction, and ends the
touch without slowing down. Plucking gestures in this re-
search slightly adds cost to flicking: (a) plucking requires
the user to pinpoint the starting point of touch, so that the
desired control to activate can be determined before the
touch moves, and (b) the distance of pulling should be
taken into account.

3.3 Avoids Accidental Input

One of the largest problems of touch interfaces is acciden-
tal input problems. In most real-life hard buttons, such as
computer keyboards, users can place their fingers or hands
on the button without activating it. However, on touch
screens, buttons can be activated by the slightest touch, and
this aspect is a risk to take in music, as well as other fields
of applications.

Although the proposed gesture, plucking buttons, heighten
the complexity of activating buttons, this complexity can
serve as a mitigation to such accidental inputs. In order
to activate a button with plucking, the user must start and
end the touch inside and outside the button, respectively.
Therefore, as real-life keyboards, users are able to place
their hands on the buttons while they are unused, and no
output is produced. Even after a button has been pressed
(holding) and the finger has moved out of the button (pulling),
simply returning inside the button cancels the activation.

4. TEST DESIGN AND DATA COLLECTION

In this section, a test design that can determine whether
plucking gestures can be used as a musical gesture on touch

screen environments is described. After highlighting the
anticipated difficulties of plucking, musical tasks [3] are
devised to test each issue. Quantitative and qualitative meth-
ods are employed, in rhythmic and melodic musical tasks,
respectively.

4.1 Challenges of Pulling Gestures in Music

Cost of Interaction. The highest obstacle of employing
plucking gestures in music is the cost of interaction. In
order to fully utilize touch data generated throughout the
touch lifespan, the final sound output should be delayed
until the touch event completes. Therefore, the total time
required from player intention to sound output increases,
and only a marginal amount of such time increase can be
critical in real-time situations such as live performances.
This test focuses on the human ability to rapidly execute
plucking gestures enough to match their intentions and keep
up to tempo.

Location of touch release. Among the three steps of pluck-
ing, pulling surely is the most time-consuming step. In
order to minimize the cost of interaction described above,
the time used in pulling should be as short as possible. An-
other challenging point stems from here: whether players
can freely control the location of releasing. Choosing a
point to touch on the screen is relatively easy, compared
to pinpointing the location of releasing touch after rapid
movement.

4.2 Rhythmic Musical Task

Staying ”in the pocket”, that is, being able to keep up
tempo, is one of the most important virtues of playing an
instrument. Therefore, requiring additional time in musi-
cal interaction can be intolerable. As plucking gestures
on touch interfaces clearly require more time compared to
pushing buttons, proper user testing is crucial to approve
the usability of plucking in music. To test the possibilities
of keeping musical tempo while plucking, a quantitative
test method is devised that records the time deviation be-
tween played notes (onsets) and prerecorded metronome
pulses (click onsets). Many examples of this type of ex-
periment, which require users to interact referring to audi-
tory cues, can be found in the sensorimotor synchroniza-
tion (SMS) literature [4] [5] .

4.2.1 Task Description

The objective of this task is to execute a simple test em-
ploying descriptive statistics to evaluate the rhythmic dif-
ference between pushing and plucking gestures.

A rhythmic musical task is prepared, requiring users to
play notes at every one beat. A prerecorded common timed
metronome track is played for a total of eight bars. The
first four bars are pre-rolls, enabling users to become ac-
customed to the tempo. Although interaction details are
recorded throughout the eight bars (32 beats), only the lat-
ter two (8 beats) are to be used in analysis. User tests are to
be executed in three different tempi: 60, 120 and 180 beats
per minute (bpm). Two versions of touch interface applica-
tions are prepared with one large button each, differing in
interaction style: (a) sound generation upon pushing (touch
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down event) and (b) sound generation upon plucking ges-
ture.

4.2.2 Measurement and Hypothesis

While the prerecorded metronome track is playing, every
touch interaction is recorded. Afterwards, the recorded in-
formation is processed by hand in order to extract the final
eight touches (onsets). Each touch time is measured as a
millisecond representation of the current sample number
of the metronome track (16bit, 44,100Hz sample rate) be-
ing played at the time of touch: that is, touch down time for
pushing and touch up time for plucking. As the metronome
onset time can be easily calculated, onset asynchronies can
be calculated as the difference between metronome onset
times and time of touches.

For each participant, mean onset asynchronies and stan-
dard deviations are calculated. As there are two different
input methods (pushing and plucking) and three different
tempi (60, 120, and 180bpm), each participant generates
six sets of data.

We expect that the increased cost will increase a partic-
ipant’s mean asynchrony, as plucking is clearly a costlier
interaction than pushing. However, as ending touches (lift-
ing finger off screen) requires less physical movement than
starting touches (placing finger on screen), in low tempi the
standard deviation of plucking might be lower than push-
ing.

4.3 Melodic Musical Task

In addition to the quantitative rhythmic musical task, a
melodic task to assess the playability is devised. This test
is designed as a qualitative test, and feedbacks from users
are collected during and after a time of exploring, free-
playing, and being asked to play a simple song. Playing a
simple song intends to determine whether users are able to
play desired notes at a desired timing, without accidental
input or misplayed notes.

4.4 Sample Demography and size

The test sample includes ten participants, including three
professional musicians. Each participant was given three
to five minutes of guided exploration of the interface, and
the rhythmic test was executed afterwards. After the rhyth-
mic musical task, users were asked to execute the melodic
musical task.

5. IMPLEMENTATION

A simple touch application is implemented to meet our
testing needs. The application, named Pull, is developed
on Apple’s New iPad with iOS 6.1 using Cocos2D/Box2D
game development framework. 2 Multitouch feature is also
included, to enable multi-note chords and drum patterns.

Timing. For precise interaction time recording relative
to the metronome in rhythmic musical tasks, the MoMu
toolkit [6] is used as the audio engine, running at 44,100Hz
sample rate. Metronomes in each test tempo are pre-recorded

2
http://www.cocos2d-iphone.org

and stored in .wav format (16bit, 44,100Hz sample rate),
and user interaction timings are stored as the time elapsed
since metronome start (calculated from the current sample
number played). This method is similar to the method used
in Kim et al. (2012) [7].

Sound generation. Instruments samples from Apple Logic
Pro 9 were recorded as .wav files and preloaded. The sam-
ples include one octave of a marimba in C major scale
(eight notes; C4 to C5), and a four-note TR808 drum kit
(open and closed hi-hats, kick and snare drums).

Figure 4. (upper) Prototype user interface. The grey circle
in the center is the main button. After touching the inner-
most circle, the touch is moved to a desired arc, which each
represents a different note, and releases the touch to gener-
ate sound with the corresponding pitch. Muti-touches are
available. (lower) Pitch versus distance and angle mapping
used in the initial melodic musical task.

5.1 User Interface

Figure 4 shows the prototype user interface. The grey in-
nermost circle is the main button which users start the pulling
gesture. The colored outer circles serve as a guideline for
users to pinpoint their touch release location. After a touch
down, touch move, and touch up event cycle is ended, the
application calculates the move distance between the touch
start and end points as well as the angle of movement in ra-
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dians, ranging between 0 and 2⇡. For each touch, a small
ball is generated and follows the finger, to indicate the cur-
rent touch position. On touch release, the ball rapidly re-
turns to the original location.

5.2 Musical Mappings

The interface in upper portion of Figure 4 has only one but-
ton in the center of screen, with colored circle guidelines
for plucking. Plucking gestures on this interface is imple-
mented as follows. After starting the touch in the center,
the touch is moved to a desired location in the outer circles,
where each arc represents a different note. Arcs with the
same color represent identical pitch. Releasing the touch
inside the center circle does not produce sound; the touch
must be moved outside the center circle and be released in
order to play a note. Further details on the mappings can
be found in the lower portion of Figure 4.

For the rhythmic musical task, an alternate one-button in-
terface that generates sound upon touch down events is also
implemented.

As this research focuses on the possibility of using pluck-
ing gestures on touch screens, only one button has been
implemented. However, after user tests, another user in-
terface employing several buttons has been developed, and
will be introduced in section 6.

6. DATA ANALYSIS

6.1 Rhythmic Musical Task

The mean asynchronies and standard deviations of each
participant are described in Table 1. Most of the partici-
pants showed a positive shift in mean asynchronies when
plucking, suggesting that the increased cost of plucking
gestures generates a systematic difference between the mean
asynchronies of the two input methods. While most senso-
rimotor synchronization experiments exhibit negative asyn-
chronies [5], frequent occurrence of positive means might
imply that the increased interaction cost of plucking is larger
than expected.

Standard deviations show less differences between the
two input methods, which range between less than 1ms
to 26ms. In 60bpm, most participants show an increase
in variability while plucking. However, as the tempo in-
creases, plucking begins to exhibit more stable results com-
pared to pushing: six out of ten participants showed de-
creased standard deviation compared to pushing.

Data of full-time professional musicians can be found
in participants 4, 6, and 7: a guitarist, drummer, and pi-
anist, respectively. The guitarist (participant 4) was not
able to pluck stably (SD = 56ms) in 60bpm, but in 120
and 180bpm plucking showed less standard deviation than
pushing. The drummer (participant 6) showed superior
performance in pushing, but relatively poor in plucking.
Regarding the fact that the test began with 60bpm and to-
wards higher tempi and that plucking is a newly introduced
musical gesture, the test results might be handicapped with
lack of training, as the drummer’s standard deviation in
120bpm drastically rises (1ms to 25ms).

To further analyze the effects of training, participant 10
(non-musician) was offered several iterations of the exper-
iment for fifteen minutes. After mentioning that he realized
how it should be done, participant 10 was able to achieve
stable results in both mean and variability. This suggests
that the increased cost of interaction might be overcome
through training.

6.2 Melodic Musical Task

Users were asked to freely explore the interface described
in Figure 4 under our supervision and guidance for approx-
imately five minutes, and play a popular song, “Twinkle,
Twinkle, Little Star”. Most of the users claimed that al-
though playing the song was not impossible, they could
not play the song fast enough due to the difficulties of
pinpointing the touch end location. As the initial musical
mapping mapped pitch to pull distance, users had to con-
centrate on precisely ending touch moves at the next note
to be played. This caused users to execute the plucking
gesture extremely slowly.

Based on the feedbacks above, we concluded that the
one-button plucking interface with pitch mapped to pulling
distance (Figure 4) is inappropriate in a sense that pulling
distance cannot be easily controlled, and another user inter-
face with multiple buttons and different musical mapping
has been implemented.

Figure 5. An alternate user interface with different musi-
cal mapping. Each circular button is mapped to a different
pitch in the C major scale, and the pulling distance deter-
mines the amplitude gain.

The alternate interface, depicted in Figure 5, has seven
colored buttons on the upper two lines, and four grey but-
tons on the lower line. Each of the colored button has been
assigned a different pitch: C4 to C5, in C major scale. For
the lower buttons, closed hi-hat, opened hi-hat, kick drum,
and snare drum has been assigned. The pulling distance
of pluck determines the gain of generated sound, ranging
from 0 to 3. Further pulling results in louder sound.

An identical melodic musical task was executed with the
new interface, and users commented that they were much
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Mean Asynchrony (ms) Standard Deviation (ms)
60bpm 120bpm 180bpm 60bpm 120bpm 180bpm

part. push pluck push pluck push pluck push pluck push pluck push pluck

1 16 -10 -17 4 -9 28 25 35 17 22 11 17
2 -54 -75 -24 -34 -24 56 31 24 30 39 12 20
3 -9 -18 -24 27 -2 -6 40 25 21 39 20 8
4* -5 26 3 19 -3 17 19 56 14 12 15 14
5 -56 23 56 1 -10 -3 17 30 18 17 28 25
6* -8 26 -14 50 -20 52 20 22 1 25 12 14
7* -30 -42 19 25 9 8 22 45 15 16 13 9
8 -33 -97 -15 -12 -30 28 27 35 33 34 42 16
9 -55 -38 -28 -13 9 12 36 24 14 9 9 6

10** -74 43 -87 -73 -61 -31 30 19 27 25 17 20

Table 1. Descriptive statistics of the collected data from ten participants. Higher mean asynchronies and lower standard
deviations among the two input types, pushing and plucking, are highlighted in boldface. Most of the participants show
a considerable amount of positive shift in their mean asynchronies while plucking, which suggest the increased cost of
interaction. As the tempo increases, plucking gradually begins to exhibit lower standard deviations compared to push-
ing. Participants 4, 6, and 7 are professional musicians. Participant 10 has been trained through several iterations of the
experiment.

more comfortable, as the interface had similarities with pi-
ano keys (left to right layout with higher pitches on the
right) and trigger pads (grid layout of identically shaped
buttons). Playability was also enhanced, and almost every
test subject was able to play a simple song without diffi-
culties.

7. CONCLUSIONS AND DISCUSSIONS

Plucking gestures on plucking buttons, which require the
user to hold and pull a touch outside the button in order
to generate output upon releasing, is a new type of musi-
cal interaction on touch screens. We believe that plucking
buttons can contribute in the field of digital music by al-
lowing more sound parameters to be mapped on a single
button and providing a means of preventing accidental in-
put – with an everyday gesture that is similar to flicking or
swiping. Although the proposed gesture adds interaction
cost, the costs are shown to be affordable through training,
and the benefits cannot be neglected.

We are actively seeking for more possibilities of pluck-
ing. The plucking gesture implemented in this research
only considers touch start and end points – the touch move
path is not considered in the musical mapping. Adding
parameters related to touch movement, such as accelera-
tion, will surely produce interesting results. However, as
plucking is a relatively small gesture, excessive sound pa-
rameters mapped to the gesture might cause confusion and
difficulties to properly play, therefore caution is required.
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ABSTRACT 
The purpose of this paper is to present Robin, an algorithmic 
composer specifically designed for interactive situations. 
Users can interact in real time with the algorithmic 
composition by means of control strategies based on 
emotions. This study aims at providing a system for automatic 
music generation to be applied to interactive systems for 
music creation targeted at non-musicians. Robin adopts a rule-
based approach to compose original tonal music in classical 
piano style. The first practical application of Robin is The 
Music Room, an interactive installation which enables people 
to compose tonal music in pairs by communicating emotion 
expressed by moving throughout a room. 

1. INTRODUCTION 
In 1978 Bischoff et al. stated the relevance of music: “to 
bring into play the full bandwidth of communication there 
seems to be no substitute […] than the playing of music 
live” [1]. However, due to complexity which is intrinsic 
to playing, most people can only experience melodies 
created by somebody else. Research in Computer Music 
has been trying to simplify music creation, for the pur-
pose of making this creative art accessible to an untrained 
audience [2,3]. Novel technologies, such as ubiquitous 
computers, touchscreen devices, visual tracking systems 
and physiological sensors, have been used to build new 
devices to complement or replace traditional instruments 
[4,5]. This technological advancement aroused a new set 
of issues, opening a challenging task to interaction de-
signers and algorithm developers. 

From an interaction design perspective, the challenge is 
to find new metaphors, as to detach the process of music 
composition from theoretical knowledge and practical 
skills that are the result of a formal musical education. 
There is a need for new interaction paradigms leveraging 
the communication forms, with the specific requirements 
of being available to everybody, intuitive and naturally 
connected with music. Emotion is probably the language 
that best meets the requirements mentioned above. In 
every culture, music is one of the arts that most effective-
ly stir emotions [6,7] and music has always been associ-
ated with emotionality [9,26]. 

Being emotions the main composition medium, the in-
volvement of the performer changes. Therefore, the tradi-

tional paradigm based on a note-to-note control is re-
placed by compositional decisions based on the emotions 
the user intends to elicit. This forces the system to in-
clude an algorithmic module, which can convert user 
input into musical language and generate music conse-
quently.  

In this paper we introduce Robin, an algorithmic com-
poser designed to make the experience of musical creativ-
ity accessible to even untrained people. The main contri-
bution introduced by Robin is the possibility of interact-
ing with music in real time. Users can direct the composi-
tion in real time, conveying emotions that are translated 
into matching music in classical piano style. The poten-
tial lack of musical training of the users requires that the 
generated music should be understandable by everybody. 
In this connection, tonal music has the potential to reach 
a wider audience as it is the most common music in 
Western culture across different age groups and it is 
gradually spreading to other cultures. 
 Performing art provides the most important application 

field for the presented system. In fact, Robin can be used 
as a basis for interactive installations, where users can 
direct the music interacting with each other through their 
own body movements. Basing on this premise, we de-
signed The Music Room, an installation where user cou-
ples can experience music creativity by moving through-
out an area [5]. Robin also opens a number of possible 
practical applications in the most diverse fields. For ex-
ample, movie directors and computer game developers 
could realize their own soundtracks instead of hiring pro-
fessional musicians or licensing existing tracks. General 
technology users may adopt such a system to personalize 
their personal devices and online services, composing 
unique ringtones for mobile phones, creating a musical 
background for personal spaces on social networks (the 
musical equivalent to the so-called “status” which verbal-
ly describes somebody’s moods and feelings), or for 
shared albums in image hosting websites. From a social 
perspective, a system that enables non-musicians to trans-
late their own feelings and emotions into music might 
prove useful for therapeutic purposes. 

The paper is organized as follows: in section 2 the re-
lated works are reviews; in section 3 Robin’s architecture 
is described; in section 4 The Music Room is presented; 
in sections 5 and 6, finally, future developments are pre-
figured and some general conclusions are drawn.  
 

Copyright: © 2013 Morreale et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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2. RELATED WORKS 
According to Todd and Werner, research on algorithmic 
music composition has based its own evolution on three 
approaches: evolutionary, learning-based and rule-based 
[10]. Evolutionary algorithms are particularly suitable to 
ensure an unpredictable outcome over the generative pro-
cess [3]; the generated music, though, can result complex 
and unnatural. Learning-based algorithms compute music 
by training the system with pre-existing musical excerpts 
[12]. While the result is more natural, it strongly relies on 
the training set. The rule-based approach to a greater ex-
tent depends on human intervention, as compositional 
rules are manually coded [13]. Thus, a deep knowledge 
on music theory is required of algorithm designers, and 
the diversity and quality of musical outcomes depends on 
the amount of taught rules [14]. Recently, several algo-
rithmic composition systems exploited the relation be-
tween music and emotion in the composition process 
[13,15,16]. In 2009, Hoeberechts and Shantz presented 
AMEE, a patented algorithmic composer that put the em-
phasis on automatic generation of soundtracks for video 
games [15]. In this system, the composition can be influ-
enced in real time by altering the desired mood. 

As regards the mapping between music and perceived 
emotions, research on the psychology of music suggests 
that the interpretation of emotions in music depends on 
acoustic cues embedded in composition and performance 
behaviours, whose combination stirs different emotional 
responses in the listener [8,9]. Researchers usually adopt 
a dimensional or a categorical approach to measure and 
classify emotions. In the categorical approach, emotions 
are discretized into a number of classes that correspond to 
the basic emotions. Several studies aimed at defining a 
set of musical variables, such as tempo, sound level, tim-
bre, vibrato and consonance, that seemed typical of each 
of the basic emotions elicited by music such as anger, 
happiness, fear and solemnity [6,11]. The restricted num-
ber of categories, however, limits the fullness of emo-
tional states evoked by music [17]. To overcome this lim-
itation, most of the studies describe and measure emo-
tions with a dimensional approach that allows combina-
tions and gradients of emotions [9,13,16,18]. These stud-
ies are usually based on Russell's Circumplex theory [19], 
according to which emotions can be described as a con-
tinuum along two dimensions: valence, which refers to 
the positive vs. negative value of affective states, and 
arousal, which refers to the rest vs. activation difference.  

2.1 Mapping music into valence and arousal 

A general consensus suggests that mode and rhythm de-
termine valence, while tempo and dynamics are deter-
mine arousal [9]. Other structural parameters that con-
tribute to the elicitation of emotions are volume, melody 
direction, dissonance and expectation fulfillment. Table 1 
shows how the combination of these elements determines 
the desired emotional expression by means of valence 
and arousal. 
 
 
 

 Valence Arousal 

Mode Major Positive  
Minor Negative  

Tempo 
Fast Positive 

(less influential) High 

Slow Negative 
(less influential) Low 

Volume 
Decrease in case of 

very low or very high 
volumes 

Proportional to 
volume 

Melody 
Direction 

Rising Positive  
Falling Negative  

Dissonance Negative  
Note Den-
sity 

High  High 
Low  Low 

Expect. Fulfill-
ment Positive  

 
Table 1. Mapping between musical structures and the 
emotional dimensions of valence and arousal 
 
Mode. Mode is the compositional factor which mostly 
influences valence. While minor mode elicits negative 
valence, major mode elicits positive valence. Mode does 
not directly impact on arousal [8, 18].  
 
Tempo. Tempo influences the factor of arousal: in par-
ticular, fast tempo elicits high arousal, while slow tempo 
elicits low arousal [8]. Furthermore, to some extent, high 
tempo elicits positive valence, while slow tempo elicits 
negative valence [20]. A recent study showed that the 
influence of tempo on the dimension of valence dimen-
sion is to be particularly observed in non-musicians, as 
they attribute a greater importance to tempo than to mode 
when evaluating valence [18]. 
 
Volume. Volume is directly proportional to the arousal 
elicited in the listener. In case of very high and very low 
volume, however, valence is negatively influenced be-
cause the listening experience becomes unpleasant [8].  
 
Melody direction. The direction of the melody in a sen-
tence can influence the perceived valance. To some ex-
tent, rising melodies express positive emotions, while 
falling melodies express negative emotions [8].  
 
Dissonance. Traditionally, dissonance can elicit negative 
valence, especially if the listener is a non-musician [21].  
 
Note density. The density of notes impacts on the arousal 
dimension [8], which can be altered by the increased lev-
el of energy in the composition resulting from a dense 
melody. 
 
Fulfillment of expectations. In his pioneering book, 
Emotion and Meaning in Music, Leonard Meyer ex-
plained how the fulfillment of expectations can elicit pos-
itive emotions while listening to a piece of music [22]. 
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3. SYSTEM ARCHITECTURE 
As Robin is intended to be used in interactive contexts 
available to everybody, two requirements must be met: 
i) the generated music needs to be accessible even to non-
musicians; ii) the composition has to be influenced in real 
time. These requirements led to the adoption of a rule-
based approach, as it guarantees an accurate control of 
the compositional process. The algorithm is taught a se-
ries of basic compositional rules of tonal music, which 
are used to create original compositions in Western piano 
music style. The choice of tonal music is consistent with 
the ultimate purpose of our research which is targeted at 
an untrained audience, that usually do not understand 
experimental, complex or atonal compositions [23]. To 
ensure consistency with user interaction, the system con-
tinuously listens to input changes, adapting the musical 
outcome accordingly. 

Unlike AMEE [15], which outs the emphasis on sound-
tracks for computer games, Robin does not allow the def-
inition of high-level musical structures, such as verses 
and sections. This choice was dictated by the fact that the 
evolution of user interaction with the system cannot be 
predicted.. AMEE tackles this issue by introducing forced 
abortion in the process of music generation. By contrast, 
we decided to avoid dramatic interruptions, as to guaran-
tee a musical coherence and a natural evolution of the 
composition itself. The only high-level structural ele-
ments composed by Robin are theme repetitions, which 
simulate choruses and verses, that are typically present in 
most of contemporary genres, and cadences that define 
phrases. Robin is composed of three modules (Figure 1) 
that independently control different parts of the composi-
tion.  

 

 
Figure 1. The architecture of Robin. 
 

The Harmony Generation Module (HGM) determines the 
chord progression basing on a probabilistic approach. The 
generated chords are then fed to the Accompaniment 
Generation Module (AGM), that composes the left hand 
melody, and to the Melody Generation Module (MGM), 
that composes the right hand accompaniment. The MGM 
computes the melody notes by combining the rhythmic 
pattern chosen by the Rhythm Generation Module 
(RGM) with the pitches chosen by the Pitch Selection 
Module (PSM). 

3.1 Harmony Generation Module 

Traditionally, harmony is examined on the basis of chord 
progressions and cadences. Several algorithms for music 
compositions based on Generative Grammar implement 
chord progressions as stochastic processes [14,23]. The 
transition probabilities between successive chords are 
defined as Markov processes [23]. Chords transition data 
can be extracted analyzing existing music, surveying mu-
sic theory or following personal aesthetic tastes and expe-
riences [24]. 

In Robin, chords correlation does not depend on previ-
ous states of the system. A first-order Markov process 
determines the harmonic progression as a continuous 
stream of chords that is sometimes forced to go to a ca-
dence or to modulate. The algorithm controls chord pro-
gression, starting from a random key and then iteratively 
processing a Markov matrix to compute the successive 
chords (Table 2). The 10x10 matrix contains the transi-
tion probabilities among the degrees of the scale. The 
entries are the seven degrees of the scale as triads in root 
position and three degrees (II, IV, V) set in the VII chord. 
The transition probabilities are based on the study of 
Harmony of Walter Piston [25] and from tonal music 
literature (mostly from Bach chorales).  
 

	   I II III IV V VI VII IV7 V7 II7 

I 0 0.05 0.05 0.30 0.20 0.05 0.1 0.05 0.15 0.05 
II 0.04 0 0.04 0.04 0.45 0.08 0 0 0.35 0 

III 0 0.07 0 0.21 0.07 0.65 0 0 0 0 

IV 0.15 0.10 0.05 0 0.35 0.05 0 0 0.30 0 

V 0.64 0.05 0.05 0.13 0 0.13 0 0 0 0 

VI 0 0.40 0.10 0.10 0 0 0 0 0 0.40 

VII 0.8 0 0 0 0 0 0 0 0 0.2 

IV7 0 0.30 0 0 0.30 0.30 0 0 0.10 0 

V7 0.9 0 0 0.05 0 0.05 0 0 0 0 

II7 0 0 0 0 0.5 0 0 0 0.5 0 

Table 2. Transition probability matrix among the degrees 
of the scale. 

At each new bar the system analyzes the transition matrix 
and checks the row corresponding to the degree of the bar 
playing at that moment. At this point, the degree of the 
successive bar is computed: the higher the transition val-
ue, the higher the probability to be selected. The harmon-
ic rhythm is one bar long and each bar measures !

!
. In 

order to divide the composition into phrases, every eight 
bars the system forces the harmonic progression to a ca-

AGM

Cliché selection

HGM
Harmonic progression

matrix

MGM

Rhythm Generation Module

PSM
Rhythmic pattern 
is filled with notes 

from the scale

Chord selection
+

Generated Music
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dence (a conclusion of a phrase or a period) to a perfect 
or plagal mode. In order to generate compositions with 
more variations, Robin can switch between different keys 
and perform V and IV modulations.  

3.2 Accompaniment Generation Module 

The music generated by Robin consists of two voices: 
melody and accompaniment. At each new bar, the Ac-
companiment Generation Module (AGM) selects the new 
accompaniment. Four sets of clichés (accompaniment 
typologies) are available. The sets differ in the density of 
the notes in the arpeggio. 

3.3 Melody Generation Module 

Melody is computed by separately dealing with rhythm 
and pitch, thus maintaining coherence in the composition. 
At each new bar, the Rhythm Generation Module (RGM) 
selects a rhythmic pattern, which is consistent with the 
internal state of the system. The rhythmic pattern is then 
filled with pitches chosen by the Pitch Selection Module 
(PSM). 

3.3.1 Rhythm Generation Module 
The RGM is responsible for selecting the rhythmic pat-
terns. A total of 38 possible rhythmic patterns are clus-
tered into 3 sets, depending on the role of the bar in the 
phrase. The first set includes the rhythmic patterns suita-
ble for the initial bars and for every bar in the phrase ex-
cept the final one. The second set is responsible for lend-
ing an original character to each composition. The 
rhythmic patterns for all the bars except for the initial and 
the final ones belong to this set, that we divided into the 
following four subsets: 
 

2a. Patterns with a predominance of quarter notes. 
2b. Patterns with a number of 8th and 16th notes. 
2c. Patterns with triplets. 
2d. Patterns with syncopated rhythms. 

 
The patterns belonging to the second category are select-
ed with a stochastic approach. The computation of har-
monic progression was defined as a stochastic process. 
Similarly, a probability-based squared matrix for rhyth-
mic patterns is defined (Table 3). The rows and the col-
umns represent the five rhythmic pattern subsets suitable 
for the internal bars (1, 2a, 2b, 2c, 2d), while the individ-
ual items of the matrix represent the transition probabili-
ties. Unlike the harmonic progression, the conditional 
probability distribution of future rhythmic patterns de-
pends on the sequence of events that preceded it. This 
choice aims at increasing the coherence in the composi-
tion, thus influencing the choice of rhythmic patterns on 
previous decisions. As a consequence, the rhythm proba-
bility matrix is dynamically updated at each step. For 
instance, when the algorithm repeatedly chooses patterns 
from the 2c subset, the probability of staying in the same 
subset increases at the expense of the other three subsets.  
 
 
 

	   1 2a 2b 2c 2d 
1 0.20 0.20 0.20 0.20 0.20 

2a 0.10 0.30 0.20 0.20 0.20 
2b 0.05 0.1 0.35 0.20 0.30 
2c 0.05 0.2 0.2 0.35 0.2 
2d 0.05 0.2 0.2 0.2 0.35 

Table3. Transition probability matrix for rhythmic pat-
terns of internal bars. At each step, the matrix dynamical-
ly updates in relation to the history of the system. 

The third set is composed of the rhythmic patterns used in 
the last bars of each phrase. This set is also divided into 
two subsets: the algorithm selects patterns from the 3a or 
3b subset if most of the bars of the phrase were taken 
respectively from 2a, 2b or from 2c, 2d: 
 

3a. Patterns of the cadences to 2a and 2b. 
3b. Patterns of the cadences to 2c and 2d 

3.3.2 Pitch Selection Module 
The Pitch Selection Module (PSM) receives the rhythmic 
pattern and the current chord from RGM and HGM (Fig-
ure 2a). The selection of the notes of the melody occurs 
in two steps. In the first step (Figure 2b), all the signifi-
cant notes in the bar are filled with notes of the chord. 
The notes regarded as significant are those whose dura-
tion is eighth or longer or that are in a relevant position in 
the bar (e.g. first and last place). At the second step (Fig-
ure 2b), the algorithm fills the remaining spaces with 
notes of the scale. Starting from the leftmost note, when 
the algorithm bumps into an empty space, it checks the 
note on the left and it steps one pitch up or one pitch 
down, depending on the value of the melody direction.  
 

 
Figure 2. The selection of pitches for the melody. 
a) The PSM receives the rhythmic pattern and the 
chord. b) The relevant notes of the melody are 
filled with notes of the chord. c) The remaining 
spaces are filled with notes of the scale to form a 
descending or ascending melody. 

a)

b)

c)
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3.4 User Intervention: emotional change 

The theoretical foundations for the mapping between 
music and emotion adopted in our work were reviewed in 
2.1. The concepts expressed in Table 1 are operational-
ized in Robin as follows: 
 
Mode. The change between modes is supported by Robin 
in the HGM that populates the matrix with notes in the 
selected mode.  
 
Tempo. Tempo is managed by Robin as a continuous 
variable measured in BPM.  
 
Volume. Volume is a continuous variable that determines 
the intensity (velocity) of the musical outcome. 
 
Melody direction. The direction of the melody is deter-
mined by the PSM as described in 3.3.2. 
 
Dissonance. Dissonance is achieved by inserting a num-
ber of out-of-scale notes in both melody and harmony.  
 
Note density. Note density is manipulated by means of 
clichés and rhythmic patterns. 
 
Fulfillment expectations. We operationalized this con-
cept by presenting a theme several times. Repeated 
themes, indeed, elicit positive valence as they builds 
memories and expectations in the listeners.  

4. ROBIN IN THE CONTEXT OF PER-
FORMING ART: THE MUSIC ROOM 

The Music Room is an interactive installation for collabo-
rative music composition that represents the first inter-
face to Robin [5]. Two people direct the composition of 
original piano music by moving throughout a room. In-
formation about the emotionality of music is inferred 
from proxemics cues by following the analogy with love: 
high proximity is mapped into positive emotions and low 
proximity into negative emotions; high speed into intense 
emotions and low speed into mild emotions. The first 
versions of The Music Room were exhibited at the EU 
Researchers’ Night, (Trento, Italy, September 28th 2012) 
and at the ICT Days (Trento, Italy, March 23th 20131. The 
5x5m room that hosted the installation was deliberately 
empty and minimally decorated, as to draw the attention 
of people to the musical cue. 

The architecture consists of a Position Tracking Mod-
ule and Robin. The acquisition of proxemic cues is per-
formed through a camera in a bird eye position, fixed on 
the ceiling in the center of the room. Moving people are 
detected and followed through a visual tracking algo-
rithm; their position is updated over time, processed and 
then sent to Robin. The cues of interest are the relative 
distance and average speed, computed according to the 
trajectory of each user over time. The information com-
ing from the proxemic cues computed by the tracking 

                                                             
1 Some excerpts of the generated music can be found at 
http://goo.gl/Ulhgz 

system conveys the intended emotionality. By matching 
the values of speed and proximity to emotions, Robin 
adapts the musical flow, as has been previously de-
scribed. The system is developed in SuperCollider, a pro-
gramming language for audio synthesis and algorithmic 
composition. The software outputs a MIDI score that is 
transformed by Logic Pro, a Digital Audio Workstation, 
into piano music. 

After each session, couples were given a link to a 
webpage where they could fill an evaluation question-
naire and download the song that Robin composed during 
their experience. The results of the questionnaire showed 
that most of the visitors (76%) greatly appreciated the 
installation and in particular the quality of the music 
(79%). Criticism was mostly aimed at the latency of the 
system response to user movements and at the lack of 
musical genres. Nevertheless, almost the 90% of the in-
terviewees had an overall enjoyable experience. 

5. FUTURE WORKS 
Even though this system has already met with considera-
ble appreciation, some limitations do exert an influence 
on the current version of the algorithm. In particular, the 
originality and the diversity of the compositions are af-
fected by the absence of a bass line and by the lack of 
available genres. In order to improve the quality and di-
versity of the generated music, a number of new features 
are being currently developed. Among them, we are envi-
sioning the possibility of extending the MGM to support 
multiple voices and the harmonic progression matrix to 
support chords in non-root position. 

Furthermore, we are currently developing more musi-
cal genres and instruments, as to enable users to choose 
their favorite musical style before trying the installation. 
As regards the mapping of music with emotions, we are 
planning to increase the number of musical parameters 
that provoke a change in the elicited emotions. Among 
these parameters, we plan to include tensions and level of 
orchestration to map arousal, and timbre, number of har-
monics and melodic range to map valence. 

The latency between the user input and the musical 
output represents another limitation of the system. Even 
though the musical system is specifically designed to 
synchronize the user input with the generated music, we 
purposely decided to avoid sudden changes in music. 
This choice was mainly dictated by aesthetic reasons, 
requiring the phraseological structure of music to be pre-
served even in case of rapid changes in the emotional 
input. For this purpose, the successive musical phrase is 
computed at the last beat of the playing bar, currently 
fixed at !

!
. This results in an approximately 4-second de-

lay, in the worst-case scenario, occurring with a 60 BPM 
tempo and the bar at the first beat. Two solutions allow 
the new version of the algorithm to reduce this latency, 
while preserving musical coherence. 

1. At every quarter, a new input from the user is checked. 
If it ranks above or below a specific threshold, a new 
bar starts straightaway. 
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2. The tempo range is changed from 60-140 to 90-150 
BPM. As a consequence, each beat lasts 0.75 seconds, 
while 90 BPM is still slow enough to be perceived as 
andante. 

By implementing these solutions, the latency time drops 
to 0.75 seconds in the worst-case scenario: this figure can 
be regarded as sufficiently low even for interactive situa-
tions. 

6. CONCLUSIONS 
The importance of emotion-driven real-time algorithmic 
composition systems was already discussed by relevant 
studies [15,16]. In this connection, Robin represents a 
new approach in the context of interactive scenarios. The 
appreciation of the attendees of the two editions of the 
Music Rooms clearly witnesses to the quality of the mu-
sic. Due to this success, a number of other installations 
based on Robin are currently being developed for educa-
tional, entertainment and therapeutic purposes. 
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ABSTRACT

This paper introduces x-OSC: a WiFi-based I/O board in-

tended to provide developers of digital musical instruments

with a versatile tool for interfacing software to the physical

world via OSC messages. x-OSC features 32 I/O channels

supporting multiple modes including: 13-bit analogue in-

puts, 16-bit PWM outputs and serial communication. The

optimised design enables a sustained throughput of up to

370 messages per second and latency of less than 3 ms.

Access to settings via a web browser prevents the need

for specific drivers or software for greater cross-platform

compatibility. This paper describes key aspects x-OSC’s

design, an evaluation of performance and three example

applications.

1. INTRODUCTION

The ubiquity of high-performance computational devices

is raising the baseline expectations of computer literacy

and the prioritisation of programming skills within school

curricular [1]. As technology becomes increasingly famil-

iar, an appetite for technological experimentation is giving

rise to a new range of development platforms designed to

make technological innovation accessible to all [2]. Princi-

pal examples include the Processing language/environment

[3], which provides powerful abstractions for the devel-

opment of cross-platform graphical software, and the Ar-

duino development board, which has empowered artists,

designers, and makers to create embedded hardware solu-

tions [4].

Developers of digital musical instruments (DMIs) are no-

table users and creators of modern devices that are opti-

mised to connect real-world electronics with music com-

position and performance software [5]. For example, Axel

Mulder’s I-Cube system [6], Fléty et al’s EtherSense [7]

and Kartadinata’s gluion [8] each represent solutions that

have emerged from research into interactive music sys-

tems. Similarly, the interface device presented in this paper

has been designed to meet the challenges associated with

live music performance and represents a high-performance,

robust, potable, low-latency and highly-compatible inter-

face device suitable for a wide range of applications. The

following sections of this paper will set out the context

Copyright: c©2013 Sebastian Madgwick et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.
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Figure 1. Data flow diagram for one of two data gloves in

the current version of The Gloves

leading to the development of x-OSC with a review of re-

lated work; the implementation, specification and perfor-

mance results will then be summarised; before closing with

a range of example applications and concluding remarks.

2. BACKGROUND: THE GLOVES

The authors of this paper are developers of a glove-based

gestural music interaction system built in collaboration with

the singer/songwriter Imogen Heap [9, 10]. The current

system structure and communication channels are shown

in Fig. 1.

The system hardware transmits the current state of 16

bend sensors to measure the wearer’s finger flexion, plus

five inertial measurement units (IMUs) measuring orien-

tations of the limbs and upper torso. In the opposite di-

rection, the hardware responds to commands controlling

LEDs and haptic motors to provide the wearer with pri-

mary feedback. These bidirectional data streams are en-

coded into a bespoke data protocol developed specifically

for the system. The communications channel between the

sensing of motion and the production of audio comprises

five nodes, which each receive, translate and forward data

to the next node. As each translation contributes to the

overall latency of the system, it is reasonable to consider

a more refined arrangement that implements open sound

control (OSC) in hardware directly, an approach suggested

by the inventors of OSC and developers of the uOSC plat-

form [11].
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3. RELATED DEVICES

Developers of DMIs require devices that have the capacity

to connect software applications with a range of electronics

that can measure control input and produce output actua-

tion. There is an abundance of electronic devices appropri-

ate for this task, which significantly differ in their intended

use and design.

3.1 Development Boards

Many devices represent highly accessible development

boards with accompanying software tools that simplify the

embedded firmware development process. For example,

Arduino [4] provides a range of development boards with a

unique programming language (based on Wiring) and de-

velopment environment (based on Processing [3]). Simi-

larly, the Create USB interface may be programmed in ei-

ther BASIC, the Arduino language or C, to cater for users

with differing levels of expertise [12].

3.2 Interface Devices

Typically, developers of DMIs produce firmware that en-

ables multiple analogue or digital I/O (input/output) chan-

nels to be accessed by software running on a host com-

puter. However, a range of interface devices are designed

to obviate the need for embedded development by enabling

the device channels to be configured in firmware, commu-

nicating with the host software via a MIDI, USB or net-

work link, often without the need for device drivers to be

installed. In this sense, the device interface can be con-

sidered as a direct extension of the developer’s host soft-

ware [13].

MIDI Devices

The I-CubeX Digitizer [6] and the Eroktronix MidiTron

[14] enable the reception of sensor readings and the de-

livery of actuator control messages via MIDI. Both de-

vices enable configuration for different scenarios via MIDI

SysEx commands. However, These devices are limited by

their dependence on the MIDI hardware specification and

consequently require additional peripherals for the host com-

puter.

USB Devices

Modern MIDI-based interface devices, such as the Eobody3

[15], bypass this hardware limitation by using the USB

MIDI standard to connect directly to the host computer.

Further configurable USB interface devices include the

GAINER [16] and Arduino installed with the Firmata li-

brary [13]. Both examples implement a serial protocol to

enable I/O pins to be configured using commands from

a compatible host application, without the need for user

firmware development.

Open Sound Control (OSC) Devices

As modern computers come equipped with high-speed net-

work support, OSC represents an ideal communications

protocol for interface devices. OSC is a widely supported

(over 80 languages/platform implementations [17]),

Figure 2. x-OSC board top (left) and bottom (right), size:

31 × 47 mm

lightweight network protocol designed specifically for com-

munication between computers and multimedia devices [18].

Devices such as IRCAM’s EtherSense [7] and glui’s gluion

[8], connect to a host computer via an Ethernet connection

to exchange I/O and configuration messages. Schmeder

and Freed’s uOSC [11] provides a versatile firmware solu-

tion for connecting software with a range of development

boards via a USB serial connection using the OSC proto-

col.

Wireless Devices

The development boards and interface devices discussed

above are limited by their dependence on wires (although

serial connections may be tunnelled through Bluetooth,

XBee or similar radio devices), however, many practical

application scenarios demand untethered portable solutions.

IRCAMs WiSe Box [19] digitiser provides host access to

16 analogue input readings at up to 333.3Hz via OSC when

connected via a WiFi access point. The high message rate,

small form factor and WiFi support make the WiSe Box

ideal for collaborative interactive music system develop-

ment. However, as the device is unable host ad-hoc net-

works, configuration is achieved over a custom USB se-

rial connection/protocol. Furthermore, it is designed ex-

clusively for the acquisition of sensor readings, making

the WiSe Box unsuitable for actuation/feedback, a feature

which is often considered essential for the development of

DMIs.

4. X-OSC

x-OSC is a wireless I/O board that provides host software

access to 32 multi-functional I/O channels via OSC mes-

sages over WiFi. There is no user programmable firmware

or software to install making x-OSC immediately compat-

ible with any WiFi-enabled platform.

As shown in Fig. 2, a simple hardware layout of two 18-

way header sockets provide access to 16 inputs on the left

hand side and 16 outputs on the right. The headers also

provide a regulated 3.3 V output to power user electronics

and an unregulated power input/output that provides direct

access to the x-OSC battery. The standard pitch sockets are

compatible with breadboards or direct connections using
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jumper wires. Other features include a battery connector,

battery level measurement, an RGB status LED and a ping

button. The on-board WiFi module incorporates a PCB

antennae eliminating the need for an external antennae.

4.1 Inputs

16 dedicated inputs (0 V to 3.3 V) can be independently

configured to be either analogue or digital. Digital inputs

can be configured to use internal pull-up/down resistors

and to minimise latency their state is only transmitted on

change. All 16 analogue inputs are sampled with 13-bit

resolution and sent simultaneously at a specified update

rate up to 370 Hz. Analogue mode inputs also provide a

compare function to send a message each time a specified

threshold is crossed. This enables low-latency threshold

detection without the need for a high message rate.

4.2 Outputs

16 dedicated outputs can be independently configured to

digital, pulse or PWM modes. In digital mode, an out-

put can be set to high or low enabling simple control of

LEDs, relays, or generation of control logic signals. In

pulse mode, an output can be triggered to generate a pulse

with a period of 1 ms to 1 minute at a resolution of 1

ms. This may be useful for momentary actuators such a

solenoid driving the strike mechanism of a percussive in-

strument. An output in PWM mode can generate a PWM

waveform from 5 Hz to 250 kHz with a duty cycle reso-

lution up to 16-bit. PWM is commonly used as a DAC

where fixed frequency and variable duty cycle approximate

an analogue signal. For example, this may be used to con-

trol the brightness of a light or the speed of a motor. Each

3.3V output is driven by a line-driver to protect the micro-

controller outputs and source/sink up to 50 mA per chan-

nel.

4.3 Serial

In addition to modes described above, the first four inputs

and outputs can be configured to serial mode with each

transmit and receive pair utilising a dedicated hardware

UART module. Each serial channel supports baud rates

in the range 9600 to 1 M baud and incorporates a 2 kB

buffer to ensure high throughput without loss of data. Re-

ceived serial data is framed before being sent as OSC-blob

messages. Framing boundaries are determined by a user

defined buffer size, timeout and optional framing charac-

ter.

4.4 Network modes

x-OSC can be configured to operate in one of two network

modes: ad hoc or infrastructure. In ad hoc mode, x-OSC

creates a network for other devices to join. Multiple de-

vices can connect to a single x-OSC with simultaneous ac-

cess to its I/O. Infrastructure mode allows x-OSC to con-

nect to an existing network. The device IP address can be

configured to be static or use DHCP to be assigned an ap-

propriate IP address by the network server. The assigned

IP address can be discovered by pressing the ping button,

Figure 3. x-OSC settings viewed on web browser

which causes x-OSC to broadcast a message indicating the

IP address over the network. Alternatively, a ping message

can be sent to x-OSC by another network device. Infras-

tructure mode enables multiple x-OSCs to operate on the

same network and be addressed by multiple host devices

also connected to the network. A connection to a router

can also provide an inherent interface to x-OSC via Ether-

net or from remote internet connections.

4.5 Configuration via browser

An embedded web server enables all internal settings to be

configured using a web browser, see Fig. 3. Settings may

be viewed and modified during run-time without interrupt-

ing the OSC messages. Incorrect network settings can ren-

der x-OSC inaccessible; access can be re-established by

pressing and holding the ping button to restart the device

in ad hoc mode with default settings.

4.6 OSC messages

x-OSC transmits and receives OSC messages using the User

Datagram Protocol (UDP) transport layer.

Although OSC is widely supported, many platforms fail

to incorporate the full specification [11]. To maximise

compatibility, x-OSC messages are limited to four of the

fundamental data types: int32, float32, OSC-string and

OSC-blob. For example, Boolean arguments are repre-

sented by an int32 and null arguments by an argument

value of zero. In addition to this, messages sent to x-OSC

may use int32 and float32 interchangeably.

A set of OSC messages were defined that enable com-

munication of I/O data to and from x-OSC as well as con-

figuration of the internal x-OSC settings. Additional OSC

215

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



messages include battery data, a ping message and override

commands for the built in LED.

5. OPTIMISED DESIGN

x-OSC’s design was optimised for throughput, latency and

high-performance I/O. A key aspect of this design is the

use of Microchip’s TCP/IP stack, a networking library for

Microchip microcontrollers and Microchip WiFi modules.

Many competitor WiFi devices incorporate an internal net-

working stack to provide a self-contained and easy-to-use

module compatible with any microcontroller. However, in-

corporation of the stack on the host processor provides the

firmware with direct access to low-level stack processes

and enables specific optimisations to be implemented.

5.1 Hardware

The key hardware components are Microchip’s

dsPIC33EP512MC806 digital signal controller and

MRF24WG0MA WiFi module. The MRF24WG is Mi-

crochip’s highest performing WiFi module, capable of up

to 5 Mbit sustained throughput and maximum transmit

power of +18 dBm. The dsPIC33E was specifically cho-

sen for its high-performance and wide range of advanced

peripherals:

• 16-bit architecture, 70 MIPS and 53 kB RAM repre-

sents one of Microchip’s highest performing micro-

controllers to minimise latency caused by heavy pro-

cessing tasks such as maintaining the TCP/IP stack,

processing OSC messages and floating-point opera-

tions.

• 512 kB of program space is enough to hold the main

application, TCP/IP stack, and embedded webpage

server content while leaving space for future devel-

opments. The current firmware size is 177 kB.

• Two ADCs (10-bit at 1.1 MHz and 12-bit at 500

kHz) and 9 direct memory access (DMA) channels

enable the implementation of the 16 analogue inputs

with minimal CPU loading.

• 16 PWM modules with dedicated timers in addition

to nine general purpose timers for precise scheduling

of I/O functionality with minimal CPU loading.

• Remappable peripherals are essential to enable the

multifunctional modes of x-OSC’s I/O channels.

5.2 Firmware

The firmware uses Microchip’s TCP/IP Stack v5.42.06 with

only essential application modules enabled. The stack’s

SPI library was modified to use the maximum 10 MHz

full-duplex baud rate supported by the dsPIC33E. A key

aspect of the optimised design is the extensive use of the

advanced peripherals offered by dsPIC33EP so that most

I/O functionality may be executed without CPU interven-

tion.

Analogue sampling of the inputs utilises the 1.1 MHz

10-bit ADC, 16-channel multiplexer and DMA to yield

measurements of all 16 inputs at 533 Hz with 13-bit res-

olution. This was achieved by configuring the ADC to

continuously sample at 546 kHz while the multiplexer se-

quenced between each of the 16 inputs each ADC sample.

A DMA channel assigned to the ADC writes each sample

to a predefined pattern of address in RAM in ping-pong

mode to alternate between two alternative blocks of RAM

every 1024 samples (64 samples per channel) enabling the

ADC to continue sampling uninterrupted without the risk

of overwriting unprocessed samples. When analogue in-

put data is required, the CPU computes a scaled mean of

each channel’s 64 samples to yield a 13-bit result through

oversampling [20]. The battery voltage was measured in a

similar way using the 12-bit ADC and computing the mean

of 16 samples to attenuate noise.

The 16 independent PWM outputs utilise 16 16-bit PWM

modules with dedicated timers and four of the nine general

purpose timers as clock references. Each output channel is

able to achieve both an independent frequency and duty-

cycle between 5 Hz and 250 kHz and 8.1-bit to 16-bit res-

olution (dependent on the frequency) respectively. Use of

4 general purposes timers provides each PWM timer with

simultaneous access to all possible prescaling options to

maximise the PWM frequency resolution and range. The

frequency range of 5 Hz to 250 kHz is divided by approx.

218,000 steps with a non-linear resolution of 3.66 µs at

lower frequencies and 14.31 ns at higher frequencies. The

output pulse mode is achieved by a 1 kHz CPU interrupt

for 1 ms resolution and inherent synchronisation between

pulses performed on different channels.

5.3 Power consumption

The optimisations of throughput, latency and I/O perfor-

mance come at a cost in power consumption. The current

consumption was measured as up to 225 mA in infrastruc-

ture mode or up to 300 mA in ad hoc mode. A 1000 mAh

lithium polymer battery (of a similar physical size to x-

OSC) may be expected to last approximately 3 hours.

6. EVALUATION OF PERFORMANCE

An important aspect of WiFi performance is the network

connection delay. This may be critical if a connection is

lost unexpectedly. The time taken to connect to a router

was found to be approximately 30 seconds. The time taken

for x-OSC to create an ad hoc network was found to be ap-

proximately 15 seconds, however recreating this network

after another device had connected required only 6 sec-

onds. Infrastructure configurations were found to provide

better throughput and latency performance than ad hoc.

The following investigations represent a host computer con-

nected to a router via an Ethernet cable, the router hosts the

WiFi network to which x-OSC is connected. The only net-

work traffic was between x-OSC and the host machine.

6.1 Throughput

Throughput was quantified as the maximum sustained ana-

logue input packet/s. Each packet contains an OSC mes-

sage representing 16 floats, the complete UDP packet is

142 bytes long. The maximum throughput was found to

be approximately 370 packets per second when sending
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approximately 50,000 samples)

alone and when three x-OSCs are sending to the same host

machine simultaneously. As only three prototype modules

were available at the time of writing, performance with

more than three x-OSC devices could not be investigated.

6.2 Closed-loop latency

Closed-loop latency was quantified as the delay between

a physical change on an input and the resulting physical

change on an output. This measurement incorporates sam-

pling jitter, sending to the host application via WiFi, pro-

cessing by the host application and sending of the respond-

ing output change to x-OSC via WiFi. A 1 Hz square wave

was used to create a changing input signal and a PC appli-

cation was written to set an output equal to that input. Both

the input and output signals were connected to the inputs

of an XOR gate to generate a 2 Hz wave form with a pulse

width equal to the closed-loop latency. This pulse width

was logged using a frequency counter for several hours.

This arrangement is shown in Fig. 4. Investigations were

conducted for ideal conditions where only the waveform

input and output messages were sent and received, and for

loaded conditions where x-OSC was simultaneously send-

ing analogue input messages to the host application at 200

packet/s. The results are shown in Fig. 5. Under loaded

conditions the mean closed-loop latency was measured at

10.9 ms, for ideal conditions, this figure dropped to 5.5

ms. It is therefore assumed that under ideal conditions the

latency for sending input data only is approximately 2.75

ms.

A previous x-OSC design used the older MRF24WB WiFi

module in place of the MRF24WG. Investigations found

Figure 6. The x-OSC data glove, incorporating an IMU,

RGB LED, vibration motors and e-textile flex sensors

the MRF24WB provided a maximum throughput of 290

packet/s which would reduce to 100 packet/s with three

devices sending simultaneously. The closed-loop latency

was found to be 8.4 ms in ideal conditions and 15.8 ms

when also sending analogue input packets at 200 Hz.

7. EXAMPLE APPLICATIONS

In this section three example applications of x-OSC will

be described to provide practical and divergent examples

of its potential utility.

7.1 Data Gloves

The primary motivation for the development of x-OSC was

to enhance the glove-based musical system discussed in

section 2. Compatibility with the x-OSC glove (made by

Hannah Perner-Wilson and shown in Fig. 6) was achieved

using the oscpack C++ library [21]. Nine analogue inputs

were used to take readings from the resistive e-textiles sen-

sors, and one serial input was used to receive accelerom-

eter, gyroscope, magnetometer and orientation data from

an IMU. Five PWM outputs were used to control an RGB

LED and a pair of haptic feedback motors.

Each x-OSC glove operates in infrastructure mode, con-

necting to a router positioned close to the performer to re-

duce the risk of WiFi interference [19]. The remaining six

input, and 11 output channels provides scope for future de-

velopment.

7.2 Solar Wind Chime

A second example application of x-OSC is in the context

of an art/science communication project lead by the artist

and designer Helen White. The aim of the project is to

create a ‘solar wind chime’: an installation incorporating a

physical chime which responds to readings of solar particle

emissions provided in real-time by the National Oceanic

and Atmospheric Administration. The chimes resonate and

animate to produce an audio/visual manifestation of so-

lar wind fluctuations. In this installation, 12 x-OSC out-

put PWM channels are tuned to resonate the aluminium
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Figure 7. Solar wind chime: top of aluminium tube with

electromagnet (left) and solar wind chime assembly design

(right)

tubes of the solar wind chime, (shown in Fig.7). Further-

more, DC signals can be used to stimulate the physical dis-

placement of the tubes. The solar wind readings are inter-

preted and remapped to OSC messages within a Processing

sketch, using the oscP5 library [22].

7.3 Hexapod Robot

To demonstrate application of x-OSC beyond typical cre-

ative technology domains, x-OSC is used to connect soft-

ware running on the host computer with a Sparkfun 12

servo hexapod robot, equipped with two IR range sensors

as shown in Fig. 8. The software, written in C# using

the Ventuz OSC library [23], implements a basic gait and

avoidance algorithm which is used to drive twelve PWM

output channels connected to each servo and two analogue

input channels to take readings from the IR sensors.

8. CONCLUSION

x-OSC was developed for creative/music applications but

its high-performance and versatility make it a valuable tool

for any application requiring a real-time interface between

software and electronic sensors or actuators. The hardware

and firmware design has been optimised to achieve sus-

tained throughput of up to 370 messages per second and

latency of less than 3 ms. The widely supported OSC pro-

tocol enables any WiFi enabled platform to interface to the

32 multi-functional I/O channels without the need for spe-

cific drivers or software. Real-time access to settings via

browser provides a convenient interface during develop-

ment and eliminates the need for supporting software.
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ABSTRACT 
This paper documents the early developments of a new 
interface for electronic percussionists. The interface is 
designed to allow the composition, improvisation and 
performance of live percussive electronic music using 
hand, finger, foot and head movements captured by vari-
ous controllers. This paper provides a background to the 
field of electronic percussion, outlines the artistic motiva-
tions behind the project, and describes the technical na-
ture of the work completed so far. This includes the de-
velopment of software, the combination of existing con-
trollers and senses, and an example mapping of move-
ment to sound. 

1. INTRODUCTION 
The work presented in this paper is motivated by a desire 
to give percussionists control over complex sound tex-
tures at the same time as allowing them to time and exe-
cute precise rhythmic gestures. Such an interface takes 
advantage of the motor skills of an expert percussionist 
and combines it with all the real-time control over sound 
permitted by modern software. 

In previous work, we developed an interface that allowed 
percussionists to manipulate sounds using head move-
ments in a manner that did not interfere with the tradi-
tional four-limbed playing of their instrument. However, 
since then, we have shifted our focus to deconstructing 
the traditional approach to triggering sounds - namely, by 
striking a drum skin or a pad - and replacing it with 
sounds triggered by striking the air, allowing the per-
former to have more control over the sound both before 
and after the sound is triggered. 

This paper will provide a brief background to the devel-
opment of electronic percussion instruments, from the 
earliest electronic pads to the creation of gestural sensors, 
particularly the Radio Baton [1] [2]. The authors’ own 
gestural interface, called the AirSticks, will be discussed, 
including a brief overview of the development of the de-

sign, how the design criteria has changed over the course 
of the instruments development and future plans for de-
velopment and assessment. 

1.1 Gestural Controllers 

Gestural controllers, or ‘open-air’ controllers as they are 
referred to by Rovan and Hayward [3], allow tremendous 
freedom for sonic control. Such interfaces ‘unchain the 
performer from the physical constraints of holding, 
touching, and manipulating an instrument’ [3]. However, 
by their nature, they can weaken the perceptual relation-
ship between gestures and sonic output. The relatively 
unlimited range of possible mappings of gesture to sound 
requires a performer to devote much time to learning dif-
ferent mapping scenarios and develop a routine of prac-
ticing to relate movements to change in sound [4]. This 
has given rise to much literature concerning the most 
effective design and pedagogical factors in designing 
novel instruments. See these papers for a rigorous treat-
ment of these factors [5] [6]. 

The decoupling of physical contact with sonic output 
causes another perceptual issue relating to the feedback 
channel that helps performers regulate timing. It is well-
established that accurate, repeatable and timely feedback 
-- whether it be physical or acoustic -- is required for a 
performer to comfortably deliver expressive performance 
[7] [8] [9] [10].  

The technical innovation behind the development of the 
AirSticks is designed to take full advantage of the per-
formance possibilities that open up when a percussionist 
is not required to strike a surface, but the speed and accu-
racy of the method for sensing when a strike occurs al-
lows the perceptual feedback to be closed in a comforta-
ble and satisfying way. 

Position and rotation data for two ‘sticks’ is captured and 
analysed by a custom piece of software running on OSX 
which outputs MIDI data. This data is accompanied by 
MIDI data containing information about hand, finger, 
foot and head movements. Combined, these data provide 
the performer and composer with a plethora of mapping 
possibilities. 

Mulder suggests that new musical instruments should be 
designed around the existing motor skills that a performer 
may already possess [11]. The AirSticks opens the door 

Copyright: © 2013 Ilsar et al. This is an open-access article dis- tributed 
under the terms of the Creative Commons Attribution License 3.0 Unpor-
ted, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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to creating a novel instrument that allows performers to 
utilise the hours of practice that traditional drum kit play-
ers have already dedicated, building on their existing 
technique in new ways to create an instrument that is both 
intimate for the performer [12] and transparent for the 
audience [13] [14]. The AirSticks also focus on maintain-
ing the relationship between energy put in and the sonic 
output [15]. In other words, the AirSticks is an electronic 
drum kit that builds on traditional drum practice, cele-
brates advances in technology, is electronic in nature yet 
maintains a physically plausible relationship between 
movement and sound. 

2. BACKGROUND 
The term electronic percussion in this paper refers to in-
struments which are played like traditional acoustic per-
cussive instruments, but instead have an electronic out-
put. It could be argued that since the invention of the mi-
crophone, all acoustic percussion instruments in the stu-
dio and in bigger live contexts have had an electronic 
output which has led to the ability to manipulate each 
individual sound. Modern top-of-the-range electronic 
drum kits market themselves on giving the performer 
ultimate control over the drum samples they trigger, by 
allowing the editing of parameters such of virtual micro-
phone placement, room size, drum skin tension, drum 
size and drum material. This culture of attempting to em-
ulate acoustic drum kits with electronic percussion is not 
of interest to us, rather, we seek to build on the tradition 
of triggering sounds that an acoustic drum kit cannot pro-
duce, sounds that reflect the culture of the modern elec-
tronic producer. However, we also aim to incorporate the 
control of all four limbs gained by acoustic drummers 
into this completely different sounding instrument.  

2.1 Early Electronic Pads 

The earliest example of an electronic pad is Leon There-
min’s Keyboard Electronic Timpani designed in 1932 
though it wasn’t until the 1960s and the invention of 
modular synthesis that electronic pads became more 
common place [16]. A particularly celebrated example of 
this is Schneider and Hutter’s Electronic Percussion Mu-
sical Instrument, patented in 1977 and used in the seminal 
electronic band Kraftwerk [17]. It is a device made up of 
metallic pads and metal sticks connected to the pads with 
an electric chord. Upon striking the pad, the percussionist 
completes a circuit of white noise or a sinusoidal wave 
for the short time that the stick and pad are in contact, 
similar to plugging a lead into a modular synthesizer and 
quickly pulling it out. This simple device is a good ex-
ample of merging physical movement with electronic 
sound in a new way.  

2.2 The Electronic Drum Pad 

In more recent years, with the increase in speed of com-
puters and the introduction of MIDI, electronic pads have 
been used to trigger samples as opposed to closing cir-
cuits. This has meant that any sound can be assigned to a 
strike of the electronic pad. Though there has been many 

recent advances in this technology, very little information 
other than velocity and the precise location of the strike 
on the surface can be captured [18]. 

2.3 The Radio Baton  

Some musicians have decided that more information 
needs to be captured by the computer to enable the crea-
tion of electronic percussive instruments that may be as 
expressive as acoustic ones. One example of this is the 
Radio Baton, a gesture sensor that allows the tracking of 
a mallet-like stick in three dimensional space [2].  Instead 
of sending a trigger over MIDI on impact, this instrument 
sends a MIDI note-on message when the mallet crosses 
an invisible plane above an antenna board. Boulanger 
calls this plane the hit-level [2]. A second plane, called 
the set-level, is positioned just above the hit-level. This 
plane acts as a note-off trigger to avoid double-triggering. 
As well as generating note-on triggers this instrument 
also captures and sends XYZ position data. Schloss uses 
all this data to allow three levels of control: a timbral 
level, a note level and the control of a musical process 
[1]. It is this control of a musical process that gives the 
electronic percussionist greater control over musical ex-
pression than can be gained from a two dimensional sur-
face. Since the computer is constantly receiving XYZ 
position data, control changes can be made before and 
after a strike, giving the performer of the Radio Baton 
extra control and expressivity. 

3. CAPTURING MOVEMENT 
The AirSticks uses a similar principle to the Radio Baton 
in capturing both trigger commands and XYZ data1. The 
primary difference is that instead of using invisible 
planes, the AirSticks uses rotation around the X-axis to 
send note-on and note-off information. This change 
brings the triggering gesture far more in line with the 
actual performance of a drummer [19] [20]. In this sec-
tion we will describe the evolution of this project and 
why we came to our particular conclusions.  

3.1 Project History 

We would like to note that so far in this project we have 
not developed a formal experimental framework. Instead 
we have decided to develop the new instrument over the 
past ten years through Ilsar’s creative practice as a full 
time drummer and performer. Before meeting Havryliv, 
Ilsar pursued new ways of playing electro-acoustic per-
cussion. He designed what he called the EAPP (electro-
acoustic percussive pads) which featured an array of 
small junk percussion bits attached to a Perspex drum, 
with Piezo transducers glued to each item. The idea was 
that these sounds, since they were all acoustic in nature as 
opposed to being samples from a computer, would give 
the percussionist an experience more related to that of 
playing an acoustic instrument, yet still enable the ma-
nipulation of the sounds using audio effects. At first, Ilsar 
used a Kaoss Pad, an effect unit that allows the user to 

                                                             
1 Where the X axis parallel to the ground running across the performer 

221

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



change different parameters of the effect using a touch 
pad. Ilsar performed gigs playing miked up hi-hats and 
bass drum with his feet, the EAPP with one hand and the 
Kaoss Pad with the other. This obviously impeded his 
ability to play more complicated cross-rhythms. 
Around the same time Havryliv designed a jacket he used 
to manipulate other performers in his own live perfor-
mance situations [21]. The jacket used mercury tilt sen-
sors that enabled a performer, with the movement of their 
arms, to change the parameters of a Pure-Data patch as 
audio went into his computer. Havryliv designed a simi-
lar wearable item for Ilsar, in the form of a hat. Ilsar re-
placed his Kaoss Pad with his hat, and could now per-
form with all four limbs and manipulate sounds by tilting 
his head. He went on to perform with this set up at the 
Great Escape Festival with Comatone and Foley, and at 
the Sydney Opera House with Gauche. For those acts, 
Ilsar mapped sampled sounds from these bands’ respec-
tive albums to the Roland SPD20 electronic multi-pad 
and Roland KD7 foot triggers. 
 
We then pursued designing a new open-air controller 
system where instead of triggering samples off a laptop 
by hitting a pad, samples could be triggered by striking 
the air. This led us to the three different technologies. 

3.2 Infrared and Cameras 

We experimented with infrared tracking by placing four 
infrared LED lights on the end of a mallet forming a 
square shape. This is based on technology developed by 
Kim [22]. An infrared camera connected to the computer 
would then track these four lights, and according to the 
size and shape created, information would be sent to an-
other software to provide the XYZ position and limited 
rotation data. This solution had its problems: 

• A suitable lighting environment may not always 
be available, a device that could be used in the 
standard club, pub or concert hall was desired. 

• The tracking of two of these mallets at the same 
time could cause serious interference to the data. 

• Though the latency was relatively low (10msec), 
it was not low enough to enable the percussion-
ist to feel like they could be confident that a 
sound would be triggered at the precise moment 
they expect. 

3.3 Exoskeleton 

The idea with an exoskeleton was that all the different 
rotation of joints from the shoulder, elbow and wrist, 
would result in the location of the sticks held by the per-
cussionist [23]. After attempting to build an exoskeleton, 
we decided to trial the Gypsy 6 Suit. Problems with this 
interface were: 

• The six sensors on each arm did not give us an 
exact location of the hands.  

• It was cumbersome to wear, restrictive to move 
in and easy to break. 

• It needed calibrating before each performance.  

3.4 Gaming Controllers 

The Razer Hydra Gaming Controllers comprise of two 
joysticks tethered to a base station, which connects to a 
computer using USB (see Figure 1). The joysticks can be 
moved freely in space (so far as the tethering cables per-
mit) and their position and orientation is determined by 
their relationship to a sphere on the base station, which 
uses some magnetic sensing system amongst other sen-
sors. The device has a sampling rate of 250 Hz, with 
measurement precision to the millimeter and degree for 
position and orientation, respectively. These controllers 
are cheap and an open source gaming community has 
already developed online with members releasing MIDI 
software which the authors began to experiment with. 
These controllers also come with an SDK, a set of C++ 
APIs which allow the developer to read the state of the 
motion controllers. The state comprises position and ori-
entation (6-DOF), and the button states. An OSX applica-
tion was developed based on this SDK which translates 
the user's movements to a graphical representation (see 
Figure 2). Other advantages such as weight, ease of set 
up, low-to-no interference and extra buttons for control 
meant the authors could commit to designing a new trig-
gering system with these controllers. 

4. THE AIRSTICKS 
At first, we attempted to take the information of velocity 
and acceleration to decipher what the performer meant as 
a strike. Trigger detection was based on detecting spikes 
in acceleration and jerk (the time derivative of accelera-
tion). This method was inspired by the performance ges-
ture associated with a real drum kit: a stick would be 
moving downward at a reasonably constant velocity, 
would hit the drum skin and experience a large change in 
velocity which is detected as a peak in acceleration. The 
velocity and acceleration derivatives are constantly calcu-
lated from the position data sent from the device, and 
when an acceleration value that exceeds a particular 
threshold is recorded, a trigger was detected. 
 

 
Figure 1. The Razer Hydra Gaming Controllers [24]. 

This approach suffered from two issues. Firstly, in the 
absence of a surface to impact with, the performer would 
naturally slow down their motion just prior to triggering - 
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this diminished the magnitude of potential acceleration 
peaks. Secondly, setting a constant threshold for trigger 
detection from acceleration data made it difficult to detect 
triggers across the range of potential gestures. In lower-
ing the threshold intentional smaller movements would 
warrant a strike, but unintended jitters and shocks would 
also trigger a sound. 
 
A machine learning method based on Neural Networks 
was developed that analysed velocity data alongside ac-
celeration data. Upon recognising a peak in acceleration 
data, the velocity gesture leading up to that peak was ana-
lysed to see if it matched the velocity profile of a large 
range of strikes that had been recorded and learned in the 
past. This improved the performance of the trigger-
detection, but even minor inconsistencies made it a frus-
trating and uncomfortable experience for the performer 
trying to accurately control musical performance timings. 

4.1 Triggering System 

The breakthrough occurred when we realized that instead 
of training the technology to enable the instrument to 
learn what the performer’s intentions are, the performer 
should learn how to play a consistent non-complicated 
instrument. This is in line with the literature on instru-
ment design and mappings. We devised a system of im-
aginary planes, similar to that of the Radio Baton, but 
instead of having a hit-level and a set-level, the rotation 
data sent from the gaming controllers is used. When the 
performer’s wrist passed through a particular angle of 
rotation around the X axis, resembling the movement of a 
strike, a note-on would be triggered. The XYZ position 
data would determine the note-on number, splitting the 
3D space into a 4x2x2 grid (see Figure 2). The performer 
quickly found consistency in finding this trigger angle, 
and could even anticipate it. An auditory response in this 
new instrument had replaced the tactile one of the elec-
tronic pads. 
 

 
Figure 2. The AirSticks’ Graphic User Interface. 

This also allowed us to permit striking up and down 
through a point to improve the speed at which the instru-
ment could be played. Velocity of the strike could still be 
interpreted, as the speed at which the controller passes 
through this point was also captured and sent to the com-
puter. The angle of trigger was set to different degrees 

depending on the height of the strike. A strike high up 
would use a trigger angle of close to 90 degrees, or per-
pendicular to the ground, whereas the lowest angle trig-
ger points would be set to 0 degrees, or parallel to the 
ground, with all other trigger angles in between being 
scaled appropriately, as if the performer was playing an 
invisible concave plane (see Figure 3). 
 

 
Figure 3. The threshold of the trigger angle against the 
distance from the bottom of the virtual space. 

4.2 Thumb, Finger, Foot and Head Movements 

Having created a consistent system for capturing the per-
former’s movements using the Razer Hydra Gaming 
Controllers, we embarked on capturing other movements 
by the percussionist, particular those that would not take 
away from being able to play the AirSticks with the 
hands. Like all modern gaming controllers, the Razer 
Hydras consist of a thumb joystick, a trigger button con-
trolled with the index fingers, and several buttons on each 
hand. This gives the performer the ability to send infor-
mation to the computer with more subtle gestures, 
movements that either need to be more easily made than 
large ones, or ones that the performer decides should be 
hidden from the audience. Foot movements are captured 
using the SoftStep Foot MIDI Controller (see Figure 4) 
which enables the performer to trigger up to ten sounds 
with the back of the toe or heel or make up over forty 
more controller changes. Finally, head movements are 
captured using an accelerometer placed on top of the per-
formers head that acts as a tilt sensor. 

4.3 Graphic User Interface 

The gaming controllers interface to an application de-
signed for Mac OSX built on the Razer Hydra SDK, 
which provides a user interface for using the controllers 
and which outputs MIDI data based on posi-
tion/orientation and gesture analysis (continuous and dis-
crete, respectively). This arrangement provides the high-
est possible sampling rate and fidelity from the device, 
which in turn permits the use of sophisticated engineering 
techniques to analyse motion, and provide performance-
time gestural analysis and response. A predictive filtering 
scheme based on Kalman state estimation is used to ef-
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fectively up-sample the gestural analysis system to 1kHz, 
well beyond the perceptual limit for the sensation of 
causal association between gesture and aural result [25].  

 
Figure 4. Keith McMillen’s SoftStep Foot Controller 
[26]. 

The Graphic User Interface or GUI, is made of a grid and 
two floating points that represent the middle of each con-
troller. This enables a simple visual representation of the 
virtual space. The performer can see in which grid each 
hand is in, and note that when they tilt past the trigger 
angle, the grid lights up, signaling a note-on message. 
The GUI also provides a MIDI trainer, a function ex-
tremely useful when using programs such as Ableton 
Live for the sound mapping. The MIDI trainer function 
enables a simple way to map control changes in the GUI 
to ones in Albeton Live. Another way of mapping sounds 
and control changes is by noting which numbers they are 
being sent on. This facilitates an easy way to sending 
MIDI to all sorts of other instruments and programs. 

4.4 Mapping 

Currently, all information from all sensors makes it way 
into Ableton Live 9. Here a world of possible mappings 
exists. We will now outline an example of one of the 
mappings of movement to sound we have made for the 
AirSticks, tying in to Schnell and Battier’s concept of a 
‘composed instrument’ [27]. We will focus on the way 
the gestures correspond to sound triggering and manipu-
lation and avoid much of the technical work. 

4.4.1 The AirSticks 16 Drum Rack 

This mapping is the most developed to date and aims to 
allow the performer as much choice for solo or group 
improvisation as possible, while maintaining intimacy 
and transparency, keeping with the literature. The 
AirSticks 16 Drum Rack mapping utilises the 4x4x2 grid 
(see Figure 1) to allow the performer to trigger any of 
sixteen sounds in a virtual space around them. The GUI is 
compatible with Ableton Live’s Drum Rack virtual in-
strument which also defaults to a sixteen sample array. 
The mapping allocates a group of samples for each box of 
the grid and foot triggers, and makes it possible to switch 
through different sounds using various buttons on the 
controllers. Rotating past a predetermined point on the X 
rotation triggers the sound that corresponds to the box the 
AirStick is in, mimicking a percussive strike. The veloci-
ty is determined by the speed at which this rotation is 
made and is mapped to volume and brightness. Aside 
from Note On and Off messages, control change infor-
mation correlating to finger, thumb, hand, foot and head 

movements also makes its way into Ableton Live through 
the GUI. There are a large number of modes of effects 
that can be called up using the buttons on the controllers. 
Different modes basically switch on different effects, 
whose parameters are mapped to some of the below in 
Table 1. 

Movement Parameter(s) 
LPosX Reverb Input Filter Frequency 
LPosY Reverb Input Filter Width; Noise 

Gain Left 
LPosZ All Effects Gains 
LRotX Chorus Delay 1 Time; Grain Delay 

Pitch; Fragulator Playback Speed: 
Ping Pong Delay Time Delay 

LRotY Chorus Delay 1 High Pass Frequen-
cy; Grain Delay Frequency; High 
Pass Filter Frequency 

LRotZ Panning Of Respective Effect 
LJoyX Fragulator Amp Variation; Ping Pong 

Delay Filter Frequency 
LJoyZ Chorus LFO Amount; Reverb Decay 

Time; Grain Delay Feedback; Fragu-
lator Repetition; Noise Centre Fre-
quency Left; Ping Pong Delay Filter 
Width 

LTrig Sends into Same Respective Returns 
RPosX Reverb Early Reflections Spin Rate 
RPosY Reverb Early Reflections Spin 

Amount; Noise Gain Right; Noise 
Track Volume 

RPosZ Pitch 
RRotX Chorus Delay 2 Delay Time; Grain 

Delay Random Pitch 
RRotY Low Pass Filter Frequency 
RRotZ Panning Of Respective Effect 
RJoyX Chorus LFO Rate 
RJoyZ Chorus LFO Amount; Reverb Decay 

Time; Grain Delay Spray; Grain De-
lay Time Delay; Noise Centre Fre-
quency Right 

RTrig Microphone Audio Track Sends to 
Respective Returns 

HeadX	   Master Panning	  
HeadZ	   Master Volume	  

Table 1. Mapping of movement2 to sound. 

In general, movements to the right and down result in 
lower pitch manipulation, while movements upwards and 
towards the audience result in an increase in intensity. Of 
particular interest with this mapping is the use of the right 
trigger button, controlled by the movement of the index 
figure, to turn the gain up of a microphone placed near 
the performer, and the use of the left trigger button to turn 
                                                             
2 L – Left; R – Right; Pos – Position; Rot – Rotation; Joy – Joystick; 
Trig – Trigger.  
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up an internal feedback loop. This allows the performer 
to ‘tune’ the room, using the acoustics of the room to 
create feedback tones and drones. It is our intention to 
develop this approach further as it brings an electro-
acoustic element to a purely electronic instrument. It also 
means that if the performer does not react to the feedback 
created by their movements they can lose control of the 
sound. This creates a greater dialogue between the in-
strument and performer. It also allows the performer to 
manipulate other sounds in their environment, whether it 
be their voice, other musicians, the audience, or the sur-
rounding sounds. To best understand this mapping there 
is a demonstration at 

 www.alonilsar.com/composer/airsticks 

5. FUTURE RESEARCH 
We are interested in not only using the current set up of 
the AirSticks in a variety of ways, but also continually 
changing aspects of the instrument to suit different pieces 
of work. Other mappings for the AirSticks that have been 
conceived are listed here below. All of these attempt to 
maintain the relationship between physical energy input 
and sound output. 

• FerguCircles – designed to allow the performer 
to play samples using granular synthesis by 
forming circles with their hands around any of 
the three planes. 

• Bouncy Balls – an experiment with physical 
modeling and perpetual motion. 

• Synthesiser n – designed to allow the performer 
to play melodies on any soft synth across a 
number of virtual boxes. 

• Spinning Plates – designed for a piece of virtual 
spinning plates which each make different 
changing pitches. 

Other uses and ideas for the AirSticks include: 

• Working with sound convolution. 

• Performing with other traditional and non-
traditional instruments. 

• Using the AirSticks in children’s theatre. 

• Working with visual artists in creating a new 
Graphic User Interface that may be projected 
during performances. 

• Establishing a set of rudiments to best practice 
and learn the instrument. 

• Continually looking for new hardware devices 
that could potentially work even better with the 
GUI. 

We will also soon invite other percussionists to play the 
instrument and get their feedback. We feel this is invalu-

able to create a more intimate instrument. We have also 
ready begun to put on performances using the AirSticks 
and asking for feedback from the audience in order to 
improve its transparency. We have also been gathering 
data on how musicians have reacted to playing in an en-
semble that contains the AirSticks. 
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ABSTRACT 

The development of musical creativity using non-
standard methods and techniques has been given consid-
erable attention in the last years. However, the use of new 
technologies in teaching improvisation and thus devel-
opment of creativity has received relatively little attention 
to date. The aim of this paper is two-fold: firstly to pro-
pose a way of formalising the measurement of creativity, 
and secondly to test whether the use of a particular inter-
active system built to support musical improvisational 
dialogues between the user and the computer (MIROR 
IMPRO), can develop creativity. First, based on previous 
research, we define a set of variables aiming at evaluating 
creativity, and we create a computational model to auto-
matically calculate these variables in order to assess the 
development of creative abilities. Second, we assess the 
advancement of creativity in 8-10 year-old children, who 
spent six weeks interacting with MIROR-IMPRO. We 
used two groups of children in assessing this advance-
ment: a group of children with no musical background 
(n=20) and a group of young pianists (n=10). We carried 
out a free improvisation test before the start and after the 
end of six sessions with the system. The results suggest a 
potential progress related to a number of these variables, 
which could be indicative of creativity advancement. The 
issue of measuring creativity is discussed in the light of 
these findings.   

1. INTRODUCTION  

Creativity is a fundamental human ability, and at the 
same time a particularly challenging concept to define. 
Various attempts exist to date, and its meaning tends to 
shift across the various disciplines. Yet however vague 
and slippery its definition may be, its core features are 
shared across domains, which makes it possible to model, 
and in general to become the subject of scientific investi-
gation.   

One of the first attempts to formally describe creativity 
is found in [26], where Creativity Thinking is modeled as 
a four-step process: preparation – information, specific 
knowledge and ideas about the case/problem under ques-
tion are gathered, incubation – work proceeds uncon-
sciously, illumination – suddenly the solution emerges, 

and verification – the solution is verified and elaborated. 
Another step-wise model suggested in [9] where a five-
step approach is proposed in problem solving and crea-
tive thinking. The idea of problem solving is also closely 
related with the eminent contribution of J.P. Guilford in 
the field. Guilford in [11] introduced the idea of conver-
gent and divergent thinking and associated the latter with 
creative thinking. 

The above approaches to creativity focus mainly on the 
processes involved in creative thinking. Another aspect of 
creativity, closely related with attempts to measure or 
assess creativity, is focused mainly, but not solely, on the 
product. Creativity as 'product' is defined by Amabile in 
[5] as one whereby “...appropriate observers independ-
ently agree it is creative. Appropriate observers are those 
familiar with the domain in which the product was cre-
ated or the response articulated”, hence introducing the 
idea of how a creative product is received and assessed 
by (as well as situated in) its environment. 

But how can creativity be assessed? Guilford in [10] 
created a test to measure creativity, by assessing diver-
gent thinking. The subjects were given 180 ordinary life 
objects (e.g. a pencil, a spoon, a cap) that they were asked 
to score across four dimensions: originality, fluency, 
flexibility, and elaboration. Extending Guilford’s ideas, 
Torrance developed the Torrance Tests of Creative 
Thinking (TTCT) [25], while Amabile proposed the Con-
sensual Assessment Technique (CAT) for ranking the 
creativity of art objects [5]. CAT is based on the idea that 
expert judges within a field will have a valid opinion re-
garding the creativity values of an object of art. Gathering 
and examining such expert opinions may provide a good 
estimation of the creative worth of an object. A well de-
scribed application of CAT can be found in [12]. 

In the field of music creativity, Webster’s work [29] 
continues to be prominent among scholars. Webster built 
on Guilford's ideas and created a tool to evaluate the crea-
tive aptitude of children (ages 6-8), the Measurement of 
Creative Thinking in Music (MCTM) [27]. The MCTM 
evolved into MCTM-II in [30]. Children’s creative think-
ing is evaluated through a ten-task session, of about 20-
25 minutes. The qualities that are scored are musical ex-
pressiveness (ME), musical flexibility (MF), musical 
originality (MO) and musical syntax (MS) [29]. In the 
specific field of ethnomusicology, Lomax developed the 
“cantometrics” [14]. They are comprised of a set of 37 
items measuring group organization, level of cohesive-
ness, rhythmic features, melodic features, dynamic fea-
tures, ornamentation and vocal qualities. Later, McPher-
son in [15] developed measures to assess a musician’s 
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ability to perform music creatively. These new measures 
are pertained to evaluate music learner’s performance 
from memory, by ear and through improvising. 

Simonton in [21] performed computerized content 
analysis to assess the melodic originality of 15,618 
themes of 479 classical composers, from Josquin des Pres 
to Shostakovich. Simonton defined a number of variables 
each of which pertain to different qualities of the case 
under investigation. Similarly in [22] he investigated 
1919 compositions of 172 classical composers, spanning 
almost 500 years. A panel of experts manually scored 
several of the above variables, prior to the computer 
analysis. 

Regardless of how well they approach the notion of 
creativity, the above measures require more or less the 
engagement of (often numerous) human experts in scor-
ing. They also employ statistical averages in order to 
eliminate human errors and individual particularities.  

At the same time, the broad introduction of computer 
technology in music educational processes created the 
possibility to computationally automate the whole proc-
ess. Hence it becomes more and more pertinent to come 
up with proposals that require no human intervention, 
even if the range of the investigated qualities is de-
creased. 

The introduction of new music technologies in the edu-
cational process involves also the introduction of new 
interaction paradigms between the user and the machine. 
An example of new interaction paradigms are Interactive 
Reflexive Music Systems (IRMS) [18], and in particular 
the MIROR IMPRO system [20], which was developed 
within the MIROR project [1] as the evolution of The 
Continuator [2][3][4][17][19]. The core concept in such a 
system is that basic musical elements can be taught and 
musical cognitive processes can be developed not only by 
the traditional teacher/learner dipole but also by the direct 
interaction of the learner with the system, without the 
involvement of a human instructor. 

The application generates different kinds of output 
melodies based on the user’s musical input, stimulating 
the reflexive interaction between the user and the applica-
tion. This generation is based on a specific Markovian 
mechanism designed by Sony CSL Paris, allowing a 
meaningful musical output. Namely, the output is com-
posed of what the user could have played herself, i.e. a 
constrained recombination of musical elements previ-
ously played by the user. In this way, each response of 
the system is composed of musical material close to the 
user’s style, but at the same time proposes to the user to 
explore, as the next, step, new ways to express musical 
ideas.This study explores the use of MIROR IMPRO in 
developing young children's improvisational skills - rec-
ognised as a central component of musical creativity [29]. 
Therefore, it would seem important to develop a method-
ology of evaluating the creativity that arises as a result of 
engaging with such a system. This may later be integrated 
into the system in order to give real time information to 
the user and to record such information for a traditional 
trainer/learner session that may subsequently follow. The 
aim of the paper is to propose a way of measuring crea-
tivity in children playing the keyboard; and to use this 
model in order to assess creativity in children with and 

without musical background, comparing their pre and 
post tests (before and after an intervention of 6 improvi-
sation sessions using the MIROR IMPRO system).  

The paper is structured in the following way: in the 
Methods section, the technical description of the work is 
laid out, including the data collection process, the knowl-
edge representation schemata, computational details and 
the description of the variables used to assess creativity. 
In the Results section, the results of the work are pre-
sented and subsequently discussed in the last section 
(Discussion). 

2. METHODS 

2.1 The Goal 
In this section, a model and a computational method to 
measure creativity is introduced. Specifically, we de-
scribe the musical corpus we used, the knowledge repre-
sentation schema, algorithmic details and particularities, 
and finally the creativity measuring model, realized as a 
set of measures/variables. 

2.2 Data collection 
Within the framework of the psychological experiments 
related to the MIROR project, a number of children's 
musical improvisations on a MIDI keyboard were per-
formed. The keyboard was connected to MIROR IMPRO 
system. Each improvisation session is comprised of a 
dialogue of music phrases that are alternately human and 
machine generated. Each of these phrases is recorded 
onto a different MIDI channel and thus it becomes 
straight-forward to extract all human phrases. 

The data we used comes from two experiments with 
MIROR IMPRO and young children - one with non-
musicians and one where children had been studying the 
piano from between 1-4 years. 

The reasoning behind this sampling is the following. In 
our initial work with non-musicians we found that the 
keyboard as an object (rather than the interaction with the 
system itself) seemed to draw the attention of the chil-
dren. We then introduced a second sample of children 
who were already familiar with the keyboard, as a way to 
eliminate the effect the keyboard may have on the inter-
action and hence the musical output from this interaction. 
In this paper we present the analysis from both groups of 
children. 

The study with the young pianists took place in a small 
music school and involved 10 children (six girls and four 
boys) playing alone with the MIROR IMPRO system for 
six weeks (that is six sessions of 15 to 20 minutes). The 
study with the non-musicians took place in a primary 
school and involved 20 children (sixteen boys and four 
girls) playing with MIROR IMPRO across six weeks, in 
similar conditions. In both studies we proceeded to con-
duct a pre- (before the six weeks) and post-test (after the 
six weeks) with the children. This consisted of asking 
each child individually to improvise a short tune (1-2 
minutes long) on the keyboard. 

We compare the pre-test sessions to the post-test ses-
sions of both the young pianists' and the non-musicians' 
sessions, in order to find out if their creativity developed 
by their post-test session. In this way, we might begin to 
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attribute such development to their in-between sessions 
where they interacted with the MIROR IMPRO system, 
in order to explore further the use of IRMS in the devel-
opment of children's musical improvisations and creativ-
ity. 

The young pianists pre-corpus consists of 5218 note 
events having duration of 2,359,916 msecs. The post-
corpus consists of 2427 note events having duration of 
662,627 msecs. The non-musicians pre-corpus consists of 
8990 note events having duration of 2,022,753 msecs. 
The post-corpus consists of 6477 note having duration of 
1,030,853 msecs. 

2.3 Knowledge Representation 
The concept of a symbolic musical corpus raises the issue 
of music knowledge representation. Having in mind the 
data manipulation task, the viewpoint representation for-
malism was chosen to be used [8], as it offers great flexi-
bility in surfacing the attributes of the musical objects. It 
also offers a direct and straight forward representation on 
corresponding data structures. The concept of viewpoint 
is lately gaining popularity among researchers, due to its 
capability to capture in a well-defined representation set 
of symbols, a big variety of the musical features of musi-
cal data.  

The musical object on which a viewpoint is defined can 
here be a single note or a sequence of notes, viz. a seg-
ment. Here the notion of a segment is used to describe the 
whole melody played by the child.  

On the note level, several viewpoints were calculated: 
pitch (as MIDI number), pitch class, onset, duration, ioi 
(interon-set time interval), trail (time interval between a 
NOTE OFF event and the consecutive NOTE ON), fni-
tioid (time interval from first note in track), seqint (me-
lodic interval – pitch distance from previous event), con-
tour (rising: 1, static: 0, falling: -1) and several others.  

Segmental viewpoints [7] are also constructed. For each 
segment a set of segmental viewpoints is calculated, such 
as the number of notes in the segment, the duration etc. 

 
Segmental Viewpoint Description 
sd[seq] Standard deviation of se-

quence seq 
uniq_patt[seq] Number of unique patterns in 

sequence seq 
diff_patt[seq] Number of different patterns 

in seq 
tot_patt[seq] Number of total patterns in 

seq 
Avg_sise[seq] Average size in number of 

note events of seq 
Avg_dur[seq] Average duration  
Tot_size[seq] Total size in number of note 

events of seq 
Tot_dur[seq] Total duration  
Inteval 
(small,medium,large) 
[seq] 

Percentages of interval divi-
sions 

Note 
(small,medium,large) 

Percentages of pitch divisions 

[seq] 
Rhythm 
(small,medium,large) 
[seq] 

Percentages of rhythm divi-
sions 

velocity 
(small,medium,large) 
[seq] 

Percentages of dynamic divi-
sions 

Texture[seq] Measures how “thick” is the 
music 

Cluster[seq] Number of chords in seq 

Table 1. Segmental viewpoints used. 

2.4 Computational Processing 
The computation proceeds by reading one by one all 
MIDI files in a directory (a directory with MIDI files is 
considered a corpus) and building from the corresponding 
MIDI events a sequence of viewpoints. Consecutively, 
repeated patterns within each viewpoint sequence are 
extracted. 

Thus, the identification of patterns can be seen as a 
problem within the stringology domain. As such, in order 
to identify common patterns suffix arrays [16] are em-
ployed. Suffix arrays provide an easy to implement and 
fast way to locate each and every common substring 
within a string. In [24], suffix arrays technique proves its 
capability and its efficiency on a much larger corpus.  

For constructing the suffix array, the well-known 
QuickSort comparison sort algorithm is used in this work. 
The suffix array can be scanned and common patterns 
can be reported, along with their frequency, their length 
and their locations within the corpus. 

2.5 Creativity Variables 
In order to assess creativity we used a set of variables that 
we calculated for each subject, for the improvisation tests 
that took place before and after the training. The idea of 
assessing creativity through a set of metrics (realised as 
variables) is drawn directly from the creativity literature, 
as most of the scholars are proposing to measure creativ-
ity based on a set of measures, scored by one or more 
experts. Our aim is to come up with a set of metrics that 
are scored automatically, eliminating thus the need of 
experts. As evidenced in the creativity literature, we as-
sume that advancement in musical variation and diversity 
is an indicator of musical creativity. 

The following variables were used: 
V1 – Standard Deviation. Standard deviation is a met-

ric on how much away from the average falls most of the 
values. A low standard deviation means that data tend to 
be close to the average. We calculate this for the se-
quence of three viewpoints – MIDI numbers, intervals 
and rhythmic values. It indicates the diversity of the mu-
sical vocabulary. 

V2 – Number of patterns with frequency 1. We iden-
tify all sequences of the 3 viewpoints (notes, intervals, 
rhythmic values) that appear only once in the corpus. We 
borrowed this idea from the lexical analysis in [23], as it 
seems to indicate novelty and musical variety. Suffix 
arrays make straight forward the identification of those 
patterns, since we count the number of rows in the array 
that has no common with their next. 
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V3 – Average Size, Duration. The idea of this indica-
tor is taken from Webster’s MCTM [27][28]. We calcu-
late two variants of this variable. First, we calculate the 
segmental viewpoints size (in number of notes) and dura-
tion (in msecs) for each subject. Then we calculate the 
average of all segments per subject. Second, we calculate 
the total size and total duration for each subject.  

V4 – Ratio of different per total patterns. This vari-
able is drawn by analogy from lexical content analysis in 
psychotherapy [13] and is used also in [23]. There are 
evidence that the greatest the ratio of different words per 
total words the greatest the lexical diversity [13]. So we 
assume that the greatest the above ratio the greatest the 
musical variability and hence the musical creativity. We 
identify all sequences of the 3 viewpoints (notes, inter-
vals, rhythmic values) 

V5 – Interval Variation.  This is an indicator on musi-
cal intervals diversity. We calculated the segmental 
viewpoint interval(small, medium, large).  
Then we calculate for each subject’s music (viz. each 
MIDI file) the percentages of small, medium and large 
intervals. We assume that small intervals are less than 4 
steps and large ones more than 8 steps – a step is a semi-
tone.  

We assume that the more evenly distributed the per-
centages are that more variation we have. This applies 
also to V6, V7 & V8  

V6 – Pitch Variation. We calculated the segmental 
viewpoint note(low, medium, high).  Then we 
calculate for each subject’s music the percentages of low, 
medium and high pitches. We assume that low pitches are 
below F3 (MIDI number 53) and high ones over C#5 
(MIDI number 73). 

V7 – Rhythm Variation. We calculated the segmental 
viewpoint rhythm(slow, medium, fast).  Then 
we calculate for each subject’s piece of music the corre-
sponding percentages. We assume that medium rhythmic 
values are with the notes that has more or less the quarter 
note duration; that is 500 msecs for our MIDI files. 
Hence we take +/- 10% of that for identifying the slow 
and fast rhythms. 

V8 – Dynamics Variation. We calculated the segmen-
tal viewpoint velocity(soft, normal, hard).  
For identifying the dynamics of notes we take into con-
sideration the velocity recorded along with the notes 
within the MIDI file. The velocity takes values in [0, 127] 
range. We calculate for each subject’s music the percent-
ages, similar to the above variables. We assume the piano 
range lays below velocity value of 40 and the forte one 
above 60. 

V9 – Texture Richness. For all notes in each subject’s 
corpus we sum up their duration. Then we divide the du-
ration of each piece of music with the total duration of all 
notes. The more notes we have (and the more lengthy 
they are) the less the value of V9 will be. It indicates how 
much populated with notes the music is. 

V10 – Clusterness. For each segment we calculate the 
number of simultaneities. It is an indicator of the number 
of chords and consequently the richness of harmony pro-
duced. A simultaneity occurs when a “note on”  MIDI 

event is transmitted while others ”note on”  events are 
still alive.  

3. RESULTS 

Table 2 reports the mean values on pre and post condi-
tions for the two groups, non-musicians and musicians. 
The general trends indicate advancement in creativity 
when we compare mean values on pre and post sessions.  
 Non-musicians Musicians 

 Pre Post Pre Post 

V1 pitch SD 10.75 13.16 8.84 9.65 

V1 interval SD 10.08 10.75 9.36 9.24 

V1 rhythm SD 0.93 0.97 15.11 19.84 

V2 unique pitch 23.90 30.00 20.3 17.8 

V2 unique interval 39.70 40.3 27.5 24.9 

V2 unique rhythm 23.85 24.15 46.4 40.0 

V3 Nb notes / segmented 48.70 48.42 42.62 29.42 

V3 duration /segmented 12324 7598 25299 9822 

V3 Nb notes / total 449.5 323.85 521.8 242.7 

V3 duration/ total 10113
8 

51543 235992 66263 

V4 different pitch 0.35 0.37 0.29 0.31 

V4 different interval 0.32 0.35 0.25 0.35 

V4 different rhythm 0.29 0.30 0.31 0.38 

V5 variation interval small 57.87 59.00 50.45 49.92 

V5 variation interval medium 15.30 18.13 25.05 25.09 

V5 variation interval large 26.82 22.79 24.50 24.98 

V6 variation pitch low 13.85 20.09 12.25 15.62 

V6 variation pitch medium 58.30 50.71 55.35 55.00 

V6 variation pitch high 27.84 29.20 32.40 29.37 

V7 variation rhythm slow 12.22 11.60 69.99 53.60 

V7 variation rhythm medium 4.42 3.52 7.13 10.35 

V7 variation rhythm fast 83.36 84.90 22.88 36.05 

V8 variation dynamics soft 37.26 15.59 14.76 8.11 

V8 variation dynamics nor-
mal 

27.30 14.93 31.13 26.89 

V8 variation dynamics hard 35.44 69.49 54.10 64.99 

V9 texture richness 0.89 0.70 1.35 0.66 

V10 clusterness 17.43 21.60 19.56 26.39 

Table 2. Variables mean values for non-musicians 
and musicians, on pre and post session. 

However, due to a small sample size and limited num-
ber of treatment sessions, not all of shifts are statistically 
significant.  

The pre – post treatment comparison was performed 
with asymptotic Wilcoxon signed rank test with Pratt 
zero handling (with coin package in R software [31]). The 
two groups were assessed in a separate manner, so that no 
direct statistical comparison between groups was made.  

The tables below report only statistically significant dif-
ferences between pre- and post-conditions, for the vari-
ables not reported below no significant difference was 
found. For variables V1, V2, V4, V5medium, V6 we pre-
dicted greater values in post session. i.e. greater values 
indicating the progress of creativity. For variables 
V5small and V5large we predicted smaller values in post 
session (see the explanation in the Discussion section). 
Accordingly, a one-tailed test was used for these vari-
ables. For variables V3, V7, V8, V9, V10 no directional 
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hypothesis was made. Accordingly, a two-tailed test was 
used. 

3.1 Non-musicians 
 MEAN STD DEV MEDIAN 

Pre 10.75 3.34 10.87 
Post 13.16 2.88 13.72 

    
Z = -2.65, p-value = 0.004 (one-tailed) 

Table 3. V1 – Standard Deviation on pre- and 
post-corpus. 

As seen in Table 3, the average pitch SD was higher in 
the post-session than in the pre-session, indicating that 
greater variety in the notes used. 

 MEAN STD DEV MEDIAN 
Pre 101137.65 36301.93 96031.50 
Post 51542.65 19238.46 49255.00 

    
Z=3.40, p-value=0.001 (two-tailed) 

Table 4. V3 – Duration, total. 

As it can be seen from Table 4, the average total dura-
tion was almost two times shorter in the post-session than 
in the pre-session. 

 MEAN STD DEV MEDIAN 
Pre 15.30 6.51 16.20 
Post 18.13 6.00 18.45 

    
Z = -1.75, p-value = 0.039 (one-tailed) 

Table 5. V5 – Percentages of medium intervals 

As it can be seen from Table 5, the average medium in-
tervals were more present in the post-session than in the 
pre-session. 

 MEAN STD DEV MEDIAN 
Pre 37.26 25.40 29.98 
Post 15.59 12.32 11.93 

    
Z = 2.65, p-value = 0.008 (two-tailed) 

Table 6. V8 – Dynamics Variation, soft. 

As it can be seen from Table 6, on the average, “soft” 
dynamic was more than two times less present in the 
post-session than in the pre-session. 

 
 

 MEAN STD DEV MEDIAN 
Pre 27.31 9.11 28.06 
Post 14.93 9.58 14.07 

    
Z = 3.06, p-value = 0.002 (two-tailed) 

Table 7. V8 – Dynamics Variation, normal. 

As it can be seen from Table 7, on the average, “nor-
mal” dynamic was more two times less present in the 
post-session than in the pre-session. 

 
 MEAN STD DEV MEDIAN 

Pre 35.44 24.67 34.40 
Post 69.49 19.54 70.40 

    
Z = -2.99, p-value = 0.003 (two-tailed) 

Table 8. V8 – Dynamics Variation, hard 

As it can be seen from Table 8, on the average, “hard” 
dynamic was more than two times more present in the 
post-session than in the pre-session. 

 
 MEAN STD DEV MEDIAN 

Pre 0.89 0.26 0.86 
Post 0.70 0.07 0.72 

    
Z = 3.92, p-value = 0.001 (two-tailed) 

Table 9. V9 – Texture Richness 

As it can be seen from Table 9, on the average, the mu-
sical excerpt played by the child is more “populated” in 
the post-session than in the pre-session (smaller values of 
this variable reflect more “populated” excerpt). 

 

3.2 Musicians 
 MEAN STD DEV MEDIAN 

Pre 235991.60 111207.17 257527.50 
Post 66262.70 31756.15 57980.50 

    
Z= 2.60, p-value = 0.009 (two-tailed) 

Table 10. V3 – Duration, total 

As it can be seen from Table 10 average total duration 
was more than three times shorter in the post-session than 
in the pre-session 

 
 MEAN STD DEV MEDIAN 

Pre 0.25 0.06 0.26 
Post 0.35 0.07 0.38 

    
Z = -2.29, p-value = 0.021 (two-tailed) 

Table 11. V4 – Ratio of different per total, intervals. 

As it can be seen from Table 11, the average ratio of 
different intervals was higher in the post-session than in 
the pre-session. 

 MEAN STD DEV MEDIAN 
Pre 22.88 6.51 16.20 
Post 36.05 22.17 31.60 

    
Z = -2.09, p-value = 0.037 (two-tailed) 

Table 12. V7 – Rhythm variation, fast. 

As it can be seen from Table 12, the average percent-
age of fast rhythm was almost twice higher in the post-
session than in the pre-session. 
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 MEAN STD DEV MEDIAN 

Pre 1.35 0.66 1.21 
Post 0.66 0.04 0.68 

    
Z = 2.80, p-value = 0.005 (two-tailed) 

Table 13. V9 – Texture Richness. 

 
As it can be seen from Table 13, on average, the musi-

cal excerpt played by the child is almost twice more 
“populated” in the post-session than in the pre-session 
(smaller values of this variable reflect more “populated” 
excerpt). 

4. DISCUSSION 

Both musicians and non-musicians improvised on the 
keyboard. In general, it was observed that musicians, who 
were keyboard players, improvised by creating musical 
sequences based on their previously known pieces. Non-
musicians, who were not familiar with the keyboard, 
played mostly in the form of gestures, such as upward 
and downward melodic movement, oscillation between 
two notes, continuous repetition of a pattern etc. (for 
more information see [6]). 

The students' teachers were supportive of our sample's 
participation in the study, although their role in the proc-
ess was not studied nor was the impact of children's par-
ticipation measured in some way, when they returned to 
their 'normal' musical activities. A follow-up study may 
be able to explore this aspect, particularly teachers' per-
ceptions of students' musical skills after having partici-
pated in such activities. 

Webster in [29] suggests that certain divergent, imagi-
native skills among others, are also critical to creative 
thinking, such as musical extensiveness (the amount of 
time invested in creative imaging), flexibility (the range 
of musical expression in terms of dynamics, tempo, and 
pitch) and originality (the unusualness of expression). 
Our variables explored mostly variance in flexibility, 
between the pre and the post test. 

4.1 Non-musicians 
The pre tests and post tests for the players without any 
musical background show some differences, which could 
potentially be attributed to the use of the MIROR IMPRO 
system. More specifically, the standard deviation of the 
pitches used increases in the post test. This shows that the 
children start to be more adventurous and explorative in 
their choice of pitches, using a bigger range of the piano.  

While the pitch standard deviation increases, the me-
dium intervals also increase, compared to small and large 
intervals. This fact could indicate that children stop play-
ing at random, in all the registers (i.e. they don't make 
huge intervals any more between high and low register), 
and they avoid repetitions of the same note (i.e. they don't 
use very small intervals any more). Instead they use in-

tervals that are more or less typically used in music, of 
medium size. 

Another interesting difference between pre and post test 
is that children play louder, which could indicate a 
stronger confidence in their playing, and at the same time 
use more notes in the same amount of time, to create a 
thicker texture. However, it is interesting that in the post 
test they also play for significantly less time. This could 
be seen in two ways: the first suggests that they play in a 
more focused way, given the above significant results, for 
less time, while the second proposes that they might be 
getting tired by the time they reach the post test, and de-
cide to play less. 

4.2 Musicians 

Before discussing the results of the pianists, there is one 
fact that needs to be explained in order to better evaluate 
the results. Children with a background in piano playing, 
during the pre test, played mainly their known pieces 
from the piano lesson, and improvised less. Therefore, 
their pre test has a lot of features that we would normally 
find in known music. By the time the children reach the 
post test, all of the children leave the security of the 
known pieces and prefer to play more freely their own 
tunes. We believe that this can be attributed to the use of 
the MIROR IMPRO system, as there was scant interac-
tion with the researcher throughout the study. The post 
test improvisation session is also significantly shorter. As 
they played more freely, it could be explained as more 
focused improvisational playing.  

In the post test, their ratio of different per total intervals 
used is higher, which means that there is less repetition 
and more originality in their playing. At the same time, 
pianists play almost twice as fast as in the pre test, which 
could indicate more confident playing, especially as this 
is coupled with less soft and timid playing. Like the non-
musicians, they also use more notes per unit of time, to 
create a thicker texture.  

4.3 General discussion 
The work described here is introducing a model for 
measuring creativity and creativity development. This 
model in essence defines and describes musical creativity 
via a set of attributes realised as distinct variables. While 
the utilization of a set of variables for describing creativ-
ity is something that most of the scholars in the field are 
employing (see section 1), the appropriateness of a par-
ticular variable can always be under question. For exam-
ple, is it valid to hypothesise that different distribution in 
the (small, medium, large) range of intervals (that is vari-
able V5) indicates musical creativity advancement? Of 
course in general, in the borderline cases this hypothesis 
holds true; for instance if a interval(95, 3, 2)  
tuple is becoming a interval(40, 40, 20) , the 
player is musically exploring a larger interval range and 
this seems to be consistent with musical creativity devel-
opment in the literature. But in most in-between cases the 
extent to which changes in the variables indicates creativ-
ity development is open to discussion. In general the con-
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cept of creativity evades a clear definition and the issue 
of assessing creativity development is a challenging topic 
which can be dealt with in many ways. Future work will 
include fine tuning of variables, eventually defining sig-
nificant limits on experimental basis. 

5. CONCLUSION 

This study firstly proposed a set of variables to measure 
creativity in music, based on existing literature on crea-
tivity assessment, and secondly investigated the devel-
opment of creative music improvisations of young chil-
dren, after playing an Interactive Reflexive Music System 
called the MIROR IMPRO. It drew on two examples, a 
group of 20 non-musicians and a group of 10 young pian-
ists, and measured the development of their creativity in 
free improvisation before and after six sessions of using 
the system.  

The non-musicians’ post test free improvisations in-
clude higher diversity of musical vocabulary, more me-
dium intervals and richer texture, indicating a sensible 
progress in improvisational creativity. At the same time, 
they include more intensity in dynamics, indicating more 
confident playing behaviour. Interestingly this seems also 
to be the case with the young pianists, as their post tests 
include similar features. In their post tests, however, there 
is more use of different intervals with less repetition and 
faster playing, even though they move away from the 
familiarity of their known piano pieces by this final ses-
sion. It can be argued that the differences between pre 
and post tests observed in the musicians and non-
musicians may be due to more than increased familiarity 
with the keyboard, that is the differences observed may 
be due to the use of the MIROR IMPRO system to de-
velop creativity.  

Further analysis of the in-between six sessions with 
MIROR IMPRO may provide more ideas regarding the 
precise variables that seem to shift across sessions in both 
groups of melodies. Future work also includes the direct 
comparison of the two groups, to investigate the differ-
ences between the young pianists and the children with 
no musical background, as well as the introduction of a 
control group to assess an eventual development of crea-
tivity without MIROR-IMPRO.  

This would allow also fine tuning of the creativity as-
sessment model and its testing in various new settings in 
order to improve the definition of the variables used, as 
well as the introduction of new related variables. 
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ABSTRACT 
Playing a guitar is normally only for people with fully 
functional hands. In this work we investigate alternative 
interaction concepts to enable or re-enable people with 
non-functional right hands or arms to play a guitar via 
actuated strumming. The functionality and complexity of 
right hand interaction with the guitar is immense. We 
therefore divided the right hand techniques into three 
main areas: Strumming, string picking / skipping, and 
string muting. This paper explores the first stage, strum-
ming. We have developed an exploratory platform called 
the Actuated Guitar that utilizes a normal electrical gui-
tar, sensors to capture the rhythmic motion of alternative 
fully functioning limbs, such as a foot, knee or the head, 
and a motorized fader moving a pick back and forth 
across the strings. A microcontroller is utilized for pro-
cessing sensor data, which allows flexible mapping of 
user input to the actuation of the motorized fader. Our 
approach employs the flexibility of a programmable digi-
tal system, allowing us to scale and map different ranges 
of data from various sensors to the motion of the actuator 
– thereby making it easier adapt to individual users. 

Author Keywords: Interactive performance systems; 
Interfaces for sound and music; Music and robotics; So-
cial interaction in sound and music computing; Actuated 
instruments; Actuated guitar; Musical instruments for the 
disabled. 

1. INTRODUCTION 
Playing a musical instrument can be an interesting and 
worthwhile pursuit, but in many cases is impossible for 
someone with a disability. Those of us living without 
disabilities can just pick and choose an instrument of our 
liking. We may prefer the sound of a certain instrument, 
wish to follow in the footsteps of an idol, or learn to play 
specific songs from the radio. Some people succeed and 
actually learn to play an instrument, but many give up 
along the way when they realize what it takes in time and 
effort to learn to play an instrument well.  
 
What about people with disabilities that wish to play 
musical instruments? In this work, we begin to address 
the question via the development of alternative interac-
tion methods for playing the guitar. Disabilities can either 

be congenital, or caused by illness or accidents in any 
stage of life. If an arm or hand amputee, or anyone hav-
ing a medical problem such as cerebral palsy wishes to 
play a traditional instrument, it is likely that they will be 
unable to reach the instrument’s full potential (or possibly 
not be able to play an instrument at all). The obstacles 
while learning to play an instrument designed for those 
without disabilities can be too large to overcome. 
 
We focus here on the use of technology to enable alterna-
tive methods of playing the guitar, specifically for those 
who have limited or no use of one hand or arm. The use 
of actuators, feedback systems, and flexible interaction 
design techniques present a novel design optimized for 
easy customization. Furthermore, playing music can be a 
good activity for "Forced Hand Use" training [1]. This 
method encourages those with cerebral palsy or stroke 
patients, for example, to use their affected arm, with the 
aim that they will begin using that arm more in daily life 
or regain control with the arm or hand. 

2. RELATED WORK 
Related work has included a wide range of approaches to 
either customizing existing instruments, or designing 
entirely new music interfaces. These have ranged from 
simple mechanical aids [2] (sold by companies such as A 
Day’s Work, LLC1), to advanced bioelectric controllers 
allowing users to produce computer-generated music [3]. 
An example of a simple tap-pad interface developed for 
disabled users is the TouchTone [4]. However, we have 
chosen here to focus on string instruments – specifically 
the guitar – rather than percussion, wind, or other fami-
lies of musical instruments. 
 
Most traditional instruments require more than one limb 
to be used while playing. As there are millions of disa-
bled who lack the use of one or more of their limbs in the 
world today, these people are excluded from many types 
of music making. While quite a number of efforts have 
been undertaken in the past to modify existing instru-
ments for use by the disabled, there have not been many 
specifically targeting the guitar as an instrument for disa-
bled users. 
 
Our work involves creating a semi-robotic musical in-
strument. A historical view of robotic musical instru-

                                                             
1 http://www.adaysworkmusiceducation.com/ 

Copyright: © 2013 Jeppe Veirum Larsen et al. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 
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ments is included in [5]. Robotic instruments focused on 
the guitar include the League of Electronic Musical Ur-
ban Robots (LEMUR’s) GuitarBot [6], among others. 
While the GuitarBot is much more capable of completely 
automating the motions needed to play a guitar than our 
current work, it discards any affordances of direct human 
playing skills, due to a design that places each string on a 
separate ‘neck’. We purposefully aim our development at 
more traditional guitar bodies, thus enabling users to 
develops skills that are as close to the normal techniques 
as possible. It follows in some of the author’s related 
work with actuated instruments [8]. 

3. INTERACTION METHODS 
Playing a guitar traditionally requires the use of both 
hands. The right hand does the strumming and or picking 
of the strings, and fingers of the left hand are used for 
fretting the strings. As stated in the introduction, the 
scope for this research is to enable or re-enable people 
who are not able (or lost the ability), to play the guitar. 
Our first approach focuses on the right hand, and how it 
interacts with the guitar. The common interactions of the 
right hand have been identified and divided into three 
stages: 
 

Stage 1: Strumming 
Stage 2: String picking and string skipping 
Stage 3: String muting 

 
The research is thus divided into the three stages, based 
on the dexterous complexity of each type of interaction. 
This paper elucidates only the first stage, strumming. 
Strumming is the most basic right hand interaction tech-
nique, making it a good place to start, as well as a prereq-
uisite for the following stages to build upon (see Figure 
1). Next we describe and discuss our approaches to 
strumming a guitar when the user does not have full con-
trol of the right hand. 
 

 
Figure 1. Strumming a guitar is the most basic right in-
teraction possible with a guitar. Strumming is a near-
perpendicular rhythmic motion across the strings. 

3.1 Candidates for Rhythmic Movement 

As the left hand is occupied fretting the strings, possible 
candidates for control of our motorized strumming actua-

tor include various portions of the legs, the head, or pos-
sibly the remaining part an amputated arm, see Figure 2. 
Without mechanical aids, these parts of the body do not 
offer any realistic means of physically strumming across 
the strings in a normal playing position. However, the 
remaining part of an arm, the head or part of a leg (even a 
foot or toe) do offer the possibility to move in a rhythmic 
pattern. 
 
Moving the arm or legs in a continuous rhythmic pattern 
are likely the best options, as humans are accustomed to 
naturally moving these body parts in rhythmic patters for 
long periods of time (for example when walking or run-
ning). For people with no control of their legs nor right 
arm, the head can also be used to move in a rhythmic 
pattern, albeit the muscles in the neck are not normally 
used for repeated rhythmic movements (and may quickly 
fatigue). Nevertheless, over shorter periods of time this 
would still give such individuals the ability to strum the 
actuated guitar. 

 
Figure 2. The different body parts that can be used in-

stead of a paralyzed limb to interact with the instrument. 

3.2 Gesture Capture and Motion Tracking 

Because the rhythmic movement of these alternative parts 
of the body are not able to physically strum the strings in 
a normal fashion, our system needs to capture the mo-
tions and translate them into control signals for the actua-
tor on the guitar. This can be done through the use of 
various sensors. The sensors can be mounted several 
different places on the body in order to optimize the ex-
perience for each individual. 
 
Our initial experiments have made use of a simple accel-
erometer sensor that might be ideal for a person with an 
amputated right hand. It is fitted with a velcro armband 
and strapped onto various parts of the body. Many other 
types of sensors can also work as input for the actuated 
guitar, such as gyroscope sensors, which capture rota-
tional movements. An individual that can only rotate their 
head, for example, could use this type of sensor, with the 
rotational input translated to the actuator’s linear output – 
robotic strumming of the strings via a motorized fader. 
 
The authors have considered many other options as well, 
such as a full Inertial Measurement Unit (IMU) that com-
bines data from an accelerometer, gyroscope and magne-
tometer to provide a more precise estimation of orienta-
tion and motion, or even commercial options such as the 
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Leap Motion device2, which could be mounted in various 
locations to capture player inputs. In the next phase of 
this research we plan to incorporate a single-chip IMU, 
the MPU-9150 released by Invense, Inc. It is a 9-axis 
motion tracking solution with built-in sensor fusion algo-
rithms combining data from a 3-axis gyroscope, a 3-axis 
accelerometer, and a 3-axis magnetometer. 

3.3 Mapping Sensor Input to Actuation 

When customizing the actuated guitar for people with 
various disabilities, our digital approach attempts to make 
it easy to perform the necessary mapping of data from 
various input sensors (simple filtering, scaling and offset 
operations) to control of the strumming actuator. This is 
especially true when compared to the wide variety of 
mechanical approaches that would be needed for different 
scenarios and users. At the moment, these changes are 
managed in the firmware of the microcontroller that our 
system uses, but these parameters could also be changed 
graphically via a visual programming environment such 
as MaxMSP3 or PureData4. This approach, based on the 
FireFader system [8] would likely be preferable for indi-
viduals who wish to modify the system themselves. 
 
One example would be a user with a partly paralyzed leg, 
but who can still stomp their foot. Mounting our sensor 
on the foot will translate that motion into input for a mi-
crocontroller, which can then map the input to fit the 
actuator’s full range of motion. This gives us the possibil-
ity of amplifying small motions to move the output actua-
tors an entire strum-length, translate rotation motions into 
linear motions (if using a gyroscope sensor), etc. Doing 
this by purely mechanical means will be a highly com-
plex construction and difficult to quickly modify to fit 
different users with different needs. 

4. LIMITATIONS 
The fine motor control exhibited by a normal human arm, 
hand and fingers will be difficult if not impossible to 
replicate via low-cost robotic actuation. A human hand 
can move in almost a hemispherical fashion at the end of 
the wrist. Fingers can stretch, bend and move sideways. 
In addition to the physical movements, we also receive 
sensory feedback from our hands and fingers. Although 
we are in the initial stages of this research (focused only 
on strumming to date), it is already clear that custom 
actuators would need to be designed, if attempting to 
truly approach this kind of control and feedback. There-
fore, we have so far only researched the types of move-
ments that are the most crucial to maintain, in order to 
design a substitution for the hand strumming a guitar.  
 
It is worth noting that we are working with an electrical 
guitar for this prototype, and that the actuator we are 
using (a small motorized fader) can cause electrical noise 
to bleed from the motor’s electromagnetic field into the 

                                                             
2 Leap Motion, http://www.leapmotion.com/ 
3 MaxMSP, http://cycling74.com/ 
4 PureData, http://puredata.info/ 

guitar’s pickups. This occurs due to the proximity of the 
electrical guitar pickup, be it single coil or humbucker 
design, near the plucking location on the strings (a posi-
tion required to best capture the sound). This electromag-
netic noise problem can be substantially circumvented by 
running the pulse-width modulation (PWM) signal that 
controls the motorized fader at a frequency higher than 
normal human hearing (more than 20kHz). While an 
acoustic guitar would not have this problem, the more 
fragile body makes it somewhat difficult to mount actua-
tors on the guitar’s body without damaging or compro-
mising its ability to produce a good acoustic sound. 

5. EXPLORATORY PLATFORM 
To help us explore the possibilities offered by this re-
search, a proof-of-concept guitar was created as described 
below (see Figur 3). The device consists of an Epiphone 
SG Standard electrical guitar, Arduino Nano V.3 board 
with an ATmega328 microcontroller, a "2motor" control-
ler board from Gravitech with an L298 dual H-Bridge 
driver, an Analog Devices ADXL322 accelerometer, and 
a Penny+Giles PGFM3200 motorized fader. 
 
The Arduino Nano sits on top of the 2motor board, both 
of which are plugged into a breadboard that is adhered to 
the guitar’s body. The accelerometer is connected to the 
microcontroller’s analog input ports for processing. A 
USB cable powers the Arduino, motor board and the 
motorized slider, and allows for quick data access and 
easy upload of software to the Arduino during our devel-
opment process. The system can also be battery powered. 
 

 
Figur 3. Implementation of the proof-of-concept guitar, 
which consists of an accelerometer, guitar, microcon-
troller, motor controller, motorized fader, and a pick.  

 
The data flow throughout the system is shown in Figure 
4. A user interacts with the accelerometer, which sends a 
signal to the Arduino. The ADXL322 is capable of sens-
ing two independent axes, but as seen on Figure 1 the 
type of movement we are most interested in when ap-
proximating traditional playing technique is just a single 
axis of motion. We therefore omit one axis entirely. The 
axis in use is averaged over 30 samples, as the sensor 
produces somewhat noisy data, and we are primarily 
interested in lower frequency information. The microcon-
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troller also reads the current position from the fader’s 
potentiometer. 
 
The feedback from the fader position in combination with 
the target value from the low-pass filtered accelerometer 
data determines what control data to send to the motor 
controller, for example in which direction and how fast to 
move. To avoid jitter while the fader is idle, the micro-
controller only commands it to move when a sufficient 
G-force threshold is applied to the accelerometer in a 
given direction. The motor controller then turns on the 
motor in the given direction, and the fader strums the 
guitar. This is similar to the ‘Real-Time Feed-Forward 
Control paradigm’ outlined in [9].  
 

 
Figure 4. The data flow throughout the system. The us-
er interacts with the sensor, which allows them to ‘re-
mote control’ the position of the actuator – via internal 
feedback in the microcontroller that steers the system’s 
output – thereby producing sound perceived by the user, 
completing the outer (interaction) feedback loop. 

6. FUTURE WORK 
There are many avenues of future work that would be 
interesting to pursue. For example, the initial studies 
shows that using a single accelerometer brings limita-
tions. The constant pull of gravity of 1G is impossible to 
remove from such a sensor’s output, making it difficult to 
get the same reading when strumming up and down (lat-
eral motions are therefore preferable). The IMU men-
tioned in section 3.2 will help to resolve this issue, by 
allowing us to remove gravity effects through a calcula-
tion of the residual accelerations after subtracting the 
gravity vector. It should also enable us to explore much 
more detailed interaction due to the greater number of 
sensor types. 
 
Trying completely different types of sensors, as men-
tioned in section 3.2, is also something we plan to pursue. 
Standard ‘sip and puff’ or simple force-sensitive resistor 
types of sensors would facilitate entirely different types 
of input, and could be interesting helps for more severely 
disabled people to strum the guitar. 

7. CONCLUSIONS 
We have shown that it is possible to enable or re-enable 
people to strum a guitar using an accelerometer as input 
controlling an actuated guitar using different body parts. 
Drawing on a range of inspiration we have shown that 
disabilities does not need to stop people to explore and 
experience normal instruments made for people without 
disabilities. 
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ABSTRACT

Application of embedded systems to music installations is
limited due to the absence of convenient software devel-
opment tools. This is a very unfortunate situation as these
systems offer an array of advantages over desktop or lap-
top computers. Small size of embedded systems is a fac-
tor that makes them especially suitable for incorporation
into various forms of art. These devices are effortlessly ex-
pandable with various sensors and can produce rich audio-
visual effects. Their low price makes it affordable to build
and experiment with networks of cooperating devices that
generate music.

In this paper we describe the design of Komeda – imple-
mentation platform for interactive algorithmic music tai-
lored for embedded systems. Our framework consists of
music description language, intermediate binary represen-
tation and portable virtual machine with user defined ex-
tensions (called modules).

1. INTRODUCTION

We believe that artists creating music installations are lim-
ited by the choice of platforms that can run their software.
Personal computers, either desktops or laptops, can be too
obstructive to the visual and spatial form of an installa-
tion. Mobile devices (i.e. phones and tablets) are not well
suited for this purpose – problems like: device cost, re-
placeability, complex software stack, limited battery life,
difficulties with expandability (i.e. no easy way to add
custom external sensors and output devices) don’t make
them a great choice. Apparently the most viable option is
to use small embedded systems, which could be easily in-
corporated into both static and movable parts of a music
installation. Such systems should be build with affordable
components and be easily expandable with peripherals. It
is natural step forward to construct systems composed of
handful or tens of such devices. An artist that desires to
explore the idea of distributed music generation should be
able to easily expand the system with communication ca-
pabilities and protocols. Hardware that matches the de-
scription above already exists, but it’s not backed up by
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solid software framework that enables easy creation of mu-
sical applications.

Such platform should include:

• music notation language,

• hardware independent binary representation,

• portable virtual machine capable of playing music,

• communication protocol (also wireless),

• interface for sensors and output devices,

• support for music generation routines.

We would like to present the Komeda system, which cur-
rently provides only a subset of the features listed above,
but in the future should encompass all of them.

2. OVERVIEW

Komeda consists of the following components: music de-
scription language, intermediate binary representation, vir-
tual machine and module system. The language helps to
create a musical score with place holders – so called ”blanks”
– which are filled in by the code running as a part of user
defined module. The score takes a form of note sequence
organized into patterns. In addition to that the language
offers a limited set of control structures, pattern invoca-
tion and statements that allow communication with mod-
ules. Modules may represent instruments, note generator
algorithms, sensors, etc. Each module is assigned a set of
parameters and actions that a user can read, modify or in-
voke, respectively. The binary representation was designed
to be platform independent bytecode for KomedaVM. The
virtual machine provides player routine – or more specifi-
cally a scheduler and driver for instrument modules – and
an interpreter for the bytecode.

3. LANGUAGE

3.1 Design

The first and the most important component of Komeda
platform – at least from user’s point of view – is the lan-
guage. It is mainly focused on providing a succinct mu-
sic notation description. However, it is not solely a data
definition language like XML. It incorporates computation
statements, control structures and other features specific to
programming languages. We enable the user to express
easily following concepts:

• music organized into parts (i.e. patterns, phrases,
choruses),
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• rich structure of music score (incl. loops, repetitions,
alternatives),

• playback of score fragment in modified context
(i.e. transposition, volume change),

• virtual player synchronisation (e.g. concerted transi-
tion to next music part),

• interaction with external world (e.g. sensors, con-
trollers).

Having language users without much of a former expe-
rience, we would like them to find the concepts clear and
the code readable. To help with adoption of Komeda, we
decided to base its syntax on something widely known in
both worlds – of music notation and programming lan-
guages. Hence, significant number of concepts were bor-
rowed from LilyPond [1] and Java.

The main challenges we experienced while designing Ko-
meda were:

• capturing all concepts needed to represent music score
unambiguously – i.e. a user should be encouraged to
express ideas in the least number of possible ways,

• balancing between having a readable syntax and con-
cise notation – note that these two aspects collide
with each other, as shorter constructs become more
obscure,

• finding effective mapping to intermediate form (Ko-
meda bytecode) – shape of binary data that repre-
sents the music to be executed in VM,

• simplicity of virtual machine and user modules.

Our design went a complete overhaul several times, as we
were discovering dependencies between all three layers of
Komeda environment: the language, the binary represen-
tation and the virtual machine.

At the time of writing we have working compiler from
Komeda to intermediate representation. The implementa-
tion is written in Haskell, a purely functional language with
strong static typing. Our choice is justified by a few argu-
ments:

• Haskell [2] has set of rich abstractions and expres-
sive types - our code looks clear and simple, there
is little verbosity or boilerplate code, that obliterates
the ideas,

• availability of great parser frameworks – Parsec [3]
is used to express Komeda grammar.

3.2 Theoretical considerations

We choose to model the language after western music no-
tation (with Helmholtz pitch notation). It has many draw-
backs, nonetheless it is the most popular music notation
which virtually anyone can read. Every person having for-
mer experience with western music notation should imme-
diately recognize familiar structures in Komeda language.
On the other hand we didn’t try to create a music engraving
language, so we had some flexibility in implementing mu-
sical concepts. In some cases we completely resign from

some of them – most notable examples are key signatures,
bars and time signatures. Here we would like to supply
couple of arguments for these omissions.

The notion of key signature associated with tonality was
made somewhat obsolete by atonal techniques or scales
other than modes of the major system. Moreover, intro-
ducing the key signature could result in the decreased read-
ability. Such is the case with Oliver Messaien’s prelude
La colombe notated in E major key in which most of the
chords have more than one accidental, which makes hard to
keep track of exact pitches in signatures with four sharps.
Similarly notation of music based on the non-standard hep-
tatonic scales requires custom key signatures (e.g. some
of the pieces from Bela Bartok’s Microcosmos which uti-
lize both flats and sharps in the signature) or usage of ac-
cidentals instead of the key signature. Scales with more
than seven pitch class appearing for example in the mu-
sic of Bartok [4] [5] and Messaien (whose modes of lim-
ited transposition [6] mostly have more than seven tones)
cannot be notated without accidentals. The same happens
with works based on the serialism, dodecaphony and inter-
vals pairings [7] or other atonal techniques. There is also
another argument for foregoing the key signature even for
tonal works. Contemporary composers often chose to no-
tate them with only accidentals - great example here is the
first movement of III Symphony by Henryk Górecki, who
always notated F# with accidental in this E-minor piece.

Bars and metre are used in music mainly for three things:
structuring, as a help for the performer in keeping track of
the score and to introduce default accents in music. In Ko-
meda the visual structure of music can be imposed using
the white characters and comments. Obviously Komeda
does not need any help in keeping track of the score, so
we are left with only last application of measures. The
problem of accent induced by metre is that there is not one
standard of it. Underlying pulse of different time signa-
tures is associated with genre, period and personal styles
of both the composer and the performer. Moreover in the
contemporary music the implicit accent is non-existent [8].
The lack of bars also simplify music generation.

3.3 Syntax concepts

3.3.1 Channels

Top-level construct of komeda language is a channel. It
describes a behavior of monophonic audio source. Each
channel is assigned an independent thread of execution that
interprets Komeda language and in turn produces note se-
quence to be played.

channel 0 play @Pattern0

Listing 1: Channel notation example

The definition above states, that the channel number 0
will play a program defined by Pattern0. Number of
channels is limited by the implementation of KomedaVM
and may depend on hardware capabilities.

Note that the program executed by the channel may make
use of certain sensor, voices or generator modules. That in-
formation has to be specified in channel initialization rou-
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tine that is automatically added by the compiler. Thus code
analysis has to be performed at compile time.

3.3.2 Identifiers and Parameters

Komeda programs will assign names to specific objects
like patterns, voices, etc. Another group of names refer
to certain playback parameters like tempo, volume, etc.
Hence two groups of identifiers were conceived to capture
these concepts. All user introduced identifiers begin with
”@” sign, followed by uppercase letter (e.g. @FooBar).
Parameters follow similar syntax, though they begin with
lowercase letter (e.g. @tempo). Some of them are built
into language (i.e. channel control), but others depend on
modules imported into the scope of a channel.

3.3.3 Patterns

They are used to give music score a basic structure. Each
pattern is given a unique name and can be referred to from
other patterns, as if it was copied into the place of refer-
ence. Pattern execution interprets notes and control com-
mands hold within its structure.

pattern @Pattern0 {
...
@Pattern1
...

}

pattern @Pattern1 {
...

}

Listing 2: Example of pattern invocation

3.3.4 Notes, Rests and Slurs

Fundamental concept embraced by Komeda is a note. It
is specified by pitch (semitone) and note length. Closely
related to a note is a rest, which stops playback for a given
unit of time. The timing is implicit – i.e. notes starts when
a previous one stops. Pitch is expressed in Helmholtz no-
tation with sharps only – we decided to drop flats. Length
is represented as a fraction of default time unit, which al-
lowed us to omit a concept of tuples (e.g. triplet) and dots
from standard notation. The tempo is always expressed in
quarter notes per minute.

@tempo 120
@unit 1/4

C#, D r a3/2 d’/2 e2

Listing 3: Sample music score

Komeda supports expressing slurs and ties as well, though
they are immediately coalesced into a single note at com-
pilation time.

a˜a/2 c˜d˜e2˜f

Listing 4: Expressing slurs

3.3.5 Control Structures

Usually a score consist of a few fragments that are repeated
several times. Certainly one would like to express that
concisely, possibly giving alternative endings – western
music notation uses volta brackets for that purpose. Ko-
meda is more flexible as it allows to designate alternative
fragments (not only endings) on specified loop iteration.
Note that alternative fragments don’t have to be defined
for each iteration, which can lead to repetitions of differ-
ent lengths. It’s also possible to nest repetitions as shown
below:

times 8 {
...
on 3 {

...
times 2 {

/* do it twice on 3rd repetition
of outer loop */

...
}

}
...
on 4 { ... }

}

Listing 5: Nested loops and alternatives

However sometimes one would like to express possibly
infinite repetition that can be terminated under certain con-
dition (e.g. user interaction). That is achievable using
forever construct.

forever {
...
if @Button.pressed()

break
...

}

Listing 6: Infinite loop with break on user action

3.3.6 Context Changes

There are several cases, when a user would like to per-
form series of similar actions, captured by a pattern, but
with slightly different settings. Example of such situation
is when a user wants to play a pattern representing some
phrase with a transposition.

with @pitch +3 @volume +10% {
@NoteSequence

}

with @pitch -2 {
@NoteSequence

}

Listing 7: Temporary parameters modification

The with statement can be used to temporarily change a
set of parameters for the commands placed in its scope.

3.3.7 Synchronisation

Channels are inherently independent. Hence, instructions
interpreted within a channel have no way to obtain infor-
mation about state of another channel. While this isola-
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tion is generally a good idea, it poses a problem when tim-
ing between channels is required to achieve desired effect
(e.g. smooth transition from one music part to another).
To synchronize players, we introduced simple, but effec-
tive mechanisms based on the idea of notifications and ren-
dezvous points.

In example below we devise a meeting point for two play-
ers. They will only advance to the next part of music, when
they both arrive at @Part2.

rendezvous @Part2 for 2

pattern @PatA {
times 3 { ... }
...
arrive @Part2
...

}

pattern @PatB {
...
times 2 { ... }
arrive @Part2
...

}

Listing 8: Use of meeting points for synchronization

Another example requiring synchronization is two play-
ers, who improvise at the beginning and afterwards want
to transition to main theme of work.

signal @StopImprovisation

pattern @PatC {
...
/* to drummer: stop improvisation! */
notify @StopImprovisation
...

}

pattern @PatD {
...
until @StopImprovisation {

// some crazy beats :)
}
...

}

Listing 9: Communication through signalling

3.3.8 Instruments

Currently only simple DDS [9] instruments are supported
for simplicity’s sake. Simple DDS instrument is generated
by a single oscillator (e.g. ”sine”, ”triangle”, ”square”,
”noise”) and ADSR 1 envelope. Such instruments can be
supported on even the simplest hardware and are a good
starting point for generation of more advanced sounds.

voice @SomeWave = @SimpleDDS {
@osc "sine"
@adsr 0.1 0.1 0.8 0.9

}

Listing 10: Example voice definition

In the example above a new instrument is created by call-
ing constructor of imported SimpleDDS module.

1 Attack-Decay-Sustain-Release

4. VIRTUAL MACHINE

KomedaVM is a small piece of software residing in flash
memory of an embedded device. It is responsible for load-
ing (from flash, RAM or if applicable some external sources
such as SD cards) binary representation of Komeda lan-
guage and executing it. For this purpose the machine has
to maintain a global state and for each channel a private
state. Additionally, it manages modules currently in use
and schedule execution of instruments playback. Certain
assumptions described in this chapter influenced shape of
the language or imposed particular constraints on the de-
sign (e.g. number of available channels).

4.1 Binary representation

Almost all Komeda language concepts have their counter-
parts in binary representation. Some of composite high-
level instructions are split down into simpler constructs as
the compiler lowers the code. At the very bottom each
channel behaves as an independent state machine – a very
simple microprocessor with specialized set of instructions.
We will not provide details of instruction set architecture
(ISA) employed by KomedaVM, as it is still undergoing
significant changes.

Having spent considerable amount of time analyzing con-
temporary micro-controllers ISAs, we decided to keep close
to these designs. Affinities we would like to preserve are:

Reduced number of orthogonal instructions. If we keep
virtual instruction design close enough to existing ISA, for
instance AVR [10], we possibly could provide one-to-one
mapping between Komeda and native instructions. That
could reduce the size of interpreter as the processor is able
to execute some instructions directly. While it is tempting
to follow such path, certainly specialization hinders porta-
bility of virtual machine, which at the moment is our prior-
ity goal. Thus, we decided to take opposite approach, and
deliver instructions that can be interpreted easily on most
popular embedded processors, which tend to have RISC-
like ISAs [11].

Sizeable register file and a stack. Komeda language is
mainly oriented towards expressing control flow – it is not
suitable for data processing. Thus, we decided to drop con-
cept of program’s memory, which anyway is a scarce re-
source in embedded systems. Instead, we use virtual reg-
isters and stack to store state of the program. The require-
ment for virtual stack emerged as we considered situation,
when a pattern invokes another pattern – in some sense
it mimics concept of function calls and activation records
from general purpose programming languages.

Uniform size of instructions i.e. 2 bytes. If Komeda bi-
nary representation is going to be interpreted in software,
the interpreter must be able to quickly decode and dispatch
instructions. Such representation is also convenient, if we
allow any arbitrary Komeda code processing (e.g. decom-
pilation or whole pattern generation by native code).
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4.2 Modules

From the virtual machine point of view, modules are in-
dependent entities. The communications with them is per-
formed via specialized structure, which has to be initial-
ized by KomedaVM before execution of a program. The
machine is allowed to call a specific action assigned to a
module. This is the only conceivable moment in which we
allow the control to be transferred out of KomedaVM to
native code.

Lets consider a single module. Firstly, we would like to
avoid exposing the state of a module to the virtual machine,
if possible. Secondly, when you consider module’s internal
state, it may be too large to be represented by the interface
visible to KomedaVM – i.e. virtual registers. Thus the ma-
chine has to maintain the state that is not visible to Komeda
code directly. Each module may be subjected to non-trivial
initialization. Finally, a program may use same module but
differently initialized or used in two different independent
contexts.

As a consequence, we decided to design modules in spirit
of object oriented paradigm, but without inheritance for
now. Lots of similarities emerged – clearly modules are
classes, modules with attached state are class instantiations
(i.e. objects), parameters are public properties of an object,
and remote procedures – just methods. Such model can be
efficiently mapped onto C language which lacks of object
oriented features.

4.3 Execution engine

Runtime system is composed of three components charac-
terized shortly below.

NotePlayer Central subsystem of Komeda runtime. It is a
scheduler that takes care of updating the state of channels
(i.e. note pitch and length, slur mode, instrument number)
and reprogramming AudioPlayer respectively. For each
note being played NotePlayer maintains an alarm clock,
which is triggered when the note is about to stop being
played. Next note is then fetched and AudioPlayer repro-
grammed to play it. Secondary functionality is related to
the maintenance of synchronization state between chan-
nels.

AudioPlayer Its main task is to continuously generate and
mix all audio inputs into a stream suitable to be digested by
audio playback device. This subsystem is considered to be
the most platform dependant constituent. Playback device
implementation may vary greatly for each hardware plat-
form. It can be implemented as a DAC with or without
DMA (i.e. DAC capable of feeding itself with consecu-
tive samples without involving processor), a simple PWM
generator, FM synthesis sound chip, etc. AudioPlayer may
be programmed to perform certain non-trivial computation
like direct digital sound synthesis, or system interaction
like fetching samples from storage device. It seems to be
the only subsystem that needs to be called synchronously
by the system clock.

Interpreter Subsystem invoked by NotePlayer to update
the state of a channel. Each interpreter invocation has to

end up producing a note information or a rest, eventually
forcing interpreter to enter wait state on that channel. The
result is obtained by executing compiled Komeda language
statements.

NoteGenerator An optional subsystem written in C lan-
guage that either was assigned to a channel by a programer
or temporarily suppressed Komeda interpreter and inter-
cepted its execution. It employs certain algorithm to de-
liver notes or rests upon channel update action.

5. FUTURE WORK

5.1 Features currently in development

At the time of writing Komeda is under active develop-
ment. That means some of its interesting features undergo
implementation process and are being evaluated with re-
gards to language and virtual machine design. Our long
term focus is the support for embedded platforms, such
as Arduino [12], 8-bit and 16-bit microcontrollers (PIC,
DSPIC, AVR, etc.) with built-in or attached digital-to-
analog converters.

One of currently identified design issues is platform spe-
cific instruments support. For many embedded devices, es-
pecially those without D/A converter, implementation of
DDS-based instruments is either cumbersome or utterly
impractical (overhead of using PWM for DDS is too high).
On the other hand, those devices are likely to have some
native support for generation of simple waves, e.g. PWM-
based square wave generator. Other conceivable platform
specific instruments are external devices controlled via MIDI
interface or mechanical devices that control real instru-
ments. Whole range of possibilities is available here –
from simple sine wave generator, through MIDI synthe-
sizers, to another embedded device controlling servo arm
playing xylophone.

Extending Komeda with flexible DDS instruments is not
trivial and requires careful review of module system. Di-
rect digital synthesis can consume virtually all computing
resources and may affect note scheduling, which we want
to avoid at all cost.

Interface delivered by modules should be flexible enough
to extended the system beyond proposed purposes. Two
more types of pluggable modules, other than instruments,
are envisioned: sensors and generators.

• Sensors purpose is to measure physical quantities
such as light intensity, magnetic field direction, tem-
perature, etc.; and interpret them in a context of mu-
sic. The values coming from sensors could be used
to play a note, set new tempo rate or voice volume
— i.e. control virtually any other music parameter
available. Example mapping could translate room
temperature into music tempo (i.e. hotter or cooler
into faster or slower respectively) or light intensity
into base pitch of notes being played (i.e. lighter or
darker into higher or lower respectively).

• Generators are additional mechanism for employing
generative music techniques. Their role is to de-
liver a number of values upon request – a user has
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freedom to use these values as she wishes. Alterna-
tively the channel could be forced to execute code
generated by the module until the generator returns
control. At the moment of writing music generation
can only be achieved by external code modifying
Komeda pattern binary representation. While this
method is the most powerful one, almost certainly is
the most difficult to use properly.

5.2 Planned features

Arguably the most needed feature of Komeda is language
supported rich sound synthesis – instead of just simple
DDS instruments implemented as external modules. There
are a few issues worth mentioning:

• There is a need to extend the language to easily sup-
ply required synthesis arguments in a concise way.

• In chosen model the notes are the only acoustic events.
They are mutually independent, save slurs, and take
parameters only at initialization time. Though suit-
able for representing musical score this approach is
somewhat limited. Especially when it comes to rep-
resenting sounds with continuously changing spec-
tra or indefinite pitch, etc.

• Last but not least, if Komeda was to support syn-
thesis techniques, it would be necessary to extend
the language with instrument specification. There
are two possibilities to incorporate this into the main
language. First option is to extend voice definitions
with a new language for instrument specification.
Such language could be modelled after CSound or-
chestra [13] or Nyquist .alg [14] files. Second op-
tion is to extend Komeda language with extra con-
structs expressing additional sonic events inside pat-
terns. The later approach would greatly increase the
expressive power of the language, but could lead to
performance loss and increased complexity of the
system.

Another important deficiency of Komeda is absence of
continuous parameter control. That makes it impossible to
express portamento and similar effect. Create ritardando
or accelerando and crescendo or decrescendo is very prob-
lematic, as it needs assignment of different tempo or vol-
ume to each consecutive note. We find three possibilities
to solve that – to allow only linear function, piecewise lin-
ear (i.e. envelopes) or arbitrary functions implemented as
arrays.

For implementation of some non essential features we
could add source code macros. Examples are: symbolic
description of tempo or volume levels, flats, mordents and
other ornaments. In addition, given enough expressive power,
the macros could be used to create tools for generating or
transforming score according to some compositional sys-
tem. We are considering both text-substitution and compile
time macros.

To increase expressive power we could introduce micro-
tones and tunings other than equal temperament. The later
is easier, as we represent pitch by discrete number.

6. CONCLUSIONS

Komeda is a complex system and describing its intricacies
goes way beyond the scope of this paper. Instead we de-
cided to present its philosophy and design decisions. We
also chose to list ideas encountered during development
stages. We hope that people creating similar platforms will
find these information useful.

As for the future of Komeda, we hope to release a first
public version in the next few months. As more and more
planned features are being incorporated, the platform calls
for a full evaluation in the form of an installation or a novel
instrument. We are going to choose several artists for co-
operation. Moreover, we would like to reiterate some con-
cepts from the Komeda, to provide an even more flexible
and easy to use platform.
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Abstract— In this article, a framework is proposed for 
designing 3D-based audio-only games in which all navigation is 
based on perceiving the 3D-audio, as opposed to relying on other 
navigational aids or imagining the audio as being spatial, where 
additional sounds may be added later on in the development 
process. To test the framework, a game named Sound Hunter was 
developed in an iterative process together with both sighted and 
visually impaired participants. The results indicate that the 
suggested framework might be a successful guidance tool when 
wanting to develop faster perception-based 3D-audio games, and 
the learning curve for the navigation was approximately 15 
minutes, after which the participants navigated with high 
precision. Furthermore, with only small alterations to game 
menus and the iPhone’s accelerometer function, both older and 
younger visually impaired people can navigate through 3D-audio 
environments by using simple hand movements. Finally, the 
results indicate that Sound Hunter may be used to train people’s 
spatial hearing in an entertaining way with full experimental 
control. Two main factors seem to affect the learning curve for 
adapting to a foreign HRTF during virtual interactive gaming 
experiences; the adaptation to the navigational controls, and the 
experience of front/back confusion, where control adaptation is 
promoted by having a strong default setting with customizable 
sensitivity, and the experience of front/back confusion can be 
greatly reduced by introducing complex distance-dependent 
meta-level communication in synthesized sounds. 

Keywords— Audio games, HRTF-synthesis, 3D-audio, game 
development, visually impaired, blind, HCI. 

I. INTRODUCTION 
Between 1996 and 2006, around 400 audio games had been 
developed, which is a very small number compared to visual 
computer games. The development teams were also small, usually 
consisting of one to four persons [1]. However the development 
has been more substantial over previous years, and the role of 
researchers, game developers, as well as sound designers has 
become more important in order to find more pleasant audio 
rendering techniques, as well as new exciting methods and 
technologies to use in audio games [14, 1]. There has been a rapid 
development of audio chips and 3D sound engines for computer 
games, and today, users as well as developers pay more attention 
to the audio content in computer games [7]. Sound is an 
expressive narrative medium, and sonic landscapes, or 
”soundscapes”, may very well be as immersive and engaging as 
powerful 3D-based graphical environments [7].  

Still, even though audio games are developed more 
sophistically these days, there is nonetheless very restricted 
access to an important part of the youth culture for people being 
visually impaired, and it could be argued that including this user 
group is of great importance, as it will aid their participation in 
society [1]. Accessibility to software applications is another area 
in which the visually impaired have more difficulties than sighted 
users. However, recent developments of various frameworks 
intended to make software applications more accessible has 
greatly aided the visually impaired, examples of which are 
Microsoft Active Accessibility, VoiceOver for the iPhone, as well 
as similar frameworks for Mac and Linux desktop environments 
[1]. By focusing more attention to game audio, new possibilities 
of designing games for people with visual impairments have 
emerged. However, this also requires that the games be developed 
with regard to their abilities and needs [7]. Games may also be 
used as a means to train the various senses and abilities in a 
person. For example, handicapped children may benefit largely 
both from using music [8] and computer games in order to aid 
their psychomotor and cognitive development [15, 1].  

Despite the growing focus on audio in computer games, the 
audio content of mainstream computer games is still largely 
underdeveloped in comparison to the visual content [7]. This also 
applies to games being completely based on audio, which are 
extremely rare compared to audio-visual games. Almost all 
audio-only games on the market today are made for PC 
computers, where some of the popular titles are SuperDeekout [5] 
and Terraformers [18]. Still, as the number of blind iPhone users 
today is over 100 thousand and rapidly growing [23], it therefore 
seems as if there is a significant and highly unfulfilled market 
potential for audio-only games intended for smartphone users. 
Furthermore, as most of the popular audio-only games are created 
in the first-person perspective, it also seems important to examine 
whether or not it would actually be possible to navigate in a game 
environment solely by using 3D-audio. This could possibly help 
in creating more exciting audio games, where the player no 
longer needs to rely on their own imagination of spatial audio, but 
instead is able to actually perceive the audio as being spatial.  

In this article, a framework is presented on how to design 
navigational 3D-audio games, in which all navigation is based on 
perceiving the 3D-audio, as opposed to using sonification, 
auditory icons, earcons or other navigational aids [7, 3, 21], all of 
which may be added later on in the development process. In this 
proposed rethink of the design process of 3D-audio games, the 
focus is shifted from creating complex auditory environments in 
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which 3D-audio is used as a complementary spatial effect, to 
creating a functional 3D-audio navigation being complemented 
by carefully enriching the auditory environment. By following 
this design principle, games may be made to respond more 
rapidly and accurately to the player’s navigational input, as well 
as give the player a sense of full control and feeling of immediate 
response from the auditory environment, which could help bridge 
the gap between the hasty action-filled visual games and the 
slower tempo audio games we have today. In order to test the 
framework, a game named Sound Hunter was developed, in 
which all navigation is based on perceiving sounds through 
synthesized head-related transfer function (HRTF) filtering. The 
filter used in Sound Hunter is the Pure Data external [earplug~], 
created by Pei Xiang, David Camargo, and Miller Puckette [24], 
featuring 368 (or 722 if mirrored to each ear) impulse responses, 
covering a spherical surface with an elevation of -40 to 90 
degrees and an azimuth of 0 to 360 degrees, all of which are 
interpolated using linear interpolation. The generalized HRTF’s 
are gathered from KEMAR (dummy head) data sets [10], and the 
amount of impulse responses used in [earplug~] was considered 
more than acceptable, seeing as both listening tests and error 
analyses have shown that 128 impulse responses give satisfactory 
localization abilities in the azimuth plane [22]. The distance 
simulation was programmed separately in Pure Data, with the 
logarithmic loudness function L=log (1/r), where r is the 
maximum distance of 8m. Sound Hunter currently features 20 
different levels (audio loops and synthesized sounds) varying in 
difficulty, where the player’s objective is to capture each sound as 
quickly as possible, by using the iPhone to control player 
movement. As suggested in the framework, the game was 
developed in an iterative process, together with both older and 
younger visually impaired people.  

II. BACKGROUND 
Audio-based games are similar to video-based games, with the 
exception that they are played and perceived through sound and 
acoustics only [21]. Audio games have many advantages making 
them interesting for gameplay experimentation. For example, 
they allow an increased degree of spatial freedom, as no screens 
are necessary. Furthermore, the computational complexity is 
usually lower, meaning that less hardware is necessary, making 
them suitable for portable devices and mobile gaming [21]. 
Another common favourable argument is that they may lead to an 
increased level of immersion due to the lacking graphical 
representation, where the player has to rely more on their own 
imagination, similar to when reading books [21]. Apart from the 
earlier mentioned positive effects on physical and cognitive 
development, audio games can also be used to train a person’s 
hearing and teach the player how to focus more on what they hear 
[9].  

When building an audio-only game, it is important not only to 
use self-explanatory sounds, but also to establish agreements 
early on in the game to convey information correctly to the player 
[7]. These agreements should build upon metaphors and 
associative patterns to make it easier for the player to get a sense 
of what information is important in the game (e.g. the difficulty 
of the challenge ahead, the current success rate, or scores awarded 
when completing a game task). It is also important to emphasize 
the difference between various types of auditory information. For 
graphics, variations in colours, borders, buttons and other types of 

design principles are used to label and categorize different types 
of information. For auditory information, different models have 
been proposed, where one example is the SITREC categorization 
system suggested for audio game interfaces [7].  

It is also important to distinguish auditory information 
generated by player activity from the information generated by 
other sources in the game. This player feedback informs the 
player whether or not the action was registered by the system [7], 
and has led to the development of three well-established design 
methods for auditory interfaces. Auditory icons are recognizable 
sounds, such as voices or confirmatory sounds [11, 12], and 
earcons are short musical phrases [3], both of which are 
associated with various types of information to inform the player 
of their actions [7]. The third design method, sonification, can be 
seen as sub-part of the auditory icon, and is the process of 
mapping abstract data to non-speech sound [21].  

It is also possible for game sounds to have several layers of 
information, often when wanting to enhance the complexity or 
function of the sound. This additional information may be 
communicated on a meta-level [7]. In Sound Hunter, distance-
dependent meta-level communication was conveyed by altering 
the cut-off frequency in square waves (to create complex motor-
like sounds for easier levels), and by altering the frequency in 
sine waves (to create distance-dependent audibility for more 
difficult levels).  

When considering the sound characteristics, it is also 
important that each sound is intelligible and distinguishable. 
Often, the sounds are accompanied by a musical context. The 
latter of which seldom is emphasized, but rather added as a 
backdrop in order to create a scene and set the mood [7, 14]. 
Another aspect of sound characteristics is that of looping sounds, 
which may reduce the level of realism in the sound, but is often 
still desirable in audio games, as it gives the player an overview 
of the game space [7]. 

In many action-based audio games, the success of the player 
depends on interaction based on precise timing [1]. Examples of 
audio-only action games including 3D-audio are most commonly 
found in the first-person shooter genre, for example Shades of 
Doom [13], Terraformers [18], and Demor [4], all of which are 
made for the PC. Another popular audio game category is that of 
adventure games, or exploration games, where three key features 
are combined: an interesting scenario, the exploration of new 
worlds, as well as activities of riddle solving [1]. Examples of 
audio-only exploration games including 3D-audio are Blindside 
[6], and Escape The House: A 3D Sound Experience [19], both of 
which are available for iOS users.  

Röber and Masuch [21] attempted to prototype various game 
ideas for audio-based gaming by using individualized HRTF’s, 
head-tracking, and a joystick or keyboard for player movement. 
They created three action-based games (The Frogger Game 
Remake, Mozquitos, and MatrixShot) and one exploration game 
(The hidden Secret). Röber and Masuch pointed out several future 
improvements, such as extending their framework with more 
advanced sonification and interaction techniques, as well as 
developing a truly mobile solution, allowing the player not to be 
bound by webcams, head-tracking devices and other stationary 
equipment. These issues are also present in the more mainstream 
audio game Demor [4, 21].  

In his Master’s degree project, Graeme [14] developed a 3D-
based audio-only game called Blind Fear, featuring advanced 
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auditory environments. However, similar to the previous studies 
mentioned here, Graeme found that the more effort he put into 
creating auditory environments being as advanced and rich as 
possible, the more difficult it became to actually manage to 
navigate in the auditory world. During various parts of the 
development process, Graeme managed to play through the entire 
game from beginning to end using only audio, but only after 
simplifying it by sacrificing additional sounds, thus 
compromising the aesthetical effort [14]. This example not only 
shows the difficulties that may arise when trying to balance 
functionality and aesthetics in an audio game, but also the need of 
including the intended users as early on as possible in the game’s 
development process to minimize compromises between usability 
and aesthetics.  

One of the more promising games is Blindside [6], requiring 
only a smartphone and headphones, where only a few sounds are 
focused on at a time, making the 3D-audio easier to perceive. 
However, there are still problems with this game. For example, it 
is quite static and slow, just as many other audio games (e.g. 
press forward button to move in the game at a pre-determined 
speed). Blindside also relies on the iPhone’s gyroscope (where 
the player needs to stand up and spin around), which on the one 
hand gives more spatial freedom, but on the other hand makes it 
difficult to play when sitting up or lying down.  

For the more mainstream 3D-audio-only games not relying on 
stationary equipment (e.g. Shades of Doom [13], Terraformers 
[18], or Escape The House: A 3D Sound Experience [19]), the 
actual 3D-effects are very difficult to perceive. The games give 
the impression to have been developed as if they were intended 
for stereo usage, with some additional binaural sound introduced 
to the mix. As there are many tools and programming libraries 
available for creating 3D-audio environments, such as FMOD’s 
head related transfer function [14], and it can be expected that 
developers and sound designers decide to enhance stereo 
environments with various binaural sounds, rather than relying on 
only stereo.  

III. PROPOSED FRAMEWORK: RETHINKING THE DESIGN OF 3D-
AUDIO GAMES 

All of the above mentioned audio-only games based on 3D-audio 
claim to present the player with exciting 3-dimensional sound-
environments, either through surround sound systems, or by 3D-
audio through headphones. However, the focus is usually not on 
the player’s ability to perceive the 3D-audio in order to use this 
cue as the main tool for navigation, but rather on enhancing the 
perceived quality of the stereo environment in order to make it 
richer and more life-like. For the games focusing more on the 
navigational purposes of the 3D-audio, the problem instead seems 
to be their reliance on head-tracking devices or other stationary 
equipment [4, 21], making them highly inappropriate for relaxed 
gaming (e.g. lying down as opposed to walking around), or 
mobile gaming with only a smartphone and earphones. 

In order to truly make use of 3D-audio for the purpose of 
navigation, however, it becomes very important not only to create 
the 3D-audio environments themselves, but to also understand 
our natural abilities and limitations when it comes to perceiving 
spatial sounds as human beings. For example, when filtering a 
sound using an HRTF filter in order to place the sound in a 
certain position in a 3D space (e.g. in front of the listener and 
slightly to the right), the sound will not automatically be 

perceived as being in front and slightly to the right of the listener 
without involving movement, either by moving the player’s 
(head) position, or the sound source’s position, creating dynamic 
localization cues. The effect has been named the cone of 
confusion, and arises when sounds in different positions in a 
vertical circle around either side of the listener’s head have equal 
inter-aural time differences (ITD’s), and the confusion is 
eliminated when moving the head (i.e. causing the sound’s 
relative position to the listener to change, thus altering the ITD’s) 
[17].  

Furthermore, additional stereo sounds being used in audio 
games may disturb the player’s ability to perceive the HRTF 
filtering. This is because our ability to perceive a sound as being 
spatial depends on the above mentioned ITD’s, as well as 
interaural intensity differences (IID’s), and further qualities of the 
sound, such as spectral differences, or room qualities simulated 
by reverberation, all of which may be masked, interfered, or in 
other ways become inaudible in either ear, causing severe 
inability to localize the sound object [14, 16]. As many audio-
only games using 3D-audio can have over 30 different tracks 
playing simultaneously [13, 14], where some are in stereo (e.g. 
game music, instructions, auditory icons or earcons, usually at a 
relatively high volume), and some may be HRTF filtered, it is 
therefore not surprising that the 3D-effect becomes difficult to 
perceive.  

There is usually a trade-off whether to use more sounds to 
enrich the auditory environment, or to use fewer sounds to aid 
navigation [7, 14]. Most common, however, is to add more 
sounds, such as auditory icons and earcons, in order to aid 
navigation through the already over-complex auditory 
environments [21, 7]. The framework for Sound Hunter was 
therefore developed in a way ensuring that perception-based 3D-
audio navigation was the most important aspect of the game, with 
further sounds being added only later on in the development 
process (see Figure 1).  

 

 
Figure 1: Proposed framework for developing navigational audio-only games 

based on 3D-audio. 

Finally, there exist, to the best of the author’s knowledge, no 
examples of audio games where it is clearly stated that the game 

247

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



was developed in an iterative process together with visually 
impaired people (or other intended user groups for that matter). 
As modern technology-oriented development processes based on 
Human Computer Interaction (HCI) strongly suggest that the 
intended users should be part of even the earliest Lo-Fi prototypes 
(e.g. paper prototypes, workshops) [20], the including of the users 
is therefore suggested as one of the key aspects of importance in 
developing a highly functional and entertaining audio game, 
being effective, efficient, and also satisfying its intended user 
group.  

The framework proposed to ensure a more successful design 
of 3D-audio games can be viewed in Figure 1. Especially 
important are the recurring evaluations of in-game navigation, 
used to update the sound design aspects. These iterations should 
be made with the target user group. 

IV.  METHOD 
Sound Hunter’s game development process consisted of four 
parts involving 10 participants: 1) a pre-study in which other 3D-
audio games were evaluated in order to create a framework for 
developing navigational 3D-based audio games and come up with 
the initial game idea, 2) three focus group sessions with two 
visually impaired participants, 3) usability testing with eight 
(new) participants: four visually impaired, and four sighted 
participants, and lastly 4) a final evaluation of the game with a 
participant from the usability tests; a visually impaired 
commercial audio-only game developer, also highly 
knowledgeable in the field of HRTF synthesis. Due to the great 
difficulties in acquiring visually impaired participants for the 
development of an audio game, the evaluation methods were 
mainly qualitative. However, some quantitative data-collection 
was also acquired during the usability tests to determine the game 
level order by difficulty, as well as to find trends in how the 
players gaming abilities improved over time. The initial game 
idea for Sound Hunter is presented first, followed by the 
adjustments having been made to the game throughout the 
development process. 

V. SOUND HUNTER: THE ORIGINAL GAME IDEA 
The original game idea for Sound Hunter was relatively simple. 
The intention was to create a single-player arcade-based game in 
which a sound is placed at the maximum distance (8m) and 
random location in a 3D-space, utilizing the azimuth angle. The 
player’s objective is to capture the sound as quickly as possible 
by using 3D-audio as the only navigational aid. All player 
movement is controlled by the iPhone’s accelerometer data, 
where leaning the iPhone forward or backwards (the 
accelerometer’s y-data) leads to the player moving forward or 
backwards in the game, and leaning the iPhone left or right (the 
accelerometer’s x-data) corresponds to the player’s head turning 
either to the left or to the right. Once the sound is reached, a 
confirmatory auditory icon is heard, and the next level begins, 
where the levels become progressively more difficult. The game 
is programmed in Pure Data.1 
 

                                                             
1 Pure data, http://pure-data.info. A planned development is to use 

libPd to have the application running on a mobile device. 

VI. FOCUS GROUP SESSIONS 1–3 
The participants were the same for all three focus group sessions.  

 

Participant Sex Blindness Age Smartphone  
P1 M Born blind 31 Yes, iPhone 
P2 M Legally blind 57 No, Nokia 
     
HRTF/binaural sound experience: P1, P2 
Notable HRTF/binaural sound knowledge: None 

 
P1 had played the occasional audio-based game, but never in 

depth. He also worked as a usability expert for utilities intended 
for blind people. P2 had played simple arcade-based games in his 
youth, but had no experience with audio-only games.  

A. Focus group session 1 
The first session began by presenting HRTF technology and its 
capabilities. In order not to bias the participants, an open 
discussion was held related to the types of games that might be 
created by using synthesized HRTF filtering, after which the 
initial game idea for Sound Hunter was presented and discussed. 
This allowed the gathering of general data and data being specific 
to the initial game idea.   

 

Results: After some open discussion, both participants 
suggested that basically anything using this technology that is 
fun, entertaining and functioning has the potential of becoming a 
great success. P2 also pointed out that more simple games could 
be fun, such as the old-school arcade games he had played in his 
youth, in which the player reaches higher levels under various 
constraints (e.g. time, enemies). When presenting the game idea 
for Sound Hunter, both participants regarded the navigational 
aspect of being able to locate and control sounds in a 3D-based 
sound-environment as exciting (e.g. being able to hear sounds 
approach or appear behind the player) – “We are a bit like virgins 
in this sense. Everybody else has played all of these cool games, 
but we don’t have this experience, so I think most games using 
this technology could be fun” (P2). An important conclusion from 
this focus group session was that all non in-game sounds (e.g. 
instructions, highscore) can be displayed as text on the iPhone 
instead of being pre-recorded, as this allows the user to control 
the language and VoiceOver reading speed as they prefer. 
Furthermore, we concluded that 20 game levels would be enough 
for further tests, which could be altered in difficulty by: 

 

• Varying the level of realism in the sound (realism as in its 
connection to a real-life scenario e.g. crying baby vs. 
growling tiger),  

• Inserting different amounts of temporal silence in the sound,  
• Varying the complexity in the sound (e.g. dynamic drum-set 

vs. sine wave),  
• Varying frequency (e.g. different ranges or by approaching 

our perceptual limitations), and 
• Using additional cues related to distance changes being 

communicated on a meta-level (e.g. varying the level of 
activity or frequency in a sound object depending on its 
distance).  

B. Focus group session 2 
The intention with the second focus group session was to let the 
users test the navigation to see if it was intuitive, and to get an 
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understanding of the learning curve for blind users using the 
iPhone’s accelerometer to manipulate sounds in a 3D space. 

 

Results: First, the participants’ passive azimuth localization 
abilities were tested to see if they experienced front/back-
confusion. For simultaneous listening two pairs of in-ear 
earphones were used (Pioneer-CL711-G, frequency range 8Hz-
22kHz). The sound was positioned and moved forward, 
backwards and around the listener using a graphical interface. 
The participants were told to point in the direction of the sound 
source when being asked of its location. This was done ten times 
unless an error was made. Both participants pointed in the correct 
direction all ten times, and expressed that they had a clear 
perception of the position at all times. Following this, the iPhone 
navigation was explained and practiced for about one minute. The 
sound was then repositioned at the maximum distance and 
random azimuth location, and the participants were asked to 
capture the sound as quickly as possible. The sound could only be 
captured within a range of 2% of the total radius, or 0.32m of 
16m in width (i.e. the sound had to be almost exactly straight in 
front or behind the listener in order to be captured in a straight 
run). After some open discussion, the following conclusions were 
made: 

 

Improvement Reason 
1. The iPhone should be held 
horizontally, using two hands – 
“It takes a while to get used to, 
but it is the most logical way of 
working with it” (P1). 

1. Promotes easier hand 
movement, and the 
VoiceOver function alerts 
the user of the holding 
position already in the game 
menu, making it a more 
intuitive game control. 

2. There should be a training 
option in the menu. – “It takes a 
while so if you practice first 
you’ll get a confidence boost” 
(P2) 

2. Allows the user to train 
their navigation during an 
unlimited period of time 
with a complex and easily 
heard sound. 

3. The sensitivity should be 
increased, and the sound’s 
movement should accelerate 
when leaning the iPhone more. 

3. Promotes easier captures 
at close distances. – “When 
it’s close you want to be 
able to get it fast and not 
wait for it to spin” (P2) 

4. The game levels should vary 
in time, with longer times at the 
first levels and shorter times as 
the game progresses. 

4. To promote a sense of 
confidence in the player. – 
“You want to complete at 
least some of the first levels 
to get started” (P2) 

5. The sound should decrease 
more in intensity at further 
distances. 

5. To give a greater illusion 
of externalization 

6. Apart from the notification 
sound alerting the player that 
the sound has been captured, 
further auditory icons should be 
included. 

6. Countdown to the next 
level, new highscore, new 
time record, game over, and 
dynamic sonification 
representing the score 
amounts for each level. 

 

During the navigation, hand and head movements were observed 
and task completion time was registered. P2’s hand movements 
were calm and sequential, while P1’s were more rolling, as if 
using a joystick. P2 captured the sound within 73 seconds, while 

P1 needed more than 120 seconds. Both P1 and P2 held their 
heads still. 

C. Focus group session 3 
During the third focus group session, the participants tested the 
re-programmed navigation, as well as the current version of the 
game, featuring 20 levels varying in difficulty and time. 

 

Procedure and results: When re-testing the navigation, the 
participants felt that the controls were more intuitive. However, 
they still had difficulties capturing the sound. The score radius 
was therefore broadened from 2% to 5%, which led to drastic 
improvements. When playing the game for the first time, they 
both came to the fifth level. However, as the placement of the 
levels was based on initial subjective impression of their 
independent difficulties, as well as the fact that both P1 and P2 
expressed that the level difficulties varied a lot, they were 
allowed to play some of the later levels in the game (note that 
these levels had shorter times). When beginning at level 11, they 
both managed to reach level 13. Interestingly, they both 
accomplished the same amount of levels in both tests, and the 
atmosphere was clearly competitive. The main conclusions from 
this focus group were the following: 

 

Improvement Reason 
1. Further usability 
tests were necessary to 
determine the correct 
level order. 

1. Mixed level difficulty – “I’m not 
sure exactly why, but some of the 
levels were much more difficult” (P1). 

2. The score radius 
should remain at 5%. 

2. – “I think 5% is the perfect normal 
difficulty level” (P1) 

3. The time decrease 
should be mentioned 
in the instructions. 

3. Increases excitement and 
immersion – “When I knew this it 
became much more fun playing” (P2). 

VII. USABILITY TESTS 
The usability tests were conducted to determine the correct game 
level order, but also to see how well the participants perceived the 
HRTF filtering and how they used it interactively. Further reasons 
were to find out which levels were the most difficult and why they 
were considered difficult, to see if the participants improved in the 
game over time, to make observations of the participants 
movements and interactions, as well as to get qualitative feedback 
on the game in general. 

 

Participant Sex Blindness Age Smartphone  
P1 F Sighted 24 Yes, iPhone 
P2 M Legally blind 52 Yes, iPhone 
P3 F Born blind 50 Yes, iPhone 
P4 M Sighted 16 Yes, other 
P5 M Sighted 15 Yes, iPhone 
P6 M Born blind 23 No 
P7 M Sighted 24 Yes, iPhone 
P8 F Born blind 18 Yes, iPhone 
     
HRTF/binaural sound experience: P1, P2, P3, P4, P5, P6, P7 
Notable HRTF/binaural sound knowledge: P6, P7 

 

Procedure: After explaining how the game worked, the 
participants’ passive HRTF perception was tested similarly as in 
focus group 2. The participants then got familiarized with the 
navigation, and were allowed to practice as long as they wanted. 
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When they captured the sound, it was replaced to let them capture 
it again until they felt comfortable enough to start playing the 
game. Each participant played through the entire game including 
all 20 levels five times each. Simultaneous listening was 
conducted throughout the test, and the time restrictions had been 
removed, thus allowing the participants to play each level as long 
as they needed in order to complete it. The quantitative data 
analysis consisted of analysing the amount of tips that had to be 
given for each level to be completed, as well as the level times 
retrieved through automatic data-collection, to determine level 
difficulty, and to see how the participants improved between 
gaming sessions. The qualitative data analysis consisted of 
observations and a semi-structured post-game interview, in order 
to obtain additional information regarding game improvements.  

 

Tips: The tips were categorized into amount, participant, level 
and session. A tip was given if the participant communicated 
uncertainty connected to something previously explained (e.g. 
how the navigation worked), or if 90 seconds had passed without 
level completion. The given tip was always connected to the 
navigation (e.g. “Try leaning forward”), regardless of what 
caused the uncertainty, such as a certain level being more 
difficult, front/back-confusion, or if the participant could not hear 
the sound object (being the case for levels 19 and 20, where the 
frequency only becomes audible at closer distances). Almost all 
the tips were given in the first gaming session, indicating that it 
took about one session for the participants to properly understand 
the controls. The exceptions were the final two levels, where the 
frequencies were more difficult to perceive for the two older 
participants (P2 and P3), and the tips were therefore spread out 
between sessions. P2 had a documented hearing impairment on 
the right ear, and could barely hear level 19 and 20. The 
completion times were therefore set to 100s for P2 on these two 
levels for the quantitative data analysis. Furthermore, P8 had 
severe difficulties concentrating, and could therefore not finish 
the test. The results were also too biased by tips and uncompleted 
levels, and P8 was therefore excluded from the quantitative data 
analysis. Apart from this, no adjustments had to be made, and the 
quantitative data analysis was performed with seven participants. 
 

 
Figure 2: The comparable difficulty difference between each level. 

 

Level difficulty: The new level order was determined by 
comparing the level completion times using a Oneway Repeated 
Measures Anova in SPSS. The within-level difference in level 
completion time was significant F(5.322, 180.958)=14.31, 
p<0.01, and 29.6 per cent of the total variance could be explained 
by completion time (using the Greenhouse-Geisser correction, 
sphericity assumed). As expected, the levels’ difficulties did not 
match the order in which they had been placed (see Figure 2). 
 

As seen in Figure 2, the easiest and most stable levels, were 
levels 11 to 13, which were the synthesized levels communicating 
complex distance-dependent meta-level information (level of 
activity in a motor-like sound depending on distance), and the 
most difficult levels (despite the broad confidence intervals 
caused by audibility differences between age groups) were levels 
19 and 20, which communicated inaudible to audible frequency 
changes in sine waves, also depending on distance (20kHz to 
5kHz for level 19, and 20Hz to 150Hz for level 20). It should also 
be mentioned that ITD’s could not be utilized in level 19 due to 
the high frequency content, and IID’s could not be utilized in 
level 20 due to the low frequency content, which was part of the 
experiment to indicate which of these static localization cues are 
the most important in virtual interactive gaming experiences. 

 

 
Figure 3: Practice effect between sessions. 
 

Practice effect: The level times were also used to analyse the 
practice effect between gaming sessions, performed similarly as 
level difficulty, using a Oneway Repeated Measures Anova in 
SPSS. The within-subjects effects were significant F(2.441, 
339.331)=11.572, p<0.01, and 10.6 per cent of the total variance 
in game completion time could be explained by the different 
gaming sessions (using the Greenhouse-Geisser correction, 
sphericity assumed). The differences between gaming session one 
and two t(139)=3.90, p<0.01, one and three t(139)=4.46, p<0.01, 
one and four t(139)=3.62, p<0.01, and one and five t(139)=4.41, 
p<0.01 were significant. All other differences and pairwise 
comparisons between gaming sessions were non-significant (see 
Figure 3).  
 

Observations: To get an understanding of how the 
participants behaved when playing the game, special attention 
was paid to their hand and head movements, passive and 
interactive front/back-confusion, as well as their overall 
improvement and immersion in the game (see Figure 4). Two 
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participants (P5 and P8) experienced front/back-confusion in the 
passive HRTF perception test, where P5 adapted immediately 
while playing, and P8 only adapted while playing levels 11 to 13 
(including additional dynamic meta-level localization cues). All 
the participants used the navigation to eliminate front/back-
confusion while playing the game (i.e. by spinning the sound, 
simulating the dynamic localization cue of head movement). The 
participants held their heads still, but their hand movements 
differed, where some used rolling movements, and some used 
calm and sequential hand movements. As indicated by the 
quantitative data analysis, it seemed to take about one gaming 
session (≈15 min including practice time) to fully understand the 
navigation. Five participants expressed signs of immersion (e.g. 
laughter, expressions of disgust for insect levels, or through 
threatening statements directed to the hunted sound object). 

 

 
Figure 4: Participant playing Sound Hunter in their natural home environment. 
 

Post-game interview: The post-game interview consisted of a 
semi-structured questionnaire with 51 questions, either being 
nominal, open, or measured on a 7-point Likert scale. The results 
confirmed most of the observations and quantitative results. The 
controls were seen as easily understood, and none of the 
participants considered front/back-confusion a problem, as long 
as it could be corrected by navigating. Sounds were perceived as 
more externalized than lateralized, and the overall sound quality 
and 3D rendering was seen as extremely good. All the 
participants, even the blind, stated that they improved in the game 
as a result of focusing attention to their hearing more than usual, 
or even training their hearing, rather than remembering the game 
levels. Five participants were highly immersed in the game, 
whereas three participants were more in a state of deep 
concentration (or flow). They all felt happy while playing the 
game, and stressed as a form of adrenaline rush, except P8, who 
stated that she was currently being examined for ADHD, and 
therefore always felt stressed and also had great difficulties 
concentrating or sitting still. This was clearly noticeable also 
during the observations. Finally, the game in itself was highly 
appreciated, mainly due to the 3D-audio experience, and all the 
participants would recommend Sound Hunter to others: 

 

– “The best part was being able to play a game with motion as a 
visually impaired person, and I would recommend the game to 
others, even sighted people, as it shows how important our 
hearing is” (P2) 
 

– “It felt very interesting. I hardly ever play computer games and 
I thought it was very fun. I think it is good also to train one’s 

hearing, and I can imagine that you could use this for all kinds of 
other things. It would probably be a great game for kids with 
special needs” (P3) 
 

– “I thought the various sounds as well as the whole experience 
of the 3D sound in the game was cool and fun” (P7) 
 

– “I’ve never played anything like it, and I would recommend it 
to others because of this (P5) 
 

– “The best part was the 3D audio and your fantastic simulation! 
It was really easy to localize sounds. Other games do not provide 
this. I have never heard anything like what you have done here, 
and I have tested everything, and of everything I’ve heard, you 
have come the closest to providing real 3D audio” (P6) 

 

As the results from the focus group sessions and the usability 
tests showed that the participants could accurately use the 3D 
audio to navigate by using simple hand movements, the 
framework was considered applicable for similar developments. 

VIII. FINAL EVALUATION 
The final evaluation was conducted with P6 from the usability 
tests, a 23 year-old blind audio-only game developer, also highly 
knowledgeable in the field of HRTF synthesis (will be referred to 
as P6 also in this section to avoid confusion). After letting P6 test 
the finished game with the correct level order, a semi-structured 
interview was held covering the development process and its 
results, how Sound Hunter may be optimized, as well as what 
future developments might be made by following Sound Hunter’s 
framework.  

 

Optimizing Sound Hunter: P6 was first asked whether he 
thought there was a need for audio-only smartphone games – 
“Yes, absolutely, the amount of games and game developers for 
iOS increases all the time, so the interest is definitely there. I am 
completely convinced that you could capture the market there if 
you intend to develop a fully functioning iPhone game”. We also 
concluded that when optimizing the controls for blind users, it is 
better to include a strong default setting with customizable 
sensitivity, rather than offering full customizability – “You often 
want a default setting that you know works well and that is also 
generalizable for a large number of people. In my experience, 
sensitivity is the most important adjustment” (P6). Front/back-
confusion was greatly reduced in Sound Hunter through complex 
distance-dependent communication, and we discussed additional 
ways of accomplishing this, such as to introduce front/back sound 
bounces, or directional beeps. We also concluded that the 
frequency ranges towards 20Hz and 20kHz should be tighter – 
“To avoid the unfair difficulties between age groups, and because 
most normal headphones do not support these ranges” (P6). 
Furthermore, silence should be used with clear progression and 
never exceed 5s, which seems to be the border of confusion, 
where additional helping sounds (e.g. directional beeps) should 
never be necessary to guide through silence – “This would equal 
trying to solve a self-introduced problem” (P6). Finally, tiredness 
could be avoided by including more levels and a “Pause”/”Save” 
button, depending on the amount of levels. 

 

Future development: Regarding future development, the game 
could be split into several unlockable “Sound hunting missions”, 
each of which would correspond to ways of progressively making 
the game more difficult (e.g. silence, audibility, meta-level 
communication) – “This is a classic way of getting people to play 
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more” (P6). Also, more sounds could be introduced, as well as 
simple forms of artificial intelligence (e.g. threatening or shooting 
objects). However, the most important conclusion was that all 
future developments should be made with Sound Hunter’s 
underlying framework in mind, such that navigating is still 
possible. 

IX. CONCLUSIONS 
When playing an action-based game, whether it is graphical 

or auditory, the player wants to be transported into another world 
and perceive that world as if it were real. Arguably, an increased 
level of immersion due to increased imagination is not necessarily 
the reason behind the success of action-based graphical video 
games, and there is little reason why this should be the case for 
audio games. Creating a sense of auditory spatial presence can 
only be accomplished properly by connecting our real-world 
perceptions with the actions and responses in that of the game. 
Today, audio games based on 3D-audio are extremely rare, with 
only a handful being available for smartphone users. For these 
games, the main problems seem to be the inability to use 3D-
audio as the only means of navigation, reliance on stationary 
equipment or physical movement by the player, as well as 
insufficient usage of HCI methods in the development processes.  

In this article, a framework has been proposed for designing 
navigational perception-based 3D-audio games without relying on 
imagination or additional navigational aids, all of which may be 
added later on in the development process. To test the framework, 
the game Sound Hunter was developed in an iterative process 
together with both sighted and visually impaired participants. The 
results indicate that the suggested framework is a successful 
guidance tool when developing navigational 3D-audio games, and 
that the need for navigational 3D-audio smartphone games may 
be met by introducing proper design processes directed to the user 
group. The results also indicate that Sound Hunter may be used to 
train a person’s spatial hearing, where complex distance-
dependent meta-level communication in synthesized sounds 
greatly reduces front/back-confusion. Finally, all of the 
participants would recommend Sound Hunter to others, due to the 
fast and accurate interaction made possible by the way in which 
the 3D-audio was perceived and could be used to navigate.  
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ABSTRACT

This work describes the art-driven development of an en-
ergy harvesting system in sound installations. The used
energy source is a dirt-battery. It is built by digging a piece
of copper and a piece of zinc in a soil. Sound is gener-
ated when there is sufficient energy to trigger a bell. In
the described sound installation, such a system looks like
a flower and the bell represents its bloom. With its roots
(electrodes) dug into the soil, it generates electrical en-
ergy to make sound. It is shown that this concept works.
It is possible to make sound by dirt-energy. In a further
step, many of such devices which are called Power Flower
Bells (PFBs) should be spread in a meadow, communicat-
ing with low-power Radio Frequency (RF) technology, re-
alizing musical compositions.

1. INTRODUCTION

The project was initiated by the artist Winfried Ritsch. His
idea is to realize a cybernetic flower meadow, made up by
a field of robotic flowers as a kind of cybernetic organism.
These flowers should be powered by dirt-batteries and/or
other energy sources [1]. Because other sources are well
known and documented, the motivation of this project is to
run the PFB just with a dirt-battery. Additional sources, as
long as they have a matching (≤3 V) Direct Current (DC)
output, can be applied easily in order to fulfill the artistic
vision of obtaining a robotic device that behaves quite like
a natural flower because it needs water, light and space.
There is a direct link between the energy they can harvest
and the musical output they deliver. The musical perfor-
mance depends on the state of each flower.

Thinking further this approach, the artist expresses the
perception of the Power Flower Bells by visitors and gar-
deners as an independent life-form which is nourished by
the environment [1]. A dirt-battery needs to be watered,
otherwise its output gets a lot weaker and the PFB could
stop running its Real Time Clock and Calender, which is
the time basis for activities like clinking the bell. Also the
RF communication uses this time base to be synchronized.

Copyright: c©2013 Josef Schauer et al. . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

1.1 Problem Statement

Nowadays, there are some projects working with dirt-
batteries, like the Soil Lamp [2]. The Soil Lamp is based
on several cells of dirt-batteries connected in series to ob-
tain a higher output voltage. To run a PFB, just one cell
is needed which has a measurable output of about 0,8 V.
The multiplication of the surfaces of the electrodes in this
cell comes up to a parallel connection of many cells. For
the here presented project it is essential that the installation
of a flower meadow with many PFBs is an easy task. It is
much less work to install one cell than to install many cells,
especially because the zinc-halfs and the copper-halfs have
to be separated from each other in one cell to prevent elec-
tron flow through the soil. The use of just one cell requires
a circuit which is enable to convert the low voltage to a
higher value, because even low-power micro-controllers
need a minimum voltage of 1,8 V. To buffer energy for
energy-intensive tasks like ringing the bell or RF-activities,
an energy storage like a supercap is needed.

1.2 Scientific Interests

Because of the modular flexibility, the access to solutions
for realizing energy harvesting sound installations or sen-
sor/actor nodes increases by analyzing the technology. The
great advantage of energy harvesting systems which is no-
ticed by the industry is the fact that there are no costs for
changing batteries any longer. Obviously, most of artists
doing sound installations based on unwired devices would
appreciate this quality too.
The knowledge of how to apply energy available in the di-
rect environment of a system to build up a sound instal-
lation which is networked via RF can help to develop a
wide spread of useful systems which do not just serve as
sensors like as already applied in a lot of cases in indus-
try, but also as actors which of course can just act when
there is enough energy available. For a swarm or a clus-
ter of items, this also requires research on how they can
communicate. Another motivating fact is that by running
a copper-zinc galvanic element in a copper-polluted soil –
as you can find it for example on many traditional wine
yards – the zinc will be left in the soil and the copper will
be united with the copper-electrode, so the Power Flower
Bell represents a nice-sounding detoxification method for
copper-contaminated soils.
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2. OVERVIEW

A block diagram of the system is shown in figure 1. It
shows up the essential blocks of the PFB. The low output
voltage of the dirt-battery (about 0,8 V) has to be converted
to a higher level to enable the rest of the system to work
properly. This happens in the power handling block. The
increased voltage is loaded to a storage element, currently
a supercap with a capacity of 10 mF is in use.
A dirt-battery can be too weak to even rise the voltage in
the supercap to 1,8 V, which is the minimum voltage for
getting the micro-controller started. When the dirt-battery
is strong enough, the micro-controller starts, but immedi-
ately a sleep-instruction is given by the firmware.
When the voltage in the supercap reaches 3,5 V, the
VBAT OK pin of the bq25504 rises to high. Since this
pin is connected to an interrupt-pin of the micro-controller,
this one wakes up, acts if necessary and changes to sleep
mode again. It is essential that the micro-controller spends
as much time as possible in sleep mode to work efficiently.
The Real Time Clock and Calender (RTCC) implemented
on the micro-controller keeps running all the time and means
the time basis for all actions of the device.

Figure 1. Block diagram to summarize the Power Flower
Bell (PFB)

3. ENERGY GENERATION

Since the used hardware is able to handle various types of
electrical energy generators, some of them are described
in the Master Thesis [3], but this work is focused on the
dirt-battery as an energy source.

3.1 Redox Reaction

Oxidation is a chemical reaction in which a material elec-
trons are abstracted, reduction is a chemical reaction in
which a material electrons are added. Redox reaction is
the term for a chemical reaction in which electrons from
one material are transferred to another one. This results in
a change of the oxidation number of the materials involved
in the reaction. The transport of electrons is the most im-
portant effect in a redox reaction, but besides, there can oc-
cur a transfer of atoms and ions. The reducer is the electron
donor, and the oxidizer is the so-called electron acceptor.

By putting a piece of zinc in a solution with Cu2+ ions, a
spontaneous redox reaction in which metal copper is sed-

Figure 2. Galvanic cell [5]

imented on the piece of zinc, is obtained. The zinc in this
process is dispersed.

In figure 2, you can see a galvanic cell which works with
the same redox reaction of zinc and copper, but there is no
direct conductance between the zinc and the Cu2+ ions. In
one tank, the zinc electrode is in contact with the Zn2+ ions,
while in the other one, the copper is in contact with the
Cu2+ ions. That is why the reaction can just take place due
to electrons moved from one electrode to the other by con-
necting them externally. By separating the reduction and
oxidation half-reaction, electrons are forced to move ex-
ternally. The electrode on which the oxidation takes place
is called anode and the one on which the reduction is sit-
uated is named cathode. The oxidation of the zinc in the
one half-cell leads to an increasing concentration of the
Zn2+ solution and a decreasing mass of the zinc electrode.
In the other half-cell, the reduction of copper leads to a
decreasing concentration of the Cu2+ solution and a mass
growth of the copper electrode [4]. Materials like platinum
or graphite permit electron migration without mass losses.
To keep the reaction running, the solutions have to be kept
electrically neutral. The overload of Zn2+ has to be com-
pensated by positive ions that leave the half-cell, or nega-
tive ions have to be added. In the other half-cell, the reduc-
tion of Cu2+ ions in the solution means a deficit of positive
charges in the solution. This has to be compensated by
adding positive ions or removing negative ones.
For this reason, a diaphragm, which allows ions to move
from one half to the other but prohibits electrons to pass is
necessary. Such a diaphragm can be a porous disk or – in
the case of the dirt-battery – a pot made of clay.

3.2 Dirt-Battery

A dirt battery is nothing than a galvanic cell. The soil
acts as the electrolyte. A dirt-battery was first shown by
Alexander Bain in 1841 [6]. The output power of an earth-
battery is not constant, it depends on factors like the con-
nected load, the state of the electrodes, the state of the soil,
in which they are planted in, as the distance between the
electrodes. Earth-battery is another synonym for naming
the same thing as dirt-battery.
Some humidity in the soil is necessary, so a PFB living
indoors without being watered sometimes might not make
any sound.
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Figure 3. Dirt-battery photo: Christoph Staber

Figure 3 shows the used dirt-battery. It is built by a bucket
made of plastic and filled with flower-soil. The copper
electrode is a shield with a length of 70 cm and a width
of 20 cm. In the center of the bucket, a flower pot made
of clay is placed. This represents a diaphragm to isolate
the two electrodes electrically. In the center of the pot, the
zinc-electrode which exists in a solid block of zinc, is dug
into soil.

The power that can be exploited from such a source strongly
depends on the load connected to it. That for, the behavior
of the dirt-battery is investigated by connecting resistors
with different values between 1 Ω and 10 kΩ to it. The ob-
tained curve can be seen in figure 4. Obviously, there is a
specific resistor that permits the maximum output power.
A dirt battery delivers the maximum output power when
the connected load leads to an output voltage which is the
half of the open-circuit voltage. This operation point is
called Maximum Power Point. A theoretical explanation
for this is given in [3].

Figure 4. Sweep over resistance loads applied to the dirt-
battery

3.3 Power Management

The low output power of the dirt battery is converted to
3,6 V by a Texas Instruments bq25504 Ultra Low Power
Boost Converter with Battery Management for Energy Har-
vester Applications.
An important feature of the bq25504 is Maximum Power
Point Tracking. This technology is commonly used in sys-
tems supplied by photo voltaic. The relation V out oc

V out MPP
can

be set-up dimensioning two resistors. As mentioned in
subsection 3.2, for the dirt-battery, this value is 1

2 .
The chip permits control over the storage element. The
lower limit of the battery voltage, as the upper limit can
be programmed. Further, there is a pin that signals a bat-
tery ready status at a programmable voltage measured at
the supercap. This pin is connected to an interrupt pin of
the micro-controller.

3.4 Effects on the Environment

The dirt-battery is thought to be applied in a free-field sce-
nario. The intention is, in the best case, just to put a piece
of copper and a piece of zinc into the soil and start harvest-
ing electrical energy.
In a society in which the ecological footprint is becoming
a more and more important factor in making decisions for
people in their buying-behaviour, as in times of decreasing
availability of resources on one hand, but increasing de-
mand for resources on the other hand, the question has to
be asked how ecologically sense- or harmful a technology
is.
An article by Greenpeace [7] calls attention to this topic,
especially when copper is used. It is not broken down but
stays in the soil and does harm the biodiversity. For ex-
ample, the earthworm is banished by copper. In France,
1885 copper was becoming a common fungicide. Up to
now it has been known as an almost perfect substance for
this application. Especially ecological wine farmers in the
European Union are very dependent on the use of copper,
since they are not allowed to use other fungicides. Mainly
it is applied as copper-sulphate of which 3 kg/ha are al-
lowed to be applied every year in Austria. In the 1960 of
the last century, in some zones up to 60 kg/ha were applied
annually.
The dirt-battery would leave zinc in the earth, while cop-
per is brought from the soil to the copper electrode. That
means, a dirt-battery could accumulate copper from a copper-
polluted soil, lowering the copper-concentration in the con-
taminated soil.

4. NETWORK

An important feature is the low-power RF module, with
which the PFB is equipped. It is a Microchip
MRF89XAM8A 868 Hz Ultra-Low Power Sub-GHz
Transceiver Module that includes a transceiver controller,
peripherals and a Printed Circuit Board (PCB) antenna.
Being synchronized by a Real Time Clock and Calender
(RTCC) implemented on the micro-controller, the devices
can communicate with each other. The synchronization is
necessary, because RF communication is an energy-intense
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process and that for it should be inactive most of the time.
At certain time-slots, the PFBs are enabled to receive data
and exchange information. In order to be able to realize
compositions, a newly planted flower starts sending data
at defined time-slots. It starts with the lowest transmitting
power. After sending a request to its environment, it waits
for an answer of another PFB. If there is an answer, an
ID of the other device, as the transmitting power necessary
for contacting it are stored. Additionally, the Received Sig-
nal Strength Indicator feature of the low-power RF module
permits an estimation of the distance to the device that has
sent the response. Of course, more data, for example the
key tone of the bell of each PFB can be stored. Like this,
knowledge of the environment is earned. This knowledge
can be exchanged again with other PFBs which are in the
coverage of each other. So, if there is enough memory,
a PFB can reproduce how the meadow is organized in a
plane. The choice to use a module that comes up all-in-one
with a PCB antenna was made because exhaustive devel-
opment of the low power RF circuit would mean a lot of
additional effort. The micro-controller controls the module
by Serial Peripheral Interface (SPI).

5. COMPUTING

All the computing necessary is done by a micro-controller.
In the first development step, this is a PIC16LF1823 micro-
controller from Microchip R©. The controller represents a
minimalistic solution in terms of the resources of the de-
vice as its pin count (all in all 14 pins). The advantage of
this choice is little energy consumption. Very important in
the context of the Power Flower Bell is the current in sleep
mode, because the device will spend most of the time in
this mode. Powered with 1,8 V, the sleep current is rated
with 20 nA and the operating current with 34 µA@1 MHz.

6. SOUND GENERATION

Electric generation of sound is a critical task in terms of
energy consumption. Common loudspeakers have a weak
efficiency, particularly small speakers [1]. Bells appeared
the first time about 5000 years ago in Asia [8]. Up to today
they are used to send acoustic signals to wide areas in many
cultures. A big effort using a bell is that it produces a quite
loud output with just a single hit on it. The hit corresponds
to a control-signal which ideally looks like an impulse, but
since the used motor is not ideal, it needs a control signal
which looks like a unit step stopped after a small period
of time (about 1 s). Because of this small period, the ham-
mering on the bell is supposed to be very energy-efficient
compared with loudspeakers, for which further amplifiers
would be necessary as well.

For this reason, the simple method of bells for sound gen-
eration was chosen for the Power Flower Bell.
In future development steps, small loudspeakers might be
implemented. The additional computing power that is nec-
essary to reproduce music represents a challenge. In the
case of a bell it is just a variable that has to be set if a
current through the coil of the used motor is desired.

6.1 Pipe Bells

Pipe Bells were chosen by Ritsch because of it’s sound.
Hueber [9] and Rossing [10] described the bending vi-
brations of circular cylinders as not harmonic, they rather
produce “nearly harmonious” partials. Hueber measured
that the fundamental frequency one hears, physically is not
present but rather is formed psychologically. Fletcher and
Rossing documented the use of Flugges formula to pipe
bells [11]. They also discussed the model of the virtual
pitch which is important in the context of bells, because all
of them show the feature of a strike tone. The strike tone
is heard more or less clearly, depending on the quality of
a bell. By convention, the part tones of a contemporary
church bell are intended to come as close as possible to the
frequency ratios 1:2:2,4:5:6:8, the higher part tones are not
defined that strictly. Although the ratios 1:2:3:4:5:6:8 and
2:4:6:8 are quite familiar, the minor third between 2 and
2,4 does not fit into the harmonic series nor the series. The
strike tone is the holistic pitch that a sound of a bell is as-
sociated by the ear immediately after the bell is striked. It
is not possible to find a period of a fundamental frequency
in the time signal or in the part-tone spectrum. The strike
note is the most prominent one of multiple pitches that are
elicited by a bell sound. Terhardt [12] explains the assign-
ing of several pitches to just one pitch with the hierarchi-
cally organized perception of humans. An object may ap-
pear as a collection of multiple elements (spectral pitches)
at the bottom of the hierarchy but may be represented by
just one perceptual object (virtual pitch). The pitch ordi-
narily heard, is not dependent on the audibility of the fun-
damental. The auditory system extracts the fundamental
from a range of the Fourier spectrum that extends above
the fundamental [12].

6.2 Playing Music

Ritsch first was thinking of a lot of small devices that gen-
erate sound and are placed in a quite silent environment, as
a meadow for example. The devices should act like musi-
cians accumulated to a swarm. He describes the sound they
would produce as an endlessly distributed composition in
time and space.
For example, the PFBs can trigger their bells in spacial
propagating waves. Also the performing of rhythmical di-
alogues and complex algorithmic interactions are possi-
ble [1]. Further Ritsch mentions the influence of former
projects like The House of Sounds. Actually, The House
of Sounds is a computer program that permits listening to
a sound world built by soundobjects which are stored on
computers. This computers are part of a data-network. The
soundobjects age, can move from one computer to another
one without external input, form groups, duplicate or die.
Their existence is based on computers running the House
of Sounds program connected to a data-network [13].

The clinking of the bells should have the opportunity to
become a kind of spacial composition. Rhythmics and dy-
namics, as different bells for different flowers are the ways
to express musical structures [1]. With different types and
sizes of bells, harmonic variations can be performed. Play-
ing few or no tones for some while enables a PFB to collect
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Figure 5. Christmas bell that helped to estimate the re-
quired energy

more electrons into the supercap, as long as this one has
enough capacitance. Later, the flower can realize faster
rhythms, because there is more energy available before the
device has to change to its energy-harvesting mode. A
human can manipulate the performance by updating one
Power Flower Bell which then signals to its neighbors how
to continue, the neighbors send this information to their
neighbors and so on. In future, it is also planned to con-
struct different Instruments and sound-generators. For ex-
ample, a chord can easily be used by hammering on it. A
vision is to realize an orchestra with drums, strings and
bells played with energy that comes from dirt-batteries,
photo voltaic cells and similar sources.

6.3 Interfacing to the Environment

Applying different energy sources and sensors, the Music
played by a PFB will be dependent on the surrounding.
As mentioned in 3.2, in the current version a PFB for ex-
ample needs water. Without watering it, it will get weaker
and weaker, which in the actual programmed setups means,
that the hits on the bell occur with more temporal distance,
because it takes longer to collect energy. Imagine a PFB
driven by photo voltaic, living outdoors: During a sunny
day, it might play very fast variations, but during the night
it will not be able to ring any time. In another way sen-
sors could be applied, which measure parameters like the
temperature of the air, loudness etc. The artist then is free
to determine, in which way the measured signals will be
used to manipulate the musical performance of one or more
PFBs.

6.4 Estimation of Energy

The kinetic energy which is necessary to be given to a bell
in order to produce a well hear able sound was estimated
doing an experiment with a Christmas bell as shown in fig-
ure 5.

By measuring the mass of a clapper (m), mounting it to
a piece of twine, deflecting it to a certain height (h) and
releasing the clapper from this height, the energy stored in
it in the moment when it touches the bell is W kin.

W kin = W pot = m · g ·h (1)

Because all losses are neglected, the potential energy is

supposed to be the same as the kinetic energy in the mo-
ment of the impact between the clapper and the bell. It
was possible to hear the bell at adequate loudness when
the clapper with a mass of 5 g was deflected to a height of
5 cm and released. This means, an energy of 2,9 mW was
given to the bell by the impact. This value was important
to get an idea for dimensioning the whole system.

7. IMPLEMENTATION

The triggering of the bell is implemented by an extra n-
channel Metal Oxid Semiconductor Field Effekt Transis-
tor (MOSFET) on the PFB board. Its gate is connected to a
General Purpose In-/Output (GPIO) of the Micro-controller.
Configured as an output, it can be used to control the ham-
mering of the clapper on the bell.
The actor in the first version is a low-cost vibration motor
like used in mobile phones. On its spindle, a thin piece
of stiff wire is soldered. The interior of a luster termi-
nal is fixed on this wire. Different sounds with one bell
can be obtained by the firmware, which controls how long
the motor is connected to the supply voltage stored in the
supercap. Other possibilities are varying the point on the
wire where the luster terminal is mounted as the distance
to the bell and the point of the bell where the clapper (lus-
ter terminal) hits the bell. In future works, this parameters
should be investigated. Figure 6 helps to get an idea of how
a Power Flower Bell can look like. This device was built
together with Winfried Ritsch.

Figure 6. The first sounding Power Flower Bell photo:
Christoph Staber
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8. CONCLUSIONS

The work on the presented project showed that, in princi-
ple, it is possible to run low-power electronic devices like
sensors or actors by a dirt-battery. A PFB device can be
seen as such a device. Even if the amount of extracted en-
ergy is quite low, it can be a model for other applications.
The dirt-battery, in its current state, can be developed fur-
ther by optimizing the composition of the soil and the used
diaphragm. Moreover, there might be applications, where
galvanic energy is available as an unused source.

This work is one of a few available publications describ-
ing dirt-batteries. Much of the information about this topic
found in the Internet is not scientific but sometimes even
esoteric. All other systems found are driven by a serial set
up of dirt batteries. The here presented system is based on
one single cell of a dirt-battery, which is much easier to
install.

The designed circuit can also be powered by many other
kinds of DC low-power sources. There are certainly new
possibilities for artists who want to realize a wireless net-
working, energy harvesting driven sound installation.

The integration of the RF part into the PFB circuit was
not done during the project. However, the basics of this
part of the system are described in the present document.

Even if the dirt-battery is not yet optimized, the function-
ality of the whole system could be shown.
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cisco Javier del Pino Suárez was my coordinator. Finally
I want to thank Carmela for listening to me talking about
the Power Flower Bell like she does and my parents for
everything.

9. REFERENCES

[1] W. Ritsch, “Vision and context of the power
flower bells network,” 13.1.2012. [Online]. Available:
http://algo.mur.at/projects/powerflowerbells/vision

[2] M. staps, “Soil lamp,” 09.05.2012. [Online]. Available:
http://www.mariekestaps.nl/?/Design/Soil-Lamp-2/

[3] J. Schauer, “Networked power flower bell - energy
harvesting system for a cybernetic sound installation,”
Master’s thesis, Technische Universität Graz, pp. 30-
53, 2013.

[4] Institut für Physikalische und Theoretische Chemie
der Technischen Universität Carolo-Wilhelmina

zu Braunschweig, “Elektrodenreaktionen und gal-
vanische Zellen,” 06.12.2012. [Online]. Avail-
able: http://www.pci.tu-bs.de/aggericke/PC1/Kap VI/
Elektrodenreak Galvanische Ketten.htm

[5] Wikipedia, “Galvanic cell,” 20.02.2013. [Online].
Available: http://en.wikipedia.org/wiki/Galvanic cell

[6] J. Layton, “How soil lamps work,” 31.03.2012. [On-
line]. Available: http://science.howstuffworks.com/
environmental/green-tech/sustainable/soil-lamp.htm

[7] C. G. Hönck, “Kupfer satt,” 14.01.2013. [Online].
Available: http://www.greenpeace-magazin.de/index.
php?id=5347

[8] “Die glocken und ihre anfänge,” 10.06.2013.
[Online]. Available: http://www.glocken-online.de/
glockenkultur/anfaenge.php

[9] K. A. Hueber, “Simulation of bell tones with the help
of pipe-bells and piano sounds,” Acustica, vol. 26, pp.
334–343, 1972.

[10] T. D. Rossing, “Editors comments on paper 20 and 21,”
Acoustics of Bells, pp. 336–339, Van Nostrand Rein-
hold Company Inc., 1984.

[11] J. Pan and S. Bergmann, “An experimental study of
acoustical properties of tubular tower bells,” Proc. 20th
International Congress on Acoustics, Sydney, 2010.

[12] E. Terhardt, “Strike note of bells,” 2000. [Online].
Available: http://www.mmk.e-technik.tu-muenchen.
de/persons/ter/top/strikenote.html

[13] W. Ritsch, “The house of sound - soundlives,”
07.04.2013. [Online]. Available: http://iem.at/ritsch/
art/netart/sndlives/

258

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

http://algo.mur.at/projects/powerflowerbells/vision
http://www.mariekestaps.nl/?/Design/Soil-Lamp-2/
http://www.pci.tu-bs.de/aggericke/PC1/Kap_VI/Elektrodenreak_Galvanische_Ketten.htm
http://www.pci.tu-bs.de/aggericke/PC1/Kap_VI/Elektrodenreak_Galvanische_Ketten.htm
http://en.wikipedia.org/wiki/Galvanic_cell
http://science.howstuffworks.com/environmental/green-tech/sustainable/soil-lamp.htm
http://science.howstuffworks.com/environmental/green-tech/sustainable/soil-lamp.htm
http://www.greenpeace-magazin.de/index.php?id=5347
http://www.greenpeace-magazin.de/index.php?id=5347
http://www.glocken-online.de/glockenkultur/anfaenge.php
http://www.glocken-online.de/glockenkultur/anfaenge.php
http://www.mmk.e-technik.tu-muenchen.de/persons/ter/top/strikenote.html
http://www.mmk.e-technik.tu-muenchen.de/persons/ter/top/strikenote.html
http://iem.at/ritsch/art/netart/sndlives/
http://iem.at/ritsch/art/netart/sndlives/


 

Artificial Affective Listening towards a Machine Learn-

ing Tool for Sound-Based Emotion Therapy and Control 

 
Alexis Kirke Eduardo Miranda Slawomir J. Nasuto 

Interdisciplinary Centre for Com-

puter Music Research,  

Plymouth University, UK 
alex-

is.kirke@plymouth.ac.uk 

Interdisciplinary Centre for Computer Mu-

sic Research,  

Plymouth University, UK 
Eduardo Miran-

da@plymouth.ac.uk 

University of Reading, Reading, 

UK 
s.j.nasuto@reading.ac.

uk 

 

 

ABSTRACT 

We are extending our work in EEG-based emotion detec-

tion for automated expressive performances of algorith-

mically composed music for affective communication 

and induction. This new system will involve music com-

posed and expressively performed in real-time to induce 

specific affective states, based on the detection of affec-

tive state in a human listener. Machine learning algo-

rithms will learn: (1) how to use EEG and other biosen-

sors to detect the user’s current emotional state; and (2) 

how to use algorithmic performance and composition to 

induce certain affective trajectories. In other words the 

system will attempt to adapt so that it can – in real-time - 

turn a certain user from depressed to happy, or from 

stressed to relaxed, or (if they like horror movies!) from 

relaxed to fearful. As part of this we have developed a 

test-bed involving an artificial listening affective agent to 

examine key issues and test potential solutions. As well 

as giving a project overview, prototype design and first 

experiments with this artificial agent are presented here. 

1. INTRODUCTION 

The aim of our research is to develop technology for im-

plementing innovative intelligent systems that can moni-

tor a person’s affective state and induce a further specific 

affective states through music, automatically and adap-

tively. [1] investigates the use of EEG to detect emotion 

in an individual and to then generate emotional music 

based on this. These ideas have been extended into a 4.5 

year EPSRC research project [2] in which machine learn-

ing is used to learn, by EEG emotional feedback, what 

types of music evoke what emotions in the listener. This 

paper introduces the key background elements behind the 

project: Music and Emotion, Emotional Expressive Per-

formance and Algorithmic Composition, and EEG Affec-

tive Analysis; then details some preparatory work being 

undertaken, together with the future project plans.  

2. MUSIC AND EMOTION 

Music is commonly known to evoke various affective 

states (popularly referred to as “emotions”) [3]. There 

have been a number of questionnaire studies supporting 

the notion that music communicates affective states (e.g., 

[4, 5]) and that music can be used for affect regulation 

and induction (e.g., [6, 7]). However the exact nature of 

these phenomena is not fully understood. The literature 

makes a distinction between perceived and induced affec-

tivity with music being able to generate both types [4]. 

The differences between induced affective state and per-

ceived affective state have been discussed by Juslin and 

Sloboda [3]. For example a listener may enjoy a piece of 

music like Barber’s Adagio, which most people would 

describe as a “sad” piece of music. However, if they gain 

pleasure from listening, the induced affective state must 

be positive, but the perceived affective state is sadness; 

i.e., a negative state. Despite the differences between per-

ceived and induced affective state, they are highly corre-

lated [4, 8]. Zentner et al. [9] reported on research into 

quantifying the relationship between perceived and in-

duced affective state in music genres.  

3. EMOTION-BASED ALGORITHMIC 

COMPOSITION 

One area of algorithmic composition which has received 

more attention recently is affectively-based computer-

aided composition. A common theme running through 

some of the affective-based systems is the representation 

of the valence and arousal of a participant’s affective 

state [11]. Valence refers to the positivity or negativity of 

an affective state; e.g., a high valence affective state is 

joy or contentment, a low valence one is sadness or an-

ger. Arousal refers to the energy level of the affective 

state; e.g., joy is a higher arousal affective state than hap-

piness. Until recently the arousal-valence space was a 

dominant quantitative two-dimensional representation of 

emotions in research into musical affectivity. More re-

cently, a new theory of emotion with the corresponding 

scale, referred to as GEMS (Geneva Emotional Musical 

Scale) has been proposed [9]. 

   Many of the affective-based systems are actually based 

around re-composition rather than composition; i.e. they 

focus on how to transform an already composed piece of 

music to give a different emotional effect – e.g. make it 

sadder, happier, etc. This is the case with the best known 
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and most thoroughly tested system - the Computational 

Music Emotion Rule System (CMERS) [11]. The rules 

for expressing emotions map valence and arousal onto 

such elements as modes and pitch class. These rules were 

developed based on the combining a large number of 

studies by psychologists into music and emotion. Howev-

er it was found these needed to be supplemented by rules 

for expressive performance of the transformed music to 

express the emotion successfully. Hence CMERS is actu-

ally an integrated composition and expressive perfor-

mance. CMERS key limitation as a composition system 

is that it is designed for re-composition, not for generat-

ing new material. 

   Oliveira and Cardoso [13] also perform affective trans-

formations on MIDI music, and utilize the valence-

arousal approach to affective specification. These are to 

be mapped on to musical features: tempo, pitch register, 

musical scales, and instrumentation. A knowledge-base 

of musical features and emotion was developed based on 

musical segments with a known affective content. This 

knowledge-base was then used to train a generalized 

mapping of affective state to required music and a model 

was then generated based on Support Vector Machine 

regression. The model was tested for transforming the 

emotion of classical music – the current results are not as 

good as CMERS.  

   Although Legaspi et al. [14] utilize pre-composed mu-

sic as its heart, it is more fo-cused on composing new 

music. An affective model is learned based on score frag-

ments manually labeled with their appropriate affective 

perception – this maps a desired affective state on to a set 

of musical features. The model is learned based on the 

machine learning approaches Inductive Logic Program-

ming and Diverse Density Weighting Metric. This is then 

used as a fitness function for a Genetic Algorithm – how-

ever the GA is also constrained by some basic music the-

ory. The GA is then used to generate the basic harmonic 

structure, and a set of heuristics are used to generate mel-

odies based on the harmonic structure. The system was 

trained with emotion label dimensions “favourable-

unfavourable”, “bright-dark”, “happy-sad”, and 

“heartrending-not heartrending”. Listening tests were 

done on a series of eight bar tunes and the results ob-

tained were considered promising, but indicated more 

development was needed.  

4. EEG AND EMOTION 

EEG measurements have been found to be useful in a 

clinical setting for diagnosing brain damage, sleep condi-

tions and epilepsy; e.g. [17]. It is well known in the litera-

ture that it is possible to relate different EEG spectral 

bandwidths (often referred to as “EEG rhythms”) to cer-

tain characteristics of mental states, such as wakefulness, 

drowsiness, etc. As early as the 1970s researchers have 

reported on the relationship between EEG asymmetry and 

affective state. Reviews of EEG asymmetry and affective 

state can be found in [18, 19] and one of the most recent 

sets of results can be found in [20]. Davidson [21] pro-

posed a link between asymmetry of frontal alpha activa-

tion and the valence and arousal of a participant’s affec-

tive state. 

   Musha and co-workers [22] developed one of the earli-

est computer EEG affective state detection systems and a 

number of detection methods have been investigated 

since then; e.g., [23]. More recently detection and analy-

sis of weak synchronization patterns in EEG have been 

shown to be indicators of cognitive processing; growing 

evidence suggests that synchronization may be a carrier 

of information about the information processing in the 

brain [24]. There are different ways in which signals may 

co-vary. For instance, there is the hypothesis that infor-

mation about many cognitive phenomena is preserved not 

necessarily in the intensity of the activation, but rather in 

the relationship between different sources of activity. 

There are an in-creasing number of studies investigating 

the role of synchronization in cognitive processing using 

various techniques, e.g. [25]. A particularly promising 

form of synchronization is called Phase–locking, which 

has been studied extensively by the third author and co-

workers, e.g. [26]. Moreover, there is growing evidence 

supporting the role of synchronization in music percep-

tion [27] and also in response to affectively charged non-

musical stimuli [28]. 

5.  EMOTIONAL FEEDBACK EEG MU-

SIC 

The above sections show that there is increasing evidence 

in the literature that musical traits such as rhythm, melo-

dy, tonality and expressive performance, can communi-

cate specific affective states. There is also increasing evi-

dence (e.g. [12]) that these states are detectable in the 

EEG of the listener. There are fewer studies into estab-

lishing which musical traits are useful for implementing a 

system to induce affective states. Amongst the techniques 

available, the analysis of synchronisation patterns in the 

EEG signal is a promising option for detecting affective 

states induced by music. Other techniques (as discussed 

in the literature) will also be considered in the project and 

the most suitable will be adopted. Thus the detection of 

affective state by EEG is a research area which this pro-

ject will contribute to as well. Although initially a va-

lence-arousal model will be used in development, other 

models will be utilized if found to be more effective. The 

valence-arousal model will be calibrated using tests in-

volving marked-up emotional picture databases.  

   As was mentioned earlier, [1] investigates the use of 

EEG to detect emotion in an individual and to then gen-

erate emotion-inducing music based on this. The work 

done previously in [1] was not real-time and did not in-

volve any machine learning process. The research and 

implementation of a real-time version of a more advanced 

detection method would allow us to monitor affective 

states induced by music on the fly. We hypothesise that 

once we establish specific musical traits associated with 
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specific affective states, then we will be able to parame-

terise such traits in order to exert control in a musical 

composition; e.g., speed up the tempo to induce affective 

state X, use a “harsher” timbre to induce state Y, etc. The 

parameterisation of musical traits will allow for the de-

sign of algorithms capable of generating music (e.g., rule-

based) embodying musical traits aimed at inducing spe-

cific EEG-observed trajectories correlated to affective 

states. Such a generative system can be rendered intelli-

gent and adaptive by means of machine learning tech-

niques (e.g., case-based reasoning and reinforcement 

learning) that are able to learn to recognize complex pat-

terns and make decisions based on detected patterns in 

real-time. 

6.    AFFECTIVE LISTENING PROTO-

TYPE 

For full real-time tests to be run, a controlled laboratory 

environment will need to be available together with EEG 

lab assistants and various types of equipment. Given the 

project is geographically spread it was decided to investi-

gate the development of a simulated testing environment. 

In addition to providing a potential way of testing ele-

ments of the system without a human lab set-up, these 

investigations would help to highlight issues which may 

come up in the listening tests, and allow these to be in-

cluded earlier in design discussions.  

   One potentially useful element of a simulated testing 

environment would be a virtual “emotional listener”. 

Such a listener would take as input music, and respond to 

the music with artificial emotions. This would not be 

useful for simulating EEG results. However once the arti-

ficial listener became sufficiently developed through iter-

ative design to give advanced and adaptive responses, it 

could be placed in the machine learning and algorithmic 

composition / performance loop as a way of prototyping 

strategies without having to find a human test subject and 

use an EEG lab for all phases of development. 

   Figure 1 shows the schematic for the prototype machine 

listening test-bed, labeled the Affective Reactive Trajec-

tories Harnessing Unit Response (ARTHUR). The main 

purpose of ARTHUR is to receive as input a MIDI tune 

and output an affective response to the tune. The units in 

ARTHUR are now described. 

6.1 Music Feature Affective Response 

The Affective Linear Estimator (ALE) [29] is the heart of 

the ARTHUR system which takes as input a monophonic 

tune, and responds with an estimate of the tunes’ valence 

and arousal. A linear equation is used to model agent B’s 

the affective estimate of a Tune A – this is shown in 

equations (1) and (2):  

valenceEst = xpmean(pitchA) + xlmean(loudA) + 

xkmean(keyModeA) +  xIOImean(IOIA) + x0   (1) 

arousalEst = ypmean(pitchA) + ylmean(loudA) + yIOIme-

an(IOIA) + y0     (2) 

 

 

Figure 1. ARTHUR Schematic 

6.2 Music Feature Affective Response 

The Affective Linear Estimator (ALE) [29] is the heart of 

the ARTHUR system which takes as input a monophonic 

tune, and responds with an estimate of the tunes’ valence 

and arousal. A linear equation is used to model agent B’s 

the affective estimate of a Tune A – this is shown in 

equations (1) and (2):  

valenceEst = xpmean(pitchA) + xlmean(loudA) + 

xkmean(keyModeA) +  xIOImean(IOIA) + x0   (1) 

arousalEst = ypmean(pitchA) + ylmean(loudA) + yIOIme-

an(IOIA) + y0     (2) 

The parameters of ALE were estimated in a one-off pro-

cess as follows. A set of 1920 random MIDI files was 

generated, of random lengths between 1 and 128 notes. 

Each MIDI file was transformed for 10 known and equal-

ly spaced valence and arousal values between -1 and 1 

using transformation equations developed from a well-

tested system for generating emotion-communicating 

music features [11] (there is not space here to detail these 

transformations). 

 

 x y 

Pitch -0.00214 0.003025 

Loudness 0.012954 0.052129 

keyMode 1.1874 -1.4301 

IOI -0.6201 0.59736 

Constant 0.61425 -4.5185 

 

Table 1. Regression Results 

Then a linear regression was run on the resulting trans-

formed MIDI files against the known arousal and valence 
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values. The resulting coefficients are shown in Table 1. 

The average percentage errors – when tested on a sepa-

rate 1920 transformed random files - were 10% for va-

lence and 9% for arousal. These are considered to be suf-

ficiently accurate. Actual human musical emotion recog-

nition error rates can be as high as 23% [30]; and other 

far more complex artificial musical emotion detection 

systems have rates such as 81% [31].       

   ARTHUR does not wait until it has heard the whole 

tune to respond emotionally. It has an input buffer of 

fixed size. Once the buffer is filled it processes the music 

segment, then the buffer is cleared and the next segment 

of the music is shifted into the buffer. 

6.3 Tune Familiarity Affective Reaction 

ARTHUR stores all past buffer content in its memory. 

When hearing a new tune T*, having heard a series of 

tunes Ti in the past, ARTHUR adjusts its valence reaction 

based on both the tune affective features using equations 

(1) and (2), and the tune familiarity. The “mere exposure 

effect” is the effect that suggests that tune familiarity 

increases a listener’s liking ratings on a tune [32]. 

Krugman [33] observed that valence increases with fa-

miliarity. Others have proposed a balance is needed be-

tween predictability and novelty [34]. ARTHUR’s famil-

iarity calculation is now explained. 

   First the similarity is compared between new tune seg-

ment T* and all past tunes Ti. The similarity is only cal-

culated up to the length of the shortest tune. So if T* is 10 

seconds long and Ti is 20 seconds long, only the first 10 

seconds are compared. The system also does a simple 

form of pattern recognition. Rather than simply compar-

ing each pitch and onset step by step, it moves through 

T* and then finds the notes that are closest in time to the 

notes in Ti. Then it looks at the pitch direction from a 

note to its next note in T*, does the same for the closest 

note in Ti, and compares the two. For onset times the 

system finds the closest note in Ti in time to each note in 

T* and for each of these notes compares the onsets. For 

similarity purposes, more weighting is given to pitch than 

to timing. Equations (3) to (6) detail the similarity calcu-

lations. 

pitchDistance = distance(closest pitch directions) (3) 

onsetDistance =  distance(closest onsets)     (4) 

distance = 0.75*pitchDistance + 0.25*onsetDistance (5) 

similarity = 1-distance   (6) 

The mean similarity of the new tune T* to all other tunes 

is calculated, denoted sim. Then this is compared to the 

mean similarity of all previous tunes to each other and a 

delta is calculated, as in equation (7). This delta is added 

to ARTHUR’s estimate of the valence communicated by 

the tune on the basis of its musical features, to give the 

valence update. 

deltaFamiliarity = W * (sim-meanSim)  (7) 

 valenceDelta = valenceFeatures + deltaFamiliarity (8) 

W in equation (8) is the variable which instantiates the 

balance between novelty and familiarity. It is calculated 

as in conditional equation (9). 

W =  sim - (meanSim + 0.1* stdSim) 

[sim < meanSim + 0.1* stdSim] 

– sim + meanSim + stdSim 

[sim > meanSim + stdSim] 

1 [Otherwise]  (9) 

 

To show how the tune familiarity and feature affective 

reaction elements combine, a couple of examples are now 

given. 

 

6.4 Tune Familiarity Example 

 

In these examples ARTHUR starts with 8 tunes in its 

memory, of length 12 notes, generated so that they have a 

variety of affective features. ARTHUR is then played a 

tune with a specific set of affective features repeatedly 

(32 times).  Figure 2 shows a tune whose features are 

predominantly of higher valence. The pitches are fairly 

high and suggest a major key profile. 

   ARTHUR’s valence reaction to being played this tune 

32 times is shown in Figure 3. To understand the re-

sponse it is helpful to first look at Figure 4. In Figure 4 

ARTHUR’s internal valence response purely to the musi-

cal features is shown. 

   It can be seen in Figure 4 that ARTHUR responds uni-

formly positively to being played the tune, and in fact 

ARTHUR “feels” more and more positive the more times 

it hears the tune. However in Figure 3, where tune famili-

arity is included, it can be see that there is an initial peri-

od of very positive response from ARTHUR to the tune. 

In fact the gradient increases the first 4 or 5 hearings. 

However after this the gradient drops off very fast until 

there is no positive response. It fact it can be seen that 

ARTHUR reacts negatively on the 32
nd

 play. So initially 

ARTHUR’s rate of valence increase goes up, because it is 

being affected not only the positive music features, but 

because the tune is becoming more familiar. But eventu-

ally the tune becomes too familiar and ARTHUR be-

comes “sick” of it leading the reducing valence in spite of 

positive valence tune features. 

   A second example is shown in Figure 5. This tune is a 

lower pitch tune than in Figure 2. Also it has a pitch pro-

file which indicates a minor key (C minor), so is a lower 

valence tune than that in Figure 2. When played repeated-

ly to ARTHUR the resulting valence response is that 

shown in Figure 6. It can be seen that valence initially 

decreases then increases and then drops off rapidly. The 

reason for this is clarified again by showing ARTHUR’s 

internal response valence-wise to just the tune features, 

graphed in Figure 6. 
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Figure 2. Higher Valence Tune 1 played to ARTHUR 

 

 
 

Figure 3. ARTHUR’s Valence Response to repeatedly 

hearing Higher Valence Tune 1, with Familiarity re-

sponse and Tune Memory 

 

 

Figure 4. ARTHUR’s Valence Response to repeatedly 

hearing  Higher Valence Tune 1 without Tune Memory 

 

It can be seen in Figure 7 that, as expected, ARTHUR’s 

detection of the valence of the tune features will attempt 

to lower its valence repeatedly. So it is now possible to 

clarify that the initial decrease in valence in Figure 6 is 

partly due to ARTHUR being unfamiliar with the tune. 

Then there is a short period of valence increase where 

ARTHUR’s increasing familiarity outweighs the low 

valence features of the tune. Then it can be seen that on 

repeated plays eventually the rate of valence decrease 

actually starts to increase, as ARTHUR gets “sick” of the 

tune. 

 

 
 

Figure 5. Lower Valence Tune 2 played to ARTHUR 

 

 
 

Figure 6. ARTHUR’s Valence Response to repeatedly 

hearing Lower Valence Tune 2, with Familiarity response 

and Tune Memory 

 

 

 
 

Figure 7. ARTHUR’s Valence Response to repeatedly 

hearing  Lower Valence Tune 2 without Tune Memory 

 

This ability of ARTHUR to respond not only to the va-

lence and arousal communicated by the tune as well as to 

the familiarity will hopefully make the system more use-

ful as an offline test-bed for the brain-computer music 

interface system. Two key elements to highlight in AR-

THUR’s response are that it is highly dependent on the 

accuracy of simplified affective feature equations (1) and 

(2), and that it responds linearly. Furthermore it is based 

on communicated emotion research, rather than induced 

emotion research. However even in its simplified form 

ARTHUR has already highlighted some of the issues 

which will come up in testing, and directed the project 
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team towards previous research on tune novelty. It also 

provides a starting point for developing a test bed with 

more advanced affective reactions.  

7.    CONCLUSIONS AND FUTURE 

WORK 

A new method for utilizing the emotion-inducing nature 

of music and sound has been introduced. The background 

elements have been detailed, including affective represen-

tation, computer expressive performance, affective algo-

rithmic composition and EEG-based machine learning. 

One of the initial steps in this research has been the de-

velop of a prototype offline test bed based on a computer-

listening music system (ARTHUR). This system is de-

signed to allow for quicker and lower cost experiments to 

be done to test out machine learning and algorithm com-

position frameworks. Just as importantly it also helps to 

highlight and address key issues such as tune novelty 

response, early on in the research process.  

   Future work in the broader project includes characteris-

ing synchrony patterns corresponding to different induced 

affective states from the EEG recordings while partici-

pants listen to music stimuli. Initially, the analysis and 

the system for learning the emotional control music gen-

eration will be developed based on the valence arousal 

emotional scale, due to its widespread acceptance and 

availability of tagged databases. We will subsequently 

develop a GEMS representation for the images and will 

evaluate the usefulness of the two scales for developing 

our system.  

   Then, we shall progressively move towards the final 

goal of real-time assessment of affective states using rein-

forcement learning (RL). Initially, the affective state es-

timation will be updated at a slower time scale consistent 

with the computational demands of the synchronisation 

analysis. However, our aim is to create a system for a fast 

real-time assessment of affective state based on efficient 

analysis using feature selection and dimensionality reduc-

tion.  

   We plan to develop further algorithms for generating 

music featuring the various musical traits that have been 

discussed in the literature. Some musical features are 

more universal determinants of affective response, invar-

iant across populations with common cultural background 

[9]. Other features may show more variation dependent 

on contextual effects of culture, personality and environ-

ment. Our initial results will be driven by more universal 

musical determinants of emotional response than context-

specific.  Thus, they will be based on results averaged 

across a test population. The later stages of the project 

will extend the former to include context-specific emo-

tional responses.  

   We plan to test our initial generative music algorithms 

for inductive effects using an offline EEG affective state 

detector. The results of these tests will be used to initial-

ize a case-based reasoning (CBR) system for affective 

induction by music. Then, we will extend the CBR sys-

tem by investigating specific musical genres. A recent 

study [9] also suggested the importance of genre selection 

for the induction of certain affective states. The bench-

mark will be a classical solo piano genre, as classical 

music has well known computational approaches for elic-

iting certain affective states, but expansions on this will 

be investigated utilizing ideas from pop and electroacous-

tic music genres. 

   In order to have a real-time, dynamic assessment of the 

affective state – so as to increase accuracy and effective-

ness - we will use the CBR system to initialise an auto-

matic music generation system based on reinforcement 

learning (RL). RL has been successfully used in optimis-

ing the stimulation patterns in deep brain stimulation 

therapy of the epileptic seizures [35]. The RL system we 

plan to build will be used in action selection optimizing a 

desired affective response of this participant. The move 

towards more on-going assessment of affective state will 

be important because it will enable us to extend the sys-

tem beyond the music composition based on manipula-

tion of the musical traits eliciting generic affective re-

sponses, to a more adaptive individual-oriented system 

taking into account participants’ states; thus utilising also 

the contextual effects of an individual and the environ-

ment. 
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ABSTRACT

Modelling emotions perceived in music and induced by
music has garnered increased attention during the last five
years. The present paper attempts to put together obser-
vations of the areas that need attention in order to make
progress in the modelling emotional effects of music. These
broad areas are divided into theory, data and context, which
are reviewed separately. Each area is given an overview in
terms of the present state of the art and promising further
avenues, and the main limitations are presented. In the-
ory, there are discrepancies in the terminology and justifi-
cations for particular emotion models and focus. In data,
reliable estimation of high-level musical concepts and data
collection and evaluation routines require systematic atten-
tion. In context, which is the least developed area of mod-
elling, the primary area of improvement is incorporating
musical context (music genres) into the modelling emo-
tions. In a broad sense, better acknowledgement of music
consumption and everyday life context, such as the data
provided by social media, may offer novel insights into the
modelling emotional effects of music.

1. INTRODUCTION

Emotions expressed or induced by music is one of the cen-
tral aspects in music listening and is one of the main rea-
sons why music appeals to people. The processes involved
in emotional communication through music are compli-
cated as they are related to different emotion induction
mechanisms, emotion models, expectations, learning, indi-
vidual differences, and music preferences. The purpose of
this paper is to outline the central challenges Music Com-
puting has to face to make advances in emotion modelling
in music and outline the necessary steps to ensure forward
movement in this field. These challenges can be broadly
divided into theory, data and context – the traditional ele-
ments of any science – and covered in separate sections of
the paper.

In the first section titled Theory, issues of theoretical de-
velopment are discussed. Theory is not perhaps the strongest
area of sound and music computing but should not be un-
dervalued since all progress made in the topic requires ad-
vances in conceptual and theoretical issues. Issues with
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emotion models and their prevalence and underlying mech-
anisms are drawn from recent overviews of the field [1, 2].

In the second section titled Data, I refer broadly to repre-
sentation, collection, processing and interpretation of data.
Each of these sub-topics has its own special issues and
techniques, many of which have been the focus of stud-
ies during the last decade in Music Information Retrieval
(MIR) and music psychology. The necessity of combining
the knowledge and techniques from these separate fields is
the central challenge music computing itself has acknowl-
edged (see e.g. roadmap 1 ) and the same holds for the field
of music and emotion as well.

In the final third section, the context of the models and
data will be examined. Here, context refers both to the
context in which theories and data are supposed to hold
and to the contextual constraints provided by the situation,
music genre, and individual factors.

2. THEORY

Theoretical issues in music and emotions can be arranged
in emotion models, focus, and mechanisms. For mod-
elling, adhering to a particular theoretical framework natu-
rally has vital importance, although the current state of art
suggests that the field of music and emotions is not consis-
tent in its use of emotion models, focus, and mechanisms
[1,2]. There are terminological differences even within the
field of affect sciences (e.g. mood/emotion/feeling) and
within the vocabulary sound and music computing studies
have adopted from other disciplines (e.g. human-computer
interaction, marketing, engineering), whereas certain terms
(e.g. mood and emotion) are used interchangeably in some
contexts within MIR; these distinctions are important and
meaningful when the are communicated across the disci-
plines. For this reason, I would advocate the conceptual
and terminological clarifications drawn by Juslin and Slo-
boda in the Handbook of Music and Emotions [3].

2.1 Emotion models

An important theoretical issue is the notion of how emo-
tions are construed. A plethora of theoretical proposals
exist in the psychology of how emotions are divided into
discrete, low- and high-dimensional models, and other no-
tions for emotions (see Figure 1). According to the discrete
emotion model, commonly used in non-musical contexts,
all emotions can be derived from a few universal and in-
nate basic emotions such as fear, anger, disgust, sadness,

1 http://mires.eecs.qmul.ac.uk/wiki/index.php/Roadmap
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and happiness [4]. In music-related studies many of these
have been found to be appropriate [5], yet certain emotions
have often been replaced by more appropriate ones. For
instance, disgust is often replaced by tenderness or peace-
fulness. Discrete emotion model is commonly utilized in
music and emotion studies because it is easy to evaluate
in recognition studies, especially with special populations
(children, clinical patients, and samples from different cul-
tures) [1].

Low-dimensional models consist of 2 and 3-dimensional
models, which propose that all affective states arise from
separate independent, affect dimensions. The most com-
mon one of these, the two-dimensional circumplex model
[6], has one dimension related to valence and the other to
arousal. This particular model has received a great deal of
attention in music and emotion studies, despite a number
of drawbacks. For instance, it is unable to represent mixed
emotions [7], and so several alternative, presumably bet-
ter, dimensional models have been proposed in which af-
fect the dimensions are chosen differently (e.g., tension,
energy) [8] or by increasing the number of necessary di-
mensions to three [9, 10]. Recent studies in psychology
have generally found formulations other than the valence-
arousal dimensions to provide better fit to data [11].

In music, two recent studies of perceived and felt emo-
tions [12, 13] found that the two-dimensional model was
found to be a more parsimonious way to represent self-
reported ratings of perceived and induced emotions con-
veyed by film soundtracks. Also, these same studies estab-
lished that the discrete emotions ratings can be predicted
from the ratings of emotion dimensions and vice versa, if
the scales and the excerpts are organised in a manner that
allows such comparisons.

High-dimensional models of emotions have recently been
proposed by Zentner and his colleagues, called Geneva
Emotion Musical Scale (GEMS) [14], which has from three
to nine dimensions of experienced emotions. It has inter-
esting spectrum of terms that emphasize the contemplative,
positive and aesthetic nature of music-induced emotions
(e.g., wonder, trancendence, and nostalgia). It is worth
noting that the GEMS model construction is music-specific
and the model construction was carried out with a wide
range of participants, and has led to fascinating results on
neurophysiological correlates [15]. A direct comparison of
low and high-dimensional emotion models in music have,
however, suggested that low-dimensional models often suf-
fice to account for the main emotional experiences induced
by music [13].

Other theoretical approaches to music and emotion stud-
ies include a collection of concepts such as preference, lik-
ing, intensity, and also such mood and emotion terms that
have been the object of studies recently which have not
been connected to theoretical framework. For instance,
other types of discrete categories (passionate, rollicking,
humorous, aggressive) are utilized in MIREX Audio Mood
Classification task [16]. However, these concepts are not
persistently theoretically motivated and may include iso-
lated terms that have little to offer to our understanding of
the emotions expressed and induced by music.

There are novel ways to probe which emotion model ac-
counts for the emotions induced and expressed by music.
The data provided by social media and online services of
music is one such promising source. In the domain of mu-
sic, social tags describe a variety of information (genre,
geography, emotion, opinion, instrumentation, etc.), out of
which emotions account for approximately 5% of the most
used tags [17]. A number of studies have applied seman-
tic computing to uncover emotion dimensions emerging
from the semantic relationships between the tags [18], and
some support for the valence-arousal formulation has been
found [19]. Such observations have been formalized as Af-
fective Circumplex Transformation (ACT) that provides an
effective way of predicting the emotional content of mu-
sic [20].

In sum, a variety of emotion models have been utilized
in the sound and music studies and the most common ones
have been adopted from psychology, although consensus
about their utility has not yet been formed. Also, the mod-
els adopted from psychology focus on survival or utili-
tarian emotions. Music as a pleasurable leisure time ac-
tivity therefore might be better served with a model that
is grounded on terms that are relevant in music-induced
emotions such as the ones provided by the GEMS model.
Moreover, the emotion models need to be used in the man-
ner consistent with the assumptions build into them. It
makes little sense to study valence and arousal using two
groups of extreme points within these continuums since the
dimensionality cannot be established within such design.

2.2 Emotion focus

Two forms of emotional processes in relation to music can
be distinguished – perception and induction of emotions.
The first concerns listeners’ judgments of emotional char-
acteristics of the music, where listeners characterise the
music in emotional terms (e.g., this music is solemn) or
what the music may be expressive of (e.g., this music ex-
presses tenderness). Modelling perceived emotions has
been the main aim of sound and music computing stud-
ies and the most prevalent focus in the field of music and
emotions. The latter concerns how music makes listeners
feel, also referred to as felt emotions. This distinction is
not only conceptually plausible, there is also mounting ev-
idence to suggest these two modes of emotional responses
can be empirically differentiated [21]. For the field, the
problem lies in the often implicit assumption of this divi-
sion and the induced emotions need to be further validated
by indirect measures or psychophysiology. In many in-
stances, we cannot be sure of the distinction. For instance,
do emotion related tags or forced-choice selection of facial
expressions express felt or perceived emotions?

2.3 Emotion mechanisms

Because the same music can express one emotion and in-
duce another (e.g. cheesy love ballad after a break-up, or a
national anthem in a wrong situation), there must be differ-
ent mechanisms that are responsible for the emotions. The
most comprehensive account of the mechanisms to date is
the proposal by Juslin and Västfjäll [2], which attempts to
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Figure 1. Prevalence and specificity of emotion models applicable to music.

account why music elicits an emotion and why this emo-
tion is of a particular kind. This model, BRECVEMA [22],
currently consists of eight mechanisms. Each mechanism
has distinct response, information focus, possibly brain re-
gion, and way of elicitation. However, for sound and music
computing, only some of these mechanisms are of central
concern. Most past studies have studied Contagion mech-
anism, in which the listener mimics and thus perceives
the emotional expression of another being through music,
which is also presumed to account for the wide similar-
ity of emotion recognition of music across cultures [23].
Rhythmic entrainment is of interest in such cases when the
aspects of groove or dancibility have been included in the
focus study [24]. Music computing can also attempt to
solve the issue of Musical expectancy, in which early at-
tempts have already been made [25]. Many other mecha-
nisms are either too limited for application uses or need to
be examined in individual settings.

2.4 Epistemological framework

It is also possible to challenge the above-mentioned theo-
retical issues which emphasise cognitive evaluation of emo-
tions in lieu of other frameworks. Culturally-oriented frame-
works would put the emotions in their historical and cul-
tural context [26], and sociological accounts would em-
phasise how emotions are constructed within particular so-
cial groups according to commonly accepted norms con-
structed in daily lives. The intimate connection of emo-
tions to the body makes embodied cognition a persuasive
framework for research [27]. This would emphasise the
ecological nature of sound communication and the role of
corporeal responses and metaphors in this process. This, in
turn, would have implications for what kind of issues will
be pursued in emotion research; the process of meaning-
generation, empathy, or the underlying neural architecture
specialized for mimicry [28]. Finally, application-driven
epistemology is something that may generate interesting

research in itself, although I would not rank the priority of
such research as high.

3. DATA

Sound and music computing is an inherently data-intensive
field, and therefore the efforts in music and emotions are
directed towards data in its many aspects, specifically (a)
representations, (b) processing, (c) collection, and (d) eval-
uation.

3.1 Data representations

Data representation has specialised in its own areas related
to music representations (mostly audio, occasionally midi)
and ground-truth representations. In the former, the avail-
ability of large amount of good quality audio has widened
the scope of studies to include almost any genre, and the
number of examples used in studies is only limited by the
amount of ground-truth data available for evaluation pur-
poses. This limitation is significant, since availability of
audio is meaningless unless it can be connected to listen-
ers’ emotions in one way or another. Traditional ground-
truth sets contain limited amounts of audio examples care-
fully assessed by a number of participants in terms of their
emotional qualities (self-reports of emotions). Another form
of data comes from other measures (indirect, continuous,
or physiological) and neural measurements of emotional
processing taken during the music listening. These are
even more difficult to obtain but have the benefits of being
less affected by demand characteristics. Moreover, these
data representations are more and more supplemented with
textual, visual, movement, and social media data, all of
which require different tools, algorithms and knowledge
from specialized fields. However, combinations of the dif-
ferent data sources is still rare, although most researchers
acknowledge the need for multimodal and multiple approaches
in emotion research [29].
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3.2 Data processing

Data processing borrows from the neighbouring (e.g., com-
puter vision, neuroscience, speech) and technical disciplines
(e.g. signal processing). This theme is however, the most
advanced one of sound and music computing. However,
the processing challenges lie in the realm of temporality
of music-induced emotions and synchronisation of physi-
ology and neural responses of the experienced emotions,
which all require time-series techniques and behavioural
validations. However, these challenges are not unique to
music and emotions but pertinent to most neuroscience,
physiology and multimedia (movies, particularly) research
involved with emotions. Landmark example of how these
challenges are solved come from a recent study of music-
induced emotions, which correlated the haemodynamic re-
sponse of the participants with the musical features [30].
Another challenge for data processing concerns the social
media data, tags and online meta-data in general, how to
obtain semantic structures from such freeform, unconstrained
but large datasets [31].

3.3 Musical content estimation

The central limiting factor in predicting emotions from mu-
sical content is unreliable estimation of meaningful music-
related concepts. Most of the low-level features (e.g. spec-
tral centroid, zero-crossing, or attack slope) have been around
for decades but mid to high-level concepts such as tension,
mode, harmony and expectancy are demanding to model
from audio representation. And this is not only a tech-
nical challenge, but rather a conceptual one; high-level
concepts require some form of emulation of human per-
ception (e.g. long frame of reference typically modelled
with different memory structures, comparisons to typical
data structures representing acquired knowledge of regu-
larities in music and so on). Traditionally, there have been
two different approaches to this dilemma. An engineer-
ing approach applies a combination of low-level features
(e.g. MFCCs) and machine learning (e.g. Gaussian Mix-
ture Models or Support Vector Machines) to solve the con-
tent problems [32, 33]. Another strategy is to model the
perceptual processes faithfully [34], leading in some cases
to less efficient models due to emulation of human hear-
ing and all its perceptual constraints (e.g. masking, thresh-
olding, streaming) [35]. Despite the strategy chosen, the
need for new and reliable high-level features is strong [36]
and reliable measures for syncopation, the degree of “ma-
jorness”, and expectations are all top priority features that
would increase the prediction rates for emotions [37, 38].

Once the features can be estimated reliably, additional
steps need to be taken to identify the key features that con-
tribute to emotions. Typically, musical features from an
existing music corpus are extracted and mapped into in-
dividually rated emotions. The mapping typically takes
the form of regression analysis for emotions measurable in
scalar terms [39, 40] and emotion categories by means of
classification [38]. This approach is correlational because
it associates certain features with certain emotions but what
it fails to discover is the source of the differences. Another
approach is to specifically manipulate musical structure to

assess the true effect of these factors to emotions [41]. Un-
fortunately, the latter approach is time consuming and rela-
tively rare, and typically focuses on few features at a time.
Mercifully, combinations of correlational and causal ap-
proaches have yielded fairly consistent patterns of results
on emotion features in music, summarised by Gabrielsson
and Lindström [42].

Because the correlational approach is the most common
and offers the largest sets of data, it is important to consider
the feature selection before the construction of the model.
Elsewhere, I have suggested four stages for this process
[43]; (a) theoretically select plausible features, (b) validate
the chosen features, (c) optimise the chosen features, and
(d) evaluate the predictive capacity of the model. Theo-
retical selection is justified to eliminate dozens of techni-
cally possible features that may just increase noise. In the
next step, the researcher should verify that the features are
reliable and provide relevant information using a separate
ground-truth dataset. In the third step, exploration of the
independence of the features is useful in order to trim the
feature set into separate, independent and preferably or-
thogonal entities using data reduction techniques. These
steps decrease the danger of over-fitting and facilitate the
interpretation of the subsequent models.

3.4 Data collection, evaluation and access

Finally, the data is as good as the collection and evaluation
procedures allow it to be. In sound and music computing,
rigorous data collection procedures are not always adhered
to due to emphasis on algorithm development or data mod-
elling, or in some cases, the researchers may not always
have the expertise to follow the methodological requisites
perfected in the behavioural sciences (e.g. psychology).
Participant background descriptions (music preference and
musical sophistication indices), and outlier screening, inter-
rater reliability, and general replicability are often neglected
in the data evaluation procedures in small-scale behavioural
studies. Despite these traditional concerns, there are new
innovative ways of getting participant data. Online games
have been found to be a good way in obtaining mood rat-
ings [44], crowd-sourcing platforms (e.g. Amazon Me-
chanical Turk), and large-scale online questionnaires that
have certain practical limitations (sound setup, situation,
listener background) but the large participant amount is as-
sumed to compensate for these drawbacks. Another data
collection issue is the annotation. Expert annotations are
expensive and laborious, and crowd-sourced annotations
may in some situations lead to equally coherent results
[45]. Whether the data obtained from certain social on-
line music services (e.g. last.fm, Spotify see Million Song
Dataset [46]) can be harnessed to tackle the fundamental
issues related to music and emotions, still remains to be
seen but the results so far are promising in non-music re-
lated domains [47] and in music [20, 31].

Also, the modelled data needs to be assessed in a rigorous
fashion. Whereas the studies adhering to psychology stan-
dards typically collect and evaluate the data properly, they
often produce a final model that accounts for the handful
of excerpts that are also the ones used to train the model
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in the study and no cross-validation and prediction with
external datasets are used. Fortunately, sound and music
studies normally pay attention to these issues and some re-
searchers have taken the cross-validation steps particularly
seriously [37, 38].

Finally, the effectiveness of the music and emotion re-
search would be increased by establishing common repos-
itories for open data-sharing (stimuli, features, evaluations,
and protocols) and therefore facilitating replicability of the
studies [48]. There are already shared tools (toolboxes
such as Marsyas, Sonic Visualiser, and MIR toobox for
musical feature extraction) and platforms for data shar-
ing [49], and also possibilities of organising all this in an
open and attributable manner (e.g. http://thedata.org/). In
certain cases, this is routinely done [12,50] but the strength
of sound and music computing is not fully capitalised be-
fore many different datasets are openly available.

4. CONTEXT

Theories and data only operate in the context in which they
have been defined. In music psychology, the context of
music and emotion studies have mainly been in Western
art music and highly Western educated listeners in partic-
ularly restricted situations (concerts or laboratory setting),
judging from the frequency of music genres, situations and
participants utilised in the past ten years [1]. In sound
and music computing, the context is more consumption
oriented, that is, more studies utilising pop music and ev-
eryday listening situations and therefore closer to current
music consumption habits [51]. However, context is much
more; here broadly divided into socio-cultural, musical, in-
dividual and listening context.

4.1 Socio-cultural context

For modelling emotions in music, the cultural context is
certainly the largest open issue that not only divides lis-
teners in Western countries according to geographical ar-
eas and age groups, but to broad cultural differences across
the globe. Few cross-cultural studies of emotion recogni-
tion have been conducted which explore the topic using
music excerpts and listeners from multiple cultures [23,
52]. Fortunately, in sound and music computing, this issue
has been acknowledged for some time now [53, 54] and
datasets and applications of existing techniques to novel
musical materials are at least applied to non-Western mu-
sic collections [55]. This recent tendency has also high-
lighted the need for further development of musical feature
extraction due to challenges offered by non-Western tun-
ing systems and instruments. Within a culture, there are
wide differences in musical practices, consumption habits,
and meanings associated with music between different so-
cial and age groups. These socio-cultural differences have
not received the attention they deserve, although they are
known to have wide impact on music choices and emotions
induced by music.

4.2 Musical context

As a smaller subset of the cultural context, the musical con-
text – music genre, lyrics and videos – brings tangible dif-
ferences for modelling emotions in music. Just consider
genre differences; what is recognised as tender in piano
music of late romantic era, probably does not have rele-
vance in gothic metal, and happiness in pop may not be
equivalent either as a concept or musical term in electron-
ica. Recently, sobering results from the generalisibility of
simple emotion predictions of valence and arousal across
music genres was obtained [37]. According to the results,
emotional valence did not transfer across genres although
arousal did. In a small-scale study, the same musical fea-
tures have been shown to operate differently if the under-
lying context is changed [56]. When the large materials
provided by social media tags is harnessed for emotions in
music, it has been found that genre information is able to
bring significant improvements on model predictions [20].
For modelling emotions in music, the role of genre seems
to be of utmost importance.

4.3 Individual context

With the context I also refer to individual differences such
as personality, motivation and self-esteem, which all bring
about significant differences between listeners. Such per-
sonality traits as neuroticism and extraversion are linked
with negative and positive emotionality, leading to differ-
ences in music-induced emotions as well [57]. It is also
known that specific personality traits, such as openness to
experience, are linked with music-induced chills [58]. For
modelling emotions in music, the individual differences
have less important roles than say, music genre, but never-
theless, there is now a trend to incorporate the individual-
ity of the user when creating personalised recommendation
systems for music [59].

4.4 Listening context

A host of situational factors affect emotions induced by
music. From everyday music listening studies [60] we
know that differences in the listening contexts – whether
at home, at a laboratory, on public transport, with friends,
etc. – has a strong influence on what emotions are likely
to be experienced. For instance, it is known that emotional
episodes linked with music are most common at home and
at evening, and occur during music listening, social inter-
action, or relaxation, working and watching movies or TV.
These situational and social factors are challenging to in-
corporate into the emotion modelling. However, the con-
textual information provided by the situation is something
that at least needs to be acknowledged in modelling emo-
tions in music, even if it states that these results generally
hold for people listening to music alone in laboratory con-
ditions.

5. CONCLUSIONS

Significant advances in all areas of modelling emotional
effects of music have been made during the last decade.
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Theory 
●●◦ Models
●◦◦ Focus
◦◦◦ Mechanisms
◦◦◦ Epistemology

Context 
●●◦ Musical
●◦◦ Socio-cultural
●◦◦ Individual
◦◦◦ Situational

Data
●●● Processing
●●◦ Representation
●●◦ Content extraction
●◦◦ Evaluation

Figure 2. Key areas and their current status in modelling
emotions in music (filled circles indicate advanced status).

Figure 2 emphasizes how the areas overlap and need to be
developed in tandem. Figure also summarizes the current
progress of the important areas. Those areas that are par-
ticularly well developed are ranked high (shown with small
black indicators) and those key areas that require further
attention can be summarized:

• commitment to emotion focus and mechanisms

• estimation of high-level music content

• robust evaluation procedures

• open data sharing conventions

• everyday listening (e.g. data and functions)

• sensitivity to musical context (e.g. genres)

These key areas of attention have been the subject of
some studies detailed in earlier sections, but the progress in
them is still limited. In the theoretical domain – which has
lesser status in sound and music computing – future stud-
ies should adopt critical outlook to emotion models, focus
and underlying theoretical assumptions. In the domain of
data, cross-validation, appropriate behavioural data collec-
tion practices, creation of ways to measure high-level con-
cepts from audio, and making all the efforts transparent
by sharing the code and the data would greatly speed up
the progress made in the field. Any advances in context-
related issues would be a significant improvement, but to
create better models of emotional effects of music, taking
into account inherent differences in emotional values and
functions of different music genres would provide the most
imminent benefits.
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ABSTRACT 
Live music performance with computers has motivated 
many research projects in science, engineering, and the 
arts. In spite of decades of work, it is surprising that there 
is not more technology for, and a better understanding of 
the computer as music performer. We review the devel-
opment of techniques for live music performance and 
outline our efforts to establish a new direction, Human-
Computer Music Performance (HCMP), as a framework 
for a variety of coordinated studies. Our work in this area 
spans performance analysis, synchronization techniques, 
and interactive performance systems. Our goal is to ena-
ble musicians to incorporate computers into performances 
easily and effectively through a better understanding of 
requirements, new techniques, and practical, perfor-
mance-worthy implementations. We conclude with direc-
tions for future work. 

1. INTRODUCTION 
Live performances increasingly use computer technology 
to augment acoustic or amplified acoustic instruments. 
The use of electronics in performance predates compu-
ting by many years, and there are many different concep-
tual approaches. The most obvious and popular approach 
is the simple replacement of acoustic instruments with 
digital ones. Another popular approach is the use of inter-
active systems that mainly react to input from human 
performers. In these systems, humans effectively “trig-
ger” sound events or processes. 

Two key aspects of live performance with computers 
are autonomy and synchronization. Autonomy refers to 
the ability of the computer performer to operate without 
direct control by a human, and synchronization refers to 
the ability to adapt a performance to the timing of hu-
mans. For example, interactive systems that are triggered 
by live performers are autonomous because they require 
little or no direct human control, and their synchroniza-
tion is limited to computed responses to live events. 

As we consider other forms of music, particularly tradi-
tional musical forms with scores and multiple parts, syn-

chronization becomes essential. Performances with fixed 
recordings are used in many settings, but these are un-
comfortable because they place the entire synchronization 
burden on humans. One of the promises of real-time 
sound synthesis was to eliminate fixed recordings, creat-
ing an opportunity to actively and adaptively synchronize 
computers to humans [1, 2]. 

An early system to address computer synchronization to 
live performers was the Sequential Drum [3]. The Se-
quential Drum assumes that a sequence of sound events 
to be played is mostly known in advance, but the timing 
and perhaps other parameters such as loudness are deter-
mined at performance time. A performer uses a drum-like 
interface where each drum stroke launches the next sound 
event in the sequence and perhaps also controls loudness 
and other parameters. A drawback of the Sequential 
Drum is its lack of autonomy – it requires a human’s full 
attention during a performance. 

Conducting systems are related to the Sequential Drum 
and a common theme in computer music research [4]. If a 
conductor exists anyway and a computer can follow the 
conductor’s gestures, the computer could be considered 
an autonomous performer. Synchronization requires that 
the computer sense not only beats and tempo but start 
times and other cues as well. In practice, computers can-
not follow “real” conducting intended for humans, but 
there is promise that conducting gestures can offer one 
mode of synchronization. 

The difficulty of following conductors was one inspira-
tion for Computer Accompaniment (CA) systems [5], 
which use score matching to synchronize computer ac-
companists to live performers. CA is autonomous and can 
synchronize to traditional scored music with high reliabil-
ity. There are, however, some drawbacks. First, CA re-
quires a score and for players to follow the score. Im-
provisation and rhythmic variation lead to timing prob-
lems, if not outright failures. Second, CA requires dis-
tinctive input to follow. When the followed instrument 
holds a long note or rests, there is no synchronization 
information. It is possible to follow multiple instruments 
[6], but this adds to the complexity. Finally, CA often has 
limited timing accuracy due to problems of accurate onset 
detection. CA generally works well for chamber music 
with expressive timing, but not well for different forms of 
popular music. 

It is surprising that systems offering autonomy and syn-
chronization for popular music performance have not 
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been pursued more actively. Our goal is to create com-
puter performers that play music with humans. We are 
particularly interested in music with fairly steady beats 
and where synchronization must be achieved through 
beats and measures rather than score following. This is a 
realistic problem that is characteristic of nearly all popu-
lar music, including rock, folk, jazz, and contemporary 
church music. It should be noted that score following 
systems are not a solution to this problem because (1) 
they require consistent playing at the note level to match 
to scores and (2) they do not synchronize with the preci-
sion required for steady tempo. The problem is broad in 
that it touches on music performance practice, music rep-
resentation issues, machine listening, machine composi-
tion, human-computer interaction, sound synthesis, and 
sound diffusion. We refer to this overall direction as Hu-
man-Computer Music Performance, or HCMP. 

Our goal here is to introduce the problems of HCMP, 
survey progress that we have made working together and 
individually, and describe future challenges and work to 
be done. 

2. EXAMPLES OF HCMP SYSTEMS 
To date, we have constructed a number of HCMP sys-
tems. The first system was a large project to create a vir-
tual string orchestra to play with a jazz big band [7]. The 
system used tapping for synchronization, a small key-
board for cues (each key mapped to a different cue), and 
PSOLA [8] for time stretching a 20-track audio file in 
real-time. For this performance, an extra percussionist 
tapped her foot and entered cues. 

This system was reimplemented and integrated with ef-
fects processing software and used by the first author in 
an experimental jazz quartet. This system was designed 
to be operated by the author who also plays trumpet in 
the quartet. Cues are given by a capacitive sensor worn 
on the index finger, and the system uses MIDI files rather 
than audio. 

The B-Keeper system [9] is designed to follow the tim-
ing variations of a live drummer. Dedicated microphones 
are placed on the kick and snare drum, which are used to 
create an accurate representation of relevant drum events 
(Figure 1). 

 
Figure 1. The band Higamos Hogamos performing with 
B-Keeper. 

3. CHALLENGES OF HCMP 
Active research is being carried out on many fronts. This 
section describes just a few interesting problems present-
ed by HCMP and some of the approaches to solving 
them. 

3.1 Detecting the Beat 

Beat tracking algorithms aim to output the times of the 
tactus, the regular pulse with which humans would natu-
rally tap in time with the music. Most beat tracking algo-
rithms first process the signal to create an onset detection 
function [10]. Methods such as autocorrelation, comb 
filtering and interval clustering can be used to detect pe-
riodicity in this signal. The algorithm must also deter-
mine the phase, typically using dynamic programming or 
probabilistic methods, with the premise that musical 
events which correspond to peaks in the detection func-
tion are most likely to occur on the beat.  

Real-time beat tracking algorithms might be used to 
provide a tempo and phase estimate for the underlying 
beat which can be used to synchronise HCMP systems. 
Whilst offline beat tracking algorithms have access to the 
full audio file and can operate non-causally, beat trackers 
for live performance must operate causally in real time. 
Examples of real-time algorithms released as external 
objects for MaxMSP are: btrack~ [11], beatcomber~ [12] 
and IBT~ [13].  

Beat trackers are relatively successful on rock and pop 
examples, although they can exhibit errors such as tap-
ping on the offbeat and tapping at double or half the tem-
po (octave errors). Complex passages, such as those fea-
turing syncopation, can be problematic. Where the tempo 
changes, there is an inherent trade-off between reliability 
and responsiveness [14]. However, for a successful 
HCMP system, performers require full confidence that 
the system will behave as they expect.  

An alternative to sensing the beat in audio is sensing the 
beat from foot-tapping or other gestures. We have suc-
cessfully used a foot pedal in a number of performances 
and studied the foot pedal as an interface for communi-
cating beat timing to a computer. In our measurements, 
the standard deviation of foot tap times is about 40 ms 
[15]. This alone is not satisfactory for music with a 
steady tempo, but we use the “steady tempo” feature to 
our advantage by using regression over previous beat 
times to predict the tempo and next beat time. 

One of the difficult problems of tempo estimation is 
that tempo is normally steady but changes rather rapidly 
at times. We can minimize average error by using long 
regression windows, e.g. performing linear regression on 
the 20 previous beats, but then the worst case error where 
the tempo changes will be musically unacceptable. On 
the other hand, optimizing for the worst case tends to 
highlight special cases, often where synchronization is 
not musically necessary. In practice, we compromise with 
a window size of 5 to 7 previous tap times to predict the 
next tap time. This choice is sufficiently responsive that 
good synchronization, even in rock music, can be 
achieved, but it does require careful tapping. Some prac-
tice and musical skills are necessary, and the system has 
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less-than-ideal autonomy, but this method can be reliable 
and effective. 

We are also considering additional modes of acquisition 
(e.g. video) to augment audio analysis, drawing on in-
strumental technique (e.g. guitar strumming actions). 

3.2 Score Representation 

Synchronizing at the beat level is only the first step to 
musical synchronization. All performers need to be at the 
same musical position, e.g. “beat 2 of measure 5 of the 
chorus.” Before we can talk about synchronization at this 
level, we need a formal model of what synchronization 
means. 

In traditional music theory, a score provides an unam-
biguous sequence of beats and measures. Scores also in-
dicate what each player should play in a given beat. In 
popular music, scores are treated much more casually, 
and the mapping from score notation to performances is 
sometimes specified informally, e.g. “play a 4-bar intro-
duction, play an extra chorus at the end.”  

We could “solve” this problem by insisting on tradi-
tional scores, but the reality is that popular music perfor-
mance often demands flexibility to adapt, even in the 
middle of a performance. It is not unusual for non-
sectional changes also to be made, e.g. the band plays an 
extra measure by “intuition” before continuing with the 
next section. Systems that attempt to synchronize with a 
score need to identify the current score location within it. 
This requires identifying musical features in performance 
at the level at which the score is expressed.  For example, 
a chord list requires chord identification, a lead sheet with 
melody may be able to use that in addition to chords, per-
formances with lyrics may be able to follow the sung 
parts (using techniques such as that of Mauch et al. [16]). 

To address some of these problems, we have recently 
developed a music notation display system for HCMP. 
The system can import images or photos of music nota-
tion, thus leveraging existing printed music. Users can 
manually annotate the music images with control infor-
mation to mark measures, time signatures, section names, 
repeats, codas, etc. (See top of Figure 2.) The system can 
then compute the normal performance order of the score, 
essentially “flattening” the repeats into a linear sequence. 
This flattened score provides a reference mapping from 
measure numbers back to score locations. This mapping 
can be shared across different media (audio players, 
MIDI players, visual displays) to coordinate them. 

Another representation issue is that users may want to 
reorganize the score for a particular performance. We call 
this process “arrangement.” For example, an arrangement 
could be “play sections AABABA in that order, ignoring 
the structure implied by the score.” Figure 2 (middle) 
shows how an arrangement is constructed. The row of 
boxes represents an editable sequence of sections. Click-
ing on a box highlights the corresponding section in the 
score just above.  

While this work solves many representation problems, 
more work is needed to communicate arrangements to 
computer players. Implementing jumps in audio or MIDI 
files is tricky (consider that sections may have pickup 
notes that precede the section and notes that sustain into 

the next section). Ultimately, this illustrates the concep-
tual gap between human musicians who think of sections 
as high-level abstract objects to be realized in perfor-
mance and computer players that model sections as im-
mutable, concrete audio files or MIDI sequences. There 
are research opportunities here to raise the level of music 
abstraction offered by computers. 

At performance time, the score is displayed in perfor-
mance order using a “double-buffered” display allowing 
the performer to always look ahead in the score. (See 
Figure 2, bottom.) The performer can also use this dis-
play to give cues and indicate the current measure to the 
computer. This notation system is now complete, but 
work remains to integrate it with a performance system 
and to evaluate its use in live performances. 

 
Figure 2. Digital music display system. Top is annota-
tion system for indicating measures, sections, repeats, 
and other control structures. Middle is arrangement 
window showing original score and an editable se-
quence of sections constituting the arrangement. Bottom 
is live mode where score is displayed in performance 
order in real time with automatic page turning. 
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3.3 Synchronizing at Higher Levels 

While our work on score representation offers a frame-
work for coordinating performers, we still need to im-
plement coordination. We propose the concept of cues as 
an approach to achieving synchronization in live perfor-
mances. A cue is simply a signal that indicates a score 
location or directs a performer. Cues are typically given 
by humans to one another and take effect on the next sec-
tion boundary. It is not uncommon to give cues many 
measures in advance because communication during a 
performance requires getting the attention of other per-
formers and communication gestures may be unreliable. 

In our systems, cues have several types [17]: 
• Position cues indicate global position and indicate ei-

ther when to start playing or that the computer and 
human(s) have diverged and need to resynchronize; 

• Intention cues indicate a decision has been made 
about the future course of the performance; for ex-
ample, this is the last repetition of a vamp; 

• Voicing cues are not used for synchronization but in-
dicate choices about how a player should render 
media. Volume changes or a request not to play can 
be indicated with voicing cues. 

We have explored different means of giving cues. Our 
first system used a small MIDI keyboard where each key 
was labeled with a position cue that caused the computer 
to play a pre-recorded section of music. A later system 
used a wearable capacitive sensor attached to the index 
finger. By touching the sensor with the thumb, a cue can 
be given. This system detects cues reliably and does not 
intrude upon the human performer.  

Currently, we are working on capturing gestures such 
as nodding your head in the direction of the computer 
performer. Detecting gestures from a continuous stream 
of sensor data is prone to false positives. We are evaluat-
ing the use of dynamic time warping and machine learn-
ing techniques to build a reliable system [18].  

We are also exploring the potential of natural user inter-
faces to minimize disruption to performers. Ideally, a 
computer performer would not require explicit cuing but 
through understanding the performance norms of an en-
semble and observing the gestures the human performers 
make, will be able to determine the intention and position 
cues for itself (i.e. full autonomy).  

To that end, we have experimented with the Microsoft 
KinectTM sensor as an interface for various applications 
including use as a conducting system to set initial tempo, 
as a way to determine intention cues through counting 
raised fingers on one hand (a practice used in contempo-
rary church-music leading to direct the band to a num-
bered score section), to observe guitarists’ actions, and as 
a way to automate page turning. The latter project detects 
head tilt gestures that control the direction of a page turn 
in a PDF file displayed on a computer or (soon) iPadTM , 
controlled over a network.   

In all cases, the major challenge is the robustness of de-
tection in noisy, realistic scenarios. Distinguishing the 
neck of a guitar from a player’s arm has proved difficult, 
even in “near-mode” where the sensor tracks only the 
upper half of the body. The sensor is also very sensitive 
to angle, making it potentially difficult to deploy in real-

istic scenarios. Music stands, piano lids, microphones and 
other normal musical equipment found in stage environ-
ments all work to confound the clear picture required for 
easy detection.  

The page turning system (evaluated by two of the au-
thors in a laboratory setting, one acting as pianist) works 
well with the sensor placed in front of or behind a pianist 
(although is very sensitive to off-axis placement – front is 
best). Unfortunately, this precludes the typical “forward” 
nod for page turns because neck movement in that plane 
is not currently detectable from those sensor positions. 
Other challenges include differentiating expressive 
movement from directive gesture. 

We are also developing chord sequence recognition sys-
tems to identify a score section based on the chord se-
quence played thus far (similar to [19]). There are chal-
lenges in synchronizing the incoming chord sequence to 
the “model sequence” in the score, particularly in the 
presence of inaccurately played, missed, substituted or 
mis-identified chords, and difficulties arising from the 
need to define a chord with reference to a beat where the 
beat is itself defined with less than 100% accuracy. In 
addition, there are many examples of popular music 
where the chord sequence is so repetitive as to offer little 
information alone as to which of the sections is currently 
being played. In these cases, alternative cues such as the 
texture of the music may be helpful. Our distributed ap-
proach (described below) can also produce conflicting 
chord and beat identifications from different instruments 
that require resolution. 

A broader level of synchronization (and context 
knowledge) may also be required. It is not unusual for 
ensembles to move seamlessly from one work (or part of 
a work) to another without forward planning (e.g. see 
Benford et al.’s study of Irish folk music sequencing 
[20]). Recognizing when this occurs and shifting to the 
new work is similar to recognizing sections in general, 
albeit with a larger range of potential sections to select 
from. 

Finally, another important possibility for detecting cue-
ing gestures is the digital score display system described 
in the previous section. An interesting aspect of this inter-
face is that music notation can be bi-directional: The dis-
play can show the computer’s location in the score to the 
reader using a cursor or highlighting graphical areas, and 
the reader can indicate his or her location to the computer 
by pointing to notation (e.g. measures) in the score. 

3.4 Adjusting Tempo 

What does the computer player play? One approach is to 
play pre-recorded audio, using time-stretching techniques 
to adjust the playback tempo. We constructed one HCMP 
system in which the computer played the role of a 20-
piece string orchestra. Each string part was recorded on a 
separate track so that high-quality pitch-synchronous 
overlap-add (PSOLA) time stretching could be used [7]. 
Other techniques such as the phase vocoder can be used 
on polyphonic recordings [4]. 

Another approach is MIDI, since MIDI sequences are 
easily time-stretched. A challenge with MIDI is to simu-
late sounds of acoustic instruments. Sample-based syn-
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thesis is good for isolated notes, but it has difficulty pro-
ducing natural-sounding musical phrases. Progress has 
been made with large sample libraries and automated 
sample selection, but there is still much work to be done. 
Alternative techniques, including physical models and 
spectral models offer more flexible control, but expres-
sive musical control is still an important problem. 

Studies on latency in networked performance suggest 
that the just noticeable difference (JND), the latency set-
ting at which the effect becomes noticeable to the per-
former, is between 20 and 30msec [21]. This also pro-
vides an estimate for the bounds within which the syn-
chronization will be acceptable to human performers. 

3.5 System Architecture 

One lesson from building early systems is that robust 
interactive systems require careful design. The lack of a 
flexible program that supports new performances has 
hindered research, and we are working toward a more 
flexible, modular software architecture for HCMP. 

HCMP systems decompose naturally into components: 
• Input sensors for tapping and cueing, 
• Beat and tempo estimation based on tapping or audio 

analysis, 
• A virtual conductor that accepts position and tempo 

information and distributes it to players, 
• Media players, including variable rate audio players 

based on time-stretching, and MIDI players. 
• Score display (with automated page turning, position 

display) 
• Development and configuration management system 

allowing users to combine media, define cues, make 
arrangements, and store everything so that it can be 
retrieved and used automatically in a performance. 

We are developing components and plan to release a 
system based on “plug-ins” so that end-users can config-
ure their own systems with just the features they need, 
and advanced users can extend the base system through 
scripting languages to provide custom features. 

Our recent work [22] has shown that HCMP technology 
may be more likely to be adopted if it can be delivered 
quickly to users at low-cost and low-risk. We have there-
fore also been exploring the potential of mobile devices 
(such as smartphones) as a way to deliver HCMP sys-
tems. Each instrument in a band would be tracked by a 
smart device (e.g. resting on a music stand), undertaking 
its own audio processing and sending the results to a vir-
tual conductor on another device for music generation.  

This approach poses some interesting new problems. 
Since the audio processing for beat tracking and chord 
recognition is distributed among several devices, data 
fusion becomes paramount, especially in the absence of 
synchronous clocks. There are new opportunities also: 
textural detection may be easier (since the sound level 
can be more easily measured per instrument), beat track-
ing on an individual instrument may be better than on the 
ensemble as a whole (and could be based on knowledge 
of the individual instrument being tracked), and other 
device capabilities (e.g. video) may be usable. Additional 
equipment would not generally be needed by the users 
since we think it reasonable to assume that smart devices 

would be widely available to ensembles through personal 
phones. Where new technology is required (e.g. for ges-
ture tracking) we are seeking to use off-the-shelf con-
sumer devices such as KinectTM (as described above) to 
minimise deployment complexity and cost. 

To expose the research issues, we have undertaken a 
feasibility study to evaluate interactive performance tech-
nologies on consumer devices and in realistic perfor-
mance environments. The aims were to evaluate the diffi-
culty of repackaging this technology for smartphone, to 
assess the musical performance issues raised by doing so 
(e.g. where should the smartphone be placed while per-
forming?), and to understand challenges to the state of the 
art and shape the future development of such techniques. 
We repackaged existing state-of-the-art beat tracking [12] 
and chord-estimation [23] software into smartphone apps 
using libpd [24]. The app was deployed to several iOS 
devices (see Figure 3) linked by a wireless network. 

 
Figure 3. iOS app for beat/chord detection. 

A local church’s worship band area was used as a realis-
tic physical evaluation environment, with a subset of the 
authors forming a band. Five genre-appropriate songs 
were used as test subjects and video, audio, and data from 
the systems were recorded. We also undertook “laborato-
ry” evaluation using multi-track, multi-speaker record-
ings of the same songs to closely replicate live perfor-
mance conditions, but allowing replication and experi-
mental parameter control (see Figure 4).  The gesture-
control detection for band direction was also evaluated in 
this environment. 

 
Figure 4. Simulation of live performance with multiple 
speakers and devices in a shared acoustic space. 

Our analysis indicates that both platform and perfor-
mance context provide significant challenges to state-of-
the-art techniques. Problems include the distribution of 
tracking across multiple devices resulting in latency in 
reporting beats/chords, reconciling multiple independent 
timing streams, and the loss of the full mix at each tracker 
meaning the beat and chord tracking systems have less 
audio to work with. On the positive side, we also found 
evidence that beat tracking on an individual instrument 
track can outperform tracking on the whole mix. 
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4. HCMP EVALUATION 
To measure progress, we need ways to evaluate HCMP 
systems.  We have used a range of methods with varying 
levels of detail and rigour in the projects described in this 
paper.  Evaluating HCMP research requires several ap-
proaches given the range of underpinning disciplines and 
potential outcomes. Interactive Music System (IMS) 
evaluation methods vary widely depending on the type of 
system and the particular interest of the researchers.  Col-
lins summarises three main evaluation forms for concert 
systems [25]: direct participant experience, indirect par-
ticipant experience, and technical evaluation of algo-
rithms.   Hsu and Sosnick [26] address the first two as-
pects with a method based on the DECIDE framework.  
Stowell et al. [27] identify the difficulties in evaluating 
IMS, presenting and comparing qualitative and quantita-
tive approaches including comparative listening tests, 
interaction analysis based on video, discourse analysis 
and the (somewhat controversial – see Ariza [28]) “musi-
cal Turing Test”.  They offer useful guidance on the ap-
plication of these techniques:  Discourse analysis may be 
used to assess direct participant experience (i.e. the musi-
cians themselves), and the musical Turing Test (in effect, 
survey methods) used to assess indirect participant expe-
rience (i.e. the non-musicians supported by, or listening 
to the music).  Rowe states that programs for machine 
musicianship should exhibit behaviour that can be ob-
served as correct or incorrect [29].  In the HCMP case 
passing the musical Turing Test will require at least satis-
ficing (i.e. satisfactory and sufficient) output. 

Stowell et al. acknowledge that most evaluation meth-
ods are focused on the experience of performers [27] (e.g. 
Hsu and Sosnick’s framework [26] does not address the 
third of Collins’ criteria), thus the evaluation of HCMP 
systems (particularly the sub-components) will need to be 
supplemented by objective criteria (e.g. measuring laten-
cy of interaction in comparison to experimentally-derived 
musical synchronisation criteria [30, 31], and measures of 
beat-tracking accuracy [32] and chord recognition [23]).  
Adoptability issues will also need to be addressed [22]. 

The ensemble nature of popular music means that other 
than low-level laboratory tests of system components, the 
main evaluation activity will need to involve groups of 
musicians (or simulation of this scenario).  In addition to 
work with live bands, as shown above, multi-track re-
cordings can be used to simulate the live environment by 
replaying performances through electrical or acoustical 
signal paths to multiple speakers and detection systems.. 

5. FUTURE WORK 
Human musicians are often expected to improvise, or at 
least perform from lead sheets, which give music struc-
ture and chords but not the details of notes and rhythms. 
Since human musicians may not have the skills to con-
struct drum beats, bass lines, and other parts, HCMP is an 
excellent domain to investigate automated music compo-
sition. Perhaps music analogies are an interesting way to 
specify goals, i.e. “I want a bass part that sounds like the 
one in ….” Similarly, parts must be performed expres-
sively and musically. Perhaps there are synthesis-by-rule 

approaches [33] or more general theories of expressive 
performance [34] for popular, beat-based music. 

Ideally, an HCMP system would incorporate a learning 
mechanism that would allow it to extract useful infor-
mation about the performance from rehearsals. This could 
make performances more reliable and more autonomous. 

How can we evaluate general musicianship? Even syn-
chronization is difficult to measure objectively: Once 
basic synchronization within 10 or 20 ms has been ob-
tained, rhythmic “feel” that results from deliberate asyn-
chrony [35] may be more important than precise syn-
chronization. As we describe, a range of evaluation 
methods will likely be required, from measures of low-
level performance (synchronization, chord identification) 
through to system-level evaluation methods involving 
performers considering their experiences alongside the 
systems, and audience-focused measures of reception. 
The standards required may vary depending on context: 
A computer that fills in for a human musician in a re-
hearsal or HCMP to facilitate practice at home may have 
modest requirements, while high-profile live performanc-
es in public may require virtuoso-level performance.  The 
development of comprehensive and systematic top-to-
bottom evaluation methodologies for HCMP is thus a key 
topic for future work. 

6. CONCLUSIONS 
HCMP has great potential to be widely used by many 
musicians. There are interesting scientific challenges as 
well as artistic ones. We are in the early stages of explor-
ing possibilities and implementing systems that offer 
synchronization, interaction, and autonomy in live per-
formance, with a focus on steady-tempo popular music, a 
problem which our research community has largely ig-
nored. We believe that HCMP can become a practical, 
useful, and common way to make music, eventually used 
by millions. Ultimately, we hope that some of these users 
will leverage the unique properties of autonomous com-
puter musicians to develop new musical genres. 
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ABSTRACT

This paper presentsa gesture-based interaction technique
for the implementation of an orchestra conductor and a vir-
tual ensemble, using a 3D camera-based sensor to capture
user’s gestures. In particular, a human-computer interface
has been developed to recognize conducting gestures using
a Microsoft Kinect device. The system allows the conduc-
tor to control both the tempo in the piece played as well as
the dynamics of each instrument set independently. In or-
der to modify the tempo in the playback, a time-frequency
processing-based algorithm is used. Finally, an experiment
was conducted to assess user’s opinion of the system as
well as experimentally confirm if the features in the sys-
tem were effectively improving user experience or not.

1. INTRODUCTION

Computers have become an extremely common tool in our
everyday-life, to a degree that we are constantly interacting
with them. Yet, standard human-computer interfaces show
their shortcomings whenever trying to emulate interaction
metaphors that do not naturally map easily to a keyboard-
mouse setting, such as, for example, musical instrument
simulation. However, the evolution of sensing and motion-
tracking technologies has allowed for the development of
new and innovative human-computer interfaces that im-
prove user experience towards a more ’natural’ interaction
paradigm, thus bringing a new and vast array of computer-
generated applications that fit much more accurately their
real-life counterparts.

With regards to interactive music applications, these ad-
vanced human-computer interfaces have been used for a
wide array of fields: new instruments creation/simulation
[1], body motion to sound mapping [2] [3] [4] [5], gam-
ing [6] [7], modification of visual patterns by using sung
or speech voice [8], tangible and haptic instrument simula-
tion [9] [10], drum-hitting simulation [11] [12] [13], etc.

One exampleof musical performance that is inherently
linked to human body motion is that of the orchestra con-
ductor, yet surprisingly there are only a handful of stud-
ies that address conducting simulation through the use of
advanced human-computer interfaces. Conducting is re-
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quired to coordinate and synchronize the performance of
an ensemble. Therefore, the conductor must indicate mu-
sical parameters such as dynamics or tempo, using his hand
and baton gestures to such purpose. Previous research has
focused on capturing the conductor’s hand or baton motion
through the use of infrared sensors [14] [15] [16] [17], in-
ertial sensors [18] or the Wiimote [19] [20], changing the
tempo of thepieces performed accordingly. Some stud-
ies have also added some form of dynamics control [15]
or heuristics [21] to provide a more satisfying user experi-
ence.

In this paper, we aim to present a new interaction paradigm
for conducting gesture capturing, so that the user can effec-
tively conduct a virtual orchestra, indicating the tempo and
beat times of the piece performed, the overall dynamics
and the specific volume levels for a concrete set of instru-
ments in the ensemble. In order to achieve this, a Kinect
sensing device is used, thus providing an inexpensive and
off-the-shelf alternative for a non-intrusive experience for
the user, as well as the possibility of tracking both user
hands simultaneously. Additionally, we have conducted an
experimental study to assess the usefulness of the applica-
tion developed, as well as to find potential ways to further
improve user experience.

The technical details of the system implemented will be
discussed in the next section. Then, the following section
will cover the details of the experiment performed, whose
results will be presented and discussed in the subsequent
sections. The conclusions drawn from the study will be
depicted in the last section.

2. SYSTEM DESCRIPTION

As previously indicated, we opted for a Microsoft Kinect
for XBOX device in our human-computer interface design.
Kinect camera offers both a RGB-image and an depth im-
age of the scene capture. By combining the depth map data
with the OpenNI library and the NITE plugin, it is pos-
sible to extract 3D information to create an skeletal joint
model to follow user movements. Concretely, the system
is able to track the position in 3D space of up to 15 nodes or
joints, corresponding to the head, neck, torso, hands, feet,
etc. of the user. To provide some form of visual feedback,
the application rendered a basic virtual environment coded
in C/C++ using the OpenGL graphics library [22] and the
OGRE graphics engine[23]. The environment was tex-
tured and modelledto resemble a concert hall (see figure
1). PortAudio library is used for sound management, and
the tracksfor each of the sets of instruments in the virtual

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

284

mailto:alejandror@uma.es
mailto:ibp@ic.uma.es
mailto:lorenzo@ic.uma.es
mailto:abp@ic.uma.es
http://creativecommons.org/licenses/by/3.0/


Figure 1. Virtual environment for the application

ensemble are storedand read from separate WAV files.
In order to adequately implement an ensemble conductor

simulator, there are two main problems that need to be ad-
dressed: how to translate conducting gestures to changes in
the performance, and how to smoothly change the tempo
of the piece being played.

2.1 Changing the tempo of the piece: time-stretching

In order to change the tempo of the song being played, it
is necessary to modify the playback speed according to the
rate indicated by the conductor. Nevertheless, due to the
duality of time and frequency domains, simply changing
the playback speed also has an undesired effect in the form
of changes in pitch of the music played. Thus, a slower
playback time will result in a decrease of the pitch, while
a faster one will make the pitch go higher. In order to
smoothly play a musical piece at different playback speed
without such pitch changing artifacts, it is necessary to re-
sort to a time-stretching algorithm.

Time-stretching algorithms can be typically implemented
in time-domain, using the so-called Synchronous Overlap-
and-Add algorithm or SOLA [24]. This algorithm consists
in dividing the data signal into successive segments, and
then adding these segments together with a certain over-
lap, as can be seen in the figure2. The overlapping is per-
formed so thatthe last part of each segments ”fades-out”,
while the the first part of the next segment ”fades-in”, tak-
ing into account the cross-correlation of both overlapping
sections to maximize the smoothness in the transition.

SOLA time-domain algorith provides a computationally
fast time-stretching alternative. However, the main prob-
lem with the SOLA algorithm is that it works at its best
with structurally simple signals (such as speech [25]), but
not so wellwith polyphonic data, and the time-stretching
range is more limited. In order to achieve better qual-
ity output, it is necessary to resort to more complex tech-
niques.

In particular, we have implemented a time-stretching al-
gorithm based on the phase vocoder [24]. The phase vocoder
is a time-frequency processing technique that uses short-
time Fourier analysis and synthesis to transform a given

x
1
(n)

x
2
(n)

x
3
(n)

Overlap
Interval

Figure 2. Time-stretching in time-domain

Figure 3. FFT/IFFT block implementationfor phase
vocoder

data signal, according to the equation of the short-time
Fourier transform (STFT) with a windowh(n),

X(n, k) =
∞
∑

m=−∞

x(m)h(n−m)Wmk
N

k = 0, 1, . . . , N − 1, WN = e−j2π/N

Working with this equation, it is possible to implement
the phase vocoder using two different models [24]: the fil-
ter bank summationmodel and the block-by-block analy-
sis/synthesis model. We have implemented our time-stretching
algorithm following the latter. This model is based around
the use of the fast fourier transform and its inverse (FFT/IFFT),
dividing the input signal in overlapping segments (using
a hop-sizeRa). The FFT is performed then on each seg-
ment, as well as additional transformations to ensure phase
coherency. After that, the data is processed as desired, and
the output signal is synthesized using the inverse proce-
dure, combining the successive processed segments by an
overlap and add method with hop-sizeRs. This process is
portrayed in figure3.

In order toimplement time-stretching with a phase-vocoder,
the hop-sizes for analysis and synthesis (Ra andRs) are
selected accordingly to the time-stretching factor desired
(Rs/Ra), and the phase value for each frequency bin is ad-
justed accordingly [24]. In our application, the timestretch-
ing valueranged from 0.5 to 2.0.
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2.2 Gesture recognition and interpretation

In order toconduct a given performance, an orchestra con-
ductor gives a series of indications to the musicians by
waving his hands, signalling the beat times, indicating the
entry points, and controlling the dynamics of the whole
ensemble. The role of the conductor is critical, as he is
responsible for providing ”expressiveness” to the perfor-
mance. However, for a naı̈ve user, giving the precise in-
dications that a real conductor would give to the ensem-
ble can easily become a daunting and nearly impossible
task. For that reason, for the purpose of this application,
we have focused on developing a gesture recognition sys-
tem that can be used by expert and lay users alike. In par-
ticular, since the full-body skeleton-tracking functions of
OpenNI/NITE provide the 3D coordinates for both hands
of the user, we have assigned different functions to the
right and left hand gestures respectively. Concretely, right-
hand gesturing controls the tempo of the performance as
well as the time positions of the beats, while left-hand ges-
turing controls the dynamics in the performance as well as
the volume of each of the instruments taking part in the
ensemble.

2.2.1 Conducting tempo

Beat times are indicated by moving the right hand in an
horizontal waving motion; this gesture motion was selected
as it was found in previous tests with users without musical
background showed that they tended to wave their hands
horizontally when asked to make conducting gestures, and,
in general terms, users reported to be more comfortable
with a horizontal motion rather than a vertical one when
signalling high tempo. The system marks the time instant
when the hand starts and stops a move (be it from left to
right, or from right to left), and the time difference is then
taken to calculate the new indicated conducting tempo in
beats per minute. This time difference is then compared to
the original tempo of the piece being played, thus calculat-
ing the time-stretching factor (Ts) that must be applied.

Ts =
beatsPerMinuteOriginal

beatsPerMinuteIndicated
(1)

However, the system might give false positives if the mea-
sures are noisy. To ensure that detected motion does cor-
respond to intended gestures indicated by the conductor,
the length of the overall gesture is calculated, as per the
following equations:

u(t) =







1 if |

−−−→
dp(t)

dt
|≥ V

0 otherwise

d(t) =

Nstart
∑

n=0

|(
−−−−−−−→
p(t− nTf )−

−−−−−−−−−−−→
p(t− (n− 1)Tf ))|u(t)

where
−−→
p(t) is the 3D vector position of the right hand at

instantt, Tf represents the time between frames (roughly
30 milliseconds),Nstart is the last known sample for which

Conductor indicates
a new (faster) tempo T

2

T
1

T
2

Delay between beat times

Figure 4. Delay effect when beat times are not properly
synchronized

Beat times of virtual ensemble

Beat times indicated by the conductor

T
ensemble ∆t

Synchronization
time

T
conducted

 > T
ensemble

Next expected beat time

Figure 5. Beat time synchronization when the conductor
indicates a slower tempo

u(t) changed to a value of 1 andV is a minimum velocity
value (set at approximately 0.2 m/s). Thus, given a waving
gesture, if that gesture is performed horizontally and the
accumulated distance movedd(t) exceeds a certain mini-
mum valueL, it is assumed that the user has performed a
conducted gesture.L was set to a reasonable value for such
waving gestures, but long enough so that no arbitrary noise
could trigger a false positive (approximately 400 mm).

However, the tempo conducted alone does not offer enough
information for the system to adequately follow the con-
ductor’s indication, as just updating the system tempo with-
out taking into consideration the actual position of the con-
ducted beat times would result in a phase different between
the beat times indicated by the conductor, and the actual
beat times of the piece played. Such a situation creates
the feeling that the orchestra is too slow and cannot fol-
low the conductor gestures appropriately. This problem is
better portrayed in figure4, where the conductor’s indi-
cated tempo changesthe period of a simple signal (a si-
nusoidal wave). If the conducted tempo only changes the
playback tempo without taking the beat times into consid-
eration (represented in the figure by the instants where the
sinusoidal wave has a phase value of 0 radians), this intro-
duces delay in the response of the system (the beat times
of the piece played come at later time than the beat times
indicated by the conductor).

To address this problem, it is necessary to synchronize
the beat times of the piece played so that they match the
next expected beat times that the conductor will most likely
indicate. This assumption only makes sense if the tempo
between beats is expected not to change too abruptly, but
this is a reasonable assumption for the performance of an
orchestra in real life. In particular, if the user conducts
the virtual ensemble towards a slower tempo, the ensemble
must actually play at an even slower tempo than the one
indicated in order to synchronize its beat times with the
ones of the conductor, and vice versa. This situation is
portrayed in figure6.
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Figure 6. Beat time synchronization when the conductor
indicates a faster tempo

In this figure, the user indicates a slower tempo with his
gestures. However, the system does not realize this until
a time of∆t seconds has passed. In order to match the
conductor’s next expected beat time, it is necessary to de-
crease even further the tempo of the piece played for the
time period denoted as ”synchronization time”. The oppo-
site situation is portrayed in figure5, where the conductor
indicates the systemto increase the tempo.

Therefore, whenever the user conducts the orchestra to a
change in tempo, the system takes into account this time
difference∆t to properly synchronize its next expected
beat time with the user indications, modifying the playing
tempo accordingly. Thus, the timestretching factorTs is
updated according to the expected beat times by following
these equations.

Ts =















Tconducted

Tconducted −∆t
Ts if Tconducted > Tensemble

Tconducted

Tconducted +∆t
Ts if Tconducted < Tensemble

Initially, the system followed these equations to instantly
change the tempo in the piece played to match the beat
times of the conductor. Nevertheless, we found that the
changes occurred too abruptly, making the response of the
virtual ensemble feel rather unnatural. In fact, given a real
orchestra, the musicians would not probably change the
tempo in their performance instantly with the motion of
the conductor, but would rather do it over a period of time.
Thus, in order to offer a more natural answer, a second
iteration of the system was implemented. This second ver-
sion still calculates the expected beat times for adequate
synchronization, but instead of automatically updating the
tempo to the new value indicated by the conductor, the sys-
tem dynamically updates the tempo of the piece played un-
til both system and conductor beat times are sufficiently
synchronized. Concretely, the tempo is slowed or accel-
erated by adding a factor of±0.025 to the timestretching
factor at a rate of 4 times per second (thus, the timestretch-
ing value is updated in intervals of 250 ms).

2.2.2 Control of dynamics

In this system, the conductor would use his left hand to
indicate the system how to control the dynamics of the
performance. In particular, by raising his left hand, the
conductor indicates the system to raise the volume of the
performance, while lowering the hand brings the volume

Figure 7. Instrument selection for dynamics control

down. Theapplication also allows the user to select a spe-
cific instrument of the ensemble and modify the volume
levels for that instrument exclusively. In particular, the user
only has to point toward the instrument he wants to select,
and raise or lower his left hand accordingly to whether he
wishes to raise or lower the level of volume. The system
determines which instrument the user is pointing at by cal-
culating the pointing vector of his left arm, taking the left
shoulder and left hand positions as references. The appli-
cation indicates which instrument set is currently selected
by placing a red arrow over the image that represents that
instrument set (see figure7).

3. EXPERIMENTAL SETUP: METHODS AND
MATERIALS

In this section, the different details of the experiment con-
ducted will be presented, so that the same experiment can
be easily reproduced by fellow researchers if needed.

3.1 Participants

A total of 24 participants took part in the experiment con-
ducted, 3 female and 21 male, with ages ranging from 23 to
34 years (average 29,71 years, variance 10,30). There were
1 undergraduate, 15 graduates and 8 postgraduates. From
the 24 participants, 2 had a strong formation in music, and
1 of these along with 2 more participants were actual pro-
fessional musicians. Of the remaining 20 participants, 4
had played previously a musical instrument regularly. The
rest of the participants (16) were nave musical users, with
no previous formation or experience in music practice or
music theory knowledge.

3.2 Materials

For the experiment, we used the previously discussed sys-
tem. Thus, users were presented with a virtual reality ap-
plication in which they had the possibility of modifying the
tempo and/or the dynamics of the song played. For the pur-
pose of the experiment, an excerpt of Peer Gynt’s ”In the
hall of the mountain king” was played constantly in a loop
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while the system was tracking user’s movements, and the
playback wasmodified according to the motion detected.
Two sets of instruments were considered for the tests with
their corresponding WAV files: violin and trombone.

3.3 Procedure

The experiment was performed in a research lab in the
School of Telecommunications of Ḿalaga. Each partici-
pant performed the trials scheduled assisted by a researcher,
who explained him/her the details of the tests as well as ob-
served the participants behaviour during the experiment.
Participants were instructed to use their right hand wav-
ing motion to conduct the tempo in the ensemble, and their
left hand to indicate changes in dynamics (in the same way
as described in the previous section). At the end of their
performance, the researcher asked the participants to fill
in a questionnaire concerning their opinion on the experi-
ence; additionally, the researcher also had a casual inter-
view with the participants regarding their overall experi-
ence and their perception of the strengths and weak points
of the system.

From a previous pilot study with a smaller sample of par-
ticipants (4 in total), we had found that users did not notice
the effects of the tempo synchronization algorithm in their
experience, i.e., they seemed to be satisfied with just being
able to change the tempo in the piece by ”waving” their
right hand, but did not pay attention to whether the beat
times of the piece were synchronised or not with the hand
motion’s starting and ending points. Also, users had de-
scribed the dynamic control interaction implemented to be
sort of cumbersome and detrimental to the experience.

In order to further assess these issues, we defined two
experimental factors in our study: atempofactor and ady-
namicsfactor. Thetempofactor controls whether the syn-
chronization algorithm previously described was present
or not, while thedynamicsfactor controls whether the user
can modify the dynamics in the piece being played, or just
the tempo of the piece.

The combination of the two factors yields a total of2 ×
2 = 4 experimental conditions. A repeated measures ap-
proach was followed [26], so that there were 4 experimen-
tal sessions foreach participant, each session correspond-
ing to one of the aforementioned experimental conditions.
To avoid order effects, the order in which the participants
performed their sessions was fully counter-balanced. Each
session was scheduled to last no less than 2 minutes and no
more than 7 minutes. Each participant was told to spend as
much time as they deemed necessary ”playing” with the
application at each experimental session, and were only
instructed to stop or continue if the aforementioned time
constraints were not met.

3.4 Data retrieval on user experience

The data was collected from the questions listed in the
questionnaire which participants filled in at the end of the
experiment. In extent, each participant was asked to eval-
uate the following aspects of their experience with a score
from 0 (least satisfactory) to 10 (most satisfactory):

• Overall satisfaction with the application (Satisfac-
tion)

• Level of control over the parameters of the piece
played (OverallControl)

• Level of control over the tempo of the piece played
(TempoControl)

• Synchronization between motion and the changes in
the piece played (Synchronization)

• How intuitive was the interaction (Intuitiveness)

• Ease of use of the application (EaseOfUse)

• Level of realism perceived (Realism)

For each of this items, a dependent variable was created
(with the name indicated in brackets). In addition to the
aforementioned items, users were also encouraged to state
personal comments and impressions regarding their expe-
rience with the application.

4. RESULTS

In order to analyze the variables, a repeated measures two-
factors ANOVA2× 2 was performed on the factorstempo
and dynamicspreviously defined. The principal effects
analysis for thetempofactor had a significant effect on the
variablesSatisfaction(F1,23 = 25.09, p < 0.000), Overall-
Control(F1,23 = 18.81, p < 0.000), TempoControl(F1,23 =
21.49, p < 0.000), Synchronization(F1,23 = 15.02, p <
0.001) and Realism(F1,23 = 6.27, p < 0.020). In the
case of thedynamicsfactor, there was a significant effect
on the variablesSatisfaction(F1,23 = 9.75, p < 0.005),
OverallControl(F1,23 = 9.37, p < 0.006), Synchroniza-
tion(F1,23 = 15.02 ,p < 0.005), Intuitiveness(F1,23 =
5.28, p < 0.031) and EaseOfUse(F1,23 = 13.80, p <
0.001). The estimated marginal means for the variables
Satisfaction,OverallControl,TempoControlandSynchro-
nizationare presented in figure8.

The quantitative effects that each of these factors had
on the average values for each of the variables observed
are summarized in table1. Concretely, in the case of the
tempofactor,every variable where it had a significant ef-
fect increases its value when the tempo synchronization
algorithm is present. The same situation is found for the
dynamicsfactor, with the exception ofIntuitivenessand
EaseOfUsevariables, which offer lower values when the
user is allowed to control the dynamics of the piece.

No significant second order interactions were found be-
tween the two experimental factors considered (F1,23 <=
3.01 for all the variables observed). Overall, user expe-
rience according to the variables observed was quite pos-
itive, with Intuitivenessbeing the variable that scored the
highest values andEaseOfUsebeing the one that presented
the highest variance. Figure9 illustrates the average score
for eachvariable and their standard deviations.
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Figure 8. Estimated Marginal Means for the dependent variables Satisfaction, OverallControl, TempoControl and Syn-
chronization. Thetempofactor takes values 1 (tempo synchronization present) or 2 (tempo synchronization not present).
Thedynamicsfactor takes values 1 (dynamics control present) or 2 (dynamics control not present)

Cond. 1 Cond. 2 Cond. 3 Cond. 4

Satisfaction 7.875 7.25 7.375 6.75
OverallControl 7.5 6.917 7.208 6.25
TempoControl 7.5 7.125 6.75 6.208
Synchronization 7.5 6.875 6.917 6.125
Intuitiveness 8.292 8.417 8.125 8.458
EaseOfUse 7.208 7.792 7 7.7917
Realism 7.25 7.083 7 6.833

Table 1. Average scores for each variable observed at each
of the 4experimental conditions: condition 1 (both tempo
synchronization and dynamics control present), condition
2 (only tempo synchronization present), condition 3 (only
dynamics control present) and condition 4 (none present)
.

5. DISCUSSION

The results yielded from the experiment conducted showed
a quite positive response from the participants that took
part in the experiment. As expected, an adequate synchro-
nization between the beat times in the piece and the starting
and final positions of user’s ”waving” motions was critical
to the overall experience of the user. Interestingly though,
from the interviews had with the participants, the vast ma-
jority of them did not consciously notice a significant dif-
ference between the two tempo conducting modes consid-
ered. Nevertheless, the results extracted from the analysis
of the variables observed did show that user perception of
satisfaction, control and realism among others was indeed
significantly higher if the beat times of the piece were ad-
equately synchronised with the beat times of the hand. In
the case of the 4 participants that had a strongest musical
background, they did acknowledge to have noticed this dif-
ference between the two conducting modes, yet no partic-
ular differences were found in the statistical analysis per-
formed in this regard.

The presence of dynamics control showed also a positive
income in user experience regarding satisfaction, control
and synchronization. However, the added complexity of
the interface made the system less intuitive and, especially,
more difficult to use. In fact, from observation of user be-
haviour during the experiments, some of the participants

Figure 9. Average values for the variables considered,
along with± their standarddeviationsσ

found it difficult to control both tempo and dynamics at the
same time, as their left hand might hamper their right hand
motion when trying to select the violin. This is a flaw that
comes mainly from the camera-based nature of the sys-
tem, as it may be possible that one hand obscured the line
of sight of the 3D sensor to the other one. In the particular
case of the right hand, the system was highly sensitive to
this kind of occlusion.

Previous work has focused mainly on capturing the con-
ductor’s gestures to modify the tempo of the piece played
by applying the corresponding timestretching algorithm. A
few studies, however, have also implemented the possibil-
ity of controlling the dynamics of the piece played, as is
the case of Borchers et al. [15], offering a much more com-
plete experienceto the users. Our work also aims to offer
this more complete experience, by adding the possibility of
controlling the volume of the different instruments in the
ensemble. However, as found in the tests performed, addi-
tional steps must be taken to ensure that users can actively
used both hands without interfering the commands given
by each other because of occlusion.

Most of the previous research has favored the use of in-
frarred or inertial batons [15] [16] [17] [18], or, more re-
cently, theuse of Nintendo’s Wiimote [19] [20]. However,
this kind ofdevices is usually very expensive [17] or have
ergonomicandusability issues (in the case of the Wii Re-
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mote, its shape is not that adequate for baton emulation,
and its additionalweight when compared with an infrared
baton [21] might rise some issues in long sessions). By
using a Kinectdevice as the basis of our system, we pro-
vide a non-intrusive interaction paradigm that minimizes
the effects of such issues (both major and minor). Inter-
estingly though, we would like to point out the fact that,
in our user study, we also found that a small sample of the
participants got ”tired” after the experimental sessions and
even reported arm pain because of the conducting gesture
(2 cases). However, this can be explained in the unusual
length of the experimental sessions.

Finally, one aspect that some participants criticized in
the application was that they perceived some lag between
their motion and the response given by the system. This
is caused because of a delay introduced by the sensing de-
vice, and it is an issue where the system should be im-
proved in its next iteration.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the work performed to-
wards the implementation of an advanced human-computer
interface for conductor simulation, using an off-the-shelf
device that allows for optimal usability without involving a
high purchase cost. We have implemented a time-stretching
algorithm for tempo modification and developed a gesture
recognition system for dynamics and tempo indication by
the user. The application developed has been tested by mu-
sicians and näıve users, with positive impressions on the
experience perceived by both types of users. Also, it has
been experimentally confirmed that the addition of a better
synchronization algorithm and dynamics control does in-
deed improve user experience, even if the users were not
consciously aware of it. From the results yielded in the
experiment, we conclude that the application developed
provides a satisfactory exploratory experience in music in-
teraction, which can be enjoyed alike by nave and expert
users.

In future works we hope to improve further on the system
designed. In particular, we intend on improving the gesture
recognition module to expand the range of gestures iden-
tified from the already supported waving gesture to more
complex gestures similar to the ones performed by orches-
tra conductors according to the time signature of the piece
played. Also, as indicated in previous works [27], other
features from theconductor’s gesturing and body expres-
sion can have a significant effect on musician action. We
also hope to expand the tests of the application by per-
forming a larger user study to gather additional data in
order to identify other key aspects where the application
can be improved towards a better user experience. Last
but not least, as satisfactory as the user response has been,
we have found that issues like hand occlusion and lag per-
ception need to addressed and improved upon for future
implementations of the system.
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ABSTRACT

This paper presentsa system that emulates an ensemble
conductor for string quartets. This application has been
developed as a support tool for individual and group prac-
tice, so that users of any age range can use it to further
hone their skills, both for regular musicians and students
alike. The virtual conductor designed can offer similar in-
dications to those given by a real ensemble conductor to
potential users regarding beat times, dynamics, etc. The
application developed allows the user to rehearse his/her
performance without the need of having an actual conduc-
tor present, and also gives access to additional tools to fur-
ther support the learning/practice process, such as a tuner
or a melody evaluator. The system developed also allows
for both solo practice and group practice. A set of tests
were conducted to check the usefulness of the application
as a practice support tool. A group of musicians from the
Chamber Orchestra of Ḿalaga including an ensemble con-
ductor tested the system, and reported to have found it a
very useful tool within an educational environment and
that it helps to address the lack of this kind of educational
tools in a self-learning environment.

1. INTRODUCTION

In recent years, our society has experienced a vast devel-
opment of information and communication technologies
as well as its integration in our everyday life. This phe-
nomena has also spread to schools and educational models.
Thus, for example, the use of internet has become an im-
portant asset in the classroom environment [1], as well as
learning howto find a particular type of information among
the different web resources as well as discriminating useful
knowledge from redundant data. Furthermore, students are
active users of many of the current Web 2.0 applications
and emerging technologies, such as Facebook, Twitter and
social networks in general, wikis, blogs, etc., and while
the use of these resources in the classroom has not been
yet consolidated, there is an intent and general agreement
that the use of such tools could improve the learning pro-
cess for the students, improving learning outcomes and/or
creativity in the student [2], [3], [4], [5].
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However, when it comes to the field of music studies,
this array of tools might prove to be partially lacking. Of
course, it is possible to make use of conventional web re-
sources as a way to increase students’ motivation towards
learning, thus lowering potential barriers in regards to the
abstract nature of music theory concepts. But music is a
subject that relies heavily on practising and puts a special
focus on interacting with other musicians to play complex
pieces. With regards to this, the most conventional inter-
action paradigms and web 2.0 resources might prove to be
insufficient, therefore requiring the use of more specialized
tools and applications to provide a more specific interface
for an adequate learning experience.

Looking into the research performed by the community
in the field of human-computer interfaces for music in-
teraction, there is a wide range of potential application
fields and interaction models: virtual musical instrument
creation/simulation [6], gaming and serious gaming [7],
[8], [9], body-motion-to-sound mapping [10], [11], [12],
guitar chords andfrets detection [13], [14], singing voice
interaction [15], tangible and haptic instrument simulation
[16], [17], virtual drumkit emulation and drum-hitting sim-
ulation [18], [19], [20], etc. Particularly, with regards to
orchestra conducting, thereare a handful of systems and
applications proposed that capture the conductor’s gesture
to control parameters of a virtual orchestra, such as tempo
[21], [22], [23], [24] as well as dynamics [25], [26].

It is clearthen that current technologies allow for the im-
plementation of practice-oriented applications. Yet, from
the perspective of a support tool for learning, most of these
systems show some shortcomings that make them a less
feasible solution. In extent, some of this interfaces are too
exclusively focus on offering a recreational experience that
can hardly be translated into a learning framework, and es-
pecially most of the examples cited require the use of very
specialized hardware, thus limiting the potential target au-
dience that can benefit from their use. Therefore, there
is a need for more learning-oriented and accessible appli-
cations that can be used by students as a way to further
improve their skills. Also, there is a lack of applications
that make use of these technologies as a learning tool or to
address concrete issues regarding musical practice.

In the case of string quartet groups, one problem typi-
cally found with regards to practising is that it can be dif-
ficult to coordinate all five members of the quartet for a
given practice session. This can be specially critical if the
conductor is not present, for in this case the rest of the
musicians find it much more difficult to synchronize their
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Figure 1. Modules of the Virtual Director application.

performances properly.This can ultimately make the value
of the practice session diminish greatly. Thus, it would be
quite useful to have a computer application that could pro-
vide beat and dynamics indications similar to those given
by a real-life conductor. In this paper, we present an ap-
plication developed to fulfil such purpose. In particular,
this application implements a virtual orchestra conductor
simulator for string quartet practice. Concretely, the sys-
tem allows a musician to practise his/her performance ei-
ther individually or in a group, and assess and evaluates the
user’s performance. In the next section, the details of the
implementation of this virtual conductor will be covered,
and later, the results of the tests performed will be briefly
presented and discussed.

2. DESCRIPTION OF THE VIRTUAL
CONDUCTOR SYSTEM

This application will emulate the role of a virtual conduc-
tor so that a musician can practise his performance as part
of a string quartet ensemble. The application will assume
a string quartet ensemble of four different instruments: vi-
olin, viola, cello and contrabass; however, the system can
be configured to a different set of instruments, such as the
more typical distribution of 2 violins, 1 viola and 1 cello.
The system gives indications to the user regarding the beat
times, changes in tempo, etc. The system also offers feed-
back to the user regarding his/her performance, evaluating
the accuracy of the student when playing the correspond-
ing piece. The application stores the information of each
of melodies considered in MIDI format, and also allows
for the playback of the MIDI data, so that the user can hear
the piece as a whole for a better reference.

In this section, the general structure of the virtual conduc-
tor implemented will be presented, as well as the details of
the components which the application consists of. A draw-
ing of the different modules can be found in Fig.1. The
application will startwith a presentation screen and then
prompt a configuration menu to setup the virtual conductor
parameters desired for the intended practice session. The
system allows for two different study and playback modes,
depending on whether the user wishes to perform solo or
group practice. The application includes also a tuner mod-

ule to ensure that the instruments are properly tuned before
starting the practice session, as well as a melody evaluator
that gives the user feedback on how accurate is his/her per-
formance. A set of help menus are also provided to assist
musicians in the use of the application.

The most relevant functionalities of the system will be
described in the following subsections. In particular, the
most important blocks in the application are the tuner, the
melody evaluator and the virtual conductor emulation it-
self.

2.1 Tuner

When playing an instrument, it is extremely important to
ensure that the notes played by the instruments are the ones
that should be, in extent, that the instrument is properly
tuned. In the case of string instruments, such as the violin
or the viola, the musician must typically rely on his hearing
acuteness and a tuning fork. To address this issue, the ap-
plication includes a tuner module to assist the user in this
procedure.

The music signal is recorded by a microphone, and then
its spectrum is calculated with a sample frequency of 88200
Hz (thus allowing for a spectral resolution of 0.5 Hz). The
tuner module was implemented following a similar detec-
tion method to the one presented in [27], analysing the
spectrum of thesignal recorded, and subsequently extract-
ing the fundamental and partial frequencies. In order to do
so, the peaks in the spectrum are detected by finding its
local optima (using a window of 5 samples to the left and
right of each potential peak candidate).

After that, a threshold value (set at a 20% of the max-
imum amplitude value found) is set to prune undesired
peaks in the spectrum, following an iterative process: the
sample with the highest magnitude is found, the 4 adjacent
samples are erased (to account for the slopes of the peak),
and a new iteration begins. Once the spectrum has been
simplified this way, the distances between each successive
peakd(ni, ni+1) are calculated and stored. In the stan-
dard frequency domain, the fundamentals and partials of
a note would be found equally spaced along the spectrum,
in frequenciesfpitch, 2fpitch, 3fpitch, 4fpitch etc. Fol-
lowing this schema, it is possible to detect the fundamental
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Figure 2. Tuner module interface.

and partial frequencies,thus effectively extracting the pitch
of the note played. The system then evaluates each peak
detected to determine whether it belongs to fundamental-
partials set or not. If the system finds either the funda-
mental frequency and at least 2 partials, or, alternatively,
3 partials or more, then it proceeds to assess whether the
string is tuned or not. If the fundamental frequency of the
note detected is within 2.2 Hz of the expected value, it is
assumed that the corresponding string is tuned. Otherwise,
the string must be tuned accordingly.

Depending on the type of instrument that the musician
is playing (violin, viola, contrabass or cello) and the string
being tuned, the system indicates the user whether the string
is properly tuned (by turning a red button into green) or if it
is necessary to either tune up or down the string played (by
lighting the corresponding arrow), as can be seen in Fig.2.

2.2 Melody evaluator

The purpose of this module is to analyse the piece played
by the user, extracting the melody from the signal sampled
and checking whether the student is playing the right notes
or not. In order to perform this analysis, the audio signal
is windowed so that each window holds the audio samples
corresponding to each of the beats given by the virtual con-
ductor.

The system knows beforehand which notes should play at
each beat/bar from the data stored in the MIDI files. Thus,
for each beat in the time signature, the system checks the
MIDI data to identify the notes that should be played at
that particular beat. For each window, the application uses
the same detection method as for the tuner to find the fun-
damental frequencies, and compares them to the ones that
should be had according to the notes assigned to that beat.

It may be possible that a time delay were introduced in the
processing stage of the signal, therefore creating a poten-
tial desynchronization in the alignment of the MIDI score
and the actual performance of the user. To account for this
lack of synchronization, the system not only checks for
each note in the corresponding beat window, but also in

Figure 3. Melody evaluator dialog.

both the previous and next window.
Once the candidate notes have been detected, the system

then evaluates if the notes played are the ones expected or
if the user has made a mistake in his/her performance. For
each note detected, it is assumed to be “correct” if the dif-
ference between the fundamental frequencies of the note
detected and the expected one is lower to the minimum
difference between the lowest note for the instrument con-
sidered and its sharp version. For example, in the case
of the violin, the lowest note available is G3, and the dif-
ference between G3 and G#3 is 11 Hz. Thus, if a given
detected note is within 11 Hz of the note expected for the
time beat evaluated, the system labels it as a correct note,
or as a mistake otherwise.

For each melody evaluated, the system indicates the user
the amount of correctly played notes, as well as the num-
ber of notes which the user played wrong, and the corre-
sponding beat times in the score. The dialog in the final
application can be seen at Fig.3).

2.3 Virtual Conductor

The main functionality of the system implemented is that
of emulating the indications that an ensemble conductor
gives to his/her fellow musicians when practising and play-
ing a given piece. In order to implement this functionality,
the system uses a virtual baton, represented by a set of four
circles displayed on the computer screen. These circles
change their colour and shape according to the beat and
dynamics of piece played and the indication of the user in
the configuration step. Each of the circles is placed in each
of the four positions of the hands/baton that are typically
used to signal beat times (up, down, left and right). At
each beat time, the corresponding circle is coloured. The
circles are coloured as if seen from the point of view of
the musician, i.e. a 3/4 time signature would be signalled
in the order down-right-up. The colour and size of each
circle changes with the dynamics of the beat. Thus, for a
pianoor pianissimonuance, there is a small light-coloured
circle, while for amezzoforte-forteintensity, the circle be-
comes larger and darker (see Fig.4).
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Figure 4. Virtual conductor for solo practice.

Figure 5. Indication of afermata.

In additionto the virtual baton, the application also gives
additional visual feedback to the user to further guide his
performance. In particular, dynamics nuances are also in-
dicated in written form under the label “Intensity”, as well
as additional dynamics indications (such asritardandoor
fermata) under the the label “Tempo”; in the case of in-
dicating afermata, this is further signalled to the user by
painting a red circle in the center of the baton (as per Fig.
5). Furthermore, there might and will be bars in a piece
where a given instrument is not played at all; such indica-
tions are given under the label “Musical”.

The current bar number is also provided for further refer-
ence for the user. The user can also stop the performance
at any time, restart at any given bar number, and manually
change the tempo on the fly. This last option has been pro-
vided to specifically account for the fact that the tempo in
rehearsals is usually initially lower to the actual tempo of
the piece, and it is slowly increased as the musicians prac-
tise further.

The virtual conductor can be used for solo practice or
group practice. In the case of the latter, the information
provided by the system differs slightly from the previously
commented features. Concretely, the space devoted to the
virtual baton on the screen is more confined, and the in-
dications given refer to the general indications that affect
every single instrument globally. For specific indications
for each of the instruments taking part in the performance,

Figure 6. Virtual conductor for group practice.

Figure 7. Configuration options with on-screen score.

a set ofpanels are provided (first and second violin, viola,
cello and contrabass) as seen in Fig.6

2.4 Other modules

The virtual directortools has been design so that it can
be fully configured to the needs of the student as well as
providing an intuitive and easy to use interface. In that
regard, the application also includes several modules and
options to offer a more satisfying and complete experience
to the user, such as a help menu, the possibility of loading
music scores for reference on the screen, setting the tempo
and speed nuances (ritardando,fermata,crescendo,dimin-
uendoect.), indicate a specific bar, ananacrusis, etc. An
example of the configuration screen can be seen at Fig.7

3. RESULTS AND DISCUSSION

3.1 Tuner

We conducted a set of tests to verify the correctness of the
tuner implemented. In order to do so, we had access to a set
of string instruments, and tuned them using the tuner mod-
ule developed. Since the frequency of the notes for each
string in a properly tuned instrument is known, checking
the validity of the tuner application is immediate once the
frequency peaks (fundamentals and partials) are extracted.

For the violin, it was found that the fundamental fre-
quency for the G3 note could not be detected, but the string
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could still be tuned by detecting the first partial. The same
result wasobtained for the C3 note in the case of the viola.
In the case of the cello, the fundamental frequency for the
C2 note could not be found, nor could the first partial, but
the note being played could still be detected by looking at
the second partial. For all the other cases, the fundamental
frequency of the note played was always detected, and thus
it was possible to tune each string accordingly.

3.2 Melody evaluator

In order to test the viability of the melody evaluator im-
plemented, we conducted a simple experiment in which a
musician played a short piece, and the system gives a ratio
of successfully played notes. For the tests, we used a set
of melodies from pieces for the different string instruments
considered (violin, viola, cello and contrabass).

The results yielded showed that the success rate oscillated
between 100% and 84%, depending on the melody played
and instrument used, with the best results found in the case
of the cello (100% success rate with all the melodies), and
the worst results (84% success rate) was found in the case
of both the viola and the violin when playing Pachabel’s
Canon.

After analysing the spectrum of the melody played, it was
found that the errors found in all cases were caused be-
cause of a lack of proper tuning of the instruments. For
example, in the case of Pachabel’s Canon for the violin,
the error notes were F3 (739 Hz) and C3 (554 Hz); the
fundamental peaks were not detected themselves, but the
first partials detected for each note were at 1468 Hz and
1111.5 Hz respectively, while it should have been 1478 Hz
and 1108 Hz had the instrument been properly tuned. Af-
ter tuning all the instruments considered and repeating the
tests with the same pieces, it was found that the melody
evaluator had now a ratio of successfully detected notes of
100% in all cases.

3.3 Virtual conductor

To assess the effectiveness of the virtual conductor system
as a learning tool, we presented the application to a set of
musicians from the Chamber Orchestra of Málaga, as well
to an ensemble conductor. Each participant learned how
to use the application and was asked a total of 6 questions
which they had to answer with a value ranging from 0 to
10, being the former the score given if they found no real
utility to the tool, and the latter the one in case they found
it extremely useful. The questions in particular were:

1. How useful did you found the tool developed?

2. Was the program easy to use?

3. Would you use this tool in your practice?

4. Do you find the tool useful as a way to enhance
learning processes?

5. Are the indications given by the virtual conductor
clear enough?

6. Please, state your personal opinion.

Figure 8. Virtual Conductor assessment from users’ ques-
tionnaire.

The answers collectedwere overwhelmingly positive, with
the average scores for all the items in the questionnaire
being between 9 and 10. The average scores for each of
the 5 questions are summarized in Fig.8, in different sets
according to theinstrument played by the musicians that
took part in the study. In their personal opinions, the par-
ticipants also indicated that they found the tool especially
useful both for solo and group practice, and that it would
be desirable that there were more similar commercial prod-
ucts available, for it covers an important aspect with re-
gards to music learning that is lacking in current paradigm.

The system was also tested by a professional ensemble
conductor, who found the virtual conductor proposed to be
an excellent pedagogical tool for musicians at any learning
stage, as it addresses one important handicap in the learn-
ing process, which is solo rehearsing of chamber pieces.
Furthermore, she found particularly enticing the group prac-
tice possibilities of the application, for it makes the learn-
ing process less lonely as well as it gives the student a
much better context for his/her performance.

4. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented the work conducted to-
wards the development of a support tool for music learn-
ing that emulates the role of an ensemble conductor. The
system does not only give indications similar to the ones
given by a real-life conductor, but it also provides addi-
tional functionalities that further enhance or ease the learn-
ing experience, such as built-in tuner or a melody evalua-
tor. To further validate the usefulness of the application
developed, a set of experiments were conducted. The fel-
low musicians who tested the proposed system deemed it
to be a really useful tool for the purposes of music learning,
and highly encouraged that similar devices were available
in the future, as there is a need for such kind of support
tools that is not currently covered with the currently avail-
able resources.

While the response of the participants was quite positive,
we would like to further improved the discussed tool in
future iterations by integrating additional functionalities.
The system can also be extended to account for a wider
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range of instrument than that of string instruments (e.g.
wind instruments). Adaptingthe system to make use of
real WAV files instead of MIDI files for playback would
increase the audio fidelity of the system, providing more
realistic sounds. The interface might be improved further
with the addition of additional (such as changes over time
on arousal and valence) as well as with the implementa-
tion of a more refined presentation of the cues (like, for
example, having a virtual 3D model of the director giving
indications in a more continuous, realistic way).
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ABSTRACT

We discuss acoustic score-following algorithms for mono-
phonic musical performances with arbitrary repeats and
skips as well as performance errors, particularly focusing
on reducing the computational complexity. Repeats/skips
are often made arbitrarily during musical practice, and it
is desirable to deal with arbitrary repeats/skips for wide
application of score following. Allowing arbitrary re-
peats/skips in performance models demands reducing the
computational complexity for score following. We show
that for certain hidden Markov models which assume in-
dependence of transition probabilities from and to where
repeats/skips are made, the computational complexity can
be reduced from O(M2) down to O(M) for the number of
notes M , and construct score-following algorithms based
on the models. We experimentally show that the proposed
algorithms work in real time with practical scores (up to
about 10000 notes) and can catch up with the performances
in around 3.8 s after repeats/skips.

1. INTRODUCTION

Audio score following is the real-time alignment of acous-
tic signal of musical performance to the performance score,
and has wide application such as automatic accompani-
ment, automatic score page turning and automatic caption-
ing to music videos. It is particularly essential for auto-
matic accompaniment, which synchronizes the accompa-
niment automatically to human performances in real time
and helps music performers and lovers practice ensemble
music by themselves.

Human performances have tempo fluctuation due to per-
formers’ physical limitation and their expression of mu-
sical ideas. Musical performers, both amateurs and pro-
fessionals, also make performance errors such as pitch er-
rors and note insertions and deletions. In addition to these,
acoustic signals of musical performances are of complex
nature because of possible noise and acoustic variation of
musical instruments. According to these features of human

† Presently with National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
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performances and their acoustic signals, score following
is a challenging task in musical signal processing and has
been a field of research since [1, 2] and further explored
in [3–12] (see [13] for a review).

Particularly during music practice, performers often re-
peat and/or skip sections for correcting errors or for prac-
ticing specific sections again and again, and it is desirable
to handle such repeats/skips for application of score fol-
lowing in practical situations. In [5, 6, 12], score follow-
ing algorithms allowing repeats/skips from and to specific
score positions were studied. Although there are perform-
ers’ tendencies on from and to where repeats/skips occur,
estimation of the specific score positions is generically dif-
ficult, especially in practical situations where scores are
prepared in musical instrument digital interface (MIDI)
data or performances by various performers are necessary
to be dealt with. Therefore it is attractive to have score fol-
lowing algorithms which can handle arbitrary repeats/skips
from and to any score positions.

Allowing arbitrary repeats/skips leads to a large search
space and results in two problems: (i) large computational
complexity and (ii) a risk of lowering score-following ac-
curacy. As we later discuss in detail, simply-generalized
versions of algorithms in [3, 5, 6] are difficult to work in
real time for practical scores with O(1000) to O(10000)
notes, 1 and it is unavoidable to reduce the computational
complexity.

Statistical approach to score following has advantages in
handling acoustic variation of musical performances and
was used in many previous works [13]. In this approach,
one can either estimate the score position first and the
tempo [3, 4], or estimate simultaneously the score position
and the tempo [9,10,12]. Since the search space is too large
in the latter case when dealing with arbitrary repeats/skips,
we adopt the former method.

In the following, we discuss certain hidden Markov mod-
els (HMMs) for musical performance, which explicitly
models performance errors and arbitrary repeats/skips. We
show, when assuming independence of transition probabil-
ities from and to where repeats/skips are made, the compu-
tational complexity can be reduced significantly, enabling
us to construct acoustic score-following algorithms which
handle arbitrary repeats/skips and work in real time. We
experimentally evaluate the performance of the proposed
algorithms for human performances in practice and also

1 For example, there are around 1900 notes in the first movement of
the clarinet part in Mozart’s Clarinet Quintet.
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Figure 1. The performance HMM consists of states corre-
sponding to notes, and the state emits acoustic features of
the performed note.

examine whether there is any significant lowering of score-
following accuracy. We confine ourselves to monophonic
performances for the sake of simplicity.

2. HMM-BASED PERFORMANCE MODEL

2.1 HMM for Score Following

We regard score following as an inverse problem of esti-
mating score positions from acoustic signals by modeling
human performances. The human performance without er-
rors and repeats/skips can be seen as a process of making a
transition to the next note, and emitting an acoustic feature
of the performed note. By associating the notes on score
with hidden states, the performance is also interpreted as a
state transition sequence. The performance often includes
changes in tempos and note durations because of physi-
cal limitation and musical expression, and acoustic signals
of the performance include noise and acoustic variations.
These state transitions and emission of acoustic features
are described as a stochastic process [3]. Assuming that
the transitions depend only on the current state, the perfor-
mance is represented by an HMM as shown in Fig. 1.

A performance with insertion/deletion errors are also de-
scribed by an HMM [3]. Insertion is represented by a self
transition and deletion is represented by a transition to the
state after the next as shown in Fig. 2. These are described
as

Ai,i = ai +(1− ai)A
(ins)
i , Ai,i+2 = (1− ai)A

(del)
i . (1)

Here, {Ai,j}Mi,j=1 is the state-transition probability matrix,
and the durational self-transition probability ai is deter-
mined by matching the expected staying time with the du-
ration di of the i-th note, which yields

di =

∞∑
k=1

kak−1
i (1− ai) =

1

1− ai
. (2)

These errors are expressed as transitions to neighboring
states and the HMM topology is left-to-right.

Figure 2. Representation of errors and repeats/skips in
the performance model. Deletion (green arrows) is rep-
resented by a transition to the state after the next. Insertion
(purple arrows) is described as a self transition, and substi-
tution (orange objects) is represented by emission of CQF
spectrum of incorrect pitch. Repeat/skip is expressed as a
transition to a remote state (red arrows).

2.2 Feature Extraction from Acoustic Signal

The variation in acoustic signals of the performance is
large even within the same pitch. For score following,
therefore, features are preferred to be sensitive to pitch
information and less sensitive to timbre and volume. As
stated in [8], this requirement is matched by the normalized
output of constant-Q filters (CQFs) with central frequen-
cies at semitone intervals (CQF spectrum). For shorter
calculation time, the CQF spectrum was calculated with a
fast frame-wise algorithm [14]. Since a spectrum changes
significantly at the onset time and is otherwise stationary,
spectral flux is employed to distinguish successive notes of
the same pitch [15].

2.3 Emission Probability

As shown in Fig. 2, substitution is represented by emission
of CQF spectrum of incorrect pitch, and the correspond-
ing probability is described as a mixture weight of a Gaus-
sian mixture model for emission probability. The emission
probability bi(yt) at the i-th state of a CQF spectrum yt at
time t is thus

bi(yt) =
∑
k∈K

ωk(i)N (yt|µk,Σk) (3)

where N (·|µk,Σk) denotes a multidimensional normal
distribution with mean µk and covariance matrix Σk, K
is the set of all pitches, and ωk(i) stands for the mixture
weight.

3. MODELING OF ARBITRARY REPEATS/SKIPS
AND THE COMPUTATIONAL COMPLEXITY

3.1 Topology of the Performance HMM

As discussed in Sec. 2, a performance with inser-
tion/deletion/substitution errors is represented by left-to-
right transitions to neighboring states and emission of
acoustic features of incorrect pitch. On the contrary, re-
peats/skips from and to arbitrary notes are represented by
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transitions from each state to all the states, including re-
mote ones (two examples are shown in Fig. 2.). Therefore,
the topology of the performance model with arbitrary re-
peats/skips, which generalizes the models in [3, 5, 6], is
complex, resulting in a large search space.

3.2 Computational Complexity of Score Following

The score position is estimated by calculating the most
probable state given the CQF spectrums up to the time of
estimation. In equations,

ŝt = argmax
st

p(st|y1:t) = argmax
st

p(y1:t, st) (4)

where st and ŝt denote the state random variable at time t
and its estimated value, and y1:t= {yτ}tτ=1 stands for the
CQF spectrum sequence. The second equation is derived
from the Bayes’ theorem.

(4) can be solved by applying the online forward algo-
rithm, and its update rule is described as

αt(i) = bi(yt)
M∑
j=1

αt−1(j)Aj,i (5)

where αt(i):=p(y1:t, st=i) is the forward variable. Here,
the initial value α1(i)=bi(y1)πi is calculated with the ini-
tial distribution πi. (5) indicates that the computational
complexity for score following is O(M2) since there are
M summations over M states. As shown in Sec. 4, the
O(M2) complexity is too large for the score follower to
work in real time for scores with a number of notes larger
than a few hundreds, and therefore it is crucial to reduce
the complexity for processing practical scores.

3.3 Algorithms for Reducing Computational
Complexity

In order to reduce the computational complexity, some
constraints on the state-transition probability matrix are
necessary. In this section, we propose two models and al-
gorithms reduced the complexity to linear orders.

Human performers probably perform with their tenden-
cies of pausing before repeats/skips and resuming after
them. We can represent the tendencies at each state as
the probabilities of pausing and resuming, or Cj and Di.
The distribution of where human performers resume is also
probably dependent on where they pause. However, allow-
ing the dependence results in O(M2) computational com-
plexity as shown in Sec. 3.2, and thus we assume that the
distribution of where human performers resume is inde-
pendent of where they pause. With this assumption, the
transition matrix can be written as

Aj,i = Bj,i + CjDi (6)

where Bj,i is a band matrix with bandwidth three repre-
senting the straight performance and deletion/insertion er-
rors. Note that the normalization conditions

∑
i Aj,i=1

and
∑

i Di=1 yield Cj=1−
∑

i Bj,i.

Figure 3. Representation of repeats/skips in the proposed
performance model with the pause state (a blue disk) cor-
responding to pause sections at repeats/skips. Those are
expressed as two-step transitions via the pause state (red
arrows).

Substituting (6) into (5), we have

αt(i) = bi(yt)

 i∑
j=i−2

αt−1(j)Bj,i

+
( M∑

j=1

αt−1(j)Cj

)
Di

 .

(7)

Since the sum in parentheses in the second term on the
right-hand side is independent of i, it is sufficient to calcu-
late this once at each estimation. The computational com-
plexity of the sum is O(M) and that of the rest of (7) is
O(M). Thus, we can reduce the computational complexity
required for the estimation from O(M2) down to O(M).

We obtain a similar model by focusing on a silent pause
which is often made at repeats/skips before resuming per-
formance. Such a pause can be represented by an addi-
tional state (the pause state). Since the repeats/skips are de-
scribed as two-step transitions via the pause state as shown
in Fig. 3, the tendencies of pausing and resuming the per-
formances can be expressed as the transitions probabilities
to the pause state and those from the pause state. In equa-
tions, the transition matrix of the model is

Ãj,i = Bj,i, Ãj,N = Cj , ÃN,i = (1− ÃN,N )Di (8)

for i, j ∈ [1,M ] where the N -th state is the pause state and
N=M + 1.

Naively, the computational complexity for updating the
forward variable in the model is O(N2). However, since
the transition probabilities to the note states except for
those from neighboring notes and the pause state are zero,
the complexity for updating the forward variable for the
note states is reduced to O(M). For the pause state, we
must deal with transitions from all the states, and the com-
plexity for calculating its forward variable is O(N). There-
fore, the overall computational complexity is reduced to
O(N) ≃ O(M).

While the above discussion of computational complex-
ity is based on the forward algorithm, a similar discussion
is valid for the Viterbi algorithm. With a slight modifica-
tion, the discussion can also be generalized for Mealy-type
emission probabilities of the form similar to Aj,i in (6).

3.4 Comparison of the Two Models

The two models discussed in the previous section has a
similar structure as seen in (6) and (8). In both models,
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one can describe tendencies of performance on the distri-
butions of notes to which repeats/skips are made. Both the
models rely on the independence of the distribution from
the notes before them. The difference is the explicit mod-
eling of the pause state in the latter model. In actual per-
formances, silent pauses at repeats/skips often exist and
their duration is long to some extent. Therefore, the latter
model is expected to be more suited for score following.
However, since quantitative comparison of both the mod-
els is difficult, we provide experiments for evaluating the
performances of the models in Sec. 4.

4. EVALUATION OF COMPUTATIONAL
COMPLEXITY AND SCORE-FOLLOWING

PERFORMANCE

4.1 Experimental Conditions

4.1.1 Overall Conditions

To evaluate our algorithms, we conducted three exper-
iments. The first experiment examines quantitatively
whether the proposed algorithms works in real time with
the practical scores, the second one evaluates the per-
formance of the proposed algorithms in following re-
peats/skips, and the third one evaluates score-following ac-
curacy and examines whether there is a lowering of accu-
racy in modeling arbitrary repeats/skips for performances
without repeats/skips.

In all the experiments, we used acoustic signals of mono-
phonic performances at 16 kHz sampling rate and the
scores were prepared in MIDI format. CQF spectrums
were extracted by using 128 ms frames with a 20 ms hop-
size, and the emission probabilities of the performance
models were trained by clarinet performances in RWC
musical instrument sound database [16]. The parameters
of the proposed algorithm without the pause state were
set as π=[1, 0, 0, · · · , 0]⊤, A

(ins)
i =A

(del)
i =exp(−500),

Ci=exp(−1000), and Di=1/M for i∈[1,M ]. For the
other proposed algorithm, the parameters were set as
ÃN,N=0.98 in addition to the above. The probabilities
of making errors of semitone, whole tone and perfect 12th
were set as 0.001, 0.001, and 0.0001, respectively.

4.1.2 Condition on the First Experiment

Since the computational complexity mainly depends on the
number of notes, and not on pitches and durations, artifi-
cially prepared scores with various numbers of notes were
used in the first experiment. The machine had an Intel Core
2 Duo P9400 2.40 GHz with 6 MB of cache and 2 GB
of RAM, and the operating system was Ubuntu 12.04LTS.
The evaluation measure was the real time factor (RTF) de-
fined as the ratio of the processing time and the hop-size,
which is less than one if and only if the algorithms work in
real time.

4.1.3 Condition on the Second Experiment

In the second experiment, for evaluating the score-
following performance under practical situations, we used
acoustic signals of 14 recorded performances (total 1687 s)
by an amateur clarinet performer during his musical prac-
tice. Seven different songs were performed including clas-
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Figure 4. Real time factor (RTF) and its standard deviation
of score following with the various number of notes in the
performance score. The red points represent RTFs of the
conventional algorithm, and the blue ones represent RTFs
of the proposed algorithm with the pause state.

sical and popular music pieces and nursery rhymes, par-
tially from RWC music database [16]. 43 repeats/skips and
45 insertion/deletion/substitution errors were made natu-
rally in the performances, and the ranges of repeats/skips
were distributed from 0.1 s to 85 s in score time (0 bars to
43 bars). The performer did not waited the score follower’s
catching up with his performance. As evaluation measures,
the detection rate of repeats/skips and the following time
were employed. The following time is defined as the time
interval (in units of seconds and notes) between the repeat
or skip and the time when the score follower caught up
with the performance within a range of ∆ ms.

We compared the proposed algorithms with the algorithm
without modeling of repeats/skips which corresponds to
the previous work [3]. While Cano et al. used slightly
different acoustic features of pitch and energy, CQF spec-
trums were employed as acoustic features in this experi-
ment. The difference does not result in lowering the score-
following accuracy, and rather improves it as stated in [8],
and we believe that our choice of the acoustic features is
adequate.

4.1.4 Condition on the Third Experiment

In the third experiment, a sufficient amount of real per-
formances could not be prepared, and we used mono-
phonic acoustic signals converted from MIDI signals. For
the MIDI signals, the melody parts of 112 popular music
pieces and royalty-free ones without repeats/skips in RWC
music database were employed [16]. Evaluation measures
were the piecewise precision rate and the overall precision
rate used in the MIREX contest [17]. The piecewise pre-
cision rate (PPR) is the average of detection rates of notes
in each piece, and the overall precision rate (OPR) is the
detection rate of notes in all pieces.

4.2 Results and Discussions

4.2.1 First Experiment

The result of the first experiment is shown in Fig. 4, where
the RTF was averaged over 95 calculations for each con-
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Figure 5. Following time (both (a) in second and (b) in notes) of the proposed algorithm with the pause state (w/ pause),
that without the pause state (no pause) and the conventional algorithm (no repeat/skip) in left-to-right fashion.

Evaluation
Measure w/ pause no pause no repeat/skip

Detection rate
of repeats/skips 32/43 29/43 8/43

Table 1. Detection rate of repeats/skips by the proposed
algorithm with the pause state (w/ pause), that without the
pause state (no pause) and the conventional algorithm (no
repeat/skip).

dition. Only the result of the proposed algorithm with the
pause state is shown, since the result was similar for the
other. The figure shows that in the proposed algorithm, the
RTF increases asymptotically in proportion to M and, in
the conventional algorithm, asymptotically in proportion to
M2, which is consistent with the theoretical result in Sec-
tion 3.3. The result shows that the score follower worked
in real time on the computer up to around 10000 notes, and
the conventional one up to around 300 notes. The conven-
tional algorithm is difficult to handle the practical scores
with over O(100) notes, and for those with 10000 notes,
the computation time is around 2 s, or ten times the hop-
size. On the other hand, the computational time is reduced
to around 0.02 s, or one hundredth, by the proposed algo-
rithms, and almost all the practical scores can be used. Al-
though the detail of the upper bound of the number of notes
for real-time working may be changed on other computers
because of difference in processing power, the reduction of
the computational complexity by the proposed algorithms
always remains effective.

4.2.2 Second Experiment

In the second experiment, the algorithm with the pause
state detected 32 repeats/skips of 43, and its following time
was 3.9± 0.8 s (8.0± 1.5 notes) for ∆=500 ms as shown
in Fig. 5 and Table 1. On the other hand, the algorithm
without the pause state detected 29 repeats/skips, and its
following time was 4.9 ± 1.0 s (10 ± 2 notes) for ∆=500
ms. As we conjectured in Sec. 3.4, the proposed algorithm
without the pause state followed repeats/skips later than
that with the pause state. In contrast to those algorithms,
the conventional algorithm corresponding to the one in [3]

detected only eight repeats/skips, and followed those with
11 ± 3 s and 17 ± 8 notes delay. It is obvious that mod-
eling repeats/skips significantly improves the performance
in following repeats/skips.

The algorithm with the pause state had 11 undetected re-
peats/skips. Some of the undetected repeats/skips were
caused by the existence of similar sections and phrases
such as choruses in popular music. Others happened in
the cases where only a few notes were performed between
the repeats/skips. Such scores and performances are gen-
erally difficult to follow both for computers and humans.
Because human accompanists would need comparable fol-
lowing time, the proposed algorithms are applicable to
practical use.

4.2.3 Third Experiment

In the third experiment, all the PPRs were 0.839 ± 0.009,
the OPRs by the algorithms except that without the pause
state were 30073/36051 and the other was 30070/36051.
There were only the slight difference between the proposed
algorithms and the conventional one in PPR and OPR, and
this result shows that the modeling of repeats/skips did not
lower the accuracy significantly.

4.3 Implementation to Automatic Accompaniment

We also implemented the proposed score-following al-
gorithms to automatic accompaniment. As an ac-
companiment playback module, a tempo estimation
[18] and a playback speed conversion of acous-
tic signals of accompaniment [19] were employed.
Fig. 6 shows the accompaniment result to the perfor-
mances with repeats by the algorithm with the pause
state, and videos for such performances are available
at http://hil.t.u-tokyo.ac.jp/˜nakamura/
demo/automatic_accompaniment.html.

5. CONCLUSION

We have proposed two score-following algorithms
for monophonic performances with both inser-
tion/deletion/substitution errors and arbitrary re-
peats/skips. (i) Assuming the independence of transition
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Figure 6. The automatic accompaniment result for a hu-
man performance with repeats by the algorithm with the
pause state. The gray circle expresses a real onset, and the
red line represents the played accompaniment.

probabilities from and to where repeats/skips are made,
we have shown that the computational complexity is
reduced from O(M2) down to O(M). (ii) Focusing
on a silent pause which are often made at repeats/skips
before resuming performance, we have revealed that the
computational complexity is also reduced down to O(M)
by explicit modeling of the existence of the pause. We
have experimentally shown that the proposed algorithms
work in real time for the practical scores up to 10000 notes
and can catch up with performances in around 3.8 s after
repeats/skips. The experiment has indicated that there is
not a significant lowering of the score-following accuracy
originating in modeling arbitrary repeats/skips.

As future works, an extension to polyphonic music is
important to enable the score followers to process more
scores and performances by other instruments as discussed
in [7, 17]. Using tempo information is important to im-
prove the performance of the algorithms and to help us to
use beat information as discussed in [9–11].
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ABSTRACT

This paper describes a contour-based algorithm for the real-
time automatic generation of jazz walking bass lines, fol-
lowing a given harmonic progression. A brief description
of the walking bass procedure will be presented, and also a
brief survey on some common implementations and tech-
niques.
This algorithm was implemented in the Max/MSP graphi-
cal programming environment.

1. INTRODUCTION

1.1 The Walking Bass Practice

The walking bass is a very common playing procedure
used in jazz music, in which the bass walks through the
chord and scale notes in a regular pulse. This is espe-
cially used when accompanying a solo, firmly setting the
base pulse like a metronome, and simultaneously exposing
the underlying harmony of the song. This procedure has
its roots deep in the first decades of the twentieth century,
and was developed through the years with bass players like
Jimmy Blanton, Ray Brown, Ron Carter and Charlie Min-
gus, amongst many others. A very good insight on the
evolution of the bass role and many of the key innovators
in jazz history can be found in The Jazz Bass Book, Tech-
nique and Tradition, by John Goldsby [1].

The basic idea of a walking bass line is to go from one
chord to the next, linking them by filling the middle beats
with notes of the chord or scale, typically describing a
smooth melodic line or pattern. Far from being completely
passive, however, the roll and behavior of the walking bass
can dramatically change from almost neutral smooth lines
to very abrupt register changes and energized rhythms, dy-
namically contributing to the overall group energy and mu-
sical result. The continuous flow of the regular walking
bass notes, together with its harmonic and melodic content,
form one of the most charismatic and important elements
in traditional jazz playing.

Copyright: c©2013 Rui Dias et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

The learning of this technique usually implies the learning
of melodic licks, for each of the commonly used chord pro-
gressions. These licks are small melodic phrases that are
particularly efficient and musical, and are usually related
both to the available notes of the current chord and un-
derlying scale and to physical placement of the notes and
fingers on the bass. Bass learning methods like the ones
by Ron Carter [2], Ray Brown [3], Bob Magnusson [4]
and Steven Mooney [5] lead the student through a series
of these licks, covering most common harmonic progres-
sions, in order to provide the student with the basic formu-
lae that can then be adapted to any song. As the walking
bass player develops his technique and gains more experi-
ence, however, he will be able to use these phrases more
articulately. More importantly, he will be able to move
away from them, intuitively creating more natural sound-
ing lines and integrating several other elements like orna-
ments, theme-specific elements and group feedback.
”(...) musicians string together a sequence of motifslicks
as they used to be calledmodified to meet the constraints
of the chord sequence. (...) Yet, the motif theory cannot be
the whole story.” [6]

1.2 Implementations

Due to the non-repetitive nature of the walking bass tech-
nique, its use in computer software is actually quite lim-
ited. Commonly, walking bass lines in use are pre-recorded
or manually written for the entire song length, whether
as audio recordings or MIDI events. This practice has
its roots in play-along recordings, like the widely known
Jamie Aebersold [7] long list of score + CD Play-A-Long
albums, with comping tracks recorded by real jazz mu-
sicians, allowing the practitioner to play-along with the
recording. Computer software facilitates this method by
easily allowing the independent mixing for each track, as
well as change the tempo and transpose an audio or MIDI
track, even on iOS devices with apps like Smudge Apps
Band [8] with multi-track recordings and mixer.
More advanced software use pre-recorded small phrases
for each chord-type and/or chord progressions, which are
then transposed and chained together according to some
more or less intelligent algorithm. This seems to be the
case with software like the extensive Band-in-a-box [9],
and more recently iReal b [10], on the iPad. This kind of
implementation can use audio or MIDI clips. While audio
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clips keep all of the little nuances, sound and groove of the
original player, the MIDI clips allow more flexibility for
editing notes, instrument, and even tempo and phrase ele-
ments.
These implementations based on the use of pre-recorded
phrases, whether audio or MIDI, have however some limi-
tations:
- If the number of pre-programmed phrases is small, the
output will easily sound repetitive;
- The larger the number of pre-programmed phrases, the
larger the chances of melodic inconsistencies and non-musical
results;
- In order to obtain smooth transitions between chords, the
pre-programmed phrases have to be very neutral, resulting
in a very neutral sounding bass line;
- It is not easy to handle less conventional harmonic pro-
gressions.

2. A CONTOUR-BASED APPROACH:
TECHNICAL DESCRIPTION

The work presented in this paper stems directly from the
research that led to the development of the GimmeDaBlues
app [11]. It describes the algorithmic generation of melodic
phrases that connect the chords in a previously defined har-
monic grid, by calculating a path from the current chord to
the next, according to user-defined settings controlling the
direction and range of the melodic contour.
The phrase generation algorithm consists basically in three
stages: Target Note calculation, Trajectory calculation, and
an event manager (Player). The general structure is showed
in Fig.1.

Figure 1. Algorithm structure.

2.1 Target note calculation

The algorithm needs to know the current chord and the
next one in order to be able to calculate a phrase. The
target note is the last note of the phrase to be generated. A
simple probabilistic algorithm chooses which of the notes
belonging to the next chord will be used e.g. fundamen-
tal, 3rd, 5th, 7th, etc.. Currently, in order to maintain a
strong sense of the base harmony, a setting of 100% prob-
abilities of choosing the fundamental note of the chord is
used. Then, according to the current note and to a direction
parameter, the algorithm will find the chosen chord note in
the right octave.
The direction parameter defines whether the target note
will be selected up or down, relatively to the current note,
and there are five different settings: lowest, down, nearest,
up, and highest. The down and up settings tell the algo-
rithm to search for the nearest note in that direction, while
with the lowest and highest settings, the algorithm will se-
lect the lowest and highest note in the instruments range.
This parameter can be defined manually or automatically.
So, for example, considering a double bass instrument de-
fined with a range from E0 to G3 (having C3 as the middle
C), if the current note is a C2, and the target note is an
F, the direction parameter will define which F will be se-
lected. The down setting would select F1, while the up
setting would select F2. The lowest note setting will return
F0 - the lowest F on the defined range - and the highest
setting will return F3 the highest F on the defined range.

Figure 2. Possible target notes for the four direction set-
tings.

With the ”nearest” setting selected, the algorithm will au-
tomatically go up or down, choosing the F that is nearest
to the current C2, which will be F2, because its a Perfect
4th interval, while F1 would be a Perfect 5th.

2.2 Trajectory

The trajectory is constituted by a selection of notes that de-
fine the path the bass line will take from the starting (cur-
rent) note to the final (target) note. In a typical case for
a chord duration of one bar in a 4/4 measure with the bass
playing quarter notes, the complete generated bass line will
have five notes, in which the fifth is the first note of the next
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measure. The three passing notes between the starting note
to the target note are calculated recursively, going from the
strongest beats of the measure to the weakest, and depend-
ing on the trajectory calculation algorithm.
An openness parameter will set how direct or indirect the
path will be, influencing the selection of the middle notes
in the calculated bass line. The name relates to the notion
of closed and open forms of a chord. The closed position
will be the more direct path to the target note, while more
open path will tend to use a wider trajectory, using chord
notes in an open form.
The notes to use will be drawn from chord tones, scale
degrees and chromatic inflections, according to each steps
beat position. The stronger beats of the bar will tend to
have chord tones, while the weak beats will tend to have
scale notes acting as passing notes from one chord note
to the next. The last beat of the bar can also be a chro-
matic approximation to the target note. This is a very com-
monly used technique, as the chromatic passing note cre-
ates a strong attraction to the target note, emphasizing it as
well as the sense of direction in the melodic phrase.
Fig. 3 shows four examples of possible trajectories of the
calculation of a bass line for a C7 F7 progression, where
the initial note is C2, and the target note is F2.

Figure 3. Phrase b) is the same as a) but with an ornamen-
tal triplet repeating the G in the third beat.

2.3 Ornaments

Although the construction of the phrases are the base of
the walking bass technique, there are several other aspects
regarding the notes, rhythm and articulations that have an
important role in a good performance. These aspects, here
referred to as ornaments, are little nuances and additions to
the phrases that dont change nor define the main contents
of the phrases, but nevertheless can contribute consider-
ably to the quality and the dynamic of the walking bass
lines.
The current implementation allows for the use of eighth-
note triplet variations (or eighth-notes with a swing feel-
ing) that can be set probabilistically. This is one of the most
common rhythmic variations in the walking bass technique,
in which some of the notes are anticipated by one triplet
(or swinged eighth) with the same or another pitch. The
control is done by a single percentage value, setting the
probability factor.

Figure 4. Phrase b) is the same as a) but with an ornamen-
tal triplet repeating the G in the third beat.

2.4 Control

The combination of the direction selection and the trajec-
tory openness provide a contour-based definition of the
walking bass line, which not only creates smooth and nat-
ural lines but also allows an effective and intuitive control
in interactive real-time implementations.
A simple example of a possible manual controller for this
walking bass generator would be a joystick type controller,
where the vertical axis would control the direction param-
eter, while the horizontal would control the openness pa-
rameter.

Figure 5. Example phrases with different settings.

Figure 5 shows three example phrases with different set-
tings:
- a) direction: nearest / openness: low;
- b) direction: down / openness: low;
- c) direction: down / openness: high.

3. CONCLUSIONS AND FUTURE
DEVELOPMENTS

The overall outcome of the described algorithm is quite ef-
fective and promising, mainly due to its flexible nature, by
adapting to any arbitrary harmonic progression and by al-
lowing a meta-control over the bassist behaviour.
Future implementations will focus on the way the phrase
generation can be controlled algorithmically, exploring the
contour shapes for the creation of motivic oriented groups
of phrases. Several strategies can be approached, like Markov
models and genetic algorithms, to control the succession of
phrase parameters musically.
Due to its recursive nature, the current algorithm only deals
with multiples 2/4, 2/2 and 4/4 measures. In metrical terms,
the beat hierarchy in measures with an odd number of beats
is not so clear, and thus the algorithm has to know how
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to handle them appropriately. Also, and relating to metri-
cal aspects in the phrase calculation, is the notion that the
phrases played by good bass players tend to have very of-
ten a length of two measures instead of just one. This cre-
ates more fluent lines contributing to the smoothness of the
musical form but also to the musical dynamics and move-
ment by relieving the measure-by-measure step size.
Regarding harmony, some interesting developments can
include the introduction of harmonic variations like chord
substitutions and alternate chord progressions, which is a
very common practice with advanced players, described in
books like the ones by Nettles and Graf [12], or Felts [13],
and addressed in the work by Steedman [14] [15].
Also, in order to make it sound more human and active, the
ornaments features regarding rhythm, dynamics and artic-
ulation will have to be addressed.
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ABSTRACT

Problems with OSC communication over wireless routers
are summarized and the idea of a separate networking util-
ity named LANdini is introduced. LANdini’s models and
current structure are explained, and data from tests is pre-
sented. Future improvements are listed.

1. BACKGROUND MOTIVATION

1.1 Wireless routers are good

The two laptop ensembles of which we are a part - the
Princeton Laptop Ensemble (PLOrk) and Sideband - both
use wireless routers for group networking. This is a de-
cision based on convenience and logistics: not having to
worry about cables dramatically reduces set-up and take-
down time for performances and rehearsals, and makes it
easy to scale the ensemble up or down in size. In the case
of PLOrk, which has at times exceeded 30 simultaneous
performers, these are extremely valuable features. Avoid-
ing networking cables also allows for a freedom of loca-
tion, both on a performer basis (up in balconies, spread
out around the audience, etc...), and on an ensemble basis
(such as playing out-doors or in non-traditional venues).
Even confined to on-stage setups, the presence of cables
can impede fluid re-arrangement of performer stations from
piece to piece, which is a common element in both PLOrk
and Sideband concerts. In order to stay as flexible as possi-
ble, both PLOrk and Sideband intend to use wireless routers
for the foreseeable future.

1.2 Wireless routers are bad

As a trade-off for all of the logistical convenience afforded
by wireless routers, PLOrk and Sideband have had to deal
with the less reliable performance of UDP protocols over
wireless systems for OSC [1] communication, as well as
the propensity of routers to occasionally drop users from
the network. Latency and dropped packets have been a
constant source of trouble for any piece in our repertoire
that uses networking and, while some pieces can suffer a
dropped packet and/or timing inconsistencies, others may
be structured such that enough networking errors result
in the piece failing. This is a well-known fact amongst
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laptop-ensemble musicians, and has been the subject of
other academic inquiries [2]. Because of this, ensembles
such as LSU’s LOL and Virginia Tech’s L2Ork choose to
make the tradeoff in the other direction and perform with a
wired router and a mass of ethernet cables [3, 4].

1.3 Previous solutions have left us unsatisfied

Composers who have worked with PLOrk and Sideband
have approached the problems of wireless unreliability in
different ways from piece to piece:

• To deal with dropped packets, some pieces take a
shotgun approach by sending redundant OSC mes-
sages in short bursts in hopes that one of them will
make it to its destination. This method is not guaran-
teed to work, and has the potential to create a lot of
overhead, depending on the number and density of
messages that need to be transmitted in this fashion.

• For network sync, some pieces have tried a simple
server-side broadcast which either gets picked up or
not on the client computers, with predictable results
in terms of reliability and timing. Other pieces have
employed versions of Cristian’s algorithm [1] to co-
ordinate execution time across different computers,
and these solutions are often paired with the shot-
gun approach to set up timed messages in a network,
again with imperfect results.

• Pieces requiring a specific spatial ordering of the
players often require the players to select their user
number manually before launching the patch - in
one memorable case, a guest composer had written a
piece that required everyone to change the network
sharing name of their laptop to an integer and re-
log-in in order to run the piece!

All of the methods above (with the exception of the user-
name change) have worked well enough for composers to
keep using them, but the current situation has three main
drawbacks:

• Composers are wasting time solving problems of user-
list maintenance, reliable message delivery, and use-
able timing anew with each piece. PLOrk and Side-
band have both experienced lost rehearsal time and
significant individual coding-time because of these
problems.

• In addition to regular idiosyncratic behavior within
the piece itself, each composer’s approach to solving
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the above mentioned networking issues potentially
introduces another layer of erratic behavior.

• Composers sometimes avoid certain networking strate-
gies altogether for fear of failure in a live situation.
While this is pragmatic, this is obviously bad for the
state of the art as a whole.

2. A PROPOSED SOLUTION

A solution to the above situation is to relegate all network-
ing duties to a separate application which would run in the
background for the duration of a rehearsal or concert. This
modular approach directly addresses the three problems
listed at the end of the previous section:

• Composers would no longer need to worry about
how to deal with networking problems.

• Faults with basic networking issues would be eas-
ily traceable back to one common application. As-
suming a stable enough application, this would make
networking problems both rarer and easier to address
as they come up.

• Composers could feel free to explore uses of net-
working that had hitherto felt too risky or compli-
cated.

Our current attempt at addressing these problems is a
software utility we’ve named LANdini. It is still in an early
stage of development, but has to date been used in perfor-
mance three times with encouraging results. It addresses
issues with delivery and timing, as well as implementing
some extra features that we thought would be useful, such
as the “stage map” (see section 3.8).

2.1 Pre-existing solutions

There are other laptop ensembles who have also worked
on solutions. One prominent example is OSCthulhu [5],
a similarly motivated application developed by the group
Glitch Lich (in particular Curtis McKinney). Its absence
of clear documentation was an initial hurdle in its being
adopted, but it also focussed on a state-based model of in-
formation flow which we didn’t feel drawn to, and lacked
some of the features which we envisioned, such as the
“stage map” feature (see section 3.8).

Neil Cosgrove’s LNX Studio [6] is quite a different type
of application, being a collaborative music making envi-
ronment that can work over LANs and internet connec-
tions. It’s extremely well implemented, but it isn’t de-
signed to be a networking utility. What it does have is an
impressively resilient network sync and message delivery
system and excellent network time synchronization. It also
boasts admirably open source code, and many of the fea-
tures of LANdini were the result of studying and adapting
solutions that were used in LNX Studio.

Ross Bencina’s OSCGroups [7] is a core component of
LNX Studio, but in that context is used for internet con-
nections, which it was primarily designed for. Neil Cos-
grove’s code for LAN connections uses classes of his own

making which feature the same API. Since the authors of
this paper are interested in LAN-based music, we elected
to follow Neil Cosgrove’s example and implement our own
solutions, leaving OSCGroups to those who are working
over internet connections.

3. LANDINI’S IMPLEMENTATION

The following is a list of features that we felt would be
reasonable demands to make of any networking utility that
was going to be truly useful, along with explanation of
how they are currently implemented in LANdini. It should
be noted that, while LANdini was developed primarily for
wireless networks, some of the features described could be
useful for laptop ensembles on wired networks as well.

3.1 Self-contained

LANdini is a simple double-clickable application that doesn’t
require any extra installs. At the moment, LANdini is im-
plemented in SuperCollider [8] to run on Mac OS 10.6+.
SuperCollider was used because it was the language Narve-
son knew best, it has the potential of being cross-platform
(though this hasn’t been implemented and tested, due to
a lack of Linux and PC machines), and it is easy to cre-
ate stand-alone applications. SuperCollider doesn’t cur-
rently support sending OSC via TCP, so UDP was used,
and TCP-style behavior implemented directly. Narveson
suspects this is better than the built-in latency that comes
with TCP, but a parallel version in a TCP-enabled language
would need to be tested to be sure.

3.2 No client/server differentiation

For simplicity and flexibility, LANdini is the same on each
computer in the ensemble. In this way, members of the
group can simply start LANdini at the beginning of a ses-
sion and then let it run without worrying about having an
extra server laptop on hand.

3.3 Dynamic user list

Each running copy of LANdini maintains a dynamically
updated list. The details of how this is done are summa-
rized in Figure 1, but involves each user broadcasting their
name, ip, and port number once per second, and using in-
coming messages from other users to assemble a list of
active LAN participants. Each user replies with a copy of
their entire list, so that the sender of the original broad-
cast message can compare and add any users they haven’t
detected yet.

Once connected, each user creates local user profiles of
everyone on the network and sends regular status pings to
everyone on their user list. These pings contain positional
information as well as info pertinent to the “guaranteed de-
livery” and “ordered guaranteed delivery” protocols (see
sections 3.5 and 3.6 for details on the message protocols
and status pings, respectively). The most recent ping time
is also stored and used for removing that user from the list
if too much time elapses without an update. This is cur-
rently set to 2 seconds, but can be adjusted.
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Local applications can ask LANdini for a copy of the cur-
rent user list either as a simple set of names or as a “stage
map,” as described below in section 3.8.

3.4 Minimal change to pre-existing OSC messages

In order to facilitate the updating of old pieces and the
happy adoption of LANdini in to new pieces, we wanted to
change as little as possible about the way OSC messages
were sent and received by composers’ patches.

Incoming OSC messages are, from the perspective of the
receiving patch, completely unchanged, requiring no up-
dating in the composer’s code.

Outgoing OSC messages are sent through LANdini and
are simply prefaced with two extra strings: a protocol and
a destination. The protocol tells LANdini how to send the
message, and the destination tells LANdini where to send
the message. Other outgoing OSC messages are sent to
LANdini to request specific information, like the current
network time or user list.

3.5 Message protocols for different tasks

LANdini uses three message protocols that are based off
of a subset of the many to be found in Neil Cosgrove’s
LNX Studio, mentioned above (see 2.1). In adopting the
code, changes were made to accommodate the different in-
ternal organization of LANdini’s data structures, but the
general strategies are similar. Each protocol is referred to
by a name that is used as a prefix in outgoing OSC mes-
sages from locally running applications:

• /send - this is just normal OSC

• /send/GD - this is the “guaranteed delivery” method,
which indexes outgoing messages and stores local
copies in a look-up dictionary in order to re-send
upon request. Messages known to have been safely
received are deleted on the sending computer, to save
memory. A more detailed summary can be seen in
Figure 2.

• /send/OGD - this is the “ordered guaranteed de-
livery” method, which works in a manner similar to
/send/GD, with the addition that incoming mes-
sages are stored in an intermediate queue and passed
on to the local application strictly in order. As above,
the sending computer deletes messages that are known
to have arrived safely, and the receiving computer
deletes messages as they’re performed and leave the
queue.

3.6 Status Pings

The network’s current state is maintained through frequent
status pings that are sent between all active users who are
running LANdini. At the time of writing, these pings de-
fault to 3 pings per second. A breakdown of the contents
of the ping and how they’re used is provided below:

• name: The sender’s name is used so that the receiver
can put the rest of the info in to the appropriate user

profile. All variables mentioned below are stored
in the receiver’s user profile for that particular
sender and appear in bold - analogous ones exist
for every separate user profile on the receiver’s ma-
chine. The underscores used in the variable names
have been omitted for formatting purposes.

• update position: The sender sends an updated cur-
rent x/y location on the “stage map” (see section 3.8)

• check /send/GD IDs:

– The sender includes the ID of the last outgo-
ing /send/GD ID they sent the receiver. This
is compared against the receiver’s last incom-
ing GD ID variable: if their last outgoing ID
is bigger, last incoming GD ID is updated to
equal it.

– The ID of the /send/GDmessage beneath which
all other messages have been safely received
is included so that the receiver can delete lo-
cally stored copies of those messages it sent
the sender. This keeps memory usage at a min-
imum.

– The receiver looks at all the IDs in the range
from (min GD + 1) to last incoming GD ID,
and ask for re-sends of the ones whose IDs
don’t appear in the performed GD IDs list.

• check /send/OGD IDs:

– The sender includes the ID of the last /send/OGD
from the receiver that they performed, allow-
ing the receiver to delete locally stored copies
of those messages.

– The ID of the last /send/OGD the sender sent
the receiver is compared to the receiver’s last
performed OGD ID. As above, all IDs be-
tween the receiver’s last performed OGD ID
and the sender’s last sent /OGD ID are col-
lected, and ones that don’t appear in the re-
ceiver’s msg queue for OGD are requested to
be re-sent.

• check network time server: Every status ping mes-
sage includes the name of the current network time
server. In the event that the network time server
leaves the group, the next user in alphabetical order
is automatically chosen to take up the role. There
is no deep reason for choosing alphabetical order as
the organizing principle for this role: better methods
will be explored and implemented in future versions
of LANdini.

3.7 Synched network time

LANdini automatically establishes a shared network time
on boot. At the moment, this is a simple implementation
of Cristian’s algorithm (see Figure 3), with the commonly
added refinement of using the shortest recorded round-trip
time. Once more than one player is on the network, the
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Figure 1. how LANdini assembles a user list

user with the first name in alphabetical order becomes the
network time server. If this server goes offline, the next
highest in alphabetical order takes over with minimal in-
terruption. Network time can be polled and used as a ref-
erence when sending messages that need to be executed at
a certain point in the future.

3.8 Stage Map

This feature is, to our knowledge, unique to LANdini. Up
until this point, composers have required players to choose
a player number at the startup of their patch; this is clearly
vulnerable to human error, and can result in lost rehearsal
time or incorrect performances with missing and/or redun-
dant parts. Moreover, requiring players to choose a player
number doesn’t necessarily scale well - some patches are
hard wired to expect N number of players, sometimes with
no better reason than the server needing to know ahead of
time how many players there are.

LANdini’s stage map window (when opened) represents
each user on the LAN with a simple named square. Imag-
ining the window to represent the stage or area they’re in,
users arrange themselves in the window in relation to the
other LAN members. This information is updated through
the regular ping messages, and is therefore always current.
Local applications can request a copy of the stage map as
an OSC message containing ordered triples of name/x/y for
each user. Once this data is received, it can be sorted and
used to send commands to the ensemble in whatever order
the local application specifies: left-to-right, front-to-back,
or other, more subtle constructions, such as those found in

Gil Weinberg’s paper on network topologies [9].
Asking users to arrange themselves on the stage-map is

also vulnerable to human error, of course; the thinking here
is that having the ensemble do this at the start of a perfor-
mance is safer and more convenient than choosing player
numbers for every piece that requires a specific order.

3.9 Traffic monitoring windows

LANdini has windows for monitoring incoming OSC traf-
fic on both the local and LAN ports. Text fields on the top
of the windows allow users to filter the displayed messages
by typing the text of the relevant messages, allowing users
to search for specific messages. For instance, if one was in-
terested only in seeing messages sent from a performance
patch that used the OSC path texttt/drums, typing drums
in the filter would cause all other messages to stop being
printed. This is useful functionality for debugging.

4. PERFORMANCE

At the moment, LANdini has been used in several rehearsals
and three concerts, with encouraging results. Background
network traffic for the upkeep of the user lists and user sta-
tus peaked at about 17 KB/sec for a group of 8 laptops,
which is acceptably light background usage. As of this
writing there has been no chance to test LANdini with a
large group of 20+ laptops, although this is a necessary
and planned future step.

Narveson did run a smaller-scale test, the results of which
are summarized in Figure 4. The test consisted of four
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Figure 2. LANdini’s /send/GD protocol
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Figure 3. LANdini’s simplified version of Cristian’s Algorithm

rounds, one for regular OSC without LANdini, and one
each for LANdini’s /send, /send/GD, and /send/OGD
protocols. The tests were performed with a D-Link Dir655
router (802.11n, 2.4Ghz), a 15” MacBookPro from 2011
running OS 10.8.2 as the server, and two 13” white plas-
tic MacBooks from 2009 running OS 10.6.8 as the clients.
Each round consisted of 50 tests of 1000 messages from
a server laptop to two client laptops. The tests were sim-
ple patches written in SuperCollider - each round of 1000
messages was separated by 3 seconds, and the messages
themselves used a 5ms spacing. The test patches recorded
message ID, protocol, and arrival time.

The results show a clear performance advantage to using
the /send/GD and /send/OGD protocols, which man-
aged a 100% arrival rate without any appreciable cost in
terms of average message spacing or total time between
the arrival of messages 1 and 1000 in a given test. As ex-
pected, regular non-LANdini OSC and LANdini’s /send
protocol were matched in performance, with an arrival rate
in the mid-to-high 90% range, depending on the machine.

The chart in the bottom left of Figure 4 shows outliers
for the between-message deltas in these tests, reaching 1.4
seconds for the /send/OGD protocol on machine B in the
worst case. This points to further work that needs to be
done to make timing issues more reliable.

A positive side-effect of the LANdini GUI is that rehearsals
and concerts are sped up by making it easy to confirm that
everybody is on the network simply by looking at the user
list. Previously, connection problems only showed up once
we started playing and noticed unresponsive behavior.

5. EXAMPLE IMPLEMENTATIONS

As of this writing, three pieces in our repertoire have been
converted to make use of LANdini - below are short sum-
maries of how this has worked so far.

5.1 Beepsh

Narveson’s piece Beepsh involves the group passing around
pitch and rhythm sequences. The pre-LANdini implemen-
tation used its own method for establishing the player list
and for establishing group pulse synchronization. The new
version uses LANdini to get the list of available partici-
pants, and uses the simple /send protocol and network
time for sending out the rapid pulse metronome messages.
Pulses are scheduled for half a pulse of latency using LAN-
dini’s network time, and this provides good synchroniza-
tion. The /send/GD protocol is used for players to update
the server about the beginning and end of their sequences,
since these are more important pieces of information. The
Stage Map functionality makes easy to arrange the player
messages in order so that sequences can be heard traveling
around the group from one side of the stage to the other.

5.2 In Line

Narveson’s other piece, In Line, also involves group synch.
In this case, a regular metronomic pulse at 1 pulse/second
is sent to the entire group using the /send protocol with a
scheduling latency of 100ms, which performs well. Ear-
lier versions of this piece relied on setting up an inter-
nal metronome which would be constantly corrected by
/pulse messages from the Server as they came in, which
resulted in occasional jitter. Other, crucial messages about
state-change in certain players are handled using the /send/GD
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Figure 4. Test results for 50 bursts of 1000 OSC messages at 5ms intervals using four protocols across two machines
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protocol, again with very encouraging results; earlier ver-
sions of the piece relied on a “shotgun” approach to ensur-
ing the arrival of these messages, with occasional glitches.
This piece has a history of crashing the router, which the
current LANdini-enabled version has not done to date.

5.3 CMMV

Trueman’s piece CMMV also uses a mixture of /send
and /send/GD protocols, the former for time-sensitive
beat information and the latter for less time-sensitive but
musically important pitch information. Again, the perfor-
mance of both has been very encouraging, with noticeable
savings in rehearsal time due to the absence of networking
problems.

5.4 Linked List test

Trueman has long tried to implement a simple “linked list”
style OSC test in ChucK [10] in which two (or more) com-
puters on a LAN pass a “play” message around a list: com-
puters wait for the message and then, upon receiving it,
play a simple sound and send a “play” message to the next
user on the list. This deceptively simple test has so far
failed to work, likely due to dropped packets. Using LAN-
dini’s /send/GD protocol solves this particular issue and
enables the test to run smoothly.

6. FUTURE WORK

LANdini is currently being developed in SuperCollider,
though porting it to other languages and environments is
something that could be done if the need arose. One immi-
nent future application is a port to iOS for Daniel Iglesia’s
new mobile music platform MobMuPlat [11].

There is currently a SuperCollider class - LANdiniWatcher.sc
- which takes care of regularly polling LANdini for net-
work time and user list info. This has the advantage of
saving composers working in SuperCollider the need to
setting up their own OSC loops to and from LANdinin
to access network information, thus cutting down on time
and potential problems with implementation from piece to
piece. Skeletal classes for Max and ChucK exist which
currently handle polling for network time, but need to be
fleshed out to handle the “stage map” information.

While LANdini has been used in performance with 8-9
players, it has yet to carefully tested with groups that size
or larger. Testing large group sizes is important because
LANdini’s background traffic currently grows in quadratic
time: a group of size N sees (N * (N-1)) ping messages be-
ing sent every ping interval, which is set to 3 pings/second
by default. For a group of 8 people this results in 8*7*3
= 168 pings per second - for 10 people that number goes
up to 270 pings/sec, and, for 30 people, it would be 2610
pings/sec (!). Alternatives that get LANdini closer to “N
log N” performance are clearly required, either in the form
of automatic or manual throttles to the status ping frequency,
a dynamic centralized server model (as is currently the case
with network time, as explained in section 3.7), or some-
thing else entirely. In general, more tests related to timing
and latency need to be done, as well.

At the time of writing, /send/GD looks for missing
messages at each status ping, whereas /send/OGD looks
for missing messages at the receipt of each new message.
This should be changed since /send/GD currently shows
marginally slower total-completion times than /send/OGD
(see Figure 4).

Improvements to the implementation of synced network
time include possible tweaks to the algorithm and the ad-
dition of visual feedback on the GUI about which machine
is currently the time server. A manual over-ride of this
function should be implemented in the event that the cur-
rent time server machine is faulty in some way. As already
stated, using alphabetical order as an organizing principle
for determining the time server is an ad-hoc solution, and
better methods need to be explored and implemented.
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ABSTRACT

This work presents a method to represent, segment and
analyze the recurrence patterns on motion data during mu-
sical performances. Physical gestures were extracted dur-
ing clarinet performances and analyzed according to ges-
tural features, comparing different musicians, musical pas-
sages and performance styles. The gestural aspects of the
performances were related to the musical structure and its
expressive content, and an acoustical analysis validated the
results. Results show a recurrent sequence of clarinet ges-
tures inside a defined region of interest, shown to be a key
moment in the music.

1. INTRODUCTION

Musical expressiveness is a concept that is hard to be for-
malized by objective data. There has been recently a grow-
ing search for methods to describe and analyze it accord-
ing to a set of quantitative parameters. This has been done
mainly through the audio analysis of musical performances,
extracting musical content information directly from the
acoustical data [1, 2]. Studies have shown that musicians
make use of small deviations, regarding note durations, ar-
ticulations, intensity, pitch and timbre, in order to convey
their musical intentions [3, 4].

This study expands acoustical analysis methods for inves-
tigating musicians’ expressive intentions, incorporating in-
formation about their body movements during musical per-
formances. We present a method to define and analyze the
physical gestures executed by the musicians while playing
their instruments, and to extract motion parameters that can
be objectively related to their expressive intentions and to
the musical structure [5, 6]. This sort of multi-modal in-
vestigation has also been successfully employed in studies
related to the analysis of speech [7] and dance [8], examin-
ing the coupling between their acoustical and visual com-
ponents.

Observing a musical performance, it is possible to no-
tice that the body movements executed by the musicians,
besides being in many cases essential to the instrument’s
sound production itself, are also closely related to the mu-
sician’s expressive intentions in a particular performance
[9, 10]. Even with some recent studies in this direction

Copyright: c©2013 Euler Teixeira et al. This is an open-access article distributed
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[11–14], there is not so far a unique and objective method
that can be widely used to extract and analyze such infor-
mation from the motion capture data. Despite this, there is
strong evidence that such expressive information is present
in musicians’ body movements, providing valuable infor-
mation to better comprehend expressiveness from a multi-
modal point of view [15, 16].

In order to establish relations between performers’ body
movements and their expressive musical intentions, there
are three key steps [6,17]. The first step is to track points of
interest in the musicians’ body and instrument, during sev-
eral musical performances, searching for patterns of tem-
poral and spatial evolution, in order to define significant
and recurrent physical gestures. After that, it is neces-
sary to compare the gestures of different performers, per-
formance styles and musical passages, taking into account
spatial, temporal and musical parameters. The final step
is to conduct an analysis over the corresponding acousti-
cal data, searching for related parametric patterns coupled
with the motion analysis.

With this method, it is possible to investigate where the
expressive content can be found in the musicians’ body
movements, what is its behaviour, and how it relates to
the musical structure, ultimately defining a musical signif-
icance for the physical gestures of musicians during perfor-
mances. In this paper, the proposed method is applied to
clarinet players’ body movements, performing solo pieces
of the classical repertoire.

2. EXPERIMENTAL METHODOLOGY

The objective of the study is to analyze the expressive con-
tent of musical performances by a group of clarinet play-
ers, based on the corresponding motion and acoustical data.
In the proposed experiment, motion tracking is done with
a high-end 3D motion capture device, the Optotrak Certus.
It consists of a tracker, built with three infra-red cameras
positioned along one axis, tracking the spatial position of
active infra-red LED markers, inside a tridimensional mea-
surement volume, together with synchronous audio record-
ing.

The studied group of musicians consists of 10 classical
clarinet players, 8 males and 2 females. The selected mu-
sical excerpt is presented in Figure 1. The musicians were
asked to perform it according to two distinct performance
styles. First, in the standard style, each musician performed
the music freely. After that, they were asked to follow
a metronome, set to a tempo estimated from the previous
standard performances. The goal was to obtain an objec-
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Figure 1. Theme from the first movement of Mozart’s
Quintet for Clarinet and Strings in A Major, Kv 581. Final
part highlighted.

Figure 2. Photograph of the data acquisition experiment,
from the motion capture sensor viewpoint.

tive way to compare between free and expressive musical
performances, and controlled performances, restrained by
the metronome beat.

Each of the 10 clarinet players performed the excerpt 6
times, 3 according to each of the 2 performance styles.
They played standing up, sideways to the Optotrak tracker.
Motion capture markers were placed on their bodies and
clarinets, according to Figure 2. The motion capture tracker
was placed vertically, about 2 meters away from the mu-
sician, using a sampling rate of 100 frames per second.
The sound was recorded synchronously at 44.1 kHz to dig-
ital audio files, through a condenser microphone positioned
about one meter away from the clarinet.

The audio of each performance was processed to extract
its pitch and energy envelope curves. Note onsets and off-
sets were detected using the developed system described
in [1], in order to visualize the evolution of each perfor-
mance, according to the musical structure and the individ-
ual aspects of each execution.

3. MOVEMENT REPRESENTATION AND
SEGMENTATION

Movement analysis in this study will be based on the clar-
inet bell motion. The clarinet motion has been the object
of previous studies [9,12] and it is believed to be an impor-
tant expressive tool used by expert clarinet players. In or-
der to analyze the evolution of clarinet bell tridimensional
motion in conjunction with the acoustical data, we need a
strong scalar representation of the motion data in time. A
simple way to do that is to use the tangential velocity of
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Figure 3. Movement segmentation for a clarinet perfor-
mance. The blue curve shows the pitch (Hz), the green
curve shows the tangential velocity of the clarinet bell
(cm/s) and the red lines mark the movement segments.

the clarinet bell marker’s trajectory, calculated in this case
using the Euclidian distance between the positions of the
marker in two subsequent samples. This unidimensional
parameter captures a large amount of information from the
musician’s movements [11].

Through the extraction of pitch and energy envelope curves
from the audio signal, it is possible to determine all note
onsets and offsets, and thus to segment the acoustical data
into musical notes and phrases. It is also very important
to develop a procedure to segment the movement data ac-
cordingly. Unlike the acoustical data, there are no basic
units established to segment the movements into, but it
is possible to divide those movements into representative
segments, according to their geometrical and temporal at-
tributes.

This can be done based on the tangential velocity repre-
sentation of movement, shown in Figure 3 after appropriate
filtering, assuming that its local minima corresponds to in-
flection points in the musician’s movement, where the mo-
tion direction or character is most likely to suffer a sudden
change [11]. These points were thus used as a basis for the
segmentation procedure, defining movement segments be-
tween subsequent local minima in the tangential velocity
curve.

4. MOVEMENT RECURRENCE

In order to relate the musicians’ movements to their expres-
sive intentions and to the musical structure, we analyzed
the recurrence of movements within the excerpt, along dif-
ferent performances by the same musician. The search for
recurrent patterns in the movements of the musicians was
made by using the instantaneous correlation algorithm de-
veloped in [18]. It calculates the correlation coefficient be-
tween a pair of signals for each instant in time and also for
different time offsets between them, generating a bidimen-
tional correlation map between the two signals, as shown in
the bottom half of Figure 4. The horizontal axis represents
time, from the first note onset to the last note offset of the
music, and the vertical axis represents the time offset be-
tween the two analyzed signals, from -0.5 to +0.5 seconds.
The blue areas on the map indicate low correlation values
between the signals, while the red areas indicate high cor-
relation values.
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Figure 4. Clarinet bell motion recurrence map for the
6 performances by Musician 1. Top: tangential velocity
curves, standard performances in blue, metronome perfor-
mances in red. Bottom: motion recurrence map, blue indi-
cates low recurrence, red indicates high recurrence.

For each musician, a correlation map was calculated for
each of the 15 possible signal pairs of the 6 clarinet tangen-
tial velocity curves. These 15 correlation maps had their
negative correlation values truncated to 0 and were then
summed and normalized to 1, generating a resulting map
that provides a recurrence measure for that musician’s clar-
inet bell movement over his/her 6 performances. In order
to highlight the regions of interest, of high recurrence, an
empirical threshold was applied to the recurrence map, re-
moving values below 0.7. Also, to guarantee a perfect tem-
poral alignment between the signals, in accordance with
the musical structure of the excerpt, the 6 velocity curves
were time-warped [19], using the note onsets as reference
points in the timing model. Figure 4 illustrates the result
of this recurrence map analysis for Musician 1.

Analyzing Figure 4 it is possible to see the regions in the
music where this musician employs recurrent movements
along his performances. Most noticeably at the final part,
after the 10 seconds mark, where all the 6 velocity curves
at the top plot are all highly correlated. This is confirmed
by the large dark red areas in the corresponding region of
the recurrence map. Some moderate recurrence can also
be identified in other regions, but for most of the excerpt,
the blue areas on the map indicate the absence of recurrent
movement patterns.

This motion recurrence map analysis was conducted for
all 10 clarinet players. Figure 5 shows another example.
Six of these musicians exhibited high movement recur-
rence regions in the final part of the music, similarly to
the examples shown, two exhibited varying movement re-
currence regions, especially during standard performances,
and two exhibited no significant movement recurrence. As
the four players who did not follow the dominant move-
ment recurrence pattern are students with less expertise,
they were discarded on further analysis.
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Figure 5. Clarinet bell motion recurrence map for the 6
performances by Musician 9.
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Figure 6. Regions of interest for the 6 performances by
Musician 4, and their 3 constituent gestures, marked by
the vertical lines. Standard performances on top 3 plots.

5. REGIONS OF INTEREST

The 6 expert musicians with similar recurrence patterns
were selected for a detailed movement analysis over their
high recurrence regions. The movement segments obtained
by the tangential velocity minima criteria, and the mo-
tion recurrence map analysis were used together to define
regions of interest in each of these 6 musicians’ perfor-
mances. These regions of interest were defined along the
final part of the excerpt and consist of the movement seg-
ments contained inside the high recurrence areas, for each
of the performances selected. The 3D spatial trajectory of
the clarinet bell was analyzed along each region of inter-
est, in order to group its constituent movement segments
into representative physical gestures, based on visual in-
spection of their geometrical and temporal characteristics.
Figure 6 illustrates the definition of the regions of inter-
est and their constituent gestures for Musician 4. Figure 7
shows a 2D frontal view of each of their spatial trajectories,
according to the reference plane shown in Figure 2.

According to figures 6 and 7, the musician executes re-
current and well defined gestures with the clarinet, inside
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Figure 7. Spatial trajectories of the 3 gestures defined in
each region of interest for the performances by Musician
4. The red star marks the initial point and the green circles
indicate the note onsets. Each row represents one of the 6
performances.

4 6 8 10 12 14 16 18
0

500

1000

 P
itc

h 
(H

z)
 

4 6 8 10 12 14 16 18
0

500

1000

 P
itc

h 
(H

z)
 

4 6 8 10 12 14 16 18
0

500

1000

 P
itc

h 
(H

z)
 

6 8 10 12 14 16 18
0

500

1000

 P
itc

h 
(H

z)
 

4 6 8 10 12 14 16
0

500

1000

 P
itc

h 
(H

z)
 

6 8 10 12 14 16 18
0

500

1000

 P
itc

h 
(H

z)
 

 Time  ( s ) 

4 6 8 10 12 14 16 18
0

50

 V
el

. (
cm

/s
) 

4 6 8 10 12 14 16 18
0

50

 V
el

. (
cm

/s
) 

4 6 8 10 12 14 16 18
0

50

 V
el

. (
cm

/s
) 

6 8 10 12 14 16 18
0

50

 V
el

. (
cm

/s
) 

4 6 8 10 12 14 16
0

50

 V
el

. (
cm

/s
) 

6 8 10 12 14 16 18
0

50

 V
el

. (
cm

/s
) 

Figure 8. Regions of interest for the 6 performances by
Musician 7, and their 2 constituent gestures.

the region of interest. The number, sequence, geometry
and duration of these gestures are all highly recurrent along
the performances. Most noticeably, the first gesture of the
sequence, shown in the left column, always starts at the
beginning of the same musical phrase, and consists of a
clockwise partial elliptical movement, with significant ex-
tension and duration.

This analysis was conducted over the other 5 selected
players, with similar results. Figures 8 and 9 show an-
other example. In each case, the musician executed a re-
current sequence of gestures with the clarinet, showing that
the tangential velocity based movement segmentation and
recurrence analysis reveal highly representative music re-
lated gestures. The occurrence of such recurrent gestures
and their strong relation to the musical structure, specially
for the most skilled players, constitute strong evidences of
the musical significance in the musician’s physical move-
ments and their relevance to music performance.

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

−30 −25 −20 −15 −10 −5 0 5

0

10

20

 x  ( cm ) 

 y
  (

 c
m

 ) 

Figure 9. Spatial trajectories of the 2 gestures defined in
each region of interest in the performances by Musician 7.

6. RECURRENT GESTURES

The definition of proper regions of interest in the musical
performances, and their subdivision into representative and
recurrent physical gestures, made possible a further local
parametrical analysis on these gestures.

The resulting gestures were subjected to Principal Com-
ponent Analysis (PCA), in order to investigate the spatial
dimensionality of their trajectories. Calculating the per-
centage of total variance accounted for by the first prin-
cipal component alone, by the first two principal compo-
nents, and then by the three components, it is possible to
define if the gesture trajectory is mainly unidimentional,
mainly bidimentional or tridimensional. The percentage of
variance accounted for by the first two principal compo-
nents in each gesture represents a planarity index for its
trajectory, while the percentage of variance accounted for
by the first principal component represents a unidimention-
ality index for its trajectory. The results reveal that all re-
current clarinet gestures are highly planar, with planarity
indexes always above 97%, and above 99% in 80% of the
cases. They also show that a significant part of these ges-
tures is also highly unidimentional, since 50% of them ex-
hibit unidimentionality indexes above 95%, and 80% ex-
hibit unidimentionality indexes above 80%.

A comparison was also established between the two per-
formance styles, based on three gestural features: the total
spatial distance covered along its trajectory (cm), the time
duration of the gesture (s), and the mean tangential velocity
along its trajectory (cm/s). The results indicate that during
standard performances, within the defined regions of inter-
est, the clarinet players execute recurrent clarinet gestures
with greater spatial amplitude (28% larger on average) and
at larger mean velocities (26% larger on average) than in
the metronome controlled performances. The use of the
metronome as a control device makes the musicians’ ges-
tures and their respective mean velocities smaller in gen-
eral, but exerts little effect over their time durations, which
became only slightly smaller.
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Figure 10. Note intra-onset intervals for Musician 1, nor-
malized relative to a quarter-note. Standard performances
in blue, metronome performances in red, relative nominal
score value of the notes in green. The black dashed line
shows the expected values. The region of interest is high-
lighted in red.

7. ACOUSTICAL ANALYSIS

The movement analysis indicated that the most significant
recurrent clarinet gestures occurred during the final part of
the musical excerpt, according to Figure 1. In order to fur-
ther investigate the importance of this final part of the mu-
sic, the relative note durations were also analyzed along the
performances. To do that, the intra-onset intervals (IOI’s)
were calculated, based on the note onsets extracted from
the audio signals. In order to get a relative idea of the
note durations, according to their expected nominal dura-
tions in the score, the IOI’s were normalized relative to
a quarter-note. This way, if all notes were executed pre-
cisely with the note durations defined in the score, the plot
representing the evolution of note IOI’s along the perfor-
mance would show a straight horizontal line. Any devi-
ation from this expected horizontal line indicates a note
duration manipulation by the musician. Figure 10 exem-
plifies this analysis for Musician 1.

The evolution of the note intra-onset intervals also reveals
a great contrast between the initial and final part of the
excerpt. In the initial part, there is little manipulation of
the note durations by the musician, while in the final part,
inside the red rectangle, the musician executes significant
and recurrent manipulation over the note durations, indi-
cated by the large deviation of the IOI curves around the
black horizontal dashed line. This sort of behaviour was
observed for almost all of the musicians in the study. Fig-
ure 11 shows another example. This validates the previous
assumption of a strong expressive content being imposed
by the musicians in this final part of the music, and be-
ing reflected in their corresponding clarinet gestures, since
both movement and note duration analysis led to related
results.
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Figure 11. Note intra-onset intervals for Musician 7, nor-
malized relative to a quarter-note.

8. CONCLUSION

The method defined for movement representation, segmen-
tation and recurrence analysis led to consistent and repre-
sentative clarinet gestures. Based on it, preliminary rela-
tions were pointed between gestural and musical aspects
during the performances, and also between the two pro-
posed performance styles, regarding gestural features. A
recurrent sequence of planar gestures, more restrained in
the metronome guided performances, was found in each
region of interest, which was shown to be a key moment in
the musical excerpt.

The strong recurrence and relation to the musical struc-
ture found in these physical gestures reinforce the assump-
tion of a musical significance in the musicians ancillary
movements, related to their expressive intentions and im-
portant for the desired musical outcome.

This method will now be applied to a quite larger data
set, including new musical excerpts and groups of musi-
cians, aiming at a detailed musical analysis and character-
ization of individual musicians, musical passages and per-
formance styles.
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ABSTRACT

The aim of this paper is to present a case study that high-
lights some differences between violin students from the
classical and jazz traditions. This work is part of a broader
interdisciplinary research that studies whether classical vi-
olin students with jazz music background have more con-
trol on the tempo in their performances. Because of the
artistic nature of music, it is difficult to establish a unique
criteria about what this control on the tempo means. The
case study here presented quantifies this by analyzing which
student performances are closer to some given references
(i.e. professional violinists). We focus on the rhythmic
relationships of multimodal data recorded in different ses-
sions by different students, analyzed using traditional sta-
tistical and MIR techniques. In this paper, we show the cri-
teria for collecting data, the low level descriptors computed
for different streams, and the statistical techniques used to
determine the performance comparisons. Finally, we pro-
vide some tendencies showing that, for this case study, the
differences between performances from students from dif-
ferent traditions really exist.

1. INTRODUCTION

In the last centuries, learning musical disciplines has been
based on the personal relationship between the teacher and
the student. Pedagogues have been collecting and orga-
nizing such a long experience, specially from the classical
music tradition, for proposing learning curricula in con-
servatories and music schools. Nevertheless, because of
the artistic nature of music, it is really difficult to establish
an objective measure between performances from differ-
ent students, so, it is very difficult to objectively analyze
the pros and cons of different proposed programs.

In general, a musician is able to adapt the performance of
a given score in order to achieve certain musical and emo-
tional effects, that is, provide anexpressive musical per-
formance. There exists a huge literature for the analysis
of expressive musical performances. Widmer [1] provides
a good overview on this topic. Under our point of view,
one of the most relevant contributions is the Performance
Worm for the analysis of performances by Dixon [2]. It

Copyright: c©2013 Enric Guaus, Oriol Saña et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

shows the evolution of tempo and perceived loudness in-
formation in a 2D space in real time, with a decreasing
brightness according to a negative exponential function to
show past information. Saunders [3] analyzed the playing
styles from different pianists using (beat-level) tempo and
(beat-level) loudness information. In the opposite direc-
tion, different systems have been developed to allow ma-
chines create more expressive music, which are summa-
rized by Kirke [4]. Then, according to the literature, most
of the studies related to expressive performance are based
on loudness and rhythmic properties of music.

This research is part of a PhD thesis on art history and
musicology. Its aim is to present evidences in differences
of performances for violin students from jazz and classical
traditions, in terms of rhythm. We decided focusing on
rhythm of music because is one of the key aspects to work
with classical violin students, and it is coherent with the
existing literature. For that, we propose a methodology
based on multimodal data collection from different pieces,
students and sessions and analyze it using state-of-the-art
techniques from statistics and Music Information Retrieval
(MIR) fields.

This paper is organized as follows: Section2 explains the
experimental setup for data acquisition. Section3 shows
the statistical analysis we used for further discussion in
Section4. Finally, the conclusions and future work are
presented in Section5.

2. EXPERIMENTAL SETUP

The aim of this setup is to capture rhythmic properties
of the proposed performances. It is specially designed to
make our future analysis independent of the played violin,
the played piece, the particular student and the particular
playing conditions of a specific session. We are only in-
terested on the musical tradition of the two groups of stu-
dents: those coming from the jazz tradition and those com-
ing from the classical tradition.

2.1 Participants

We had the collaboration of 8 violin students (Students
A . . . H) from the Escola Superior de Msica de Catalunya
(ESMUC), in Barcelona. Some of them are enrolled in
classical music courses (subjectsA, G) while others are
enrolled both in classical and jazz music courses (subjects
B, C, D, E, F, H). We also recorded two well known pro-
fessional violinists as a reference, one from the classical
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tradition (subjectI) andthe other from the jazz tradition
(subjectJ).

2.2 Exercises

We asked students to perform different pieces from the
classical and jazz tradition as in a concert situation. Pieces
were selected according to their rhythmic complexity, ac-
cording to the criteria of both classical and jazz tradition
professional violinist.

W. A. Mozart . Symphony n.38 in Eb Maj, 1st. move-
ment, KV 543: Rhythmic patterns with sixteenth
notes and some eighth notes in between. This ex-
cerpt presents high rhythmic regularity.

R. Strauss . Don Juan, op. 20, excerpt: Rhythmic ex-
cerpts that are developed through out the piece. There
exists small variations on the melody but rhythm re-
mains almost constant.

R. Schumann . Symphony n. 2 in C Maj, Scherzo, ex-
cerpt: Rhythmic complexity is higher than the two
previous pieces. This excerpt does not present a spe-
cific rhythmic pattern.

Schreiber . Rhythm exercise proposed by jazz violin pro-
fessor Andreas Schreiber, from Anton Bruckner Uni-
versity, Linz.

Charlier . Rhythm exercise proposed by drums professor
Andr Charlier, from Le centre des musiques Didier
Lockwood, Dammarie-Ls-Lys, France.

Gustorff . Rhythm exercise proposed by jazz violin teacher
Michael Gustorff from ArtEZ Conservatory Arnhem,
The Netherlands.

All students played classical tradition pieces but only jazz
students were able to perform jazz tradition pieces. Be-
cause of that, for the further analysis, we only use classi-
cal tradition exercises and we only compute distances from
student performances to the professional violinist from the
classical tradition.

2.3 Sessions

We follow the students through 10 sessions in one trimester,
from September to December 2011, in which they had to
play all the exercises. With that, we want to make results
independent of particular playing conditions in a specific
session. Reference violinists were asked to play as in a
concert situation, and they were recorded only once.

2.4 Data acquisition

For all the exercises, students and sessions, we created a
multimodal collection with video, audio and bow-body rel-
ative position information. Position sensors were mounted
on a unique violin. We asked students to perform twice,
first with their own violin to obtain maximum richness in
expressivity recording audio and video streams, and a sec-
ond performance on the violin and bow with all the sensors

attached. In this last case, all the participants performed on
the same violin. We also recorded audio and video streams
using both violins. In this research, we only include posi-
tion and audio streams.

2.4.1 Audio

We recorded audio stream for the two types of violin for
each exercise, student and session. We collected audio
from (a) ambient microphone located at 2m far away from
the violin, and clip-on microphone to capture timbre prop-
erties of the violin, and (b) a pickup attached to the bridge
to obtain more precise and room independent data from the
violin. We only use pickup information in our analysis.

2.4.2 Position

As detailed in previous research, the acquisition of gesture
related data can be done using position sensors attached to
the violin [5]. Specifically, we use the Polhemus1 system,
a sixdegrees of freedom electromagnetic tracker providing
information on localization and orientation of a sensor with
respect to a source. We use two sensors, one attached to
the bow and the other attached to the violin obtaining a
complete representation of their relative movement. From
all the available data, we focus on the following streams
that can be directly computed: Bow position, bow force
and bow velocity.

This data is sampled atsr = 240Hz and converted to
audio atsr = 22050Hz to allow feature extraction, as
will be described in the following section. Video, audio
and position streams are partly available under a Creative
Commons License [6].

3. ANALYSIS

Right now, we collected the audio and position streams for
each exercise, student, session and violin type. Now, we
compute a set of rhythmic and amplitude descriptors from
the collected streams and search for the dependence be-
tween them and the groups of students.

3.1 Feature extraction

We start computing descriptors from the audio recorded
from the pickup (1 stream @sr = 22050Hz) and from
the position data from the sensors attached to the violin (3
streams @sr = 240Hz). Data from Polhemus sensors
is resampled tosr = 22050Hz. After some preliminary
experiments, descriptors obtained through this resampling
were determined to be related with rhythm, even assuming
what we compute is not exactly the expected descriptor.
We compute two sets of descriptors using MIR toolbox for
Matlab [7]: (a) a set of compact descriptors for each audio
excerpt including length, beatedness, event density, tempo
estimation (using both autocorrelation and spectral imple-
mentations), pulse clarity, and low energy; and (b) abag of
framesset of descriptors including onsets, attack time and
attack slope2 .

1 http://www.polhemus.com/
2 Attack time and attack slope are considered timbric descriptors, but

we also include them in our analysis.
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Descriptor Student Session Exercise Type
length 9.20e-03 xxx 2.43e-01 - 1.69e-49 xxx 6.39e-01 -
beatedness 3.79e-01 - 1.52e-01 - 1.45e-15 xxx 2.01e-01 -
event density 3.54e-03 xx 1.49e-02 x 9.78e-27 xxx 6.42e-01 -
tempo estimation (autoc) 1.20e-01 - 5.16e-01 - 5.93e-18 - 6.68e-01 -
tempo estimation (spec) 9.14e-02 - 9.21e-01 - 7.98e-36 xxx 7.21e-01 -
pulse clarity 1.31e-02 x 4.47e-01 - 4.63e-99 xxx 5.24e-01 -
low energy 2.81e-02 x 6.93e-01 - 5.25e-89 xxx 4.96e-01 -
onsets 1.96e-01 - 4.25e-01 - 2.04e-01 - 1.44e-10 xxx
attack time 2.80e-03 xx 7.81e-01 - 2.24e.01 - 3.84e-01 -
attack slope 9.92e-05 xxx 2.30e-01 - 7.30e-01 - 7.17e-02 -

Table 1. Results of 1-way ANOVA analysis of the differences between the students and the classic tradition reference with
thecomputed descriptors from the audio from the pickup.

Descriptor Student Session Exercise
length 2.67e-01 - 7.73e-01 - 7.84e-34 xxx
beatedness 8.86e-01 - 8.52e-01 - 1.15e-02 x
event density 9.84e-01 - 9.08e-01 - 1.41e-66 xxx
tempo estimation (autoc) 5.35e-01 - 8.52e-01 - 6.72e-23 xxx
tempo estimation (spec) 8.33e-01 - 8.66e-01 - 2.71e-13 xxx
pulse clarity 6.24e-01 - 6.35e-01 - 8.35e-09 xxx
low energy 7.59e-01 - 9.26e-01 - 2.15e-76 xxx
onsets 7.41e-01 - 9.52e-01 - 3.19e-10 xxx
attack time 1.14e-01 - 3.45e-01 - 9.05e-02 -
attack slope 6.70e-01 - 9.50e-01 - 2.87e-02 x

Table 2. Results of 1-way ANOVA analysis of the differences between the students and the classic tradition reference with
thecomputed descriptors from the bow displacement.

Descriptor Student Session Exercise
length 2.67e-01 - 7.73e-01 - 7.84e-34 -
beatedness 1.74e-01 - 7.08e-02 - 3.51e-02 x
event density 3.39e-01 - 8.13e-01 - 3.27e-51 xxx
tempo estimation (autoc) 3.46e-01 - 9.51e-01 - 1.07e-13 xxx
tempo estimation (spec) 7.36e-01 - 7.10e-01 - 4.24e-13 xxx
pulse clarity 3.99e-01 - 8.24e-01 - 2.45e-25 xxx
low energy 5.93e-01 - 4.52e-01 - 4.70e-26 xxx
onsets 7.21e-01 - 8.72e-01 - 2.53e-11 xxx
attack time 8.47e-01 - 9.75e-01 - 3.20e-15 xxx
attack slope 9.76e-01 - 7.59e-01 - 2.14e-18 xxx

Table 3. Results of 1-way ANOVA analysis of the differences between the students and the classic tradition reference with
thecomputed descriptors from the bow force.

Descriptor Student Session Exercise
length 2.67e-01 - 7.73e-01 - 7.84e-34 xxx
beatedness 1.85e-01 - 5.84e-01 - 1.65e-02 x
event density 7.53e-01 - 8.95e-01 - 6.27e-40 xxx
tempo estimation (autoc) 2.38e-01 - 9.75e-01 - 1.08e-08 xxx
tempo estimation (spec) 4.57e-01 - 2.92e-01 - 1.74e-17 xxx
pulse clarity 6.65e-01 - 4.23e-01 - 1.82e-14 xxx
low energy 6.84e-01 - 9.38e-01 - 1.07e-51 xxx
onsets 6.56e-01 - 2.84e-01 - 2.85e-04 xxx
attack time 9.52e-01 - 1.17e-01 - 2.14e-01 -
attack slope 7.52e-01 - 1.68e-01 - 4.08e-01 -

Table 4. Results of 1-way ANOVA analysis of the differences between the students and the classic tradition reference with
thecomputed descriptors from the the bow velocity.

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

325



Descriptor Pickup Bow disp. Bow force Bow vel.
length 9.08e-05 xxx 8.70e-01 - 8.70e-01 - 8.70e-01 -
beatedness 6.82e-03 xx 9.62e-02 - 5.66e-01 - 3.27e-04 xxx
event density 5.03e-01 - 4.27e-01 - 2.14e-02 x 2.34e-01 -
tempo estimation (autoc) 6.30e-04 xxx 9.39e-04 xxx 5.64e-04 xxx 3.39e-01 -
tempo estimation (spec) 2.75e-03 xx 9.71e-04 xxx 3.40e-01 - 5.49e-01 -
pulse clarity 5.91e-10 xxx 2.66e-01 - 8.44e-05 xxx 8.08e-04 xxx
low energy 5.04e-17 xxx 3.52e-01 - 1.11e-01 - 2.98e-02 x
onsets 1.90e-01 x 6.07e-01 - 1.17e-01 - 1.22e-01 -
attack time 1.76e-02 x 3.67e-02 x 3.53e-01 - 4.61e-01 -
attack slope 4.33e-02 x 3.94e-01 - 1.37e-01 - 4.92e-01 -

Table 5. Results of 2-way ANOVA analysis (student and exercise) of the differences between the students and the classic
tradition reference with the computed descriptors from different streams

As mentioned in Section1, according to pedagogic cri-
teria, our work is based on the existing differences be-
tween the student performances (participantsA . . . H) and
the professional references (participantsI, J). As detailed
above, after the analysis of the recorded data, we observed
that all the students played the exercises from the classi-
cal tradition with a high quality, while only those with jazz
background played properly the exercises from the jazz tra-
dition. Then, all the comparisons are computed in relation
to the classical tradition professional violinist (participant
I).

For the first set of (compact) descriptors, we compute the
euclidean distance between the obtained descriptors of all
the recordings from the students and their relative value
from the professional performance.

For the frame-based descriptors, as the student and refer-
ence streams are not aligned, we use Dynamic time warp-
ing (DTW) [8] which also proved to be robust in gesture
data [9]. Specifically, we use the total cost of warping path
as a distance measure between two streams.

In summary, we have a set of descriptors related to the
rhythmic distance between students and the reference for 4
streams of data (one from audio and three from position).

3.2 Statistical analysis

One-way Analysis of variance (ANOVA) is used to test the
null-hypothesis within each variable, assuming that sam-
pled population is normally distributed. Null hypothesis
are defined as follows:

H0: DescriptorX do not influence the definition of
variableY .

beingX one of the rhythmic descriptors detailed in Sec-
tion 3.1, andY one of the four variables in our study (stu-
dent, session, exercise, and type). Results shown in Tables
1, 2, 3, 4 represent the probability of null hypothesis being
true. Then, we consider that descriptorX is representative
for p(H0) ≤ 0.05. We also include a graphic marker to de-
tect when the descriptor has a certain influence according
to the following criteria: (a)− for 0.01 ≤ p(H0) ≤ 0.05,
no influence; (b)x for 0.001 ≤ p(H0) < 0.01, small in-
fluence; (c)xx for 0.0001 ≤ p(H0) < 0.001, medium
influence; (d)xxx for p(H0) < 0.0001, strong influence.

It is also interesting to analyze results of two-way ANOVA
analysis for the student and exercise variables of our study.
Results are shown in Table 5, also including graphical mark-
ers.

4. DISCUSSION

As detailed in the Section3.2, Table 1, 2, 3 and 4 show the
results of the 1-way ANOVA analysis of the differences be-
tween the performances played by the students and the ref-
erence for different streams and descriptors.Typevariable
is only taken into account in the analysis of pickup data
because Polhemus streams are only recorded using one vi-
olin, as described in Section2.4.2. Nevertheless, as the null
hypothesis can not be rejected for most of the descriptors,
we conclude that the violin type has no influence in our
analysis. Moreover, the probabilities of null hypotheses
for Sessionvariable are also high. The null hypotheses can
not be rejected, then, we conclude that theSessionvariable
has no influence in our analysis.

Focusing on theExerciseandStudentvariables in Tables
1, 2, 3, and 4, we observe a high dependence of theExer-
cisevariable in most of the descriptors and streams, as ex-
pected. Our goal is to analyze the behavior of the students.
Table 5 shows the results of the two-way ANOVA analysis
for StudentandExercisejoint variables (Note how, in this
table, columns represent different streams, not variables,
for space restrictions). Null hypotheses can be rejected for
different descriptors and variables, but we observe a high
accumulation of ’xxx’ graphic markers for tempo estima-
tion (auto-correlation) and pulse clarity descriptors3 . We
guess that these descriptors are the best to explain differ-
ences between the two groups of students.

Moreover, according to Tables1 . . . 5, we observe how
the most representative stream is the audio recorded from
the pickup. For that, from now to the end, we focus only
on this stream.

Assuming ANOVA shows these descriptors present some
statistically significant dependency with the two groups of
students, we can go back to the original data and analyze

3 Pulse clarity is considered as a high-level musical dimension that
conveys how easily in a given musical piece, or a particular moment dur-
ing that piece, listeners can perceive the underlying rhythmic or metrical
pulsation [10].
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Figure 1. 1-way anova analysis plots for (a) tempo estimation (auto-correlation) descriptor on student variable, using
bow-force estimation stream, and (b) pulse clarity descriptor on student variable, using pickup stream.

its behavior. Figure1 shows the statistics for tempo estima-
tion (auto-correlation) and pulse clarity descriptors (those
who presented a high dependence in the ANOVA analysis)
with respect to the classical tradition reference. Even with
theExercisevariable information scrambled in these plots,
we observe how studentA andG present a different behav-
ior with respect to the other ones. As described in Section
2.1, studentsA andG are those without jazz musical back-
ground.

Focusing on the tempo estimation (auto-correlation) shown
in Figure1 (a), we can derive some partial conclusions:

• Meanof the relative tempo estimation for students
from the jazz tradition are far from the professional
violinist, except for the participantF . Assuming a
negative value of the difference means that the stu-
dent plays faster than the reference, we observe a
tendency on classical students playing faster than the
reference.

• The lower limit (25th. percentile) of the relative
tempo estimation for students from classical tradi-
tion are close to their mean. This could mean classi-
cal tradition students are more stable in their tempo.

Focusing on the pulse clarity shown in Figure1 (b), we
can derive some partial conclusions:

• Mean values of the relative pulse clarity for students
from the classical tradition are closer to zero. We de-
duce the pulse-clarity for students from the classical
tradition is closer to the professional violinist.

• Mean values of the relative pulse clarity for students
from the jazz tradition are far and negative. Assum-
ing a negative value of the difference means that the
student plays with a higher pulse clarity than the ref-
erence, we could deduce that students from the jazz
tradition show a clearer pulse than the reference.

• The lower limit (25th. percentile) of the samples
for students with jazz background is lower than the

lower limit of the samples for students with classi-
cal background. As in the previous case, assuming a
negative value of the difference means that the stu-
dent plays with a higher pulse clarity than the ref-
erence, we could deduce that students from the jazz
tradition show a clearer pulse than the reference.

It is not the goal of this paper to pedagogically define
what does it meanto perform better, but we guess that, in
our scenario, students with jazz musical background can
be objectively identified in terms of tempo and pulse clarity
with respect to those students without this background. For
all, we conclude that the two groups of students can be
objectively identified.

5. CONCLUSION

In this paper, we presented a case study for the comparison
of musical performances in terms of rhythm of two groups
of students. Specifically we proposed a methodology to
determine which parameters may best identify rhythmic
properties of performances carried out by a given set of
students under specific conditions, based on multimodal
data, an analyzed whether they are closer to a given ref-
erence. The novelty of this methodology is the obtention
of rhythmic properties related to a group of students in-
stead of a specific student, piece, session, or violin. Data
from the pickup resulted being more effective than gesture
data from the position sensors. Pulse clarity and tempo
estimation showed to be the descriptors that have a major
influence in the student behavior. Then, by analyzing them
in detail, we observe how the two separable groups they
provide coincide with the groups of students defined by
their musical background, as shown in Figure1. This can
be a controversial conclusion for pedagogic and artistic re-
search. In order to make these conclusions more general,
our next step is to increase the number of subjects to ana-
lyze, including more scores, participants and instruments.
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ABSTRACT

This paper presents an experimental setup for the study
of right hand techniques on the acoustic guitar, and de-
scribes the main features of our apparatus regarding the
extraction of audio descriptors. A preliminary case study
on the tremolo technique is also discussed, where four dif-
ferent musicians played five versions of the same musical
excerpt. These versions are compared on the basis of the
regularity of the rhythmic pattern, the note durations, and
the uniformity of the amplitudes. The comparison results
suggest a direct relationship between rhythmic regularity
and the player’s level of expertise. Nevertheless, this re-
lationship does not apply to the note durations or the dy-
namic regularity. Finally, some concerns regarding the dif-
ficulties in listening to the discovered (ir)regularities are
addressed, and some steps for further research are pointed
out.

1. INTRODUCTION

The development of increasingly refined tools for audio
processing, video analysis and motion capture has opened
new methods for studying music performance. Several of
these tools and methodologies can be seen in the multi-
modal (exploring more than one stream of data related to
the same performance) projects developed at the Input De-
vices and Music Interaction Laboratory [1], McGill Uni-
versity, Canada.

On the other hand, the extraction of features and descrip-
tors from only audio signals still receives much efforts and
generates significant results [1–3].

The analysis of audio recordings of polyphonic or ensem-
ble performances pose additional difficulties, especially in
source and voice separation [4, 5]. Studies in this field
are usually accomplished through independent recording
of each musician or, as in the case of the piano, by us-
ing instruments such as the Disklavier, which can generate
MIDI (or similar) data [6–8].

Fewer studies have focused on polyphonic performances
on an acoustic guitar. Thus far, most of the existing liter-
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ature deals with electric or commercial MIDI guitars, and
some of them are not directly concerned with detailed fea-
tures of the performance [9–12]. This paper presents the
experimental setup and tools developed for studying the
right hand techniques of an acoustic guitar player, along
with the results and discussion of an experiment focused
on the tremolo technique.

2. DESCRIPTION OF THE SYSTEM

The setup used for this study consisted of the following
components: a Spanish acoustic guitar Alhambra (model
E-533, year 1978), hexaphonic acoustic pickups made by
LR Baggs, a multi-cable with six independent audio paths,
an audio interface with preamplification Focusrite Saffire
Pro40, and the Max programming environment. Devel-
oping the system with real-time capabilities provides the
potential not only to use it as a didactic tool, but also for
interactive applications of the acoustic-digital interface. In
non real-time applications, the software Digital Performer
is used for the multi-track recording; these recordings may
be later fed into Max through an internal audio driver.

The basic data related to signal levels in the system are
presented in Table 1. The RMS values are expressed in
dBFS (dB full scale), where 0 dB corresponds to the max-
imum undistorted signal admitted by the system. The cal-
culation is done for each of the 1024 samples (correspond-
ing to 21.3 ms at a sampling frequency of 48 kHz), with a
hop size of 512 samples. These data were averaged from
several informal performance sessions on this instrument.
They also showed that the pickup system was sufficiently
reliable and uniform to allow for comparison of the signal
levels from different strings. The amplitude range, with an
average of 39 dB, is consistent with the data collected by
Gieseler [13] for an acoustic guitar (ca. 35 dB).

The mechanical and acoustic coupling is very strong in
the guitar used in this setup, and deserves special atten-
tion in the routines of attack detection. Two general val-
ues were calculated for each string (see Table 2), using the
same strategy of averaging informal performance sessions.
The first value is the maximum influence suffered by one
string due to a simultaneous attack on the remaining five
strings. The second is the maximum influence of the attack
on one string on the combined levels of the five remaining
strings. The presence of sympathetic resonance may ele-
vate these values somewhat.
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string tunning background intensity intensity
(Hz) noise(dB) attacks pp attacks ff

(dB) (dB)
first 330 -89.6 -60 -23
(E4)

second 247 -89 -62 -23
(B3)
third 196 -88.7 -62 -20
(G3)

fourth 147 -88.8 -60 -23
(D3)
fifth 110 -89.4 -60 -23
(A2)
sixth 82.5 -90 -60 -20
(E2)

Table 1. Basic amplitude values in the system.

string maximum influence maximum influence
from remaining strings on remaining strings

(dB) (dB)
first -48 -34

second -45 -35
third -44 -42

fourth -45 -45
fifth -45 -49
sixth -45 -46

Table 2. General amplitude levels due to mechanical cou-
pling in the system.

The audio signal generated by the pickups was compared
to the sound captured by a condenser microphone of me-
dian sensibility [14]. Two main results are worth mention-
ing here. First, a consistent positive correlation was found
in the different dynamic levels between signals from the
two sources. Second, the differences in sonority were more
noticeable, mainly in the bass and medium registers. The
typical resonances of an acoustic guitar, due to the sound-
board and sound hole, are missing in the pickup signals, as
expected. However, the attack transients are more defined
in these signals, and help the extraction of descriptors (see
next section).

Currently, the system can produce several low-level au-
dio descriptors in real-time: moment of attack detection
and note offset (with an error margin of 10 ms), amplitude,
pitch, articulation (staccato - legato), and pitch bending.
Efforts are being made to characterize the brightness (tak-
ing in account the string and fret in use) and sympathetic
resonance (both in amplitude and pitch effects).

Simple visual interfaces for the real-time monitoring of
amplitudes, beat/pulse duration, and the effective duration
of each note (a kind of piano-roll display) were developed.
Preliminary studies have focused on right hand techniques
like arpeggios, plaqué (block chords), repeated notes, and
tremolos. Such studies were important not only for the de-
velopment of analytical methods and tools, but also for the

calibration and progressive refinement of the system. They
are discussed in detail in Nezio’s dissertation [14]. Some-
what unexpected results from the analysis of two perfor-
mances of a tremolo excerpt encouraged the realization of
the present work, which has a larger number of interpreters
and will be discussed later.

3. EXTRACTION OF NOTE ONSETS, OFFSETS
AND AMPLITUDES

The majority of the sounds produced on the guitar may be
characterized by a sharp attack followed by a resonance,
with no sustained section. Therefore, it is not necessary
for the purposes of this paper to distinguish between the
onset and attack portions of the audio signal: on the guitar,
an attack always presents a clear transient and a definite
peak in the signal.

The extraction of note attacks, offsets and amplitudes is
a crucial task in this system, and led to the development
of a dedicated algorithm. The basic idea is to compare the
peak amplitude value of the signal generated by one string
with its RMS amplitude value (normally calculated on ev-
ery 1024 samples). This RMS value may be re-placed by a
variable floor value, depending on the signal levels present
on the remaining strings. Figure 1 shows a general view
of the processes and stages involved in this work, each of
which will be discussed in detail below.

The first step is the filtering of the signal of the focused
string, a stage called pre-processing by Bello [15]. Two
band-pass filters are applied in parallel, the first in the low-
medium register and the other in the high register. This
contributes simultaneously to the diminution of the sym-
pathetic resonances and to the amplification of transients.
From this filtered signal, the peak value is extracted every
5 ms, and the average of the last two (sometimes three) val-
ues is calculated. This averaging avoids short bursts due to
finger displacement or percussion to be interpreted as an
attack.

The averaged peak value is then compared with the RMS
signal of the same string or with a variable floor value, the
chosen being the higher one. The floor value remains -60
dB (the low threshold of pp attacks, see Table 1) as far
as the peak value of the combined signal of the remaining
strings, calculated every 10 ms, does not exceed -50 dB.
When this value surpasses -50 dB, a non-linear function,
heuristically defined, generates a new floor value continu-
ously.

For the comparison between the peak and the RMS (or
floor) values, a two-step threshold detector is used (a dig-
ital version of a Schmitt trigger). The high threshold is
determined by the RMS (or floor) value multiplied by a
user parameter. In the process of fine tuning the algorithm,
it was found that linking the low threshold to the high one
was helpful; thus, the low value is calculated from the high
value through a ”release depth” factor, varying between
1.001 and 2.0. The higher this factor, the lower the incom-
ing value must be to retrigger the detection. A minimum
waiting time for the recognition of a new attack (re-attack)
may also be set by the user.
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Figure 1. Flowchart of the algorithm developed to extract
note attacks and offsets and to estimate the amplitude.

Once an attack is detected, the process of amplitude cal-
culation is started. Because of the unavoidable delay in
the RMS calculation and psychoacoustic reasons (integra-
tion of sound intensity in the ear), the amplitude is defined
as the maximum RMS value of the non-filtered signal that
occurs between 0 and 80 ms after the attack detection. We
believe that this value represents the dynamics intentions
of the performer quite well, based on the comparisons be-
tween the signals generated by the pickups and a micro-
phone, mentioned earlier in this paper.

The detection of the offset of notes is accomplished in
one of the following ways: either the RMS value of the
focused string has dropped below a predefined value, or a
new attack has occurred before this happens.

The routine just described is applied to all strings simul-
taneously. With these three audio descriptors, it is possible
to do a detailed analysis of the rhythmic and dynamic pat-
terns of performances on an acoustic guitar.

4. ANALYSIS AND COMPARISON OF THE
REGULARITY IN FIVE INTERPRETATIONS OF A

TREMOLO EXCERPT

On the guitar, the tremolo technique consists of playing
fast and repeatedly the same note on one string, searching
for a more sustained sonority, which does not make part
of the regular sound palette of the instrument. When using
the finger-picking, this effect is achieved through the rapid
alternation of the right hand fingers, indicated by the letters
p (thumb, from the Spanish pulgar), i (index), m (middle)
and a (ring or annulary). A very common texture in the
guitar literature is the use of the tremolo with the fingering
p a m i, where the three last fingers make the tremolo using
a treble string and the thumb plays a melody in a lower reg-

ister. This is what happens in the musical excerpt chosen
for this study was the opening bars of the Scherzino - the
third movement of Alexandre Tansman’s Cavatina (1951),
as shown in Figure 2.

Figure 2. Initial bars of the Scherzino from Tansman’s
Cavatina, for guitar.

The musicians were asked to play it as normally expected
in a music context, without any special instructions regard-
ing tempo or dynamics. The guitarists were two under-
graduate students (versions A e B), one graduate student
(version C) and one professional guitarist (version D). One
musician (A) played the excerpt twice, with an interval of
about eight months, which is indicated by A1 and A2. The
data generated by the real-time algorithm in Max were sub-
sequently edited manually to bring the margin of error to
a quasi sample-level precision. For the discussion that fol-
lows, is useful to name the set of four successive notes (p a
m i) as a cycle; therefore, the excerpt has 4 bars, 24 cycles
and 96 notes. 1

4.1 BPM Calculation

The general tempo of the excerpt may be calculated from
inter-onset intervals (IOI) between the eighth notes played
by the thumb (lower voice in Figure 2). All versions ex-
hibit the pattern 4-2-2-3-2-4-2-3-2-4-3-2 (repeated twice)
for the choice of the strings played by the thumb in ev-
ery cycle. The tremolo proper is always played on the first
string, with the left hand finger kept in a fixed position on
the fretboard.

Figure 3 shows the BPM (beats per minute) curve for
each version. Note that the first value in the graphic is cal-
culated when the second note is attacked, and this applies
to all subsequent values. There is no general beat pattern
among these versions, although the alternation of pulse ac-
celeration and deceleration (in a triangular shape) may be
detected to some extent in some of them. The peak (on the
onset of the fifth cycle) and the valley (onset of the sixth
cycle) present in the otherwise quite regular execution C
are due to the anticipation of the attack on the fourth string
in the fifth cycle. This is followed immediately by a much
delayed attack of the annular, which contributes to a lower
BPM value in the sixth cycle. These irregularities can be
seen in Figure 4 version D, which plots all notes against
IOIs, as an inverted curve (valley and peak). The slowest
version B shows the most regular pulse, and the irregularity
of the remaining versions may be attributed to the difficul-
ties of playing tremolos in a faster tempo. Nevertheless,

1 Recordings of these versions can be downloaded at:
https://dl.dropbox.com/u/25793338/versionsAtoD.zip
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version D shows a high level of technical control and regu-
larity in each cycle, as will be seen in the next subsection.

Figure 3. BPM curves for each version.

4.2 IOI Calculation

Figures 4 depict the IOIs between every attack in all ver-
sions. In some of them, clear regular patterns can be seen,
especially in versions B and D. These graphics may lead to
the supposition that these musicians have a highly internal-
ized, quasi-mechanized way of executing this technique,
which, owing to its speed, does not allow a conscious con-
trol of every attack. In the versions B and D, the peaks are
always connected to a thumb attack, meaning that some
extra time is interposed between each cycle. Version C
also sometimes follows this pattern, but it is not systematic
as the former ones. Another very distinct characteristic of
version D is that the valleys in the curve always correspond
to attacks made by the median finger (third note in the cy-
cle). This feature points to a performance strategy based
on an irregular regularity: the cycle is not played with con-
stant interval times, although a clear time pattern can be
observed. In each cycle, there is an acceleration from the
thumb to the median finger attack (passing by the annu-
lary), then a deceleration from the middle to the thumb
(passing by the index).

4.3 Normalized Durations on the First String

Relevant information about performance strategies may also
be drawn from the effective duration (interval be-tween
the note attack and offset) of each note played on the first
string. This may be related not only to the bio-mechanical
aspect of this technique, but also to the desired sonority.
The longer the duration the more sustained is the whole ef-
fect of the tremolo. Figure 5 shows a normalized value for
the durations on the y-axis, which means that the duration
of the note attacked by the index finger (the fourth in the
cycle) is halved.

Versions A1 and D both exhibit longer durations in the
last note of the cycle, which is expected, since the next at-
tack is made on another string. Nevertheless, the shorter
durations show different behaviours: while A1, on the av-
erage, produces two different durations for the notes played
by the annulary and median fingers in each cycle, musician
C maintains almost systematically equally very short dura-
tions for these notes. The waveforms representing typical
cycles from these versions can be seen in Figures 6(a) and
6(b).

Figure 4. IOIs in ms from (a) version A1, (b) version A2,
(c) version B, (d) version C, (e) version D.

4.4 Amplitudes in Each Layer of the Excerpt

As in the former analysis of note durations, the amplitudes
series can also help the analysis of the performance in both
technical and interpretative terms. On the technical side,
the main feature is again the uniformity observed in the
first string. On the musical side, two different ways of in-
terpreting the lower voice of the excerpt showed up: one
considers the voice as one single stream, the other splits
the notes in two melodies, one acting as a bass line (on the
fourth string) and the other as a tenor line (on strings 3 and
2).

Figure 7 shows the amplitudes on the first string in ver-
sions A2 and D. It can be noted that version A2 is more
uniform in this respect: its values are distributed across
a narrower dynamic range and neighbor notes have more
similar amplitude values. On the other hand, version D,
the most regular on timing patterns, shows a very irregular
amplitude series.

Figure 8 plots the amplitudes of the lower layer of the
versions A1, B, and D. Version B clearly divides this layer
in two voices, the bass line being the softer. Version A1
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Figure 5. (a) Normalized note durations on the first string
from version A1. (b) Normalized note durations on the first
string from version D.
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Figure 6. (a) Waveform of the notes played on the first
string in cycles 9 and 10 in version A1. (b) Waveform
of the notes played on the first string in cycles 4 and 5 in
version D.

makes no such subdivision, and version D is somewhere in
between the former two.

4.5 Spectral Features

We have not yet developed a method to study the regular-
ity of timbre in the tremolo technique, although the sharp-
ness of the attacks has certainly a strong influence on the
spectrum of such short sounds. The balance between the
attacks played by three different fingers (index, medium
and annulary) is surely another technical challenge for gui-
tarists playing tremolos. The sonograms of the recordings
shown in Figures 6(a) and 6(b) illustrate some aspects of
this issue, as can be seen in Figures 9(a) and 9(b). It is
worth noting the very dissimilar spectra of each note in the
cycles of version D, and the salient offset transients in ver-
sion A1.

5. FINAL REMARKS

The above discussion has indicated some relevant char-
acteristics of the tremolo technique on an acoustic guitar.

Figure 7. Amplitude curves on the first string in versions
A2 and D.

Figure 8. Amplitude curves on the lower layer (fourth,
third and second strings) in versions A1, B and D.
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Figure 9. (a) Sonogram of cycles 4 and 5 from version A1.
(b) Sonogram of cycles 9 and 10 from version D.

None of the versions scored equally high in the different
parameters related to regularity and uniformity. Neverthe-
less, the more trained musicians demonstrated a very fine
control and regularity of movements. The less skilled per-
formers in this technique have somehow brought into play
relevant interpretative features, like longer durations and
more regular amplitudes.

It is very difficult to perceive some of the characteristics
described above during the performances. It is also hard
to accept some of these results, which disagree strongly
with a naı̈ve, but theoretically justified, assumption of very
regular IOIs in this excerpt. Listening to a single rhythmic
structure - constructed with filtered audio clicks featuring
the timing and amplitudes from the discussed versions -
provides a better way for the perceiving such irregularities.

When both recordings – the performance on guitar and
the rhythmic audio reduction – are superimposed, the miss-
ing factors in the analysis come into play. First, a stream
segregation process is certainly taking place, dividing the
excerpt in two (or three) streams, and preventing a unified
perception of the global rhythm. The tiny differences in
each note of the tremolo – type of attack, amplitude, du-
ration – may also contribute to a more diffuse perception
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of the rhythm. Finally, the fact that the lower voice keeps
sounding above the rapid tremolos also helps integrating
the silences present in between these notes.

Future works may tackle the tremolo technique in a mul-
timodal environment, using video images with high frame
rates and 3D motion capture, where the correlations be-
tween the mechanical execution of the gestures and the ef-
fective production of sound may be traced.
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ABSTRACT 

We describe the first stage of a two-stage semi-

algorithmic approach to music performance rendering. In 

the first stage, we estimate the perceptual salience of 

immanent accents (phrasing, metrical, melodic, harmon-

ic) in the musical score. In the second, we manipulate 

timing, dynamics and other performance parameters in 

the vicinity of immanent accents (e. g., getting slower 

and/or louder near an accent). Phrasing and metrical 

accents emerge from the hierarchical structure of phras-

ing and meter; their salience depends on the hierarchical 

levels that they demarcate, and their salience. Melodic 

accents follow melodic leaps; they are strongest at con-

tour peaks and (to a lesser extent) valleys; and their sali-

ence depends on the leap interval and the distance of the 

target tone from the local mean pitch. Harmonic accents 

depend on local dissonance (roughness, non-harmonicity, 

non-diatonicity) and chord/key changes. The algorithm is 

under development and is being tested by comparing its 

predictions with music analyses, recorded performances 

and listener evaluations.  

1. INTRODUCTION 

The music rendering competition Rencon (Hiraga et al., 

2004) has shown how difficult it is to simulate the ex-

pressive performance of familiar Western classical music. 

Despite decades of research, automatically generated 

musical expression is often unconvincing - even in short-

er musical excerpts, in which relatively intractable con-

textual factors such as genre-specific expressive devices 

and the music’s programmatic meaning can be neglected 

in a first approximation. 

Our approach is based on the analysis-by-synthesis ap-

proach of Sundberg (1988) and Friberg (1991), and their 

rule-based performance rendering system Director Mu-

sices. Like them, we begin with the score and adjust the 

timing and dynamics of an automatically generated per-

formance by applying rules to selected structural features.  

Inspired by Sundberg and Friberg, Parncutt (2003) de-

veloped a new theoretical foundation. In a broad defini-

tion, an accent is any musical event that seems important 

or attracts the attention of a listener. An immanent accent 

is an accent that is determined by the musical structure as 

suggested by the musical score; a performed accent is 

added to the music by the performer by manipulating 

dynamics, timing, articulation or timbre. In both cases, 

the perceptual salience of an accent is its perceptual or 

subjective importance, or the degree to which it attracts a 

listener’s attention.  

Many of the performance rules of Sundberg and Friberg 

can be reinterpreted in terms of this general concept of 

accent. The accent concept unifies the theory under a new 

general umbrella and establishes a stronger connection 

between performance rendering and the academic disci-

pline of music theory and analysis.  

The accent approach is ultimately based on the psycho-

acoustics of musical event perception. The noteheads in a 

musical score may be equal in size, but when the music is 

performed, they do not sound equally important. Imagine 

that a score is performed completely deadpan, with tim-

ing corresponding exactly to the score and all tones 

played at a sound level that would make them equally 

loud if played alone. In context, those tones will seem to 

differ in loudness, because they mask each other to dif-

ferent extents (Egan & Hake, 1950). On average, the 

outer voices typically seem louder or clearer than the 

inner voices since the (fundamental frequencies of the) 

outer voices are primarily masked on one side, but the 

inner voices are masked on both sides.  

Now imagine that the performer adjusts the loudness of 

the tones so that they are equally loud in spite of mask-

ing. The tones will still seem unequally important due to 

the musical structure (phrasing, meter, melody, harmo-

ny). Because these effects arise initially from the struc-

ture and not from the performance, they may be consid-

ered immanent to the score.  

Immanent accents may be divided into several kinds, 

which Parncutt (2003) identified as grouping, metrical, 

melodic and harmonic. Note that Lerdahl and Jackend-

off’s (1983) term structural accent has essentially the 

same meaning as Drake and Palmer’s (1993) grouping 

accent. We adopt the latter; Lerdahl and Jackendoff’s 

term is inappropriate insofar as all immanent accents may 

be considered “structural”. The term “grouping accent” is 

also problematic, since a group of tones or sound events 

can be either serial (like a phrase) and periodic (like a 

metrical pattern or pulse); but the alternative term “phras-

ing accent” is equally problematic, because it may be 

misleading to describe a whole piece as one long 

“phrase” (the word “phrase” suggests a time period 

equivalent to one breath, while singing or playing an 

instrument).  

Everyday usage of the word “accent” suggests that all 

notes in a score can be classified either as accented or 

unaccented - just as all tones, intervals or chords can be 

classified as consonant or dissonant. In fact, both conso-
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nance and accentuation vary on a continuous scale. The 

salience of an immanent accent may be compared with its 

perceptual importance when the music is heard in a dead-

pan performance - before the performer manipulates 

accent salience with performed accents. 

On this basis, Parncutt (2003) developed a new ap-

proach to modeling expression (timing, dynamics, articu-

lation, timbre and so on) in Western classical music. The 

procedure involved first estimating the perceptual sali-

ence of the main immanent accents in the score, and 

second exaggerating or bringing out those accents in a 

computer-generated performance. Performers tend to 

clarify or disambiguate the structure of a piece of music 

for the listener by adding extra salience to selected im-

manent accents (Bisesi et al., 2012). Common expressive 

manipulations include slowing the tempo (or adding extra 

time) and increasing the loudness in the vicinity of im-

manent accents. It is also possible to unexpectedly reduce 

loudness to attract attention to an event. Important events 

are typically delayed, played louder, or both. Of course 

there are exceptions, but they happen less often. 

In order to model such effects convincingly, we must 

address several questions. According to what general 

principles can immanent accents be identified? What 

general principles determine their salience? How are 

tempo, dynamics and other parameters typically varied in 

the vicinity of accents? Over what time period before and 

after an accent are they varied? What is the shape of the 

timing or dynamic curve leading up to and away from the 

accent? This proceedings contribution addresses the first 

two questions by identifying the main principles and 

sketching a computer algorithm to identify and evaluate 

immanent accents. 

2. GROUPING ACCENTS 

A phrase is a temporally contiguous series of tones or 

musical events that are grouped in our perception by the 

Gestalt principle of temporal proximity. Grouping ac-

cents occur at the start and end of phrases or sections. 

The listener’s attention is drawn to structural boundaries 

for the simple reason that they delineate the structure; we 

assume that a listener only “understands the music” if 

s/he intuitively parses the structure “correctly”, i.e. more 

or less as a composer, performer or theorist would do. 

The first note of a phrase or section is important because 

it announces something new; the last note is important 

because it announces the end of a group (closure). Per-

formers tend to slow at phase boundaries; listeners con-

sequently expect these tempo fluctuations (Repp, 1998). 

Bisesi et al. (2012) found a general agreement about the 

position of phrase beginnings, endings and climaxes 

across performances and listeners. 

Grouping accents often coincide with other accents. 

Consider for example metrical accents. If the start of a 

phase coincides with the start of a measure, metrical and 

grouping accents coincide. We may assume that a com-

pound accent is created, whose salience is greater than 

that of each of the two accents considered separately. If 

phrasing and metrical accents do not coincide, there is an 

upbeat or anacrusis. In that case, we may hear the start of 

the phrase as more or less important than the following 

upbeat – depending e.g. on how we are listening, or 

whether we are singing or playing percussion. 

To analyse grouping accents in a score, it is necessary 

first to parse the piece according to its hierarchical phras-

ing structure. The outcome is sometimes ambiguous: 

different theorists might offer different analyses for the 

same passage. For this reason, we have not attempted an 

automatic analysis here. Instead, we describe the basic 

subjective principles according to which a theorist might 

segment a passage of music into phases and group these 

together to make a hierarchical structure. A semi-

algorithmic approach of this kind was also adopted by 

Lerdahl and Jackendoff (1983). 

The first step is to regard the entire piece or excerpt as 

one long phrase. The next is to divide this long phrase 

into a number (normally 2 or 3) of subphrases of nomi-

nally equal importance. Then divide each subphrase into 

sub-subphrases, and so on until arriving at the level of 

individual notes. This process is similar to the process of 

parsing speech utterances or written text in linguistics. 

How exactly is the subdivision decided at each level? 

Musicians and theorists know intuitively how to do this; 

if we are to create a more objective procedure, we need to 

make those intuitive processes explicit. First, consider 

inter-onset intervals (IOIs) – the time interval between 

the onset of a note and the onset of the next note. The IOI 

of the last note in a phrase (i.e. the IOI between that 

note’s onset and the onset of the first note in the next 

phrase) is often relatively long by comparison to IOIs 

within the phrase. Moreover, rests are more likely to 

occur between phrases than within them. Second, there 

might be a relatively large leap in pitch between the last 

note of a phrase and the start of a new one. Third, phrases 

often rise in pitch near the start and fall in pitch near the 

end, so a parsing that produces such phrase shapes may 

be preferred. Fourth, if a melody includes repetitions of 

recognizable motives, the phrasing should not break these 

motives up. 

A final rule to observe is that subphrases of a given 

phrase should have roughly equal length; the longest 

subphrase should in any case not be more than twice as 

long as the shortest subphrase. If this rule is broken, the 

problem can be solved by joining together two shorter 

subphrases and dividing that phrase again at the next 

level down the hierarchy. 

The phrasing structure of a piece may be ambiguous – 

different interpretations are possible and may even seem 

equally valid. In this case, different possible interpreta-

tions may be considered separately, and the validity of 

each interpretation may be estimated quantitatively in a 

comprehensive algorithm. We might e.g. consider inter-

pretation A to be 70% valid and interpretation B to be 

30% valid, and retain both alternatives in further analyses 

or applications. 

Once the phrasing structure has been determined, the 

grouping accents can be located and their salience esti-

mated. A grouping accent occurs at the start and end of a 

phrase at any hierarchical level. In a first approximation, 

the salience is simply the number of levels at which a 

given event marks the start or end of a phrase (cf. Todd, 

1985). In a more sophisticated approach, the salience of a 
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grouping accent may be the sum or another combination 

of such salience values.  

In musical scores, phrasing is often explicitly marked 

by the composer, arranger or editor. Examples of phras-

ing and corresponding accents are shown in Figures 1a 

and 1b. In both cases, we have simply followed Chopin’s 

phrase marks. In Figure 1a, the passage has been divided 

into two phrases. The relatively large time gap between 

the phrases and the similarity of the two phrases makes 

the phrasing quite unambiguous. Because the two phrases 

combine into one phrase at the next hierarchical level, the 

grouping accent at the start of the first phrase is stronger 

than that at the start of the second phrase. The start of the 

first phrase is also the start of phrases at two higher levels 

(groups of four and eight phases respectively), which 

accounts for the large difference in salience between the 

two grouping accents. The grouping accents at the ends 

of the phrases are determined by the same logic in re-

verse: the biggest phrase-ending grouping accent occurs 

at the end of the piece. Figure 1b spans a single phrase 

marked in the score, so it begins and ends with a group-

ing accent. The phrase is difficult to divide unambiguous-

ly into two or three shorter phrases, so we treat Chopin’s 

phrasing as the lowest (fastest) level). In an analysis of 

the whole piece, we would have marked further phrases 

at higher (slower) hierarchical levels. 

3. METRICAL ACCENTS 

Like the phrasing, the meter of a piece of music usually 

has a hierarchical structure. Consider a piece in ¾ time. 

There is a basic ¼ note pulse; ¼ notes are grouped into 

threes making a ¾ note pulse at the barline. These are 

two adjacent levels of a hierarchy. The hierarchy can be 

extended both upwards and downwards: if note values 

smaller than a ¼ note are used, they can create faster 

pulses, and if groups of measures produce new, percepti-

ble periodicities, they can be regarded as slower pulses 

called hypermeter. 

In Figure 1a, there is a bigger metrical accent at the 

start of the first measure than at the start of the third 

measure, and both these accents are stronger than at the 

start of measures 2 and 4. We already encountered this 4-

1-2-1 pattern in hierarchical phrasing analysis. However 

is not always clear whether these groupings are being 

perceived as phrases or hypermeter. For the purpose of 

performance rendering, phrases are already accounted 

for. For these reasons we do not consider higher-level 

hypermeters. But we do consider groups of two measures. 

For example, the metrical accent at measure 1 of Figure 

1b is greater than the metrical accent at measure 2.  

If a piece remains in the same time signature throughout 

and there are no obvious ambiguities (i.e. if the composer 

evidently intends the listener to perceive the notated me-

ter), then the analysis of metrical accent within measures 

is straightforward. The salience of the metrical accents 

can be estimated in the same way as the grouping accents 

were determined above. In a first approximation, the 

salience of a metrical accent is the number of different 

level of pulsation to which it belongs. In a second ap-

proximation we include the dependence of pulse salience 

on tempo (pulses near about 100 per minute are the most 

salient) and add the salience of the pulses to which each 

event belongs. 

If the piece stays in the same meter and has little or no 

syncopation, we can establish a complete metrical hierar-

chy. Any change in the meter causes a temporary weak-

ening of the hierarchy as the new meter is established. 

Syncopations typically make other interpretations possi-

ble. This has not yet been modeled, but a systematic ap-

proach might be to present the different possible struc-

tures and weight them relative to each other: interpreta-

tion A might be the more likely with a probability of 70% 

and interpretation B with 30%. 

Our algorithm currently works as follows. We first 

mark four metrical levels. The note value assigned to 

each beat level is given in Table 1 for the most common 

time signatures. The table could easily be extended to 

other time signatures. The conventional “beat” generally 

corresponds to level 1 in the table. The barline corre-

sponds to level 2 for simple metres in which the measure 

is 2 or 3 beats, and to level 3 for compound metres in 

which the measure is 4 or 6 beats. 

 
 Metrical level 

Time 

signature 

Level 0 Level 1 

(beat) 

Level 2 Level 3 

4/4 1/8 1/4 2/4 4/4 

2/2 1/4 1/2 2/2 4/2 

4/2 1/4 1/2 2/2 4/2 

2/4 1/8 1/4 2/4 4/4 

¾ 1/8 1/4 ¾ 6/4 

3/8 1/16 1/8 3/8 6/8 

6/8 1/8 3/8 6/8 12/8 

9/8 1/8 3/8 9/8 18/8 

 
Table 1. The period of each metrical level expressed as note 

values for different time signatures. 

 
Next, we compute the salience of each metrical level. 

Following Parncutt (1994), we assume that the function 

of pulse salience against period is a Gaussian function 

relative to a logarithmic scale of period: 

 

           
      

         

    
  

, 

 
where X is the period of the metrical level in seconds, M 

= 1.0 seconds is the centre (mean) of the Gaussian distri-

bution, S = 1.65 is the standard deviation of the distribu-

tion, and i is the metrical level (0..3). In Parncutt (1994) 

the mean M was smaller (0.6..0.7 seconds); we found that 

increasing it improves modeling of hypermetre. 

Finally, we calculate the metrical accent salience of 

each point in time in the score. It is simply the sum of the 

salience of all metrical levels including that note. 

4. MELODIC ACCENTS 

Melodic accents are marked “C” in Figure 1. The C 

stands for contour (or melodic contour accents) and 

avoids confusion with M for metrical accents. For an 

overview of research on melodic accent, see Huron and 

Royal (1996). 
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In Figure 1a, the first melodic accent is at the start 

of measure 1. The accent is evidently due to the (rising) 

leap before the accent, which attracts attention to it. The 

next two marked accents also follow rising leaps. Figure 

1b also shows examples of melodic accents in the bass 

line. In all these cases it appears that the salience of the 

accent is due to a combination of two factors: the size of 

the leap preceding the accent, and the distance of the 

accent from the centre of the melody’s range or ambitus.  

Further principles determining melodic accents appear to 

be the following: only local peaks or valleys, and only 

tones following leaps (3 semitones or more), can bear a 

melodic accent; melodic accent salience depends on a 

combination of leap size and distance from local mean 

pitch; the first and/or last in a group of repeated notes 

may be accented; and melodic peaks generally receive 

stronger accents than melodic valleys. 

Our computer implementation works as follows. 

First, the mean pitch is calculated for each track individu-

ally. Then each tone is assigned a salience S1 for the pitch 

deviation from the mean: 

For notes above the mean: 

S1 = |interval from mean in semitones| 

For notes below the mean: 

S1 = |interval from mean in semitones| * 0.7 
Then each tone is assigned a salience S2 is according to 

the size of the preceding interval: 

For rising intervals: 

S2 = |preceding interval in semitones| 

For falling intervals: 

S2 = |preceding interval in semitones| * 0.7 

The final value for melodic salience = (S1 + S2) / 15. 

5. HARMONIC ACCENTS 

Harmonic accents are marked “H” in the figures. To 

begin again with some examples: The harmonic accent in 

measure 1 of Figure 1a is due to the (mildly) dissonant 6
th

 

interval above the root, which resolves to the consonant 

5
th

. Since this is a rather weak dissonance, the estimated 

salience of the harmonic accent is rather low. The accent 

in measure 3 is due to the diminished triad, two of whose 

tones do not belong to the prevailing diatonic scale. The 

accent depends partly on the dissonance of the dimin-

ished triad (independent of context) and partly on the 

double departure from diatonicity. In Figure 1b, the first 

harmonic accent announces the start of a new harmonic 

region. The preceding passage is in F# major; the D# 

minor chord heralds a passing transition to the key of C# 

major followed by a sequential repetition that suggests B 

major. Later harmonic accents are due to the relative 

dissonance of specific chordal sonorities. 

These examples suggest that harmonic accent has 

several components. First, the dissonance of a chord 

(considered in isolation, but also relative to the disso-

nance of preceding and following chords) may attract 

attention and hence produce an accent. This is difficult to 

formulate in an algorithm since there is no accepted gen-

eral model for the dissonance of a sonority in western 

music (Parncutt & Hair, 2011). If we assume that the 

dissonance of a sonority is a combination of its roughness 

and (lack of) harmonicity, dissonance could be estimated 

most simply by counting the number of clearly dissonant 

intervals (minor seconds, tritones, major seconds) and 

harmonicity could be estimated by the presence of clearly 

harmonic intervals such as perfect fifths and fourths, or 

the salience of the root according to Parncutt (1988). But 

there are further complications:  a chord may be merely 

implied, and implied chords are often ambiguous. At the 

start of measure 1 of Figure 1a, do we have an inverted 

A-major chord or a suspension above an E-major chord? 

A simple algorithm is more likely to predict the former, 

whereas a (Schenkerian) theorist will indicate the latter.  

 Second, harmonic accents in major-minor tonal mu-

sic are produced by tones foreign to the prevailing key. If 

the key of a passage is relatively clear, the salience of this 

kind of accent can be predicted using the key profiles of 

Krumhansl and Kessler (1982). These profiles may be 

considered as quantitative estimates of the harmonic 

stability of each tone in the chromatic scale in a given 

major or minor key. The lower the stability of a tone, the 

greater the harmonic accent at that tone. The harmonic 

accent of a chord may be estimated by combining accents 

for individual tones. 

Third, harmonic accents are produced by important 

harmonic shifts. This aspect could be modeled by a key-

tracking algorithm. Where modulations are predicted to 

occur, the chord announcing the modulation may be ac-

cented. But this procedure may not work for pivot chords, 

which belong to both a preceding and a following key; 

and music theorists differ markedly in their interpretation 

of modulations. At one extreme, any accidental may be 

considered to suggest a modulation, while at the other 

extreme, a whole extended piece may be considered to 

stay in the same key in spite of extensive chromaticism 

(chromaticisms may be instead function as tonicizations). 

This theoretical debate can be avoided by focusing on 

performance expression in modulating passages: if a 

performer brings out a modulation, it exists. The theoreti-

cal debate about modulation versus tonicization could be 

resolved by considering “real music” rather than the 

score. 

We have not yet implemented the above approach. 

For the moment we are using the existing approach of 

Director Musices. The current implementation requires 

that a functional harmonic analysis is manually provided 

in the score. The salience of a harmonic accent is com-

puted at each chord change as follows: 

             √                

Harmonic charge is a measure of the tonal perceptual 

distance of the chord from the prevailing key; see Friberg 

(1991) for a technical description.  

 

6. EXAMPLES 

In Figure 2 and we have tentatively applied the algorithm 

to the passages illustrated in Figure 1.  
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7. CONCLUSION 

This has been a preliminary sketch of the main princi-

ples behind a new algorithm to estimate the perceptual 

salience of immanent accents in tonal western music - a 

step toward a new semi-algorithmic approach to perfor-

mance rendering. We say “semi-algorithmic” because we 

are currently cautious about completely automatizing the 

procedure. Even when our algorithms for predicting the 

salience of different kinds of accents are refined and 

consistently make feasible predictions, some details of 

the algorithms will remain dependent on style. We also 

anticipate that the relative importance of different kinds 

of accents will depend on stylistic context. 

We are testing versions of the algorithm in several 

ways. First, we are comparing its predictions with our 

music-theoretical intuitions, and judging the musical 

naturalness of the resulting performance renditions (anal-

ysis by synthesis). Given the large number of options at 

the beginning of such a project and the impossibility of 

considering all options systematically, this is the most 

practical way to proceed. We are then comparing predic-

tions of a prototype with analyses of music theorists and 

our analyses of expression in recorded performances, and 

making improvements based on the data (cf. Thompson 

et al., 1989). Finally, the “musicalness” (musical quality, 

expressive content) of performances generated by the 

algorithm will be tested in listening experiments in which 

expert listeners judge the quality of performance rendi-

tions. 
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Figure 1. Subjective analysis of immanent accents and their salience in music of Frédéric Chopin. (a) The first four measures of 

Prelude Op. 28 No. 7. (b) The first two measures of the central section of Prelude Op. 28 No. 13. 
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Figure 2. Model predictions for Prelude Op. 28 No. 7 and No. 13 (central section) by Frédéric Chopin. 

 
 

 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

340



EXPRESSIVE PRODUCTION OF PIANO TIMBRE: TOUCH AND
PLAYING TECHNIQUES FOR TIMBRE CONTROL IN PIANO

PERFORMANCE

Michel Bernays
CIRMMT/BRAMS/OICRM

Université de Montréal, Canada
michel.bernays@gmail.com

Caroline Traube
CIRMT/BRAMS/OICRM

Université de Montréal, Canada
caroline.traube@umontreal.ca

ABSTRACT

Timbre is an essential expressive parameter in piano per-
formance. Advanced-level pianists have integrated the pal-
ette of timbres at their artistic disposal as abstract concepts
and multimodal images. A correspondingly imaged vocab-
ulary composed of various adjectival descriptors is used in
discussing and designating precise timbral nuances. How-
ever, the actual means of production and control of timbral
nuances at the piano are not always explicitly expressed.
This study explores the precise performance parameters
used in producing different timbral nuances. For this aim,
four short pieces were composed. Each was performed by
four pianists, who highlighted five timbral nuances most
representative of the piano timbre-describing vocabulary:
dry, bright, round, velvety and dark. The performances
were recorded with the Bösendorfer CEUS system, a high-
quality piano equipped with high-accuracy sensors and an
embedded computer. Fine-grained performance features
were extracted from the data collected. The features that
significantly differed between different-timbre performances
were identified. The performance space resulting from a
principal component analysis revealed an average organi-
zation of timbral nuances along a circular arc. Thirteen es-
sential, timbre-discriminating performance features were
selected. Detailed descriptions were thus obtained for each
timbral nuance, according to the fine characteristics of their
production and control in piano performance.

1. INTRODUCTION

Musical performance is essential to the art and experience
of music. Classical performers in particular will apply their
expressive creativity towards enlightening a composition.
An extensive, empiric body of knowledge was thus devel-
oped amongst musicians to best serve the art and technique
of performance, for every instrument, and especially in the
context of this article, for the piano.

Among the many expressive musical attributes available
to pianists, timbre has been widely acknowledged within
the pianistic community [1]. Beyond its widely-understood

Copyright: c©2013 Michel Bernays et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

function as a characteristic inherent to an instrument or
sound source, timbre is also envisioned by pianists as a
refined quality of sound, over which they hold control by
way of expressive nuances in their performances. As such,
pianists believe in their ability to produce different timbral
nuances that can suit their expressive intentions [2]. This
palette of piano timbre nuances has been associated with
an extensive vocabulary, which includes numerous adjec-
tival descriptors that pianists use to convey a precise con-
ception of a timbral nuance [3, 4]. However, the precise
technique and ways of production of piano timbre nuances
has generally been subdued to abstraction, mental concep-
tion, imitation and aural modelling [5] in piano pedagogy
and treatises [6, 7].

Moreover, scientific studies on piano performance and
timbre production concluded long ago that piano timbre
control would be limited by the mechanical constraints of
the action to sheer keystroke velocity, thus making tim-
bre inseparable from intensity [8]. However, when instead
of considering a single, isolated key, the subtleties of tone
combinations involved in a polyphonic musical context are
taken into account, expressive piano performance parame-
ters (such as articulation, synchrony and dynamic differ-
entiation between tones, and pedalling) become involved
in governing the emergence of performer-controlled com-
posite timbres. Then, in order to measure and quantify
piano performance with the level of precision at which
the subtle nuances of timbre production can be identified,
high-accuracy piano performance-recording tools are re-
quired. While extensive scientific research on piano per-
formance has made used of MIDI digital recording pianos
(and before that, mechanical apparatus such as piano rolls
[9] and embedded cameras [10]) and acoustical analysis to
learn more about specific technical aspects and general ex-
pressive models of piano performance [11], the intricacies
of timbre production have essentially remained out of the
reach and/or concern of piano performance studies. Yet in
a notable exception, Ortmann investigated the relations be-
tween piano touch and timbre on a single tone [12]. He
associated, to several ’tone-qualities’ (each described by
an adjectival descriptor), precise key depression profiles
aimed at highlighting the key velocity and touch percus-
siveness from which could stem the tone-quality.

This study aims at following in these steps, by systemat-
ically investigating the strategies and technical nuances of
gestural control involved in pianists’ use of timbre as an
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expressive device in piano performance. With the high-
accuracy Bösendorfer CEUS digital piano performance-
recording system, the study explores piano timbre produc-
tion in a polyphonic, ecologically valid musical context.

2. METHOD

In order to explore the expressive production of piano tim-
bre nuances in a musically relevant framework that could
mirror a genuine musical experience, the study was de-
signed with respect to the following steps: selection of the
most relevant verbal descriptors of piano timbre to desig-
nate the timbral nuances to explore; conception of musical
pieces to be expressively performed according to these dif-
ferent timbral nuances; use of non-invasive, high-accuracy
piano performance-recording equipment; timbre-coloured
performance recordings; and extraction therein of mean-
ingful piano performance and touch descriptors.

2.1 Piano timbre descriptors

The verbalization of piano timbre was studied quantita-
tively [13], according to judgements of semantic similar-
ity between the 14 descriptors of piano timbre most cited
by pianists in [3]. These evaluations were mapped into a
semantic space, whose first two, most salient dimensions
formed a plan in which descriptors were grouped in five
distinct clusters — which was confirmed by hierarchical
cluster analysis. In each cluster, the descriptor judged the
most familiar was selected. The five most familiar, diverse
and representative timbre descriptors thus highlighted —
Dry, Bright, Round, Velvety and Dark — appear (in that
order) along a circular arc in the semantic plan.

These five descriptors defined the timbres for which to
seek out the production patterns in piano performances.

2.2 Musical pieces

In order to set a musical context adequate to expressive
timbre production in performances, four short solo piano
pieces were selected, among 15 specially composed for the
study following instructions on the timbral nuances to be
expressed (cf. Figure 1). Each selected piece could allow
for a meaningful, consistent-throughout expression of each
of the five timbral nuances, and featured many aspects of
piano technique that we wanted to explore. Each just a few
bars long (from four to seven, with different meters), their
duration at score tempo ranged between 12 and 15 seconds.

2.3 Equipment

To investigate the fine-grained nuances of pianists’ perfor-
mance control and touch that let them express different
timbral nuances, highly precise data were required, from
which to thoroughly assess the intricacies of key strokes.
In this aim, we had the opportunity to use the Bösendor-
fer CEUS piano digital recording system. Equipped with
optical sensors behind the keys, hammers and pedals, mi-
croprocessors, electronic boards (cf. Figure 2), and a com-
puter system, the CEUS system can track key and pedal
positions and hammer velocities at high resolution (8-bit)
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Figure 1. Scores of the four pieces composed and selected
for the study.

and high sampling rate (500 Hz). The system we used was
embedded in the Imperial Bösendorfer Model 290 grand
piano installed at BRAMS.

The CEUS recording system constitutes an extremely pre-
cise tool to measure the subtleties in pianists’ touch, in
finer detail than was ever accessible to mechanical or MIDI
piano performance-recording systems.

2.4 Performances

Four pianists 1 participated in the study. Each participant
had received in advance the pieces scores and timbral nu-
ances to explore, and were given time to practice. Re-
hearsal sessions were allotted on the Bösendorfer piano, to
allow for familiarization with the instrument and the room.
They were then asked to perform each of the four pieces,
with each of the five timbres. Three such runs of 20 perfor-

1 One female, three male; one Canadian, two French, one Italian; age
from 22 to 46; all had extensive professional experience and advanced-
level piano performance diploma. They are further referred to by their
initials: PL, RB, BB and FP.
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Figure 2. Details of the CEUS system: fallboard dis-
play interface and embedded electronics ( c©L.Bösendorfer
Klavierfabrik GmbH).

mances were conducted successively so as to get three per-
formances for each condition (piece × timbre). Each of the
60 performances per participant was recorded through the
CEUS system. We thus collected 240 CEUS boe-format
recordings of 4 pianists performing 4 pieces with 5 differ-
ent timbres, 3 times each.

2.5 Performance analysis

In order to extract meaningful piano performance and touch
features from CEUS-acquired data, a Matlab toolbox was
specifically developed [14]. From the high-frequency, high-
resolution key/pedal positions and hammer velocities, note
and chord structures were retrieved, and an exhaustive set
of quantified features spanning several broad areas of pi-
ano performance and touch were computed for each note
(46 features) and chord (168 features 2 ): dynamic levels;
attack speed, depth, type, percussiveness and synchrony;
sustain, release durations and synchrony (within chords);
articulation, intervals and overlaps (between chords); and
detailed use of pedals. Averages and deviations per perfor-
mance (overall, and for the left and right hands separately)
were calculated for all features, so as to enable compar-
isons between performances expressing different timbral
nuances. In total, 322 × 3 = 966 features were calculated
to characterize each of the 240 recorded performances.

3. RESULTS AND DISCUSSION

3.1 Significant, timbre-discriminating piano
performance features

Statistical analyses of variance were performed over this
966-features-by-240-performance dataset. The data was
organized in a repeated-measures design, with 80 samples
(one for each same-pianist, same-piece, same-timbre con-
dition, which includes 3 performances), timbre as factor
(five groups) and the performance features as dependent
variables. Different tests of analysis of variance (repeated-
measures ANOVA, Welch robust test of equality of means,
Kruskal-Wallis rank analysis) were performed, depending
on the assumptions respected for each feature.

In the end, amongst the 966 performance features, 192
proved significant at the 5% level 3 in rejecting the null hy-
pothesis of equal variance between the five timbre groups.

2 Including the means and standard deviations between the notes con-
stituent of the chord, plus its chord-specific features.

3 Including 145 features significant at the 1% level (p < 0.01) and 83
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Figure 3. Principal Component Analysis over 80 samples
(3-repetition performance means) for 192 significant fea-
tures. Coloured crosses and ellipses indicate averages per
timbre and ±1 S.E. (resp.).

3.2 Performance spaces of piano timbre

Principal Component Analysis was applied to the subset of
192 significant performance features. The first two princi-
pal components — which combined explained 53.1% of
the variance in the input dataset (34.63% + 18.47% resp.)
— and the position of each performance 4 according to
their coordinates in these two dimensions, are represented
in Figure 3. In this performance space, the five mean po-
sitions of performances sharing the same timbre appear
along a circular arc. This arrangement of the five timbres
is mostly consistent with their arrangement in the semantic
similarity space [13], yet with an inversion of order along
the arc of timbral nuances Dark and Velvety.

Scattering effects of performances can be observed, im-
putable to each of the three experimental factors. Per-
formances tend to be grouped by performer (most espe-
cially for BB’s, concentrated in the upper right region) and
by piece (essentially in interaction with timbre). Yet the
most salient grouping effect is due to timbre. A timbre-
by-timbre account of performance positions shows that all
Dry-timbre performances are situated on the left side of
the space (mostly bottom-left), while most Velvety-timbre
performances are positioned on the far-right side. Bright,
Round and Dark-timbre performances are closely scattered
around their respective means, except for one outlier among
Bright performances and two outliers among Dark perfor-
mances. 5 The loadings (weights attributed to each perfor-
mance feature) for dimensions 1 and 2 do not show any
predominant weight associated to one or a few features,
yet they reveal that dimension 1 represents above all the
dynamics, attack and soft pedal features, while dimension
2 mostly represents sustain pedal features.

features significant at the 0.1% level (p < 10−3).
4 For the sake of display clarity, only the 80 means over the three same-

pianist, same-piece, same-timbre repetitions are plotted, instead of the
complete 240-performance set.

5 Outliers are defined according to 95% confidence intervals, i.e. more
than 1.96 standard deviations apart from the mean.
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PCA performance spaces were also produced and studied
separately for each piece and each performer. In each case,
the first two principal components accounted for more than
half of the variance in the input datasets, and the corre-
sponding planar spaces all showed the same organization
of five mean positions of same-timbre performances along
a circular arc. However, the PCA loadings differed be-
tween cases, as different groups of features were most rep-
resented in the two dimensions depending on the piece or
the performer.

Overall, the production of each timbral nuance was shown
in the performance spaces as fairly consistent between per-
formers (and between same-performers repetitions). How-
ever, this consistency was less salient for timbres Dry and
Velvety, and could be affected by the scattering effects due
to pieces and performers.

3.3 Characterization of piano timbre production

In order to obtain a minimal, unique performance portrait
for each of the five piano timbre nuances explored in this
study, the set of 192 significant features was reduced to 13
essential features. In this aim, the 192 features were di-
vided into four broad, technically independent categories:
(1) dynamics/attack, (2) soft pedal, (3) sustain pedal, and
(4) articulation. Correlations between features were sought
out within each group. The correlations coefficients were
then submitted to cluster analysis. For each category, an
optimal and meaningful number of clusters was empiri-
cally defined. With regards to pianistic/technical meaning,
the most statistically significant feature was conserved in
each cluster. This allowed us to identify, with hardly any
loss of relevant information, a minimal set of 13 perfor-
mance features to adequately describe each of the five tim-
bral nuances in a unique way. These results are presented
in the Kiviat (radar) chart of Figure 4. Below are the de-
scriptions and statistical scores 6 of these 13 most relevant
features.

– Hammer velocity (χ2(4) = 23.195, p < 10−3, effect
size r = 0.294 overall; χ2(4) = 20.935, p < 10−3,
effect size r = 0.265 left hand; χ2(4) = 25.156, p <
10−3, effect size r = 0.318 right hand): maximum ham-
mer velocity for each note, as directly measured by the
piano sensors. As a direct correlate to intensity, it makes
for a descriptor of dynamic level.

– Key depression depth (χ2(4) = 21.412, p < 10−3,
effect size r = 0.271): indicates how deep (close to the
keybed) the key gets depressed for each note.

– Variations in key attack speed (F (4, 75) = 3.117, p =
0.02, effect size r = 0.062): indicate which timbres
present the largest ranges in attack speed.

– Attack duration (F (4, 75) = 3.881, p = 0.006, effect
size r = 0.133 overall; F (4, 75) = 3.591, p = 0.01,
effect size r = 0.149 left hand; F (4, 75) = 3.432,
p = 0.012, effect size r = 0.105 right hand): dura-
tions of note attacks, from the start of key depression
6 Depending on the adequate statistical test as dictated by the assump-

tions met, the statistic reported can be the ANOVA F-ratio F(df1,df2), the
Welch F-ratio FW (df1,df2’) or the Kruskal-Wallis Chi-square χ2(df1).

Figure 4. Kiviat chart of the 13 performance features
giving a minimal and unique description of the five tim-
bral nuances explored in the study. Z-scores per timbral
nuance for each feature are indicated with colour-coded
dots. The five colour-coded, dot-linking closed lines por-
tray each timbral nuance. Shades around each closed line
shows the ±1.96 S.E. intervals (95% confidence interval).

to the instant of hammer launch. While primarily in-
versely proportional to intensity (the faster the attack,
the shorter its duration), it also depends on nuances of
touch and articulation at note onsets.

– Soft pedal depression (FW (4, 110.994) = 4.629, p =
0.002, effect size r = 0.291): its amount of depression
along the performance.

– Sustain pedal use (F (4, 75) = 9.916, p < 10−3, effect
size r = 0.315): duration of sustain pedal depression
during performances.

– Sustain pedal depression (FW (4, 116.114) = 7.727,
p < 10−3, effect size r = 0.438): its amount of depres-
sion along the performance.

– Release duration (FW (4, 115.91) = 13.795, p < 10−3,
effect size r = 0.32): time taken for key release. This
mostly accounts for articulation: a note released slowly
(thus slowed by the finger) may probably overlap with
the next.

– Right-hand chords overlap (F (4, 75) = 2.561, p =
0.045, effect size r = 0.111): descriptor of right-hand
articulation: the more overlap, the more legato in right-
hand play.

Performance descriptions of the five timbral nuances were
also assessed separately for each piece, according to the
features significant for the piece. In each case, the piece-
wise performance portrayals of the five timbral nuances
were obtained according to a subset of the same features as
overall (or equivalent ones). This indicates that, although
the technical and compositional characteristics of a piece
can bear an influence upon the efficiency of performance
features to differentiate between timbral nuances, there ex-
ists an overall frame of performance features from which
timbral nuances can be portrayed.
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Table 1. Summary of performance features significant in
Post-hoc pairwise timbre comparisons.

Furthermore, the evolution in time of those timbre-cha-
racteristic performance features were analyzed with regard
to the musical structure of the pieces. Timbre profiles ac-
cording to performance features were shown to follow cer-
tain patterns segmented per phrase/motif, with feature val-
ues either constantly increasing, decreasing or remaining
stable along each phrase. At phrase transition, those pat-
terns would either change in direction, remain the same, or
be drastically reset (e.g. sustain pedal released at the end of
a phrase). Such patterns would differ between timbres, in
average feature value, in direction and amount of increase
or decrease, in fluctuations within the phrases, and they es-
pecially differed in behaviour at phrase transitions.

3.4 Pairwise comparisons between timbres

The statistical analyses of variance were followed up by
post-hoc pairwise comparisons, with Tukey’s Honest Sig-
nificant Difference test to estimate features significance,
in the aim of assessing which performance features most
significantly differ between each of the ten timbre pairs.
Those results, once reduced for each timbre pair to a set
of non-redundant (both in meaning and values), significant
features, are presented in Table 1. This description is con-
sistent with the PCA performance space and the arrange-
ment patterns of timbres, with Round in the middle, Dry
and Bright at one end and Dark and Velvety at the other.

3.5 Summary: Description of piano timbre nuances
production

Thus, in the light of an exhaustive exploration of piano per-
formance and touch, the five timbral nuances examined in

this study could be portrayed according to the specificities
of their production at the piano.

The production of each timbral nuance, as defined ac-
cording to one verbal descriptor, could be characterized,
in the context of this experiment, by a unique combination
and pattern of utilization of certain control parameters:

– Dry: high intensity (slightly more with the left hand),
very short and constantly fast attacks; keys are not fully
depressed, which favours a very staccato articulation;
both soft and sustain pedals are hardly used.

– Bright: high intensity (slight right-hand emphasis), very
short attacks; keys deeply depressed down to the keybed;
intermediate, non-legato articulation; the soft pedal is
barely used; the sustain pedal is used sparingly, but is
strongly depressed when in use.

– Round: the most average nuance in its production, with
no salient trait: moderate, well-balanced, and constant
intensity and attacks; key depressions are not very deep,
yet well below escapement point; the soft pedal is barely
used; the sustain pedal is used frequently and massively;
and the articulation is quite legato.

– Dark: sharp contrast between hands in intensity and
attack, very light in the right hand while much more
marked in the bass, left hand; keys lightly depressed;
fair use of the soft pedal; massive, quasi-constant use of
the sustain pedal; and a very legato articulation, espe-
cially right-hand.

– Velvety: very low intensity, long attacks (especially with
the right hand); very shallow key depression, very legato
articulation (much more so in the left hand); prominent
use of the soft and sustain pedals.

These features are overall characteristics of the produc-
tion of each of the five timbral nuances examined in this
study, independently of the performer and the musical con-
text — as least to the extent of musical diversity repre-
sented in the four pieces composed for this study. There-
fore, in the context of this study, the production and con-
trol of different timbral nuances in piano performance in-
volved differences in dynamics, attack (and balance be-
tween hands), key depression depth, pedalling and artic-
ulation. On the other hand, the performance features of
synchrony between notes in chords, note sustains, inter-
vals between chords, and left-hand overlaps were not used
in significantly different ways for producing each timbral
nuance.

4. CONCLUSIONS

In exploring the expressive production of piano timbre,
this study has revealed the differences in the production
of five timbral nuances described by the terms Dry, Bright,
Round, Velvety and Dark, and has identified specific pat-
terns in the precise control of fine-grained performance
features, through nuances in intensity, attack, key depres-
sion depth, articulation and pedalling, that let those timbral
nuances arise in expressive piano performance. This quan-
tified understanding of piano timbre production and con-
trol ought to be envisioned as a complement to the empiric
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body of knowledge that pianists have come to develop,
both individually and as transmitted through teaching in
a pedagogical context. With this study, the hope is to build
a bridge between the pianistic and scientific perspectives
on expressive piano performance and timbre production.

In complement to the study and results that were pre-
sented in this article, other related research questions are
currently being investigated. First, the audio recordings
of the performances are being used in perception tests, in
order to determine whether the timbral nuances that the
performers intended to express can be correctly identified.
Acoustical analyses of the audio recordings will seek out
the acoustical correlates of the piano timbre nuances per-
formed. Correlations between the production and control
patterns, the perceptual identification, and the acoustical
correlates of piano timbre nuances will be examined, in
particular to determine which performance features have
an actual effect on sound production. Moreover, the in-
dividual strategies of expressive performance employed by
each of the four participant pianists, overall and for produc-
ing the five different timbral nuances, are being explored.

In the future, this work could be applied to piano ped-
agogy. New methods could complement the traditional
approach to piano timbre — through mental conception,
imitation and careful self-actualization in performance as
guided by the musical ear — with the devising of precise,
tangible advice on the gesture to use in producing specific
timbral nuances. Moreover, the results could be applied
to the digital sound synthesis of piano timbre, and more
precisely to the control of timbral nuances in piano syn-
thesis engines. More subtle control parameters could be
obtained — either with high-accuracy digital keyboard in-
terfaces or with a software augmentation of the MIDI data
sent by standard keyboard controllers — and used in con-
veying a more realistic simulation of an actual piano per-
formance, coloured in timbre.
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ABSTRACT

This paper describes a recent composition, No More To-
gether, in which performers’ interactions directly influence
the sound of the piece. The composition provides a struc-
ture for group interactions, and is performed with the on-
body and in-space components of ’PESI’, an interactive
spatial performance system. Our composition attempts to
compose social interactions, drawing upon notions of par-
ticipatory sense-making, and the idea that these interac-
tions are best construed as emergent systems, possessing
their own internal dynamics. The composition is contextu-
alised as part of the repertoire for the PESI system, explor-
ing embodied, social and spatial interactions in sound and
music computing.

1. INTRODUCTION

Implicit in any interactive system is a model for what con-
stitutes interaction. Contemporary theories of social in-
teraction offer new models for understanding social inter-
actions, portraying interaction processes as autonomous,
dynamic systems [1]. Group musical performances are
unique social and collaborative environments, supporting a
diverse range of interactions and group or individual goals.
Novel technologies in sound and music computing, along
with developments in human computer interaction, have
brought about new possibilities for both designing and study-
ing the social aspects of interactive performance systems
[2]. The composition presented here explores these con-
temporary theories about the nature of these interactions.

This paper discusses the thinking behind a composition
of a piece for an interactive, spatial and collaborative per-
formance system developed as a part of the PESI research
project. The system has unique affordances through the
way it relates sonic, social and spatial interactions. Our
composition represents an effort to develop a repertoire for
this novel performance system which engages with these
affordances. The composition consists of several compo-
nents: the PESI system itself, the mappings (that relate per-
formers movements to the manipulation of sounds), a set
of nine audio samples and a short text score. Unlike what

Copyright: c©2013 Adam Parkinson et al. This is an open-access article distributed
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might often be understood by a musical score, our score at-
tempts to compose social interactions rather than specific
arrangements of sounds.

PESI is an interactive-spatial performance system that con-
sists of two main parts; on-body and in-space (figure 1).
We have previously described and presented the technical
architecture in [3, 4] . Our discussion there focused on
the technical details of the system. The process of com-
posing for its affordances discussed here. The system is
designed for co-located collaboration, encouraging reflec-
tions about space and movements. The combined on-body
and in-space components create an environment wherein
musicians are not only free to move and interact with each
other but in which their social interactions contribute to the
sonic outcome.

This paper is structured as follows. Section 2 discusses
the related work and section 3 defines models for social
interaction and participatory sense-making which resonate
with our experiences of group improvisation and music-
making. Section 4 describes the PESI interactive spatial
performance system itself. Section 5 presents our compo-
sition, No More Together, in detail and how it relates to the
affordances for interaction in the PESI system. In section
6 we report upon a performance, and describe the way in
which we engage with interaction theory through the com-
position. We indicate our future work and conclude the
paper in section 7. A video of the performance is available
at http://vimeo.com/63524617.

2. RELATED WORK

We have seen in the sound and music computing field a
range of design strategies for enabling different types of in-
teraction and collaboration in art and music making, along
with a range of proposals for what form musical interac-
tions can take, which is expanded to include those interac-
tions that do not directly affect the sound- producing ac-
tions [5–7].

Some, such as Nick Bryan-Kinns Daisyphone, have specif-
ically addressed the issue of collaboration. The Daisy-
Phone allows players to modify loops without being in the
same space, and Bryan-Kinns explores the social and mu-
sical aspects of their collaborations and interactions. Some
of the notions explored in DaisyPhone, such as identity,
mutual awareness, mutual modifiability, and localization
of sounds, have informed the design of PESI. [8]. Like
the DaisyPhone, Smules Ocarina is an iPhone instrument
which facilitates remote collaboration and musical-social
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interaction, allowing one to hear other Ocarina players through-
out the world [9].

Similar to the PESI system, Le Groux and Verschure de-
scribe The SMUSE, an interactive performance system which
applies ideas of emergence and situatedness, asking ques-
tions about cognition whilst still being a creative tool [10].
Their system differs from our own work in that the com-
puter is biomimetic and imbued with more intelligence than
our own.

Murray-Browne et al and Magnusson [11, 12] describe
the process of composing for new systems, extending the
idea of composition to include aspects of designing instru-
ments and mappings; we take a similarly expanded view of
composition. Relatedly, Schnell and Battier introduce the
term composed instruments, for the very design of instru-
ments and the constraints and affordances they offer might
be seen as constituting the composition [13]. Young et al
describe the process of composing for the Hyperbow con-
troller, explaining how the development of a new repertoire
can feed into the evolution of the instrument itself [14].

Hanne De Jaegher’s work on social interaction presents a
novel approach, framing interaction as an autonomous pro-
cess and the idea of participatory sense making [1]. David
Borgo has brought similar ideas to studies of improvised
music, drawing upon ideas of emergence and swarm in-
telligence to interrogate the relationships and interactions
between musicians and the group as a whole in improvised
music performances [15].

We drew upon these previous works in interactive, collab-
orative music-making, and developed a composition which
explored the models of social interaction that we found in
de Jaegher’s work.

3. DYNAMICS OF INTERACTION

Hanne de Jaegher and Ezequiel Di Paulo propose that the
interaction process between individuals should be seen as
emergent and autonomous. They reject the model of in-
dividuals in an encounter trying to figure each other out,
instead noting how the encounter itself has its own internal
dynamics which, in turn, influences the behaviour of those
involved [1].

De Jaegher et al introduce the concept of participatory
sense making. Sense-making is understood as the pro-
cesses by which an organism creates and appreciates mean-
ing through its interactions with the world. Meaning and
signification emerge out of our encounters and interactions
with the world: de Jaegher uses the example of the soft-
ness of a sponge, something which is only revealed to us
through our interactions with the sponge (squeezing) [1].

We gravitate to their work because it offers a convincing
model for the dynamics we witness emerging in collective,
improvised music performances in general, and in perfor-
mances on the PESI system specifically. It offers an open
yet rigorous notion of social interaction that is suited to
the inherent complexities of interactions we find in musi-
cal improvisation. Their model has strong similarities with
literature which attempts to articulate the often ephemeral
qualities of group interactions in improvised music. Mu-
sicologist David Borgo notes that a performing group, like

Figure 1. PESI interactive-spatial performance system.

a hive, has emergent properties that cannot be reduced to
any one individual within the group, and the creativity of
the group cannot be to individual psychological processes.
We can see how these ideas relate to de Jaegher et als de-
scription of social interactions as being an emergent and
autonomous. A complex feedback occurs between per-
formers and sound, much as the interaction processes that
de Jaegher et al describe feedback into the actions of the
individual agents involved [15].

We also find that de Jaegher et als definition of interac-
tion and coordination is wide enough to account for the
subtleties and complexities we find in musical interactions.
They describe how synchronization is not the only kind
of co-ordinated behaviour, and other interactions such as
mirroring or anticipation are also co-ordinated. Theorists
defining modes of interaction and ’togetherness’ in mu-
sical performances take a similar approach: Nick Bryan-
Kinns uses the concept of mutual engagement to describe
the interactions we might find in group musical perfor-
mance. His concept goes beyond an oversimplification of
what constitutes interacting or playing together, and ac-
counts for some of the diverse forms that might take, such
as mirroring or carefully editing other’s work [16].

We wanted to create a composition that would explore
these models of social interaction, enabling different types
of co-ordination and allowing interactions to develop their
own dynamics.

4. PESI SYSTEM

The social interactions in the PESI system that affect the
sound are the spatial location and coordination of the per-
formers. During performance, these interactions provide
dynamic control features, and performers are able to af-
fect the sounds through changing their distance from the
other performers. The design of the on-body component
is intended to allow participants to focus more on their
interactions with other participants and with the environ-
ment, increasing mutual engagement and decreasing cog-
nitive overload [16].

Sharing a space brings awareness of the others and their
presence, which is reinforced by being able to control oth-
ers’ sounds through one’s spatial relation to them. Space
and social action are therefore deeply interconnected in the
system [17]. In this way the PESI system is a novel collab-
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orative system that aims to open up new ways of musical
exploration in group music activity.

We also bring a novel approach to the spatialisation of
sound, which occurs both through multiple speakers in the
in-space component and through the speakers attached to
the performers bodies in the on-body component.

5. COMPOSITION: NO MORE TOGETHER

5.1 Repertoire

No More Together builds up a repertoire for a novel mu-
sic system, which responds creatively to the specific affor-
dances of that system. Many advances in musical tech-
nologies exist purely as isolated developements in technol-
ogy, without a thorough investigation of the specific musi-
cal and expressive possibilities that these new technologies
beget.

Atau Tanaka has written about the development of reper-
toires and idiomatic writing for new electronic instruments
[18]. Performance practices must often be created for new
musical instruments. With traditional instruments, idiomatic
writing engages with the affordances of the instrument,
such as the pitch range and timbres it is designed to play.
The affordances that PESI provides include its relation of
the movements of performers and intersubjective relations
with the sound produced, and thus writing idiomatically
for the piece, and No More Together is intended to explore
and engage with this.

We have been developing a repertoire to be performed
with the PESI system (see table 1). The first piece, In-
Hands, was an improvisation for three musicians. Each
instrument possessed different sonic characteristics, vary-
ing from squarewave generators to granular synthesis of
sampled sounds. Spatial distances between performers fur-
ther manipulated the sounds by changing the grain sizes
and the modulation values of the frequencies. The piece
was performed in SOPI research group’s studio in Decem-
ber 2012. The second piece, Test Tone, was a combination
of three pure sine waves playing a single frequency, each
modulated, with the harmonic values based on the musi-
cians’ distance between each other. The third piece, Trad
Ensemble, was composed for a traditional ensemble, and
the sonic characteristics of the instruments were designed
to be digital models of traditional instruments; piano, bell
and bowl instrument. The distance between musicians is
mapped to create beating patterns. Both the second and
the third piece were performed in Goldsmiths, University
of London in January 2013. Following that what emerged
was a composition No More Together. It differed from
previous work with PESI through the addition of a score
to further influence the social interactions of the players,
which we describe in detail in this paper.

5.2 The Score

A significant part of the latest composition is the score (see
Figure 2). Conventionally, a score is understood as the or-
ganisation of sounds through musical notation. The twen-
tieth century saw the rise of increasingly diverse ways of
doing this, such as the graphic scores of Xenakis (UPIC)

InHands Test
Tone

Trad En-
semble

No More
Together

Description
free
improvisa-
tion

pure tones
traditional
ensemble
set-up

manipulate
social in-
teraction

Musical
Materials

granular
synth sine wave

digital
model
bell, perc.,
bowl

granular
harp
samples

Performer
Instruc-
tions

free
improvisa-
tion

free
improvisa-
tion

free
improvisa-
tion

score

Spatial
Mapping

grain size
& freq.
mod.

harmonic
values

beating
patterns

grain size
& freq.
mod

Tuned /
Pitch open tuned tuned tuned

Table 1. Composed pieces listed according to their sound
mapping strategies, musical materials used, performer in-
structions, spatial mapping effect and tuned-pitch con-
straints.

Figure 2. The Score.

or Stockhausen, and the text-based scores of the Fluxus
movement [19]. Some of these scores departed from the
relatively strict instructions about rhythm and pitch that we
find in most modern European staff notation, and on occa-
sion focusing on giving tasks or actions to performers. Our
own effort with the score here is not to compose sounds,
but to compose social encounters.

Through the score, the performers are given three states
to choose from, with the instruction that they change state
when the music tells them to, this being intended to make
sure they remain listening to and responding to their col-
lective sound. The intention is not that the performers are
all in the same state at the same time, but that they drift
in and out of synchrony. The third state, move and play
freely, is intended to enable the performers to explore the
sonic, interactive, social and expressive possibilities of the
system with relative freedom. This, along with their ability
to change state at will, contributes to ensuring the auton-
omy of the players.

The score is designed not solely to facilitate smooth so-
cial interaction, but to create moments of social interac-
tion that might develop their own dynamics. In a sense,
the score is intended to trick the performers and to pro-
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duce moments of social interaction outside their immedi-
ate control, so that the piece is not simply the performers
acting out their ideas of social interaction. The perform-
ers may believe that the score is intended to produce syn-
chronicity: however, de Jaegher et al suggest that it is often
through failed encounters that we witness the social as an
autonomous object with its own dynamics that transcends
the apparent intentions of the agents involved. In particu-
lar, de Jaegher uses the example of two people passing each
other in a corridor, and accidentally getting into a situation
where, rather than passing smoothly, they continually mir-
ror each others actions. In such an instance, the interaction
can often continue despite the individual’s efforts to break
from it (and pass each other), having its own dynamics,
and being an emergent object.

It is in these moments of failed interaction where the in-
ternal dynamics and relative autonomy of social interac-
tions might be revealed to the audience and the performers.
For this reason, the three states specified in the score are all
potentially contradictory to each other, designed to create
narrow corridor moments. State one asks that performers
only move when someone else is moving, and state two
asks that performers only move when no-one else is mov-
ing.

We opted for a score that functioned in this problematis-
ing manner because it was important to us that the score
encouraged interactions, but did not attempt to structure
them too much, nor disrupt the emergent autonomy of the
interactions. In early performances of the piece there was
no score, and so the performers improvised with the piece
and explored the instruments, space, mappings and sounds.
Observing the evolution of the performers interactions with
the PESI system, the space and each other was of great in-
terest, and we were keen that the score should not provide
too much structure or constraint and prevent such evolu-
tions from occurring.

De Jaegher et al note that the individuals involved in an
interaction must be autonomous. It was therefore impor-
tance that the composition maintained as much of the au-
tonomy of the performers as possible, whilst providing a
structure within which interactions could occur and be main-
tained. Hence, there is a great deal of freedom for the
performers in terms of how they move and interact in the
space, and what sounds they produce. Essentially, the per-
formers can choose to follow certain rules (eg not moving
unless someone else is moving), but discard these rules
should they wish (and move to state 3, move and play
freely)

We find a related approach to scoring in John Zorns Game
Pieces. As Zorn desribes,

”My pieces are written as a series of roles,
structures, relationships among players, dif-
ferent roles that the players can take to get
different events in the music to happen. And
my concern as a composer is only dealing in
the abstract with these roles like the roles of
a sports game like football or basketball. You
have the roles, then you pick the players to
play the game and they do it ” [15]

.
Drawing upon this, our initial thoughts for the composi-

tion involved giving each of the performers a role, possibly
based upon a contested model of psychological types (such
as the Myerrs-Briggs Type Indicators). The piece could
then potentially be a playful interrogation of a model of
social interactions routed in individuals and types, as op-
pose to the dynamics of interactions themselves. However,
we were concerned that this might make the performers too
aware of social interactions or simply act out roles, poten-
tially stiffling the sort of emergent dynamics of interaction
that we are interested in.

5.3 Audio Engine

The soundworld of the piece is in large part determined by
the samples and the granular synthesiser running in Pure
Data 1 which plays them, along with the mappings. The
granular synthesiser is based upon Noboyasu Sakonda’s
Max MSP granular synthesiser [20], modified by us and
adapted to run in Libpd 2 on the iPhone and Pure Data on
the computer.

The granular synthesiser is permanently in freeze mode,
indefinitely stretching a single fragment of the sample, with
x and y axis of the accelerometer changing the point in the
buffer which is being frozen, and the degree of randomness
which allows for fragments of the sample on either side of
the buffer to be played. The mappings contribute to the
sonic character of the piece. Because nothing is mapped
to pitch, and all the samples are relatively in tune with
each other, we have a degree of control over the tonal and
melodic nature of the piece. The mappings afford the cre-
ation of shimmering soundscapes with the granular patch.

6. SONIFICATION OF INTERATIONS

As well as running on the mobile devices (the on-body
component), the granular synthesisers run on a central com-
puter and are spatialised through the in-space component.
The mobile devices send accelerometer data via Open Sound
Control (OSC) 3 network module to the host machine, which
runs three versions of the granular synthesiser (one for each
device), which are controlled by the movements of the de-
vice, effectively mirroring the on-body sounds.

The in-space sound is processed in two ways. Two Mi-
crosoft Kinects are used to track the locations of the three
players in the space. The spatial location of each player
moves the sound through multiple speakers in the space. In
addition to this, we extract information about relations be-
tween performers, such as relative distances, velocity, ac-
celeration and alignment, which we discuss further in [21].
These relations between the players cause the sounds to be
further processed by an additional granular synthesiser. In
this way, social interactions contribute to the overall sonic
output, and the sonic output feeds back into social inter-
actions. The in-space sounds are processed by a granular
synthesiser, with grain length increasing when the distance

1 http://puredata.info/
2 http://libpd.cc
3 http://opensoundcontrol.org/
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between the musicians gets smaller. Similarly, when the
musicians move away from each other the in-space audio
module produces shorter length grains of sound. At the
same time if the musician gets closer to the the third musi-
cian the frequency response range exponentially increases.
The movements of the three performers are therefore inter-
twined with the sound of the piece.

7. DISCUSSION: SOCIAL INTERACTIONS AND
SENSE-MAKING

During the performance, the musicians were drawn into
interactions through which they participated in the collec-
tive generation of meaning, as well as sound, within the
environment. During the perfomance, we witness the par-
ticipatory sense-making activity of the musicians as they
sonically and socially engage with the each other and the
environment itself. The composition becomes a way of ex-
ploring interaction-theory through practice, and this theory
in turn becomes a way for the audience and the performers
to access the practice.

It is through a process of participatory sense-making that
gestures and actions acquire meaning within social interac-
tions, the meaning anchored to the interaction. During per-
formances of our composition, we see gestures and themes
emerge over time and acquire meaning within the context
of the performance; for instance, a performer may find a
certain part of the space that they can play, moving slowly
towards the centre and back to granulate the sound pro-
duced, repeating this gesture and feeding back into both the
music (the gesture changes the sound) and the social dy-
namics (the movements of the other players are influenced
by the stop-start, back-forward motion of the performer, as
it potentially affects how they can behave depending upon
their state).

Co-ordination in the performance of No More Together
does not always manifest itself as a simple sychronization
or entrainment. As we noted, our score is not aimed at
producing synchronizations of performers’ actions, and to-
tal synchronization may actually be construed as a draw
back. Differences emerging during the interaction enable
performers to continue the process in a different direction.
If sychronization is total and there are no negotiations nor
emerging differences, then any sense of true autonomous
interaction quickly dissipates.

We informally discussed performer’s experiences of the
piece with them. Of performing the composition, perform-
ers said ”I like the way that we really co-ordinated each
other in the space”. The score gave the performers a way
to try and block others movements, or regulate their own.
Performers attempted to follow the score more closely at
the beginning, but in the end moved more freely and took
more liberties. One performer saw the score as optional,
following it only when they chose to (which is effectively
permitted within the score). The score also encouraged
performers to listen; as one noted, ”the score makes you
listen to the others to understand what’s going on”. The
score, then, was successful, producing a blend of synchro-
nized interactions and more problematic ’failed’ interac-
tions, with the interaction itself being foregrounded in the

performance.

8. CONCLUSION AND FUTURE WORK

In this paper we presented the composition No More To-
gether that we have developed as a part of the repertoire
for the PESI system. We also described contemporary the-
ories of social interaction, and demonstrated how our score
provided a way to engage with these theories. Building
up a repertoire provides a very strong justification for our
system’s use in allowing for interaction dynamics to be
explored within composition. We further discussed com-
positional approaches for using the system as opposed to
underlying design ideas that lead to system’s development.

We intend to find more composers to work with the PESI
system, developing a repertoire to further investigate the
unique social-musical interactions it facilitates. We are
also interested in working with more performers, and per-
form with different audience, to investigate how our score
and the models of interaction resonate with them. Dan
Stowell [22] has shown the Discourse Analysis techniques
can be used to interrogate performers’ experiences of new
musical instruments. We intend to bring similar techniques
to explore experiences of the PESI system.
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ABSTRACT

Music performance has being studied since long time and
several computational systems were developed for gener-
ating expressive music performances. These models are
generally evaluated by comparing their predictions with
actual performances, both from a quantitative and a subjec-
tive point of view, often focusing on very specific aspects
of the model. However little is known about how listen-
ers evaluate the generated performances and which are the
factors influencing their judgement and appreciation.

In this paper we present two experiments, conducted dur-
ing two dedicated workshops, to start understanding how
the audience judges the entire performances. In particu-
lar we analyzed possible different preferences and expec-
tations of the listeners and influencing factors, such as cog-
nitive styles.

1. INTRODUCTION

Many researchers analyzed and modeled human perfor-
mance of musical scores, and the results led to the devel-
opment of several computational systems for the so called
computer generated expressive music performance (see e.g.
[1] and [2] for a review). This area has drawn much at-
tention from computer science researchers because of the
challenge of emulating human competence. These sys-
tems are generally evaluated by comparing their predic-
tions with actual performances, both from a quantitative
and a subjective point of view, often focusing on very spe-
cific aspects of the model, such as a single rule, a phrasing
rendering, a conveyed emotion [3]. The main evaluation
aim is to validate or improve the system. However little is
known how listeners evaluate the generated performances
and which are the factors influencing their judgement and
appreciation.

In order to analyze more deeply the subjective effective-
ness of computer generated performances, the Performance
Rendering Contest (Rencon) was initiated in 2002 [4] by
Katayose and colleagues as a form of competition among
different systems. During the years the Rencon contest
evolved toward a more structured format. Now it is con-
ducted in two stages. In the first one, a panel of experts
rates both the scientific novelty of the entrant systems and
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their usefulness. In the second one, the performances gen-
erated during a dedicated workshop are openly evaluated
by the audience and Internet viewers (see [5] for details).

The purpose of this paper is to investigate an aspect which
has been overlooked by recent research, i.e. how subjects
evaluate computer generated performances. Only recently
has empirical research started to investigate the factors that
influence human performance evaluations and the interac-
tions among these factors. This research has typically fo-
cused on formal settings, such as competitions, or on edu-
cational practices [6–8]. It is thus worth studying more in
detail how listeners evaluate and appreciate automatic per-
formances, which factors influence their preferences and
expectation. To this purpose we present a preliminary ex-
periment carried out during Rencon-SMC11, which will
be summarized in section 3, and a second one carried out
during the meeting of the musicological society of Italy
(GATM) on April 2012. In particular we analyze possible
different preferences and expectations of the listeners and
influencing factors, such as cognitive styles [9].

2. MUSIC APPRECIATION AND COGNITIVE
STYLES

Individuals are different and we could therefore expect them
to react differently to music just as they react differently
to other stimuli. Research on individual differences has
already explained between-person differences to identical
psychological tasks. These individual differences also af-
fect the way we react to music. Recently, Kreutz et al.
[9] demonstrated the existence of top-down strategies dur-
ing listening to music using a questionnaire survey. They
found that listeners may be classified as music-empathizers
(ME) when they focus on the affective aspects of the music
and try to get tuned to the emotions of the composer or as
music-systemizers (MS) who are rather interested in find-
ing structures and organization behind the music. More-
over they developed an instrument for the measurement of
music empathisizing. This scale was designed to inves-
tigate empathy as a cognitive style of processing music,
rather than as a general trait. The authors reported that their
scales were found to be internally consistent and reliable
and results aligned with that of the general empathy scale
[9]. Using this scale, it was found that listeners who en-
joy computer music based genres demonstrated a trend to-
wards a higher mean score on the music-systemizing scale
than those who enjoy love songs [10].
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Figure 1. Boxplot of performance ratings of Rencon-
SMC11 participants.

We can hypothesize that the cognitive style also may in-
fluence the preferences when evaluating computer gener-
ated performances. To this purpose we submitted of the
participants of our experiment the questionnaire in order
to measure their cognitive style.

3. RENCON-SMC11 EXPERIMENT

3.1 Material and method

During the final phase of Rencon-SMC11, five systems
generated two expressive performances and were evaluated
by the workshop attendants, who were experts on Sound
and Music Computing. The five systems were:

E1 uses two algorithms: YQX [11], developed by Dept.
of Computational Perception, J. Kepler University,
Linz (Austria) for tempo and Basis mixer [12] for
dynamics;

E2 CaRo 2.0, developed by the Sound and Music Com-
puting group, Dept. of Information Engineering, Uni-
versity of Padova (Italy) [2];

E3 DirectorMusices, developed by the Music Acoustics
Group, KTH Royal Institute of Technology, Stock-
holm (Sweden) [13];

E4 VirtualPhilharmony, developed by Katayose Lab.,
Dept. of Human and Systems Interaction, Kwansei
Gakuin University (Japan) [14].

E5 Shunji, developed by Katayose Lab., Dept. of Hu-
man and Systems Interaction, Kwansei Gakuin Uni-
versity (Japan) [15].

E1, E3, E5 are autonomous systems, while E2 and E4 are
interactive performance systems [5].

The method and the results of the contest are discussed
in [3, 5]; a new analysis of the ratings is presented below.

Just after the audience listened and evaluated the auto-
matic performances, we distributed a questionnaire to the

attendees. The purpose was to collect more information
on the criteria used by the adjudicators and suggestions for
future Rencon contests.

3.2 Results

The results are discussed in [5]. Here we summarize the
most interesting results for our aims.

3.2.1 Analysis of ratings

Fig. 1 shows the box plot of ratings with estimated density
traces. All the distributions are unimodal.

In order to explore the preferences of the listeners, we
projected each listener rating on a 2D plane, by a PCA
of the expressed evaluations of the system performances;
the first two components explains respectively 46,4% and
20,7% of the total variance (Fig. 2). We may observe that
the point are very scattered in the plane and don’t show
any clustering. Then we evaluated the correlation among
each performance and the two-dimensional coordinates of
the listeners. Fig. 2 shows the direction and strength of
the maximal correlation of the listener preferences with the
PCA positions of the performances. We may observe that
the judgements of Caro system tend to be orthogonal to
the Shunji one and that some subjects tend to evaluate sim-
ilarly Caro and YQX systems, while others tend to agree in
the evaluations of DirectorMusices and VirtualPhilarmony.
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Figure 2. Biplot of a Principal Component Analysis of
the performances ratings of Rencon-SMC11 participants.
Numbers represent the ID of each listener, whereas arrows
represent the correlation among the systems.

3.2.2 Analysis of listeners’ preferences

The first question was intended to identify the expecta-
tion level of the listeners and was formulated as follows:
Your evaluation was made with reference to: with three
alternative answers: masters degree music student, mu-
sic teacher, or top-level performer. The majority (58.3%)
of the participants, who answered this question, indicated
masters degree student as the reference used in their per-
formance evaluations, while professional performers and
music teachers were specified by 30.6% and 11.1% of the
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respondents, respectively. Thus, we can conclude that al-
though the majority of the participants realistically expected
a student-quality performance, approximately 2/5 of the
participants had higher expectations. This expectation might
be influenced by the contest setting and by the qualification
level of the entrants, which may induce high expectations
in the attendants. The non-answer rate of 10% may indi-
cate that the question was not fully understood, and thus it
was not included in the next experiment.

n. Factors influencing the judgment Freq.
b1 is able to highlight elements related to

the musical structure (phrasing, counter-
point)

77.5%

b2 contains unexpected but interesting
choices

40.0%

b3 is consistent with the suitable musical
style (from an historical point of view)

52.5%

b4 is consistent with the favorite style (from
a subjective point of view)

12.5%

b5 is consistent with the style of a famous
performer

5.0%

b6 is able to convey emotional content 57.5%
b7 contains evident musical errors (that a hu-

man would never perform)
52.5%

b8 is consistent with the actual performance
context (concert hall, classroom, or auto-
matic performance contest)

7.5%

Table 1. Frequency of the main factors influencing the
judgment of Rencon-SMC11 participants.

The second question, Which of the following are the main
factors that influenced your judgment?, was intended to
encourage subjects to reflect on the criteria that they used,
either consciously or subconsciously. Different possible
factors were proposed, and the subjects were told that they
could select more than one option. The proposed factors
tended to cover technical, interpretative/communicative, and
stylistic aspects of the performances. The frequency of re-
sponses is reported in Tab. 1. We can observe that techni-
cal and interpretative/communicative factors predominate,
whereas stylistic factors are much less frequently consid-
ered. No significant correlations were found between the
answers to these questions and musical training, age, or
gender.

Figure 3 shows the biplot of the Correspondence Analy-
sis of these factors, as expressed by Rencon-SMC11 par-
ticipants. The first two components explains 24.7% and
22.2% of total variance. We can notice that the main dif-
ference is due by factors b4, b5 and b8, which were less
frequently indicated by attendants and were probably in-
terpreted as mutually exclusive. A more interesting dif-
ferentiation is characterized by factors b1, b2 and b3 re-
spectively. We can hypothesize that they may contribute
to diverse attitudes in evaluating generated performance.
Instead factors b6 and b7 are almost superimposed, even
if they represent two quite different assessment categories
i.e. emotional vs. technical. We can conjecture that both
factors are felt equally important in the assessment.
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Figure 3. Biplot of a correspondence analysis of the fac-
tors influencing the judgement of Rencon-SMC11 partici-
pants.

4. GATM 2012 EXPERIMENT

4.1 Participants

On Sunday, 22nd, April, 2012 at Liszt Institute in Bologna
(Italy) the annual assembly of the italian Analysis and Mu-
sic Theory Group (Gruppo Analisi e Teoria Musicale, GATM)
was held. In that occasion, a workshop on musical per-
formance analysis took place. This workshop focused on
expressive performance rendering computer systems. All
the participants were Italian musicologists, specialized in
musical analysis. Total = 23; 17 male; 6 female; 9 younger
(6 50 years); 14 older (> 50 years).

The assessors’ age is surveyed in categories (21-30; 31-
40; 41-50; ...). The mean age falls in the interval 51-60
years; the overall range is between 31-40 to 71-80 years.

4.2 Materials

Four different performances of a short classical musical
piece were proposed to the workshop participants. Sev-
eral Sonatas (by Cherubini, Clementi, Gotifredo Ferrari da
Rovereto, Kuhlau and Beethoven) were considered. First
of all, the first movements (exposure of Sonata form) were
discarded because it is both too long and quite trivial. At
the end, the Op. 88, n. 3, Allegro Burlesco by Kuhlau was
chosen because it lasts just over two minutes, it is not too
complex and it possesses an expressive character.

The authors asked the teams classified in the first four
positions at the final phase of Rencon-SMC11 to prepare
the stimuli (files in MIDI format) using their systems for
automatic expressive performance. All the four MIDI files
were played by the same piano Yamaha Disklavier MarkIV.
Finally, they were recorded by two AKG 414 microphones
and transferred to the digital domain by a FireFace 800
A/D converter (96kHz, 24bit). The systems E1-E4 of the
Rencon-SMC11 Experiment were used. E1 used Basis
mixer [12] for dynamics, tempo, and articulation.
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Figure 4. Boxplot of performance ratings in GATM exper-
iment. Performance E2 shows a bimodal distribution.

4.3 Method

The attendees were invited to rate each stimulus and to fill
an assessment questionnaire (see Appendix A), which was
divided into three parts. At the end of the workshop the re-
sults were presented and discussed. Then, we presented the
mathematical models used in the four performance render-
ing systems and communicated the ranking of the perfor-
mances. Finally, we played two recorded performances,
one was the winner and the other was a human perfor-
mance, played by a concert artist and piano teacher. We
told the assessors that they were listening the winner and
another automatic performance and we asked them to ex-
press which one they prefer, by rising their hand.

4.4 Results

4.4.1 Analysis of performances evaluation

The average ratings of the performances (part A of the as-
sessment questionnaire), considering the total of the par-
ticipants, the male and the females, are presented in Tab. 2.
The range of ratings is large: E1, E2 and E3 were rated
between 1 and 9. The performance E4 was rated between
3 and 9. In addition, 9 participants express their preference
for E1; 6 for E2; 1 for E3; 7 for E4. Fig. 4 shows the box-
plot of ratings with estimated density. All the distribution
of the assessors rates were unimodal, but E2 which shows a
bimodal distribution, probably indicating two distinct taste
categories.

E1 E2 E3 E4
Total (M) 6.78 5.52 3.91 6.59
Total (SD) 1.86 2.39 1.90 1.37
Female (M) 6.17 5.83 4.17 5.6
Female (SD) 1.17 3.19 2.64 1.95
Male (M) 7.00 5.41 3.82 6.88
Male (SD) 2.03 2.15 1.67 1.05

Table 2. Analysis of the part A of the assessment question-
naire on the total participants, on females and on males.
Mean (M) and Standard Deviation (SD).

Fig. 5 shows the biplot computed from the Principal Com-
ponent Analysis (PCA) on the performances ratings. We
may notice that E2 is orthogonal to the other performances.
In addition, we may observe that the assessors are clus-
tered in three groups: (i) assessors that likes E2, (ii) asses-
sors that likes E1, E3 and E4 and (iii) subjects that tend to
refuse all the automatic performances.

Comments to the GATM performances are listed in Ap-
pendix B, divided in three categories, according to [16].
In some cases there is a total disagreement in the assess-
ment of the same performance. E.g., E1 has been judged
both “regular” and “irregular”; E4 sounds at the same time
“very pleasant” and “not at all suitable”. Of course, many
of these differences are due to the subjective nature of the
evaluation of any artistic work. Others may depend from
the experimental setup: the audience listened the entire
performance only once, before to judge it, as in a live con-
cert scenario. In some cases, this fact could be the cause of
hasty and inaccurate judgments.

To better evaluate the subjective judgments of the public,
we report some objective features calculated from the per-
formances, regarding tempo and dynamics. Performance
E1 has been played with an average tempo of 122 BPM;
the middle section has been played at 108 BPM; a dy-
namic range of 40.6 dB with a maximum RMS amplitude
of −13.46 dBFS. E2 is characterized by an average tempo
of 132 BPM with a middle section at 124 BPM; a dynamic
range of 49.4 dB and a maximum RMS amplitude of -9.9
dBFS. E3 has an average tempo of 102 with a middle part
at 94; a dynamic range of 47.7 dB and a maximum RMS
amplitude of -12.2 dBFS. Finally, E4 has been played at
128 BPM on average with a middle section at 88 BPM; a
dynamic range of 47.0 dB and a maximum RMS amplitude
of -12.5 dBFS.
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Figure 5. Biplot of a Principal Component Analysis of
the performance ratings in GATM experiment. Numbers
represent the ID of each listener, whereas arrows represent
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factors presented in part B1.

b1a b1b b1c b1d
Total (M) 4.23 5.09 5.27 5.39
Total (SD) 1.74 1.59 0.98 1.62
Female (M) 4.50 4.83 5.17 4.50
Female (SD) 2.07 1.60 0.98 2.07
Male (M) 4.13 5.18 5.31 5.71
Male (SD) 1.67 1.63 1.01 1.36

Table 3. Analysis of the factors (part B1 of the assessment
questionnaire) on the total participants, on females and on
males. Mean (M) and Standard Deviation (SD).

Comparing these values with the afore mentioned com-
ments, it is possible to note that when there is an agreement
among the subject, the judgment is often coherent with the
measured features. E. g., many subjects agree in consid-
ering exaggerated the dynamic variations of performance
E2, which actually has the greatest dynamic range. On
the contrary, performance E1 is generally considered too
scholastic and little expressive, probably due to the small
dynamic and agogic differences.

The overall balance of the performances is not always
considered sufficient by the assessors. This is due to the
fact that the systems pay more attention to the phrasing
levels, than to the interpretation of the song in its entirety.
This comment can be a useful hint for systems developers.

Finally, there are some interesting comments character-
ized by a comparison with human performances. Despite
the audience was aware that all the performances were com-
puter generated, some subjects used verbal expressions such
as “seems to remember an unmusical student”, “if it were
a person it would seem inaccurate”, or “boy playing so fast
because he likes run”, denoting the tendency to attribute to
the automatic performances a human personality.

About the evaluation between E1 and the human perfor-
mance: our experience has been that it is good, or at least
interesting, to include a human performance among syn-
thesized ones in the performances sample (and thus made

the experiment a bit more as a sort of a Turing test) because
it gives a perspective of how far away or close to the eco-
logically valid performance the synthesized ones lie. The
result is that the human one was very slightly preferred,
by only one preferences. And this may be in favor to not
exclude in the future a sort of Turing test like experiment.

4.4.2 Analysis of assessors’ preferences and cognitive
style

The average rating of the factors that influence the en-
joyment of the performances (part B1 of the assessment
questionnaire, see Appendix A), considering all the partic-
ipants, only male and only females, is listed in Tab. 3. It
can be noticed that there are distinct genre behavior in fac-
tors b1b and b1d. The mean values are not quite distinct,
apart factor b1a (related to technical accuracy of the per-
formance) that received less importance: maybe the asses-
sors, knowing that stimuli were generated performances,
were less concerned by technical precision (b1a) and payed
more attention to the interpretative factors.

Fig. 6 shows the biplot computed from the Principal
Component Analysis (PCA) on the factors presented in the
part B1. The first two components explains 49.4% and
24.8% of total variance. The factor b1a is orthogonal to
b1d, as it was to be expected because b1a is related to tech-
nical aspects and b1c to emotional aspect.

Tab. 4 shows the ME and MS Simplified Unit Weight
(SUW) values [9], describing the cognitive styles. The low
empathising score (ME) reflects a philosophical/training/
conditioning stance that some who are convinced that the
role of music was not to express emotions – a ‘formalist’
perspective. This is particularly true in older generation
analytic musicologists: it seems that this has been chang-
ing in the last couple of decades, at least in Anglo-Saxon
school. Our experiment confirms this trend: the younger
group is associated to a ME SUW value (-10.67), which is
less negative than older group (-14.29).

MS scores: music systemizing
Total Female Male Younger Older

M 1.70 2.00 1.59 3.44 0.57
SD 7.47 5.62 8.18 4.22 8.95
M [9] 3.46 2.35 5.09
SD [9] 8.04 7.93 8.09

ME scores: music empathizing
Total Female Male Younger Older

M -12.87 -14.00 -12.47 -10.67 -14.29
SD 10.39 10.81 10.55 12.70 8.80
M [9] 2.50 4.00 0.29
SD [9] 7.20 5.89 8.47

Table 4. Means (M) and Standard Deviation (SD) of music
cognitive styles SUW scores [9] for all the assessors, male,
female, younger (6 50 years) and older (> 50 years). All
the data are compared with the results obtained by [9] for
the “Professional” level of music performance experience
(Mean [9] and SD [9]).
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5. CONCLUSIONS

Two experiments, conducted during two dedicated work-
shops, were presented. The first one was carried out on a
uneven population, the second one on a homogeneous pop-
ulation (musicology analysts). This allowed us to observe
how this particular population stands on generated perfor-
mances. The aim is to understand how the audience judges
computer generated music performances. In particular, we
analyzed possible different preferences and expectations
of the listeners and influencing factors, such as cognitive
styles.

The analysis of the ratings allows us to see (i) how prefer-
ences are distributed among the various performances and
(ii) whether any orthogonalities and/or correlations exist.

If we compare the analysis of the factors in the two exper-
iments, we can observe that general audience tends to give
the same importance to emotional and technical factors (b6
and b7), and the difference depends on the remaining fac-
tors. On the contrary, for analyst audience, the emotional
and technical factors (b1a and b1d) are very distinct and
the remaining factors are situated between them.

It should be noted that, even if the performances are com-
puter generated, there is a human contribution: in auto-
matic systems this is given by the choice of the model and
by the parameters (e.g., in the rules systems is given by the
weights assigned to the rules); in interactive systems, in
addition to the choice of the parameters, the contribution
of the performer during the real-time control should also
be considered. In this sense, the assessment includes also
a judgment on the interpretative choices and depends on
the experience of the assessors.

The analysis of the cognitive styles pointed out how the
assessors stands on generated performances. The results
of the GATM 2012 experiment show that all the assessors
were systemizers, and young people had a less negative
value of ME. It is important to conduct experiments with
other populations of assessors, in order to point out the
behavior of other typologies of assessors and study their
preferences.

From the perspective of scientific progress, these judg-
ments are useful not only for the purpose of ranking the
systems but also for providing the researchers with infor-
mation about the direction in which they should focus ef-
forts to improve their systems. Specific measurements of
performance quality can explicitly and precisely reveal the
strengths and weaknesses of a system, and this information
can, in turn, suggest short- and medium-term goals for im-
provement. This study helps to understand the relationship
between art and technology.

Appendix A: Assessment questionnaire
There are many factors that can impact on one’s enjoyment
of a musical performance. The survey is intended to find
out which of these are most important for you when you
are listening to a generated music performance.
The survey is divided into three parts: part A must be filled
after listening the music performances obtained by auto-
matic methods. Parts B1 and B2 must be filled at the end.

The detailed instructions given to the participants are shown
below.

PART A – Instructions to fill the form:

You will listen to four different generated per-
formances, one after the other, of the same
musical piece. Then the performances will be
played again, one-by-one, and at the end of
each performance you will be requested to fill
the corresponding section. How much do you
give applause to the performance? (1: nothing
– 10: ovation)

PART B1 – Instructions to fill the form:

How much did the following factors influenced
the (high or low) enjoyment of the listened
generated performances?
1: no influence – 7: very high influence

b1a. Technical accuracy of the performance

b1b. Coherence with the concert performance
style

b1c. Presence of choices that are original and
interesting

b1d. Capacity of arousing an emotional involve-
ment in the listener

Are there any other factors that are important
in determining your personal enjoyment of the
performance?
(If there are several, please list in order: most
important→ least important)

PART B2 – Instructions to fill the form:

This questionnaire is about the so-called cog-
nitive style. Some people are slightly more in-
terested in other people than they are, for ex-
ample, in technology. For other people, the
opposite is true. Either way, there is no ‘right’
or ‘wrong’ cognitive style in that sense. They
can just be different.
Here we would like to invite you to fill in a
questionnaire that will inform us about your
cognitive style. The purpose of this research
is to find out what aspects of music are more
or less important to different people when lis-
tening to or thinking about music.
While filling in your responses, please read
the lines carefully and circle the number in
each line that is most appropriate for you: (1:
completely disagree, 2: partially disagree, 3:
partially agree, 4: completely agree).

The statements are the same presented in [9, Appendix B].

Appendix B: Assessors’ comments to the
GATM performances

Comments to the GATM performances divided in the three
following categories, according to [16].
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Technical mastery and control
E1: phrasing balanced, low dynamic range, little agogic,

if it were a person it would seem inaccurate, mechanical,
distinction legato/staccato, clumsy performance, regular,
irregular, balanced but not rigid.

E2: extreme dynamics, excessive sforzato, boy playing
so fast because he likes to run, too varied, non-flexible
dynamic, little physical plausibility, inadequate ritardandi
and rubati, performance more technical (professional?).

E3: the pianist strikes too strong, unacceptable grace notes,
excessive appoggiaturas, too slow, laborious performance
(student awkward?), misplaced accents and weighting, me-
chanical.

E4: little physical responses, little phrasing, tempo too
slow in the second section, good tempo, too excessive agogic,
rhythmic variations between phrases, some technical stum-
bling, full of swing, not perfect technically.

Sound quality
E1: effect of sound without weight, muffled timbre, weight

left hand, timbre quality.
E2: bright.
E3: regular touch, softness, touch too hard, heavy sound.
E4: nice touch.

Convincing musical understanding
E1: beginner student, reliefs of the parts, fluid and with

the right amount of irony, elegant, pleasant, little expres-
sive, too scholastic, not too expressive, good the form, ad-
equate for this kind of music, switable, expressive, elegant,
monotonous, delicate, perhaps a bit too caressing.

E2: instinctive choices, scherzoso, almost gestural, exag-
gerated and awkward, look brilliant, rhapsodic, right alter-
nation, interesting, makes the sense of burlesque, perfor-
mance uneven.

E3: first reading, balance, out of style, performance quite
expressive, very pleasant, not at all suitable, seems to re-
member an unmusical student, enjoyable, point to emo-
tional communication, simulation of a scholastic perfor-
mance, it is grainy, not unitary, rigid and cold, scholastic,
disorganized, poorly developed phrasing, lack of elegance,
inappropriate, inadequate to express correct emotions.

E4: nice, close to a human performance, passages more
credible, makes concertistic the performance, good emo-
tional communication, there is no balance, exaggerated chan-
ges, loss of equality, burlesque, but excessive, passages
more credible, no unitary perception of the musical piece,
balanced in the first part, emphatic the middle and the final
parts, very natural, expressiveness acceptable, good ideas
with moments mannerist.
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ABSTRACT 
This paper addresses some issues arising from theories 
which represent musical structure in trees. The leaves of a 
tree represent the notes found in the score of a piece of 
music, while the branches represent the manner in which 
these notes are an elaboration of simpler underlying 
structures. The idea of multi-levelled elaboration is a cen-
tral feature of the Generative Theory of Tonal Music 
(GTTM) of Lerdahl and Jackendoff, and is found also in 
Schenkerian theory and some other theoretical accounts 
of musical structure. In previous work we have developed 
computable procedures for deriving these tree structures 
from scores, with limited success. In this paper we exam-
ine issues arising from these theories, and some of the 
reasons limiting our previous success. We concentrate in 
particular on the issue of context dependency, and con-
sider strategies for dealing with this. We stress the need 
to be explicit about data structures and algorithms to de-
rive those structures. We conjecture that an expectation-
based parser with look-ahead is likely to be most success-
ful. 

1. BACKGROUND 
It is common to regard the structure of a piece of music 
as in some way hierarchical. Heinrich Schenker [1] was 
not the first to propose the idea that a piece of music con-
tains different levels of elaboration or reduction, but his 
influence has been so great as to mean that ‘Schenkerian’ 
is almost a synonym for hierarchical in music theory. The 
later Generative Theory of Tonal Music (GTTM), by 
Lerdahl & Jackendoff [2], explains musical structure as 
explicitly hierarchical and tree-structured, borrowing 
concepts from formal linguistics.  

More recent work also uses trees to represent musical 
structure. One well known, and again explicitly linguis-
tic-inspired, example is Steedman’s chord grammar [3, 4] 
which represents the structure of a complex chord se-
quence as a tree showing the derivation of the sequence 
from a simple model such as a twelve-bar blues. Rizo has 
used trees as a basis for a model of melodic similarity [5].  

Recent theories such as those of Steedman and Rizo are 
defined in formal terms, allowing an analysis to be sys-
tematically derived from a sequence of chords or notes. 
Schenker was writing before the birth of formal cognitive 
science, and did not express his theory in this kind of 
systematic fashion. (Indeed, it is clear that it was never 
his intention to take music theory in this direction—that 
is the result of appropriations by scholars of later genera-
tions [6].) Lerdahl & Jackendoff, on the other hand, were 
writing on the explicit basis of theories of linguistic 
grammar and also took account of some of the early work 
in musical computing (e.g., [7]). Their theory is accord-
ingly expressed in more formal terms, but still without 
the degree of precision required for derivation of analyses 
from a score without expert musical knowledge. Lerdahl 
& Jackendoff are quite explicit about this: ‘our theory 
cannot provide a computable procedure for determining 
musical analyses’ [2, p. 55]. Yet earlier they ‘conceive of 
[their] theory as being in principle testable by the usual 
scientific standards’ [p. 5]. A theory is only testable if it 
can make precise predictions, and the only logical resolu-
tion of these two statements is that Lerdahl & Jackendoff 
considered that suitable extension of the theory would 
produce a computable procedure for determining musical 
analyses. 

Over the past decade, the authors have developed com-
puter software to derive analyses in accordance with 
Schenkerian theory [8] and GTTM [9]. The results have 
been only partially successful. The ATTA software of 
Hamanaka, Hirata and Tojo requires the user to adjust 
parameters in order to arrive at acceptable analyses in 
accordance with GTTM. Marsden’s Schenkerian analysis 
software can only make analyses for short extracts of 
music, and the results only partially match those of ex-
perts. 

In view of this limited success, and the enduring popu-
larity of the idea of reduction in musical computing, we 
believe it is worth stepping back to reconsider some of 
the fundamental issues concerning the derivation of tree 
structures in music. In particular, we aim to consider 
some of the details around context dependency which 
complicate the formulation of an effective computable 
procedure to automatically derive trees from the notes in 
the score of a piece of music.  

Copyright: © 2013 Alan Marsden et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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2. TREE REPRESENTATIONS 
Formally, a tree is a connected graph of nodes and arcs in 
which there are no cycles. Some additional properties are 
considered to be essential when representing music, how-
ever. Firstly, arcs have a direction, connecting ‘parents’ 
to ‘children’. The parent is the ‘reduction’ of the children, 
and the children the ‘elaboration’ of the parent. Secondly, 
child nodes in a musical-structure tree have an explicit 
order: ‘left’ children occur before ‘right’ children. In 
principle there is no restriction to the number of children 
a parent may have, and it is not uncommon for trees rep-
resenting musical structure to have parents with three or 
more children. The simplest trees, however, have no 
more than two children per parent (called binary trees), 
and it is common to restrict discussion and the definition 
of procedures to this case. Nothing is lost by this, because 
it is always possible to convert any finite tree to a binary 
tree which represents exactly the same information, and 
to convert it back again to the original tree 

In GTTM, Time-span reduction and prolongational re-
duction are explicitly represented in trees. They are often 
binary, but the theory does allow cases of parents with 
more than two children. Schenkerian analyses are notated 
in music-notation-like ‘graphs’ using noteheads and slurs 
rather than trees, but parent-child relations can be derived 
from these, and equivalent tree structures generated [10]. 

Figure 1 shows Lerdahl & Jackendoff’s time-span re-
duction of the first eight bars of the theme from the first 
movement of Mozart’s piano sonata in A major, K.331. 
(For clarity, not all of the lowest levels of branching are 
shown in the figure.) Schenker’s analysis of this theme is 
somewhat different, but for present purposes we can 

point out that a Schenkerian analysis would look rather 
like the notation in the four lower staves, but with the 
vertical order reversed and the addition of slurs joining 
notes into groups more or less in accordance with the 
grouping shown by the corresponding level of branching 
in the tree. 

2.1 Trees and Cognition 

Schenker believed that his analyses showed the ‘back-
ground and middleground’ of a piece of music, which 
were the ‘indispensable prerequisites to a musical work 
of art’ [1, p. 3–4]. Background and middleground were, 
for Schenker, the genesis of a work not literally in the 
sense of the sequence of events (real or mental) which led 
to its composition, but in a metaphysical sense, constitut-
ing something of the reality of the piece.  

Lerdahl & Jackendoff state the goal of theory to be a 
‘formal description of the musical intuitions of a listener 
who is experienced in a musical idiom’ [2, p.1] and later 
make clear that they are concerned with ‘the final state of 
his understanding’ and not the mental processes which 
lead to this state. 

Both Schenker and Lerdahl & Jackendoff, therefore, 
consider their reductions to correspond to a cognitive 
conception of the piece, but neither is directly concerned 
with how that conception is created in the act of listening. 

2.2 Musical Grammar 

On the other hand, both Schenker and Lerdahl & 
Jackendoff aim to show a systematic relationship be-
tween the notes of the score and the reduction. Schenker 
writes of musical ‘laws’, though he does not explicate 

Figure 1. Analysis of the theme from the first movement of Mozart's piano sonata in A major, K.331. 
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them in a precise fashion. (Instead, one is given the 
strong impression that only geniuses have true under-
standing of the laws!) Lerdahl & Jackendoff, by contrast, 
give a large set of rules to relate notes to analyses. How-
ever, as frequently pointed out, some of these are irregu-
lar rules in that they state only a ‘preferred’ relation be-
tween notes and structures, which need not hold if other 
rules imply a different relation. How conflicts between 
preference rules are to be resolved is not specified in the 
theory. 

It is our conviction that music theories such as GTTM 
and Schenkerian theory form a useful ground for building 
computational systems which are capable of automatical-
ly deriving the structure of a piece of music from the 
notes in the score. Furthermore, we believe that such der-
ivation of structure is essential for some effective musical 
processing in such tasks as finding similarity or segment-
ing pieces of music. In the following, we examine some 
difficulties in employing GTTM and Schenkerian theory 
as such a basis for computational structure-finding sys-
tems. 

3. CONTEXT DEPENDENCY 
Schenker was clear that the Ursatz (the simplest structure 
at the top level of every great piece of music) governed 
every aspect of the structure of a piece of music. The de-
tails of how a passage is reduced, therefore, depend in 
part on where that passage comes in the Ursatz. A fun-
damental problem of Schenkerian analysis is that one 
cannot know what the Ursatz is, and how it relates to the 
details of the piece, until one has analysed the structure: 
one needs to know the context to properly analyse the 
structure, but one cannot know what the context is before 
the structure is analysed. For example, it is common to 
find the same passage of music analysed in two different 
ways in a Schenkerian analysis according to where it 
comes in the piece. The typical case is for the melody of 
a passage to be analysed as an elaboration of the third or 
fifth degree of the scale when it occurs early in the piece, 
but for the same melody to be analysed as the descending 
3-2-1 or 5-4-3-2-1 of the Urlinie late in the piece.   

Marsden’s Schenkerian analysis software [8] over-
comes the difficulty of not knowing the location of the 

Ursatz in advance by effectively generating many possi-
ble analyses of the structure, then selecting those which 
contain an Ursatz, and finally selecting the one which 
appears best. This is an extremely costly procedure in 
computational terms, and cannot form the basis of a prac-
tical system. 

GTTM similarly contains many instances of context-
dependency. The preference rules for ‘cadential retention’ 
and ‘structural beginning’, TSRPR 7 and 8, cause reduc-
tions to depend on the grouping structure not just for the 
time-span where the reduction takes place, but for the 
enclosing time-span(s) also. In other words knowledge of 
higher-level structure is required before the lower level 
structure can be determined. In this case the structures are 
in different components of GTTM (grouping and time-
span reduction), but a preference rule for grouping struc-
ture, GPR 7, completes the circle by stating that grouping 
structures are preferred which result in more stable time-
span reductions. 

Lerdahl & Jackendoff point out the importance of such 
context dependency in discussion of bar 4 (measure 4) of 
the Mozart theme in Figure 1 [2, p. 118–120, 134–35, 
167]. Out of context, the opening chord of the bar would 
be considered the ‘head’ to which the entire bar reduces, 
because it is on the strong beat (TSRPR 1) and because it 
is closer to the tonic (TSRPR 2; in fact it is the tonic!). 
The correct reduction, which makes sense of the phrase, 
is instead to take the dominant chord at the end of the bar 
as the head, as indicated in Figure 1. 

3.1  Recomposition of Contexts 

Figure 2 illustrates the context dependency in the reduc-
tion of bar 4 of the Mozart theme. The theme has been re-
written to start with a copy of bar 4 and a new bar 2 to 
retain the overall pattern of descending sequence in the 
first two bars. Here it is clear that the pattern of notes in 
bar 4 is reduced in different ways according to the con-
text, as shown by the tree structure in Figure 2. A Schen-
kerian graph of Figure 2 would also show a difference 
between the reduction of bar 4 in Figure 2 and the copy 
of it in bar 1 of that figure. In the reduction of bar 4 a slur 
which has its beginning earlier in the piece would end on 

Figure 2. Recomposition of Figure 1 to place a copy of bar 4 at the beginning. 
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the melody note B while in bar 1 a slur would begin on 
the first C sharp and end somewhere beyond the end of 
bar 1. (In making this claim, we follow the procedure of 
music theorists who rely on their own intuition about the 
structure of a piece of music, tested by repeated listening 
and introspection. We furthermore assume that other lis-
teners will have the same intuitions as ours. We judge 
that for our present purposes the cost of proper scientific 
listening tests is not warranted, but we would be interest-
ed to hear if other listeners do not share our intuitions.) 

In the case of Figure 2, the new context for the pattern 
of bar 4 is evident from the fact that it occurs at the be-
ginning. However, it is not only this which can cause a 
different reduction of this bar. Figure 3 shows a different 
recomposition of the Mozart theme to make the phrases 
five bars long. Here bar 4 is reduced differently because a 
new bar follows which takes the role of cadence. (Some 
might prefer the reduction of bar 4 to be connected to the 
branch from bar 5 rather than the one from bar 3, but this 
does not change the assignment of the tonic chord at the 
beginning of bar 4 as head for that bar rather than the 
dominant.) 

From Figure 3, one might conclude that so long as the 
pattern of bar 4 does not occur at the end of a phrase, it 
should be reduced to tonic harmony, but this is contra-
dicted by the example in Figure 4, which replaces the 
new cadential bar 5 by a copy of bar 4. Here the new bar 
5 sounds like an echo of the cadence in bar 4. 

Figures 5 and 6 illustrate the affect of other contexts for 
bar 4. Figure 5 illustrates that the possibility of splitting 
ten bars into two phrases of five bars each does not nec-
essarily lead to a tree structure congruent with a division 
into two phrases of five bars. Here the new bar 5, while 
having the same outline of I-V and C sharp to B in the 
melody, groups with the beginning of the next phrase, 
partly by virtue of the similarity of rhythm. In Figure 6, 
which recomposes the music in Figure 2, bar 4 is pre-
vented from acting as a cadence not by the insertion of a 
stronger cadence (as in Figure 3), but by a continuation 
which causes it to sound once again like a beginning. 

To illustrate the significance of the difference in these 
structural analyses, imagine a software system designed 
to separate music into segments, and to report the degree 
to which a segment will sound finished or unfinished. 

Figure 3. Recomposition of Figure 1 to make five-bar phrases. 

Figure 4. Recomposition of Figure 3 to echo cadence. 

Figure 5. Recomposition of Figure 3 to recreate four-bar phrase. 

Figure 6. Recomposition of Figure 2 to prevent cadence at bar 4. 
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Such a system should segment Figures 1 and 2 into bars 
1–4 and 5–8, Figures 3 and 4 into bars 1–5 and 6–10, 
Figure 5 into bars 1–4 and 6–10, and Figure 6 into bars 
1–3 and 4–7. It should report that the first segments made 
up of bars 1–4 or 1–5 will sound finished but less final 
than the second segments 5–8 or 6–10, and that the first 
segment in Figure 6, bars 1–3, will not sound finished. 
All of these could be concluded directly from the graphs 
by taking the highest-level branching to indicate the seg-
mentation, the presence of a retained cadence to indicate 
strong finality, and the presence of right-branching on the 
right-most branch (as would be the case in bar 3 of Figure 
6) to indicate sounding unfinished. 

3.2 Strategies for Context Dependency 

3.2.1 Separation of bottom-up and top-down 

GTTM includes two kinds of tree: time-span reduction 
and prolongational reduction. Time-span reduction is 
characterised as concerning ‘relative stability within 
rhythmic units’, and prolongational reduction ‘relative 
stability expressed in terms of continuity and progression’ 
[2, p. 123]. What this means precisely is not entirely clear, 
especially since rhythmic units are partially defined by 
time-span reduction in view of the interdependence be-
tween time-span reduction and grouping. Furthermore, 
the concepts of ‘cadential retention’ and ‘structural be-
ginning’ clearly concern continuity and progression to 
some degree. 

Another distinction between time-span reduction and 
prolongational reduction, not explicitly stated by Lerdahl 
& Jackendoff but clearly implied in their presentation, is 
that time-span reductions are made mostly bottom-up 
while prolongational reductions are made top-down. Per-
haps a strategy to deal with context dependency is to 
make this bottom-up/top-down distinction absolute and 
revise time-span reduction to disregard top-down rules 
such as cadential retention and structural beginnings. This 
would reduce the pattern in bar 4 of the examples above 
always using right-branching and yielding tonic harmony 
as the head. A top-down process like prolongational re-
duction would then modify the tree to reflect context de-
pendencies, for example replacing right branching by left 
branching at cadences. 

Marsden’s Schenkerian-analysis software [8] also oper-
ates in a two-step bottom-up then top-down process. It 
uses a version of the CYK parsing algorithm which fills a 
table with information about possible parses in a bottom-
up process (the Schenkerian-analysis software also col-
lects information about possible Ursatz membership) and 
then uses this information to build a parse top-down. 

3.2.2 Expectation-based parsing 

Most of our listening to music is to pieces we have heard 
before, or if not, at least to pieces similar to others we 
have heard before. Perhaps a reduction mechanism can 
take two inputs: the notes of the score, and a sequence of 
expectations based on the last time the piece was heard 

and the structure derived from that hearing, whether ex-
pressed in the fashion of GTTM as a prolongational and 
time-span tree, or in the manner of Schenkerian theory, or 
some other manner (e.g., expectation expressed in a nu-
merical value [11]). If the piece has not been heard before, 
expectations can be generated on the basis of memories 
of similar pieces or a style [12]. Even if one’s memory is 
not sufficiently accurate to expect what the next note will 
be, a trace of a previously derived tree structure might 
remain, or melodic expectation might be generated based 
on a familiarity with a style.  Thus, on arriving at bar 4 in 
the Mozart theme, the listener will expect that the next 
bar will be a return to the opening, so bar 4 must function 
as a cadence. 

Indeed in every case in the examples given above, the 
correct parsing of a structural unit is not clear until the 
next unit has begun. It would seem that parsing takes 
place after the event rather than while the music is being 
heard, but it is not clear how long the delay is. (Clearly 
limits to short-time and working memory will have an 
impact on this.) Possibly the delay is long enough for a 
rough parse to be made for an entire phrase before the 
detail of a reduction is completed.  

Top-down information is known to influence visual ob-
ject recognition, and experimental evidence suggests that 
high-speed processing of low-spatial-frequency infor-
mation is instrumental in this process [13]. Perhaps simi-
lar low-bandwidth information or approximations in lis-
tening to music provide the same kind of top-down con-
trol. For example, it is possible that the listener rapidly 
extracts the main harmonies from a passage, and uses 
these to generate an outline tree to capture the I-V, I-V-I 
structure of the Mozart theme. This outline tree is then 
filled in with the rest of the detail of the reduction. 

3.2.3 Category labels 

Similar phenomena of context dependency occur in lan-
guage, but we are not aware of any musical examples 
which have the force of ‘garden-path sentences’ which 
require the reader or hearer to undo an existing parse and 
re-parse the sentence for it to make sense. [14] shows 
how a Definite Clause Grammar can be used to parse the 
sentence ‘That man that whistles tunes pianos.’ The word 
‘whistles’ is initially parsed as a transitive word with 
‘tunes’ taken to be a noun and its object. The occurrence 
of the word ‘pianos’, however, causes the parsing to 
backtrack and then take ‘whistles’ to be intransitive and 
‘tunes’ as a verb. Techniques therefore exist in natural 
language processing to cope with similar context depend-
ency, but they cannot be naively transferred to music. For 
example, [15] reports that a backtracking parser, without 
additional features to guide it towards the correct parse, 
frequently failed to find a correct parse for jazz chord 
sequences within a reasonable time.  

A characteristic of linguistic grammars is that they as-
sociate labels, such as ‘noun phrase’, with internal nodes 
of a parse tree. This allows for more efficient and reliable 
parsing because it disambiguates words or sequences of 
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words which can have different functions, such as the 
word ‘tunes’ in the garden-path sentence mentioned 
above. In the incorrect parsing it is categorised as a noun, 
whereas it should be a verb. 

Perhaps the use of category labels in musical reduction 
trees could similarly disambiguate cases which behave 
differently in different contexts. Each putative head in a 
reduction, for example, might have one of the categories 
b, m, or c attached, for ‘beginning’, ‘middle’ or ‘close’. 
The pattern in bar 4, then, could produce the alternative 
reductions I(b) and V(c), where I and V stand as short-
hand for the tonic at the beginning of the bar and the 
dominant at the end respectively. The grammar for cate-
gories could then be as follows: 

b  b m 
c  m c 
b b  b c b 
c  b c 
m c  m c c [only when the second c is a copy of 

the first] 
b  b b [only if no other parsing is possible] 

The bars of the original theme (Figure 1) would be ini-
tially categorised as b, m, m, b/c, b, m, m, c. The alterna-
tive reduction for bar 4 with the label c will be selected in 
parsing because there is no rule to accept m b and select-
ing c allows the non-preferred sequence b b to be avoided. 

The grammar also leads to the correct reductions for the 
other examples to be selected. Figure 6, for example, has 
initial categories b/c, m, m, b/c, m, m, c. The reduction 
with category b will be chosen for bar 4 because there is 
no following b which would allow c here to be absorbed 
by the third rule, and this bar is not copied by the final c. 

Grammars using categories have been applied to music 
(e.g., [4]) but even for chord sequences, which are sim-
pler than collections of notes, this alone does not lead to a 
successful analysis system. [14] shows greater success in 
analysing chord sequences when category labels assigned 
in a probabilistic fashion so that the label most likely to 
lead to a correct parse is used first, or at least early in 
backtracking.  

3.3 A Tension-Relaxation Grammar 

Category labels in language function not only to indicate 
syntactic position but also function. We suggest that in 
music this function might relate to the commonly used 
concepts of tension and relaxation. Lerdahl & Jackendoff 
relate prolongational reduction to the sense of tension and 
relaxation in a piece of music [2, 16]. Schenker does not 
use the same language, but his metaphor of a piece of 
music as a living organisms is not so far from these ideas. 
For him pieces grow and exhibit intention, cause and ef-
fect. A grammar of tension and relaxation, if such a thing 
is possible, could provide a basis for category labels, for 
expectation, and for outline parsing. The grammar might 
look something like this (where S is a complete ‘sen-
tence’, T tension and R relaxation): 

S  S S 
S  T R 

T  T S 
R  S R 

Other rules would indicate how tension and relaxation 
were related to, for example, harmonies: 

T  I V 
R  V I 
R  IV V I 
R  ii V I 
etc. 

Tension and relaxation could be derived from rhythmic 
characteristics of the music also, or from dynamics and 
timing. The function of the grammar is precisely to take 
information from whatever source seems useful and use it 
to guide derivation of structure and meaning from the 
music. Studies of performers’ bodily movements while 
playing have shown that even these convey information 
about tension and structure to an audience (e.g., [17]). 
Even bodily movements might therefore provide input to 
the tension-relaxation grammar.  

4. CONCLUSIONS 
This discussion has focused on the general principles of 
tree structures in music and their derivation. Research 
which draws directly and only from music theory is un-
likely to progress further than the authors’ earlier work 
because Schenkerian theory, GTTM and the like are not 
expressed with the degree of precision required for com-
putational implementation. They also lack empirical vali-
dation. Further progress will depend on derivation from 
examples (preferably large sets of them) and other empir-
ical data. 

Data from listening experiments is costly to obtain, and 
the structural intuitions which Schenker and Lerdahl & 
Jackendoff believed their theories revealed do not corre-
spond to overt measurable behaviours. Experiments 
which test the match of reductions to tunes ask listeners 
to perform an unfamiliar task without any clear relation 
to other musical behaviours [18, 19]. The results are 
therefore of dubious validity. In our view a more solid 
basis for empirical data relevant to tree structures in mu-
sic comes from four sources: 

1. Existing analyses by musical experts. There are not 
many published examples of analyses according to 
GTTM, but the second and third authors have a test 
set of melodies analysed by experts. A sizeable 
quantity of published Schenkerian analyses exist in 
journals and textbooks. 

2. Variations. In many cases, a theme and variation 
share a common underlying structure. What a 
theme and set of variations has in common there-
fore provides information about the proper tree-
structure representation of the theme or variation. 

3. Music similarity data. In the same way, melodic 
similarity, on which a quantity of data is emerging 
from MIR research, provides suggestive infor-
mation about underlying tree structures. Similar 
pieces of music often share similar structures. 
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4. Operational effectiveness in music processing. Mu-
sic-processing tasks often require structural infor-
mation. (Examples include performance rendering, 
segmentation, and summarisation.) We conjecture 
that embedding systems for deriving tree structures 
from pieces of music within software to perform 
such tasks will provide empirical validation of the 
structures derived: if the task is performed well, the 
structure-derivation is likely to be correct. 

We do not wish to discount the value of sophisticated 
music theory to music computing. On the contrary we 
believe that it has much to offer but that successful em-
ployment of ideas from music theory will also require the 
application of concepts and procedures from modern 
computational science. In particular, we believe that em-
ployment of the ideas of category labels, expectation, 
look-ahead and initial tracing of an over-arching structure 
of tension and relaxation will be useful for future pro-
gress. 

It is common in computing to separate data structures 
from algorithms, and we suspect that music theory would 
benefit from a similar separation. Both GTTM and 
Schenkerian theory, in their textual expositions, describe 
the data structures in which musical structure is embodied 
(despite the fact that many of the rules of GTTM are ex-
pressed in a quasi-procedural fashion, using formulations 
such as ‘prefer a reduction which ...’). As pointed out 
above, the algorithmic part—how to derive the structures 
from a score—is not made explicit but remains implicit in 
the theorists’ examples. Computational linguistics, by 
contrast, makes a clear distinction between grammars and 
the parsers which use grammars, employing processes 
such as backtracking, decomposition/recomposition, and 
expectation, as we have seen. We believe that advances in 
the theory of musical structure will depend on similar 
clarity about data structures and explicit algorithms. It is 
our conjecture that in the case of deriving tree structures 
from musical scores, some kind of expectation-based 
parser, coupled with a look-ahead buffer, is most likely to 
be successful. 
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ABSTRACT

In this paper we present our solutions to the design chal-
lenges of facilitating awareness of actions and develop-
ment of self-identities within The notion of Participatory
Enacting Sonic Interaction (PESI) project. The PESI sys-
tem is a modular framework for participatory music mak-
ing with three performers. We present a brief technical
overview, design considerations and revisions resulting from
a user study conducted during the system’s development.
Through the development process of the PESI project a
design approach we term: Non-Behaviourally Restrictive
Digital Technology became apparent. In this approach,
the shifting focus that embodied agents have in relation to
the environment is accounted for and the development of
sound-action relationships are encouraged. This is achieved
through providing mappings relating to individual sensor
values and movement information from motion tracking
data. Our approach to the implementation of the PESI sys-
tem can shift the collaborative music activity to a more en-
gaging and active experience.

1. INTRODUCTION

Designing systems in which social interaction is the pri-
mary focus is challenging as it requires consideration of
additional factors along side the social interaction. An
awareness and understanding of the evolving nature of the
performer-instrument relationship within specific contexts
and cultures is needed to inform how these relationships
may be facilitated through the technology. The idea of per-
formance ecosystems helps to address these design chal-
lenges by emphasising how social factors effect and fa-
cilitate changes in the function of technology and music.
Through the consideration of performance ecosystems, we
highlight the importance of usage in technology which al-
lows for the blurring of phenomenological and epistemic
distinctions between acoustic and digital technology [1,2].
In blurring these traditionally held distinctions, we are able
to focus directly on investigating the ideas of social inter-
action in collaborative music. Through investigating these
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ideas, we have implemented our own system that is capable
of supporting collaborative and creative activities in group
music practices.

This paper presents our design approach to The notion of
Participatory Enacting Sonic Interaction (PESI) project, a
modular framework for participative music making with
three performers. The project incorporates new generation
mobile phones and group motion tracking technology to
create an environment in which performers’ individual and
social actions contribute to and affect the sonic output. We
have briefly presented previous versions of the PESI sys-
tem in [3–5]. The system has been developed on the iOS
platform along with the use of the Microsoft Kinect Sys-
tem. Mobile phones enable individual action within the
system and the Kinect system tracks participants, enabling
augmentation of the social space within the system. The
result is that the PESI system can facilitate group music
practices that exploit social action in combination with the
use of everyday devices for allowing musical action.

Compared to other approaches based upon analysis of so-
cial behaviours within musical practice, such as [6] and the
EU-ICT SIEMPRE project, 1 the PESI project instead has
focused on facilitating social action through technology
within a musical context. As such, the design challenges
of the PESI system relate to the ideas of awareness and
mutual engagement within Human Computer Interaction
(HCI). Finding solutions to these challenges has guided the
design and development process, and in doing so, we have
identified a design approach which we call: behaviourally
non-restrictive digital technology.

This paper begins with an overview of related work on the
performance ecosystem approach. Section 3 presents the
design challenges and section 4 provides an technical and
design overview of the PESI system. Section 5 outlines
our idea of behaviourally non-restrictive digital technol-
ogy, which is discussed in section 6, where the approach is
compared with the work described in section 2. The paper
is concluded in section 7.

2. RELATED WORK

2.1 Ecological Perspectives Towards Music

The ecological perspective has been used within the design
and implementation of interactive digital music systems as

1 http://siempre.infomus.org/
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a way to contextualise and investigate relationships that de-
velop when using these systems [7–11]. One approach,
which has been given notable attention, is that of perfor-
mance ecosystems. Based on ideas suggested by Simon
Waters [12], a performance ecosystem is a tool to under-
stand current musical activity. The central idea is that “un-
derstanding music making as a complex dynamic system
puts it in terms of the process of creation, but also its con-
solidation into culture specifically as a social practice em-
bodying behaviours, beliefs and actions” [12]. Here music
making is seen as an activity that produces artefacts as well
as being part of social practice.

Two projects that embrace the performance ecosystem
perspective are the Audible Eco-Systemic Interface (AESI)
project [7] and in ‘Infra-instruments’ [8]. Within both these
projects the notion and design practices of interaction within
interactive systems are questioned. The AESI project ques-
tions the performers’ role in interactive systems. In many
interactive systems the performer is the person providing
external conditions that the dynamic behaviour of a system
is driven by. The system is depended on the performer.
Within the AESI project the need for a performer is re-
moved. The relationship of performer, instrument and en-
vironment is reduced to only being between the instrument
and the environment. This is accomplished through a feed-
back loop in which the system generates the controls from
analysis of its ambient surroundings.

Similarly, the Infra-instruments project draws compar-
isons to and diverges from the approaches used within the
development of ‘hyper’ and ‘meta’ instruments. Hyper and
meta instruments are approaches that extend traditional in-
struments’ interactive capabilities, expressive nature and
virtuosity through the addition of sensors. Instead of ex-
tending the instrument, Bowers and Archer see value in
simplifying and limiting the interaction. Their approach
creates a space within the performance setting for the ad-
ditional capabilities of computers [8].

The ecological perspective has also been taken by [9–
11] to investigate the relationships between performers and
spectators of interactive digital music system performances.
Their research has highlighted considerations within the
design of digital musical instruments (DMIs) to improve
spectator experience within these performances. The im-
provement of experiences with DMIs and music technol-
ogy is also a concern within the area of embodied music
cognition and mediation [13]. Whilst not explicitly draw-
ing upon ecological ideas, the focus is upon how we in-
teract with music. The ideas developed within the field of
embodied music cognition have been used to inform the
development of an interface exploring musical experience
and creativity [14]. The Musical Paint Machine extends
the performance space of a player so that the sonic output
of the instrument is visually represented. In this way, addi-
tional feedback modalities are introduced to the player as
a method of stimulating creativity.

2.2 Blurring Distinctions Between Instruments

The works presented have followed Waters’ main ideas on
performance ecosystems; however, work by Green has ex-

tended these ideas further towards musical creation. Green
emphasises the influence that social factors have in the use
of technology and musical practice. When players and
instruments are situated within a social world ‘the cate-
gorical distinctions between the acoustic and the digital
dissipate somewhat, and that such differences in practice
are contingent upon the shifting intersections between the
technical and social’ [2]. Thus the influence that social
factors have on the usage of technology results in the dis-
tinctions 2 between acoustic and digital being blurred.

Accounting for relationships between the different parts
of a system, from a conceptual stand point, is one of the
main challenges in adopting an ecological perspective. In
adopting Greens contingency view on musical instruments
we can direct our own focus towards the consideration of
social factors and their influences on the design of inter-
active systems. In the following section we briefly address
these challenges in the PESI project by considering and ac-
counting for the performers’ relationship to the technology
and to each other within the design of the system.

3. DESIGN CHALLENGES

To account for forms of embodied interaction in the imple-
mentation of the PESI system we have investigated the de-
sign challenges surrounding the role of meaning in relation
to collaborative interactive systems. This has directed our
focus to concerns relating to intersubjectivity, and the de-
sign of technology that facilitates co-operative processes.

Intersubjectivity is the way in which two people can share
understanding of the world, or how meaning can be shared
between two people [15–17]. To establish and allow for
intersubjectivity within a collaborative system, users need
to be able to interpret and understand the action of oth-
ers. This is required for a communication flow to be es-
tablished, thus enabling collaboration within the activity.
Similarly participants need to be aware of what others are
doing or have done, also known as having public aware-
ness of actions [18]. Facilitating awareness in collaborative
systems is very important in allowing for multiple users to
interact with each other. This is emphasised by both the
fields of HCI [15] and Computer-Supported Collaborative
Work (CSCW) [18]. Awareness of actions is also an im-
portant design feature in facilitating mutual engagement,
allowing for a more socially engaging experience [19, 20].

Issues of awareness within areas of HCI and CSCW and
in research into mutual engagement in social music have
mainly focused on activities in which participants are not
co-located. Within the PESI system the participants are
co-located, to account for this we extended the ideas of
awareness and mutual engagement through considering the
experiences of individual users. We draw on ideas of opti-
mal experience, Flow [21], for this.

The exact conditions for achieving a Flow state are still
being investigated, however, a key component of obtain-
ing a Flow state within an activity is the maintenance of
ones own personal identity [21]. The importance of self-
identity within optimal experiences has prompted us to ex-

2 These are the phenomenological and epistemic distinctions between
acoustic and digital instrument technology [1]
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Figure 1. Three musicians using the PESI system in a free
form improvisation.

tend ideas of awareness and mutual engagement so that
users area able to retain the ability to develop and act through
their own self-identities within the system. This requires
enabling users to be identifiable as other identities within
the system, and that these identities can be influenced by
others, through a their own self identities [21]. It also re-
quires that each user be able to detach themselves, and their
actions, from the overall interactive system.

We believe that facilitating the building of identities aids
in, and strengthens, awareness within collaborative sys-
tems of co-located participants. Therefore, the design chal-
lenges of the PESI system are focusing on facilitating both
awareness of actions, and allowing users to create their
own identities within the system.

4. THE PESI SYSTEM

In the PESI system mobile devices run custom software
that allows for them to be used as musical instruments
that are usable within an improvised musical group perfor-
mance [4]. The relationship and interaction between the
performer and their mobile instrument is extended into the
physical and social space through the use of motion track-
ing software and group analysis.

4.1 Technical Justifications

From the start of the project, the PESI system was designed
with a modular structure. The modular structure aided in
development by allowing for rapid system reconfiguration
as well as the testing of ideas. This structure also makes
the system more accessible to others to modify or to ex-
tend for their own uses. In that concern, we used readily
available technology: Apple iPhones as the mobile phones,
Microsoft Kinect as the motion tracking system and Pure
Data 3 for the sound synthesis.

Including mobile phones allows us to emphasise the role
of social communication within the system as they repre-
sent communication within our society. iPhones also have
the additional benefit of being association with music prac-
tice. iDevices are largely connected with music listening
as well as music production through the ever increasing
number of musical applications available on the platform.

3 http://puredata.info/

They also contain the technology required by the PESI sys-
tem: sensor input feedback mechanisms, enriched com-
putational possibilities for sound processing and wireless
communication.

The decision to use the Microsoft Kinect system within
the PESI system was determined in a similar manner to
the iPhones. The Kinect system is a cultural object that is
primarily used within games that require whole body inter-
action. It allows us to emphasise the playful nature of the
system as well as being able to visual track and allow for
detailed evaluation of a group of people.

Pure data was the audio programming language of choice
for the PESI system’s sound synthesis. The primary rea-
son pure data was chosen over other audio programming
languages is due to its portability. The development of
Libpd 4 has made it possible to run Pure Data on many dif-
ferent platforms. Within the PESI system this meant that
the same sound synthesis patch can run on both iPhones
and Laptop Computer. It also sufficiently fulfils the sound
synthesis needs of the PESI system.

4.2 The Initial System and the Design Outcomes
Arising from it’s User Study

Development of the PESI system has gone through mul-
tiple iterations. Work began on a simple system in which
only mobile phone instruments were augmented with rela-
tional parameters generated from a Microsoft Kinect sys-
tem. Through a user test we were able to assess the effect
extending the controls into the social domain had on the
playability of the mobile phone instrument [3]. This re-
sulted in an extension of the system, to allow for further
ideas relating to development of the mobile phone instru-
ments to be explored and implemented.

Figure 2. A group of three participants taking part in first
user study of the PESI system.

The first user study used an initial simple system imple-
mentation and was primarily conducted to gain insight into
the effect socially control parameters had on the interac-
tion. 21 participants: 8 female and 13 male, aged 25-48
were involved in the study. Test participants were divided
into 7 groups of three players, each group participated in
a separate session (see Fig. 2). In each session we asked
the users to use the system in two scenarios. In the first

4 http://libpd.cc
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scenario there were no social parameters effecting the mo-
bile instruments, in the second scenario, a parameter cal-
culated from the average distance between group members
altered an amplitude distortion effect. The evaluation of
the user test included a quantitative survey and qualitative
interviews. We presented our findings in detail in [3].

In conducting this user study two design issues were high-
lighted. The first issue related to the average distance value
of the group, participants found it was very hard to perceive
and understand. Using the individual distance parameters
between participants was much more understandable. We
believe this is due to the fact that the interaction is obscured
when using an average distance parameter. The behaviour
is only revealed when the group synchronises, causing the
actions to not be publicly available when the group is not
synchronised. Thus, the difficulties in perception of the
distance parameter’s effect on the sound. We believe this
is due to a breakdown of awareness from the lack of public
availability of the actions relating to this parameter.

As an additional step we chose to reinforce and separate
the interaction controlled by social parameters and indi-
viduals. For this, we decided to have the mobile instru-
ments only controllable by the person playing it, and use
an extended system for socially controlled sound synthe-
sis. These became the on-body and in-space components
of the PESI system respectively (see section 4.3).

The second issue was a technical problem that arose due
to occlusion. Occlusion occurred when one or more par-
ticipants blocked the Kinect’s view of another participant
and resulted in the Kinect temporarily losing track of the
occluded participant.

The main problem that occlusion caused was technical.
Within our implementation of the final PESI system there
is a requirement to track the identities of performers. For
the initial user test we were able to mitigate the problem
that occlusion caused by removing the need to user IDs.
This was not possible with the final implementation as IDs
were required to ensure sonic cohesion between the on-
body and in-space components .

Each user is assigned a unique ID value by the Kinect
system, when the Kinect loses track of a user the ID is
unassigned. Once the user reappears a new ID is assigned
to that user. Thus, when occlusion occurred, a new ID is
assigned by the Kinect to the occluded performer caus-
ing the PESI system to miss match the sound synthesis
between the on-body and in-space components causing a
breakdown in sonic cohesion. This further compounds the
problems of awareness, particularly relating to self-identify
within the system.

The issues relating to occlusion and social mapping that
arose from the user study indicated that the system had not
provided solutions to the design challenges mentioned in
section 3, particularly those relating to awareness. How-
ever, in revealing these problems potential solutions were
also presented, for example: not using average distance
mappings and developing methods to prevent or at least re-
duce occlusion. These solutions where implemented when
refining and continuing the development of the system,
which we assessed in a second user study (see section 4.3.3).

Figure 3. PESI extended system module diagram.

4.3 Design Report

The current system has two main parts: on-body and in-
space components (see Fig. 3) [4, 5].

4.3.1 The on-body Component

The on-body component consists of a custom native iOS
application built with Objective-C and using Libpd, de-
signed to run on iPhones. This component also includes
portable speakers that are directly connected to the mo-
bile phones. Running the sound synthesis on the mobile
phone allowed for the co-location of the performer’s ac-
tion and sonic results, reinforcing the embodiment of the
interaction. Accelerometer, gyroscope and touch data are
retrieved from the sensors in the mobile phone. This data
is used to generate the parameters for the sound synthesis
modules.

The design of the mobile instruments were based upon
participants’ comments from the initial systems’ user test.
The performers have a choice between three different sound
modules. Only one module can be played at a time, how-
ever, it is possible to switch between each module when
playing the mobile phone instrument. Each module has its
own sonic characteristics, associated colour and a ‘tuning’
system that lets users alter static parameters within the in-
strument for further customisation.

The first instrument Green switches between pulse-width
modulation (PWM) or wave shaping of a square wave de-
pending on the orientation of the device. The tuning sys-
tem allows for manipulation of two constant square waves
with PWM. Tilt controls frequency and touch controls tim-
bre. The second, Red, and third, Blue, instruments are
based upon a granular synth. Tilting the X axis accelerom-
eter controls the grain playback in both, however, in the
Red instrument tilting the Y axis accelerometer changes
the grain size. The Y axis on the touch screen allows for
the playback pitch of the Blue instrument to be controlled.
The tuning system in both allows for changing default set-
tings within the granular synth in each instrument. For de-
tailed technical descriptions of each instrument see [5].

4.3.2 The in-space Component

The idea behind the in-space component was to use a gen-
erated layer of sound, related but, external to the perform-
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Figure 4. Point-cloud image generated by two Kinect sen-
sor bars showing the motion tracking of three performers.

ers individual mobile instruments. Through this layer the
social interactions within the system are represented and
manifest as sounds.

The in-space component is based around a central con-
trol module that receives sensor information from a multi-
user motion tracking system as well as from each mobile
phone. This information is used to control the sound syn-
thesis of the in-space component. The multi-user motion
tracking system has been built with two kinect sensor bars
(see Fig. 4), the OpenNI 5 library with Processing 6 and
openFrameworks. 7 Multiple Kinects were used as sin-
gle Kinect solutions to occlusion proved unreliable, two
Kinects provided a robust solution to the ID switching by
dramatically reducing occlusion within the system.

This system continuously tracks the spatial positions of
three performers. From their positional information, rel-
ative distances between performers, velocity, acceleration
and alignment are calculated. Sensor data from the mo-
tion tracking system and each mobile phones is sent to the
central control module via Open Sound Control (OSC). 8

A robust network module was developed that managed the
connections between each component in the system. This
module allows the central control unit to re-establish con-
nections, sort sensor information and track the devices that
the information was sent from.

The sensor data from the mobile phones is used to gen-
erate identical copies of the sounds being played by the
performers within the in-space component. These sounds
are then processed with a granular synth, controlled by so-
cially generated parameters and played back over a multi-
channel speaker ring that surrounds the performers. The
processed sounds are associated to the instrument they have
been produced from, thus are unique to each individual
performer, to further reinforce the idea of self-identity.

The granular synthesis is mapped as follows (from the
perspective of a performer using the system): the grain
size and density vary depending on the distance to one
performer and the frequency range of the playback scales
exponentially depending on the distance to the second per-
former. The speed of an individuals movement within the
space controls the amplitude of the synth. For further tech-
nical details see [5].

5 http://openni.org/
6 http://processing.org/
7 http://www.openframeworks.cc/
8 http://opensoundcontrol.org/

4.3.3 A User Study of the Current System

We invited three skilled-musicians for a user test jam ses-
sion with the current PESI system (see Fig. 5). Similar to
the previous user test, the evaluation was based on survey
and interview analysis. Detailed findings from this user
study were presented in [5]. In summary, musicians com-
ments and feedback were positive regarding the on-body
and in-space component; especially for the sound charac-
teristics and the responsiveness of each module. This was
supported with the following comments directly quoted
from participants:

” ...pretty impressive... I liked the idea of
the extended system. It gives a nice ambient
and supporting feeling that you have sound
around you....”

”.... I have been using sensor based in-
struments more with traditional music and tonal
structures . It would actually be very interest-
ing to implement this system for a traditional
kind of music that you could improvise with.
The system is actually quite interactive and
the instrument is very good. You can do all
kinds of stuff with small gestures. This system
could be open to all kinds of directions.... ”

Figure 5. Skilled musicians performing with the current
version of the PESI system in the user test jam session.

5. BEHAVIOURALLY NON-RESTRICTIVE
DIGITAL TECHNOLOGY

In solving the design issues which occurred in the various
stages of the PESI system’s development, an idea arose,
which we term: Behaviourally Non-Restrictive Digital Tech-
nology (BNDT). For the in-space component of the PESI
system to operate, performers are not required to direct or
focus their attention towards it or make explicit changes to
their behaviour. Yet similarly users are able to act through
the in-space component when their attention is directed to-
wards it. When attention is directed towards this compo-
nent, it is able to reveal itself to participants, in relation
to theirs as well as other users’ actions, allowing them to

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

372

http://openni.org/
http://processing.org/
http://www.openframeworks.cc/
http://opensoundcontrol.org/


determine how they wish to deal with it. This can be leav-
ing the system in ones peripheral perceptions or developing
couplings with it.

We see the approach of BNDT as a method of accounting
for the differing modes of use and shifting of focus that oc-
curs between embodied agents and the environment [15].
The shifting of focus can also be related to the ideas of
identity creation, discussed in section 3, as the design of
the system allows for the detachment of the user from the
system. In allowing for detachment and coupling, users
are able to reconfigure their focus and understanding of
the system - which we believe aids in the development of
identities within the system.

However, accounting for differing modes is only one part
of our idea of BNDT. Actions are still an important part
of our investigation into design solutions surrounding the
ideas of intersubjectivity and awareness within collabora-
tive digital music systems.

5.1 Being Social in the World

Actions themselves are not a kind of act, they are instead
properties of individuals at times [22], and are grounded
in our movements. We effect objects around us by mov-
ing our bodies and we are able to produce different move-
ments to fit a large range of circumstances. The effect these
movements will have is also generally understood, as the
results of movements are dependent upon the context and
situation in which they occur [22].

An important idea relating to the understanding of actions
within the context in which they arise from, is the notion
of accountability. The notion of accountability is a fun-
damental feature of the ethnomethodological perspective,
and is concerned with what is available to members as sit-
uated practice. Members being those who have common
sense understandings relating to the situation [15]. In par-
ticular, situated practice is the context in which the action
arises and thus can be part of the means by which action
can be interpreted. Therefore, actions relating to situated
practice are understood as normal, rational action by mem-
bers. The availability of these actions depends on them be-
ing able to be observed by members and reported upon:
observable-and-reportable [15].

The methods of understanding an action are also the meth-
ods for engagement with it. As such being competent with
an action requires that it is engaged in ways that are recog-
nised by members. Therefore, an action is needed to be
organised in such a way that it is understood as being ra-
tional within the context it has emerged from. In the case
of the PESI project, the focus was on the sound and action
relationships that occur in the context of music.

5.2 Musical Gestures

The relationship between sound and action is being inves-
tigated within the field of musical gesture, which focuses
on classifying musically related actions. Within this field
actions are separated into two categories: sound-producing
and sound-accompanying. [23]

Sound-producing actions are the actions used in the pro-
cess of making sound. Godøy et al. [23] make a distinc-

tion between excitation action - which triggers the sound,
and modulation action - which modifies the sound. Sound-
accompanying actions are the other types of actions which
are performed along to sound/music, but are not part of its
production; for example playing air guitar or tracing the
dynamics of the music. Sound-accompanying actions nor-
mally have a readily observable sound matching feature to
them [23]. Within the PESI system we have primarily con-
cerning ourselves with sound-producing gestures. How-
ever, we also accept the need to be aware of all musically
related action that may arise within the PESI system.

One of the main aesthetic considerations we had in re-
lation to the system was that it would not be using tradi-
tional acoustic instrument sounds. The sounds being used
would be synthesised to create new sounds, to be interacted
with and used within a musical context. Therefore, we en-
countered the problem of there being no established sound-
action relationships for the sounds being synthesised with
the PESI system. This required the design of new sound-
action relationships for the PESI system.

We see sound-action relationships as inherently cultural.
Associations of gestures that relate to the production of
specific sounds are developed through the combination of
cultural practice and physical constraints of the musical in-
strument [13]. This adds an additional level of complexity
if we were to design new sound-action relationships. In-
stead we have continued to follow our idea of BNDT and
decided to not predefine any sound-action, or musical ges-
tures within the system. Instead we have used movement
mappings to sound parameters.

5.3 No-predefined Gestures

We facilitate action through allowing movements to have
an effect within the system. Performers can develop their
own actions through the movements that the system can
track. By combining motion tracking information with
sensor data from mobile phones it is possible for many
movements - both individual (through moving the mobile
device) and social (through movement in space) to be used
to generate sound responses. Actions can then arise in re-
sponse to the sounds, caused through individual and social
movements, and through this, gestures are able to be devel-
oped by performers within the system. We believe that this
is possible when the resulting actions are made publicly
available, allowing for all actions to be interpreted and ac-
counted within the interaction.

In having no-predefined gestures, the idea of BNDT is
further enforced, and the interaction is able to become fully
situated, aiding in the potential for adoption into practice.
As a further result of our approach we see the possibility
to investigate formations of musical gestures from move-
ment within a controlled and traceable environment. Our
research interest lies in a similar direction to [24] in that it
does not to look for stated understanding of gesture, but to
understand how movements are actually employed in the
interfaces that researchers have built.
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6. DISCUSSIONS

When we compare the PESI system to the work discussed
in section 2, we can highlight many common themes. Com-
paring to the work of Di Scipio [7] and the AESI system,
both the PESI system and the AESI system have a focus on
the performer and their role within the system. However,
unlike the AESI system which questions if the performer
is even needed, we take the opposite approach in which the
performer’s role is strengthened becoming an integral part
of the PESI system.

Our approach to having no-predefined gestures could be
seen as following Bowers and Archer’s [8] ideas relating
to infra-instruments. In only focusing on movements our
overall mapping strategies have been reduced and some-
what restricted - like those of infra-instruments. We have
also allowed for greater flexibility within the social prac-
tices of the PESI system, as well as providing space for the
technology and computing that enables and enhances the
musical activity.

Comparing the work of the PESI project to that of Gure-
vich and Trevino, Gurevich and Cavan Fyans and Cavan
Fyans et al. [9–11] and their work directed towards spec-
tator experience, we can see benefit in having actions pub-
licly available. However, we can foresee a potential chal-
lenge faced by spectators of the PESI system. This is due
to actions being created within the use of the PESI system.
Those who are not a part of the improvised practice may
struggle from a spectators stand point to grasp or under-
stand the actions within the system, as they would not be
members of the practice. This is a side-effect for primarily
focusing on facilitating improvised musical practice and
not on performances that feature spectators.

The musical paint machine takes the biggest depart from
the ideas we have been using with the PESI system. This
is because it has been designed to investigate musical prac-
tice, musical gesture, Flow and stimulation of creativity
[14]. Here, an element that has not been part of our de-
signs within the PESI system has been used: the addition
of multi-modal feedback. Within the PESI system we have
only focused on sonic feedback; however, the sonic feed-
back within the PESI system also provides information on
social actions of the group, not just on each individuals
personal action. We do see some parallels to the idea of
behaviourally non-restrictive digital technology within the
musical paint machine project. When using the musical
paint machine one can chose their focus between the in-
strument and the feedback provided by the musical paint
machine. This is similar to the PESI system, however, per-
formers can chose between the social, personal or neither
to direct their focus.

We acknowledge that there has been little discussion sur-
rounding the sounds and music the system creates. Music
itself is an aesthetic form and throughout the design of the
system we have drawn upon our own aesthetic preferences
to drive the development of the sound synthesis within the
system. In theory, we see, our approaches implying a gen-
erality in assigning sound mappings to the interaction as
the suitably of such mappings is determined through the
emergent action-meaning relationship that, we believe, we

have facilitated within the PESI system. The effect this has
on aesthetic preferences within a social context requires
further exploration and experimentation.

7. CONCLUSIONS

In this paper we presented our solutions to the design chal-
lenges that were faced within the development of the PESI
extended system. In viewing the technology and practices
that relate to music from an ecological perspective, the re-
lationships between performers themselves and their in-
struments became our focus. Drawing upon work within
the fields of HCI, CSCW and research into Flow the need
to account for awareness and creation of identities were
identified as key considerations when designing the PESI
system.

Two evaluations were carried out at different stages in
the PESI systems development. It was identified within
the first evaluation that relational parameters between all
three group members were not as perceivable. We hypoth-
esise this was due to the actions of an individual no longer
being publicly available due to the other group members
obscuring a single members contribution. Within the de-
velopment of the in-space component these considerations
where accounted for and solutions were implemented. Re-
lational parameters were relational between each group mem-
ber but never related to the whole group. This was done to
allow for better public availability of actions as well as to
enable a stronger development of self-identity within the
system. The results from the second evaluation support
our design choices.

Through the development of the PESI system we devel-
oped an idea of non-behaviourally restrictive digital tech-
nology. Within this approach, the shifting focus that em-
bodied agents have in relation to the environment is ac-
counted for, and sound-action relationships are encouraged
to be developed through providing mappings relating to
individual sensor values and movement information from
motion tracking data. Through the situatedness of the per-
former and instrument, we believe that musical gestures
will arise that could not have been anticipated within the
design of the system due to the influence social factors
have on the usage of the mobile instruments. When dis-
cussing these ideas in relation to the related works dis-
cussed within section 2 the ideas we have developed can
be see within many of these projects.

The contextualisation of sounds within social settings is
still an open question within the PESI system and within
collaborative digital music systems. Further investigation
into the idea of behaviourally non-restrictive digital tech-
nology is also required, not only within the design of digi-
tal music systems, but in a wider context of digital technol-
ogy. Both these points are to be considered within further
work on the PESI system which will be moving to focus
upon long-term movement behaviour between performers.
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ABSTRACT

Score followers often use spectral templates for notes and
chords to estimate the similarity between positions in the
score and the incoming audio stream. Here, we propose
two methods on different modelling levels to improve the
quality of these templates, and subsequently the quality of
the alignment.

The first method focuses on creating more informed tem-
plates for individual notes. This is achieved by estimat-
ing the template based on synthesised sounds rather than
generic Gaussian mixtures, as used in current state-of-the-
art systems.

The second method introduces an advanced approach to
aggregate individual note templates into spectral templates
representing a specific score position. In contrast to score
chordification, the common procedure used by score fol-
lowers to deal with polyphonic scores, we use weighting
functions to weight notes, observing their temporal rela-
tionships.

We evaluate both methods against a dataset of classical
piano music to show their positive impact on the alignment
quality.

1. INTRODUCTION

Score following, in particular its application for automatic
accompaniment, is one of the oldest research topics in the
field of computational music analysis. First approaches
[1,2] worked with symbolic performance data, and applied
adapted string matching techniques to the problem. With
the availability of sufficient computational power, the fo-
cus switched to directly processing sampled audio streams,
widening the possible application areas. Systems for track-
ing monophonic instruments [3], especially singing voice
[4–7] and finally polyphonic instruments [8–12] have
emerged. Their common main task is, given a musical
score and a (live) signal of a performance of this score,
to align the signal with the score, i.e. to compute the per-
formers’ current position in the score.

The tonal content is the most important source to deter-
mine the current score position, an obvious commonality
of most score following systems. One of the central prob-
lems a music tracker needs to address is thus how to create

Copyright: c©2013 Filip Korzeniowski et al. This is
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the connection between the tonal content extracted from
the audio and what is expected according to the score. This
task can be divided into three parts: computing features
on the incoming signal to estimate the tonal content; mod-
elling the score and expected tonal content for every score
position; defining the likelihood of the signal for a score
position, usually by employing a similarity measure be-
tween expected and actual tonal content.

First-generation score following systems for audio sig-
nals focused on tracking monophonic instruments. In this
cases the score is simply a sequential list of pitches, which
can be easily transferred into formal frameworks like Hid-
den Markov Models. Since robust and accurate pitch track-
ing methods exist for monophonic audio, the feature ex-
traction yields exact pitch information for the incoming
audio stream. The expected pitch for a score position is
given directly by the score model, and the likelihood is
defined by a Gaussian distribution to take the performer’s
expressiveness (e.g. vibrato) into account.

Score followers for polyphonic audio introduce another
level of complexity. On the one hand, polyphonic scores no
longer resemble linear sequences of pitches. On the other
hand, real-time music transcription for polyphonic audio
signals is far from solved. Hence, score following systems
usually utilise features other than the extracted pitch con-
tent, less precise but easier to compute.

A prominent method for estimating the similarity between
score and audio signal is to create spectral templates for
score positions and use a distance measure to compare the
template to the signal’s spectrum, as done in [13,14]. While
most systems use generic templates to model the expected
tonal content (features) according to the score, in this pa-
per we propose modelling techniques which incorporate
instrument-specific properties to improve the alignment
quality. One concerns the spectral modelling of individ-
ual notes, the other one the composition of these into com-
bined templates representing polyphonic score positions.
We evaluate both methods on a set of classical piano record-
ings.

The remainder of this paper is organised as follows: Sec-
tion 2 describes our proposed methods and compares them
to the current state of the art. Our experiments are de-
scribed in Section 3. Finally, we present and discuss the
results in Section 4.

2. SPECTRAL TEMPLATES

In general, methods to model the expected tonal content
of a score heavily depend on the design of the feature ex-
tractor, i.e. on how information regarding the tonal content
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is computed from the incoming audio stream. Usually the
signal’s magnitude spectrum or related representations like
chroma vectors or semitone spectra are used. Here, we as-
sume that the magnitude spectrum is used directly as an es-
timator for the actual tonal content. However, the methods
presented here can easily be adapted to any other represen-
tation.

We assume that the signal’s spectrum is computed us-
ing the short-time Fourier transform (STFT) with a win-
dow size of Nwin. Using the STFT we can compute the
magnitude spectrum Y for frame t, resulting in a vector
Yt = (y1, . . . , yNb

), whereNb = Nwin/2 is the number of
frequency bins. Each value yn contains the magnitude of
the nth frequency bin of the spectrum of frame t. We de-
note as F = (f1, . . . , fNb

) the centre frequencies of each
frequency bin of the spectrum.

The score is available in a symbolic representation, e.g.
as MIDI file. Let G be the set of all score notes, then for
all g ∈ G we have the start position sg and end position
eg in beats, and the note’s fundamental frequency f0(g) in
Hz.

We differentiate two levels of spectral templates: “note
templates” are spectral templates for individual notes, de-
nominated formally by φ; “score templates” represent spec-
tral templates on the score level, including all sounding
notes at a specific score position, and are denoted as Φ.

Having clarified the nomenclature, the next section de-
scribes our method to create spectral templates for individ-
ual notes.

2.1 Note Templates

Spectral templates for individual notes are the basic build-
ing blocks of spectral score models in most state-of-the-
art score followers. Usually, these templates are generated
using Gaussian mixtures in the frequency domain, where
each Gaussian represents the fundamental frequency or a
harmonic of a tone, as introduced by [15]. Similar meth-
ods are also used in [13] and [14], as these generic models
have proven to work well in practice, and to some degree
generalise over instrumental configurations.

However, it is reasonable to assume that adjusting the
templates to the sonic characteristics of the currently
tracked performance should improve the alignment. At-
tempts have been made to adapt basic templates on the
fly using latent harmonic allocation in [11], however the
method’s complexity makes it currently unusable in real-
time settings, as [11] reports computation times of about
10 seconds for one second of audio.

If we assume that the instrumentation of a performance
is known beforehand (e.g. defined by the score), we could
create instrument-specific models in advance. The authors
of [16] introduced an improved method to compute
chromagram-like representations of both score and audio
by learning transformation matrices based on a diverse mu-
sical dataset. Given that their method could be extended to
the spectral representation used in this paper, feeding their
system with training data containing solely specific instru-
ments could result in templates specialised for this instru-
ment. In [9], templates are learned using non-negative ma-

trix factorisation on a database of instrument sounds, an
idea similar to what we propose in this paper. However,
no comparison to the generic Gaussian mixture approach
is given, and the method was dropped in subsequent publi-
cations of the author.

Here, we present two methods for modelling the spectral
content of a note. The first one, which represents the stan-
dard approach inspired by the work of [15], is presented
in the following section. The second one constitutes our
proposed method, in which we try to incorporate charac-
teristics of the tracked instrument. It is described in Sec-
tion 2.1.2.

2.1.1 Gaussian Mixture Spectral Model

The first template modelling technique we present resem-
bles the state-of-the-art methods used in most score follow-
ing systems. Assuming a perfectly harmonic sound created
by the instrument, we use Eq. 1 to create a spectral tem-
plate for a note g ∈ G:

φ̂gGMM (f) =

Nh∑
i=1

√
i−1N

(
f ; i · fg0 , (σφ · siφ)2

)
, (1)

where Nh is the number of modelled harmonics,
N (f ;µ, σ2) is the probability density at f of the Gaussian
distribution with mean µ and variance σ2, fg0 is the funda-
mental frequency of note g, σφ is the standard deviation of
the Gaussian representing the fundamental frequency, and
sφ is the spreading factor, defining how the variance of the
components increases for each harmonic. For the experi-
mental evaluation, we empirically chose the parameters to
be Nh = 5, σφ = 5, sφ = 1.1.

We then need to discretise the continuous model φ̂gGMM

to compare it to the actual tonal content of the signal. As
written above, we use the magnitude spectrum to represent
the audio’s tonal content, which gives us the magnitudes
for discrete frequency bins. Therefore, we discretise the
model at the frequency bin centres in F , resulting in a vec-
tor

φgGMM = (z1, . . . , zNb
), and (2)

zi = φ̂gGMM (fi), 1 ≤ i ≤ Nb,

where fi is the ith element of F , thus the centre frequency
of the ith frequency bin, andNb is the number of frequency
bins. Figures 1a and 1b show examples of this model.

2.1.2 Synthesised Spectral Model

As stated above, the Gaussian mixture note model shown
in Section 2.1.1 is a generic approximation of how the
magnitude spectrum looks like when a note is played. How-
ever, harmonic structures strongly vary depending on the
instrument, instrument model, individual pitch and play-
ing dynamics. Adapting generic templates on-line to the
current sound texture is possible, as shown in [11], but
currently computationally unfeasible for real-time applica-
tions.

We try to reach a compromise by leaving out the costly
on-line adaption, and instead learning initial models which
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are already adjusted to the instrument they are represent-
ing. Similar ideas have already been described in the field
of polyphonic music transcription [17], and as stated above,
also for score following [9]. While in these papers the tem-
plates are learned using non-negative matrix factorisation,
we apply a simpler and more direct method to derive those.
Furthermore, we provide a quantitative analysis on the ef-
fect of using informed templates compared to the generic
templates based on Gaussian mixtures, which was missing
so far in the context of score following.

To create the spectral note templates we utilise a soft-
ware synthesizer 1 to generate short sounds for each MIDI-
representable note. These sounds are then analysed using
the STFT with the same parameters as used for estimat-
ing the tonal content of the performance audio. Finally, for
each note g we average its spectrogram over time, resulting
in a vector of the same form as in Eq. 2:

φgS = (z1, . . . , zNb
) . (3)

Here, zi stands for the mean of the ith frequency bin in the
magnitude spectrogram of the training sound.

Clearly, this still is a very rough approximation, since the
harmonic structure of a played note is all but invariant in
time. Additionally, the dynamics have a considerable im-
pact on the harmonics for certain instruments. However,
as we will show experimentally, it seems to resemble the
true magnitude spectrum generated by a specific instru-
ment better than the unadapted manually designed model
based on Gaussian mixtures, at least for instruments where
the aforementioned problems have a lower impact, like the
piano. Still, there’s space for further improvements in fu-
ture work. Figures 1c and 1d show exemplary synthesised
spectral templates.

Figure 1 reveals considerable differences between tem-
plates generated by the two methods outlined before, espe-
cially regarding the number of harmonics and the harmonic
structure. The shown examples resemble the general trends
we saw examining a larger set of templates. For lower
notes, the synthesised templates contain more harmonics
than their GMM counterparts. The number of harmonics
is comparable for higher notes, however their structure dif-
fers notably. As preliminary experiments showed, simply
increasing the number of harmonics for the GMM tem-
plates did not improve the alignment quality of our score
follower. On the contrary, we chose to model 5 harmonics
due to these preliminary experiments - using more harmon-
ics degraded the results.

Having discussed methods for creating spectral templates
for individual notes, the following section elaborates on
how to combine those to obtain templates representing the
expected spectral content at polyphonic score positions.

2.2 Score Templates

Score models for monophonic scores can easily be repre-
sented as sequences of consecutive pitches. This facilitates
the usage of established formal frameworks like Hidden

1 specifically, we use the commonly available TiMidity++ software
with its standard sound font

0 1000 2000 3000 4000
Hz

(a) C4 GMM template

0 1000 2000 3000 4000
Hz

(b) C3 GMM template

0 1000 2000 3000 4000
Hz

(c) C4 synthesised template

0 1000 2000 3000 4000
Hz

(d) C3 synthesised template

Figure 1. Spectral templates for two different notes. The
left column shows the template for middle C, while the
right column the C one octave lower. The upper row,
shown in red, are templates computed by the GMM ap-
proach, the lower row, in blue, depicts the synthesised tem-
plates. As our evaluation database consists of piano music,
we used piano sounds for the synthesised templates.

Markov Models for score following. However, polyphonic
scores in general no longer resemble linear sequences of
notes. Hence, for polyphonic score following so-called
chordification is generally applied to transform polyphonic
scores into a series of concurrently sounding sets of notes,
called concurrencies. The score can then be seen as a se-
quential list of concurrencies, and the well-known meth-
ods used for monophonic instrument tracking can be ap-
plied directly on the problem. Figure 2 shows an example
chordification of a short snippet of piano music.
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(b) Chordified

Figure 2. Original and chordified version of the 11th bar
of Mozart’s Sonata in B (KV 333)

From a musical point of view, reducing polyphonic scores
to their concurrencies seems unnatural. The information
on how long a note is sounding, and hence how prominent
it appears to a listener, is lost. In Figure 2, the F4 in the
inner voice of the right hand is an exemplary case for this
issue: a single note is separated into five.

We believe this approximation is superfluous and present
a method to avoid it. The method itself is not necessarily
tied to our system, where we use a continuous state space
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for the score position, but can be adapted for approaches
with an explicit state space discretisation, like HMMs. We
introduce a “weighting function” for each score note g ∈
G, which is inspired by the common “Attack-Decay-
Sustain-Release” (ADSR) amplitude envelopes used in
sound synthesisers to model the volume dynamics of gen-
erated sounds (see Figure 3). The attack phase defines how
fast the tone reaches the initial maximal volume. The de-
cay phase defines how the tone’s volume decreases until it
finally reaches the volume of the sustain phase. The release
phase models how the volume dies away after the musician
has stopped playing the note.

attack decay sustain release

Amax

Asus

Figure 3. A generic linear ADSR (Attack-Decay-Sustain-
Release) envelope.

Different instruments can be characterised using differ-
ent ADSR envelopes, and thus different weighting func-
tions. Our main focus is the tracking of classical piano
music, hence we defined a weighting function designed to
resemble piano sounds. We ignore the attack phase, and
assume the volume reaches its maximum instantly. The
volume then decays following an exponential function un-
til it reaches a level defined by the sustain phase. The re-
lease follows as a rapid linear decrease of volume. Fig-
ure 4 shows the weighting function for an exemplary note,
according to our method.

More formally, given a score position x in beats and play-
ing tempo v in beats per second, we compute the mixing
weight of each note g as

ψ(x, v, g) = ψds(x, v, g) · ψr(x, v, g). (4)

Effectively, we split the function into two parts: the funda-
mental weight defined by the decay and sustain phase ψds,
and the cut-off specified by the release phase, ψr. Both
depend on the time passed after the performer moved past
the note start or note end respectively. Note that the actual
time difference rather than difference in position between
note start/end and the performer’s current score position
is taken into account, since this is what the note’s volume
depends on. We thus define the time difference between
note start and score position as ∆s and note end and score
position as ∆e:

∆s(x, v, g) =
x− sg
v

and (5)

∆e(x, v, g) =
x− eg
v

, (6)

where sg is the note’s starting position and eg the note’s
ending position in beats. For convenience, we will write

∆s and ∆e for ∆s(x, v, g) and ∆e(x, v, g) respectively.
The decay/sustain-weight ψds can then be written as

ψds(x, v, g) =

{
0 if ∆s < 0

max
(
λ∆s , η

)
else

, (7)

where λ = 0.1 is the decay parameter and η = 0.1 is the
sustain weight. Figure 4a shows the decay/sustain portion
of the weighting function. Finally, we define the release
cut-off:

ψr(x, v, g) =

{
1 if ∆e < 0

max
(
1− β ·∆e, 0

)
else

, (8)

where β = 20 is the release rate. This part of the weighting
function is shown in Figure 4b.

0 1 2 3 4

time [s]

−1.0

−0.5

0.0

0.5

1.0
onset release

(a) Decay/sustain envelope ψds(x, v, g) as defined in Eq. 7
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time [s]

−1.0

−0.5

0.0

0.5

1.0
onset release

(b) Release cutoff ψr(x, v, g) as defined in Eq. 8
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0.0
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onset release

(c) Weighting function ψ(x, v, g) as defined in Eq. 4

Figure 4. Example of a weighting function as defined by
Eq. 4: (a) shows the decay/sustain part, (b) the release cut-
off, and (c) the combination of the two. The backgrounds
show the waveform of a recorded piano note.

Now, to compute the spectral template for score position
x at tempo v we just have to compute a weighted sum over
all note note templates:

Φ(x, v) =
1

Z(x, v)

∑
g∈G

ψ(x, v, g) · φ(g), (9)

Z(x, v) =
∑
g∈G

ψ(x, v, g)
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ID Composer Piece # Perf. Eval. Type

CE Chopin Etude Op. 10 No. 3 (excerpt until bar 20) 22 Match
CB Chopin Ballade Op. 38 No. 1 (excerpt until bar 45) 22 Match
MS Mozart 1st Mov. of Sonatas KV279, KV280, KV281, KV282, KV283,

KV284, KV330, KV331, KV332, KV333, KV457, KV475,
KV533

1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Man. Annotations

Table 1. Performances used during evaluation

where φ is either φGMM or φS , depending on which type
of spectral models are used for individual notes (see sec-
tions 2.1.1 and 2.1.2).

As mentioned above, the weighting function we defined
in Eq. 4 is especially designed to reflect the volume enve-
lope of recorded piano notes, which is depicted in Figure 4.
It is conceivable to define individual weighting functions
for different instruments, determined by their particular
sonic characteristics. While instruments with percussive
onsets can be naturally modelled using this technique, it is
difficult to define a static envelope for instruments which
allow the performer to continuously control the volume,
like brass or strings.

The proposed method can be seen as a generalisation of
the standard chordification approach. We can use a specif-
ically designed weighting function to simulate the chordi-
fication process: If we define ψ in a way that it returns
1 between the note start and end positions, and 0 every-
where else, the resulting score template corresponds to the
one yielded when chordification is applied. This generic
weighting function is a natural fall-back option when it is
difficult to define a specialised function for an instrument.

3. EXPERIMENTS

We evaluated the methods outlined above using our score
following system to track a variety of classical piano pieces.
The probabilistic framework of a Dynamic Bayesian Net-
work (DBN) establishes the theoretical foundation for this
process. Exact inference is only possible on a subset of
DBNs. Since our system does not fall into this category,
we apply approximate Monte-Carlo methods to estimate
the artist’s current score position. Specifically, we utilise
Rao- Blackwellised particle filtering, where parts of the
model are computed exactly, while intractable portions are
approximated using a standard particle filter. Besides the
spectral content we use an onset function to capture tran-
sients and the signal’s loudness to detect rests as additional
features. Since there is plenty of literature on this topic,
we will not dwell on the inference methods, but refer the
reader to [18] for a comprehensive tutorial on particle fil-
tering, and to [19] for a more detailed elaboration on the
application in our system.

We use the same dataset of piano music as in [20] (see
Table 1) for evaluation. Two different types of ground truth
data are available: For pieces performed on a computer-
monitored piano full matches exist, where the exact onset

time for each note in the performance is known; for the
performances of Rachmaninoff’s Prelude Op. 23 No. 5
we only have manual annotations at the beat level. We
group the performances as shown in Table 1 and evaluate
the alignment quality for each group. This way we are able
to grasp the impact of our methods depending on the type
of composition and recording situation.

From the alignment quality measures introduced by [21],
we use the misalign rate to evaluate our experiments. In
short, the misalign rate is the percentage of notes for which
the computed alignment differs from the correct alignment
by more than a specified threshold. In our evaluation, we
set this threshold to 250 ms. Due to the inherently proba-
bilistic nature of particle filters, results necessarily vary be-
tween multiple alignments of the same performance. Hence,
we repeated each experiment 10 times and used the aver-
aged misalign rate for each piece.

To assess the influence of each proposed method, we ran
our score follower in four different configurations. The
baseline setup used the Gaussian mixture note models and
score chordification (GC). One configuration included our
method to aggregate note models using mixing functions,
but still relied on the baseline note models (GM). The syn-
thesised note models were used together with score chordi-
fication in the third configuration (SC). Both proposed
methods were applied in the last configuration (SM). Ta-
ble 2 shows an overview of the evaluated configurations.

ID Note Model Score Model

GC Gaussian mixture Chordified
GM Gaussian mixture Mixture function
SC Synthesised Chordified
SM Synthesised Mixture function

Table 2. Evaluated configurations

4. RESULTS AND DISCUSSION

Tables 3 and 4 show the results of our experiments, indicat-
ing that both proposed methods improve alignment quality.

Using synthesised note templates instead of those based
on Gaussian mixtures improves alignment quality for three
of four piece groups (GC vs. SC and GM vs. SM). The
quality degradation when aligning Chopin’s Etude Op. 10
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ID GC GM SC SM

CB 8.65% 7.75% 8.23% 7.56%
CE 7.39% 4.09% 7.53% 4.69%
MS 2.25% 2.16% 1.76% 1.48%
RP 23.17% 12.17% 8.98% 7.13%

Table 3. Mean misalign rates for the performance groups

ID GC GM SC SM

CB 0.91 0.73 0.72 0.59
CE 1.19 0.79 1.19 0.68
MS 0.60 0.42 0.61 0.54
RP 12.31 3.25 0.75 1.45

Table 4. Standard deviation of misalign rates per piece,
averaged over performance groups, in percentage points
(pp)

No. 3 is marginal but noticeable. The reasons for this dis-
crepancy are to be investigated. A good clue could be that
the harmonic structure of piano sounds, especially inhar-
monic components, can vary considerably for individual
instruments. However, a real-time capable way to cope
with such problems, e.g. by adapting the templates on-line,
is yet to be found.

Our proposed method for creating spectral templates for
score positions using mixing functions impacts the align-
ing process in a positive way, as suggested by our experi-
mental results (compare GC vs. GM and SC vs. SM in Ta-
ble 3). This corresponds to our expectations based on the
argumentation in Section 2.2. Further examinations will
analyse how mixing functions can be defined for other in-
struments than the piano, and whether their impact in these
cases is comparable to what we were able to show here.

Table 4 shows the standard deviation of the piecewise
misalign rate, averaged for each piece group. High devia-
tions would indicate that the alignment quality differs con-
siderably over multiple runs of the algorithm on the same
piece. The results suggest that the proposed methods have
also a positive effect on the score follower’s robustness.

5. CONCLUSION

We presented two novel methods for instrument-specific
spectral modelling of musical scores, intended to improve
the alignment quality of score following systems. The first
method assumes that the harmonic structure of a played
tone is static over time. The second can be applied if the
instrument exhibits a fixed volume envelope of a tone, once
a note is played. Thus, the methods are especially useful
for pitched percussive and plucked or struck string instru-
ments. The methods are not specific to our score follow-
ing system, but can be easily adapted and applied to any
spectral-template-based music tracker. Systematic experi-
ments on a variety of classical piano pieces showed their
positive impact on our score follower’s misalign rate, in-

dicating their meaningfulness. Future work could exam-
ine how the methods can be used for different instruments
and if they can uphold their positive impact.
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ABSTRACT 
This paper presents a history of sequencers for musical 
performance and creation. A sequencer is a musical inter-
face designed to record, edit and playback audio samples 
in pattern format for both music composition and per-
formance. Sequencers have evolved over the years to 
take many forms including mechanical and analog se-
quencers, drum machines, software sequencers, robotic 
sequencers, grid-based sequencers and tangible sequenc-
ers. This vast array of sequencer types brings forth a 
number of technological approaches including hardware 
fabrication, software development, robotic design, em-
bedded electronics and tangible interaction design. 

1. INTRODUCTION 
Throughout history, patterns have permeated music. 
From ancient chant to modern electronic music, a sense 
of rhythm and repetition appears in music of diverse gen-
res. This notion of structure relates to various mathemati-
cal principles, ranging from the golden section[1] to the 
matrix, and their sonic applications have been manifold. 
The idea of a grid has been one of the most prevalent 
characteristics of music throughout the past few centu-
ries. The reliance on a sonic grid with repeating rhythmic 
and melodic motives has become imbued into the human 
ear, and the sequencer in its many forms has become a 
popular interface for music creation and sound music 
computing. 

In their most common modern form, sequencers play 
rigid patterns of notes using a grid of sixteen steps with 
each step corresponding to one-sixteenth of a measure. 
Patterns are then chained together to form longer rhyth-
mic and/or melodic motives. Most commercial sequenc-
ers are monophonic and play one note or sample per step. 
However, many are capable of storing multiple samples, 
allowing for multi-timbral composition and playback. 

The sequencer is a commonplace interface for popular 
electronic music composition and production. Its greatest 
benefit is its ability to rapidly construct pattern-based 
sequences that are tightly locked to a meter. Patterns can 
be layered to create multiple voices that  
play simultaneously. 

In this paper, sequencers of every type are surveyed. 
Section 2 discusses mechanical sequencers. Section 3 
discusses analog sequencers. Section 4 discusses drum 
machines. Section 5 discusses software sequencers. Sec-
tion 6 discusses sound sculpture sequencers, while Sec-
tion 7 discusses grid-based sequencers followed by Sec-
tion 8, which discusses tangible sequencers.  

2. MECHANICAL SEQUENCERS 
Sequenced music appeared in history long before the 
advent of modern-day electronics. In fact, the earliest 
known sequencers are mechanical in nature. The follow-
ing section explores two early mechanical sequencers, 
the music box and player piano, which have influenced 
the development of modern-day sequencers. 

The music box (Figure 1. Music Box (a) and Weber 
Pianola Piano (b) can be considered one of the first se-
quencers and was popularized as a toy during the 18th 
century. The vibration of steel teeth cut into a comb pro-
duce sounds that occur with the revolution of a pin-
studded cylinder underneath them. A full revolution 
completes the melodic pattern and results in  
a musical phrase [2]. 

The player piano is yet another form of mechanical se-
quencer that is powered by foot pedals or a hand-crank. 
Fourneaux invented the first player piano in 1863, which 
was then iterated on by other inventors including Edwin 
Scott Votey, who created the Pianola (Figure 1. Music 
Box (a) and Weber Pianola Piano (b)) in 1896, followed 
by Edwin Welte’s loom-based player piano created in 
1897. The melodic sequence is most commonly triggered 
by paper punch-cards that automatically operate the 
hammers on the piano [3]. 

 

 
(a) (b) 

Figure 1. Music Box1 (a) and Weber Pianola Piano2 (b) 

                                                             
1http://upload.wikimedia.org/wikipedia/commons/7/79/Baud_museum_
mg_8548.jpg 
2 http://www.pianola.org/history/history_playerpianos.cfm 

Copyright: © 2013 First author et al. This is an open-access article 
dis- tributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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3. ANALOG SEQUENCERS 
Musical paradigms set forth by the player piano and  
music box made their way into future musical develop-
ments. Technological growth led composers and engi-
neers to experiment with generating sound by way of 
electro-mechanical technology. Raymond Scott was one 
of the most notable composers to incorporate new tech-
nology in his work and the forefather of modern-day 
commercial sequencers. 

In the mid-1940s, Raymond Scott created his “Wall of 
Sound” (Figure 2). It has been noted as one of the first 
and largest electro-mechanical sequencers spanning over 
thirty feet in length and stretched from his apartment 
floor to ceiling. The sequencer operated with mechanical 
relays that triggered solenoids, control switches and vari-
ous tone circuits with sixteen individual oscillators. The 
sequencer could be manually adjusted by Scott to alter 
the sound patterns [4]. 

Scott’s work with sequencers led to the development 
of fully analog sequencers that utilize analog electronics. 
The RCA3 Mark II Sound Synthesizer designed by Her-
bert Belar and Harry Olson at RCA was created in 1957 
and installed at the Columbia-Princeton Electronic Music 
Center. The synthesizer was the first analog electronic 
sequencer and used paper tape to automate playback by 
sending instructions back to the synthesizer [5]. 

 

 
Figure 2. Raymond Scott's "Wall of Sound"4 

As a student, Robert Moog took inspiration from 
Scott’s “Wall of Sound” to create his first analog se-
quencer, the Moog 960 in 1968. Moog created this par-
ticular sequencer as a module for his modular synthesiz-
er. The 960 was one of the first analog step sequencers 
released for the commercial market. It contained three 
rows of eight value knobs and allowed for a three-value 
sequence of up to eight steps controlled by a clock. Each 
of the three banks could steer three different voltage-
controlled oscillators (VCO), amplifiers (VCA) and fil-
ters (VCF) [4]. 

These early analog sequencers have affected electronic 
music production profoundly. Their developments led to 
the rise of a wide variety of electronic music. Many of 
the rudimentary sequencing implementations they uti-
lized have served as paradigms for future electronic se-
quencers. 

                                                             
3 http://www.rca.com/ 
4 http://raymondscott.com/ 

4. DRUM MACHINES 
This section explores the drum machine, a particular in-
stance of a sequencer used to create percussive patterns. 
Since its inception, the drum machine has become a 
common interface for music creation and performance in 
electronic music. 

The Rhythmicon is the earliest known drum machine 
invented by Léon Theremin in 1931. Having already 
established credibility and success with the creation of 
the theremin, Henry Cowell commissioned Theremin to 
build him a polymetrical instrument. The Rhythmicon 
was developed to produce up to sixteen different 
rhythms, each associated with a particular pitch (either 
individually or in combination). Despite its capabilities, 
the Rhythmicon was largely forgotten until the1960s [6]. 

Another instrumental drum machine was the Chamber-
lin Rhythmate created in 1957 by inventor Harry Cham-
berlin. This machine operated using fourteen tape loops. 
Each tape loop contained a sliding head, which enabled 
playback of different tracks on each piece of tape. The 
machine also contained volume, pitch and speed controls 
as well as a separate amplifier [7]. 

In 1959, Wurlitzer created the Sideman [8], which was 
the first commercial drum machine. It was electro-
mechanical in nature and used a motor-driven wheel that 
would operate electrical contact points. These contact 
points could turn on up to twelve different preset 
rhythms, all of which contained ten drum sounds that 
were triggered using valve technology. 

Shortly after the Wurlitzer Sideman, Ace Electronics 
began to prototype a new rhythm machine, the R1 
Rhythm Ace, offering sixteen preset patterns that could 
be mixed together by pressing two buttons simultaneous-
ly allowing for over one hundred rhythm combinations. 
Ace changed the name to the  
FR-1 Rhythm Ace5 (Figure 3) in 1967 when it was re-
leased for the commercial market. 
 

 
Figure 3. Ace Electronics' FR-1 Rhythm Ace5 

5. SOFTWARE SEQUENCERS 
With technology’s exponential growth, software se-
quencers began to be developed. While the earliest soft-
ware sequencers were used in conjunction with hardware 
synthesizers, modern software sequencers extend the 
physical metaphors set forth with analog sequencers de-
scribed in Section 3. This section surveys early software 

                                                             
5 http://www.soundonsound.com/sos/nov04/articles/roland.htm 
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sequencers to more contemporary ones included in many 
Digital Audio Workstations (DAWs). 

The first software sequencer emerged as part of the 
ABLE computer created in 1975 by New England Digi-
tal. The computer contained a data processing unit devel-
oped for the Dartmouth Digital Synthesizer created two 
years prior. The ABLE computer served as the predeces-
sor for the Synclavier I created in 1977, which was one 
of the earliest digital music workstations complete with a 
multi-track sequencer [9]. 

Three years later, the Page R was developed as part of 
the Fairlight CMI Series II synthesizer.  This particular 
software-based sequencer combined sequencing with 
sample playback. It was commercially successful and its 
popularity led to the development of trackers. 

In 1987, the first tracker software “Ultimate Sound-
tracker” was written by Karsten Obarski and released for 
the Commodore Amiga. The software supported only 
four channels of 8-bit samples and stepped through sam-
ples numerically using a vertical orientation. This struc-
ture became popular and led to the development of a 
slew of trackers including the OctaMED, ScreamTracker 
and others. The onset of computer games further popular-
ized their use, as many game development companies 
leveraged tracker music for gameplay audio. 

In the 1990s, DAWs such as Pro Tools6, Logic7, Digi-
tal Performer8, Cakewalk9 and many others began to hit 
the commercial market. Many of these DAWs dueled as 
production tools due to their MIDI capabilities and soft-
ware instruments. As their companies developed the ca-
pabilities brought forth with MIDI, sequencing tech-
niques became commonplace within most DAWs. Users 
now had the ability to loop patterns and build sequences 
directly with MIDI data. Ableton Live10  
further extended software sequencing with the creation of 
Session View, which allows users to play back loops in a 
non-linear fashion utilizing scenes and clips. 

 

6. SOUND SCULPTURE SEQUENCERS 
The sequencer has also made its way into more of a con-
temporary art context. The following section explores 
Tim Hawkinson’s Uberorgan and Trimpin’s Sheng High, 
two artistic works that explore sequencer functionality in 
more of an aesthetic installation setting. Both of these 
sound sculptures incorporate fundamental sequencer de-
sign tactics set forth by the music box and the player 
piano and extend them based on the artists’  
unique visions. 

Tim Hawkinson’s Uberorgan (Figure 4 (a)), commis-
sioned by MASS MoCA in 2000, was one of the largest 
indoor sound sculptures ever created. The installation 
consisted of thirteen large, inflated bags; twelve of them 
corresponded to the tones in the musical scale and one 
acted as a control that fed air into the other twelve by 
long tubular ducts. Each of the twelve bags contained a 
                                                             
6 http://www.avid.com/US/products/family/pro-tools 
7 http://www.apple.com/logicpro/ 
8 http://www.motu.com/products/software/dp/ 
9 http://www.cakewalk.com/ 
10 https://www.ableton.com/ 

long nozzle with a cardboard horn on one end, which 
produced sound. Playback was triggered in a manner 
similar to a player piano, and in the center of the gallery 
was a continuous sheet of marked paper fed over a sen-
sor. The sensor then read the sheet and triggered play-
back on the corresponding horn [10]. 

Trimpin’s Sheng High (Figure 4 (b)), installed in 
2005, is a sound sculpture based on the original Chinese 
instrument the sheng. The sheng is a reed instrument that 
relies on air pressure to produce sound through bamboo 
pipes. The sheng predates both the pipe and mouth or-
gans. In Sheng High, Trimpin uses a similar concept to 
the sheng’s playback; however, instead of a human play-
er, he uses water pressure to push air in and out of the 
bamboo pipe in order to activate the reed. In the installa-
tion, thirty bamboo pipes are precisely tuned and each 
one hangs from a tripod to be centered in a vessel of wa-
ter. By raising or lowering the pipe into water, air is 
pushed over the reed and produces sound. A wall scanner 
equipped with infrared sensors, one for each pipe, serves 
as the main sequencer clock. Trimpin uses recycled CDs 
to act as a visual notation system. Patterns created by the 
CDs are used to trigger the various pipes, since their re-
flections signal the infrared sensors and scanning device. 
As a result, the installation acts as a robotic sequencer, 
allowing visitors to witness a dialogue between the visual 
and aural patterns created by the sculpture [11]. 

 

     
                      (a)                                                  (b) 

Figure 4. Tim Hawkinson's Uberorgan at MASS 
MoCA[10] (a) and Trimpin's Sheng High11 (b) 

7. GRID-BASED SEQUENCERS 
The development of the MIDI specification in 1983 
brought forth a great shift in musical devices. Now musi-
cians and engineers had the ability to network devices 
together and use hardware controllers to trigger software 
audio samples. Synthesizers, samplers and sequencers 
begin to use MIDI to communicate with each other in 
addition to software. With the ubiquity of MIDI and the 
establishment of Open Sound Control (OSC)[12], these 
devices and their use began to rise.  

The gradual progression of these devices led to a more 
recent movement known as “controllerism”12. Coined by 
Matt Moldover in 2007, controllerism can be thought of 
as the practice of using software controllers (commonly 
using MIDI and/or OSC) to create and modify music. 
This section will explore the Monome family of grid-
based controllers, which serves as one of the key devel-
opments in this movement. 

Brian Crabtree created the original Monome in 2005 at 
the California Institute of the Arts. The Monome is char-
                                                             
11 http://www.artelectronicmedia.com/artwork/sheng-high 
12 http://www.controllerism.com/ 
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acterized by a minimal design and takes shape as a box 
with a grid of LED back-lit buttons. The box is simply an 
interface for software-based audio and must be connected 
to a computer. The most common Monome controllers 
range from 64 to 256 buttons [13]. 

Custom software, such as MLR, dictates how the Mo-
nome is used. The function of each button is completely 
customizable based on the software, which communi-
cates over OSC messages. Sequencing audio is a very 
common application of the Monome based on the layout 
of its controls. The MLR software in particular allows for 
sample manipulation and sequencing through the inter-
face. 

Since its inception, the Monome has contributed to a 
movement of grid-based controllers. Many commercial 
products have evolved as a result of its creation. Notable 
controllers following the Monome include the Novation 
Launchpad released as well as the Akai APC40 both re-
leased in 2009. The development of the Monome also 
brought forth an array of open-source projects including 
the Arduinome (Figure 5 (a)), Chronome(Figure 5 (b)) 
and the Lumi [14]. 

 

 
                  (a)                                           (b) 

Figure 5. Arduinome [13] (a) and Conductive Fabrics 
for Pressure Buttons on Chronome[14] (b) 

8. TANGIBLE SEQUENCERS 
The following section explores the development of tan-
gible sequencers. A brief history of interaction design 
and its child discipline of tangible interaction design are 
discussed followed by two subsets of tangible sequenc-
ers: multi-touch tangible sequencers and computer vision 
tangible sequencers. 

The principles of interaction design have played a 
large part in the future development of musical hardware 
including sequencers. Bill Moggridge and Bill Verplank 
first coined the term “interaction design” in the 1980s, 
and since its inception there have been many branches, 
all of which encompass the design of digital devices for 
human use. 

Goal-oriented design is one of the primary methodolo-
gies surrounding interaction design. This facet of design 
is concerned with the creation of systems and devices 
that satisfy particular goals of its intended users. When 
viewed in a musical controller context, goal-oriented 
design can be seen as a musician’s ability to easily cre-
ate, edit and playback musical compositions and se-
quences. These design principles led to various branches 
of interaction design in order to make products more 
intuitive and easier to use [15]. 

Popularized by Hiroshi Ishii and his Tangible Media 
Group (TMG) at the MIT Media Lab, tangible user inter-
faces are those that allow a user to interact with digital 

information through physical controls. These interfaces 
seek to establish a metaphor between the physical world 
and the digital world; thus transforming intangible in-
formation into tangible, concrete objects [16]. 

8.1 Touch Display Tangible Sequencers 

Beginning in the early 21st century, touch surfaces began 
to become prevalent in many technology-based research 
endeavors. Musical instruments and systems were no 
exception, and multi-touch sequencers emerged out of 
many music technologists’ research. Notable touch dis-
play sequencers include the reacTable, scoreTable (creat-
ed with reacTable technology), Lemur, ZooZBeat, Gliss 
and the SmartFiducial. 

The reacTable (Figure 6 (a)), created in 2003, uses a 
tabletop tangible user interface for musical creation. The 
instrument has the ability to be collaborative and is ver-
satile as a kind of tangible modular synthesizer [17]. The 
scoreTable, developed shortly after the initial reacTable, 
uses the same physical elements of the reacTable; how-
ever, its software is set up to retain basic sequencing 
functionality in that asynchronous interaction is com-
bined with real-time performance [18]. 

The LEMUR (Figure 6 (b)) created by JazzMutant13 in 
2004 is a modular touch display audio and multimedia 
controller. The controller has a plethora of sonic and vis-
ual capabilities including synthesizers, virtual instru-
ments, lights and audio sequencers. The controller makes 
use of a multi-touch sensor on top of a 12” TFT display. 
The LEMUR predated many smartphone sequencer ap-
plications and incorporated multi-touch sequencing com-
bined with visual feedback. 

Shortly after the LEMUR, smartphones and tablets 
with touch-screens began to imbue the consumer elec-
tronic marketplace. This shift in computing led to a num-
ber of new musical interfaces including sequencers, as 
most platforms created application marketplaces to dis-
tribute these applications. Many musical sequencers have 
been developed for smartphones and tablets that incorpo-
rate multi-touch interaction including the Korg iElec-
tribe14, Figure15, iMaschine16, NodeBeat17, and a number 
of others. 

ZooZBeat is a gesture-based mobile music studio pre-
sented at NIME in 2009, which uses not only multi-
touch, but also the full gestural capabilities provided in 
most modern smartphones including accelerometer data. 
The interface makes use of a looping sequencer that is 
forgiving of user error from gestural input, allowing for 
constant real-time editing. The interface was designed to 
encourage immediate engagement and self-expression for 
novice players as well as room for growth and improve-
ment in more advanced players [19]. 

Gliss is an iOS-based sequencer that allows for se-
quencing of up to five separate instruments. The interface 
takes inspiration from Xenakis’ UPIC (Unite Poly-
agogique Informatique du CeMaMu) system, and allows 

                                                             
13 http://www.jazzmutant.com/lemur_overview.php 
14 http://www.korg.com/ielectribe 
15 http://www.propellerheads.se/products/figure/ 
16 http://www.native-instruments.com/ 
17 http://nodebeat.com/ 
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users to create sequences by drawing on the screen in 
real-time. Another feature is the ability to randomize the 
playhead from that of the drawings, or allow for gestural 
control of the playhead using the iPhone’s accelerometer 
[20]. 

The SmartFiducial is a wireless tangible user interface 
that makes use of multi-touch and multi-modal features 
[21]. The interface incorporates both infrared proximity 
sensing and resistive-based force-sensors as controls for 
the interface and its included software Turbine. This se-
quencer makes use of sixteen nodes that can be dragged 
to affect pitch. Z-depth sensing adds further sonic control 
by morphing among wavetable single-cycle waveforms. 
Furthermore, these sonic manipulations are reflected with 
visual feedback in the software. 

 

 
(a) (b) 

Figure 6. The reacTable [17] (a) and the LEMUR13 (b) 

8.2 Computer Vision Tangible Sequencers 

Many tangible sequencers make use of computer vision 
to aide human interaction. A variety of research projects 
have been conducted to address new tactics for musical 
control. Four notable tangible interfaces that use comput-
er vision include the Music Table, d-Touch Sequencer, 
spinCycle, Bubblegum Sequencer and the Tactus. 

The Music Table is one of the first tangible sequencers 
to use computer vision for tracking of steps. Basic use 
involves arranging cards on a tabletop that are then de-
tected by an overhead camera. The camera allows the 
computer to track position and movement in order to 
affect sonic parameters as well as provide visual feed-
back [22]. 

The d-Touch sequencer (Figure 7 (a)) uses a similar 
paradigm to that of the Music Table. The crux of interac-
tion involves positioning a set of blocks on a flat surface 
that are then tracked with a camera connected to a com-
puter. In order to convey both user feedback and camera 
tracking, the playing surface and blocks are marked with 
printed pieces of paper that contain graphic symbols. 
Four markers are placed on the corners of the surface in 
order to calibrate the playing area, while one marker is 
attached to each block to track in real time. The position 
of a block is then mapped to software parameters, which 
triggers audio playback [23]. 

Another sequencer that utilizes computer vision tactics 
is spinCycle. The crux of the interface is a turntable and 
camera that use color tracking to denote different audio 
samples and instruments. Tokens take the shape of trans-
lucent colored discs positioned on a larger rotating disc. 
The camera acts similarly to a turntable needle and fol-
lows the rotation of the disc in order to map visual input 
to audio output. A computer next to the interface shows a 

visual representation of the camera’s input, which pro-
vides additional feedback to the audience [24]. 

The Bubblegum Sequencer (Figure 7 (b)) is a se-
quencer that uses physical mapping to correspond to 
sample playback. The physical interface contains a 4 x 
16 array of holes, and the physical objects are gumballs 
comprised of five different colors, which correspond to 
different samples. Each of the sixteen columns represents 
one-sixteenth note, while the rows allow for multi-
timbral playback by stacking gumballs together [25]. 

Using the Bubblegum Sequencer as inspiration, the 
Tactus is a tangible tabletop synthesizer and sequencer 
that was created at UC Berkeley. Its premise is similar in 
that it uses an optical camera coupled with 
Max/MSP/Jitter to detect patterns among tangible tokens. 
Yet, it extends the ideas set forth in the Bubblegum Se-
quencer by its ability to turn almost any matrix-like ob-
ject into a step sequencer [26]. 

 

 
(a) (b) 

Figure 7. The d-Touch Sequencer [23] (a) and  
The Bubblegum Sequencer [25] (b) 

9. FUTURE DIRECTIONS 
The sequencer has evolved drastically since the music 
box in the 18th Century18. Technology has progressed 
rapidly and musical devices and systems have progressed 
with them. It is interesting to note the transition to elec-
tronic music devices beginning with Raymond Scott’s 
“Wall of Sound” into analog sequencers such as the RCA 
Mark II followed by the rise of software  
sequencers (Figure 8).  

While the end of the 20th century saw a rise in digital 
devices and systems, the start of the 21st century has been 
marked by a desire for more intuitive interfaces and a 
return to tangible controls. The rise of mobile computing 
has also enabled anyone to make music. There are count-
less musical interfaces—everything from synthesizers to 
sequencers to mobile DAWs.  While the smartphone and 
tablet market has brought forth a slew of musical applica-
tions, many of these interfaces serve as great comple-
ments to music composition and performance. As new 
technology is invented, sequencers will continue to play 
a large role in the evolution of the electronic artist, and as 
a community we will continue to find new ways of or-
ganizing and expressing sound and music. 

 

                                                             
18 Go to http://en.wikipedia.org/wiki/Music_sequencer for a general 
overview of the history of sequencers. 
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Figure 8. Sequencer Timeline 
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ABSTRACT

This paper describes a system for tale following, that is to
say speaker-independent but text-dependent speech recog-
nition followed by automatic alignment. The aim of this
system is to follow in real-time the progress of actors read-
ing a text in order to automatically trigger audio events.
The speech recognition engine used is the well known
Sphinx from CMU. We used the real-time implementation
pocketsphinx, based on sphinx II, with the French acoustic
models developed at LIUM.

Extensive testing using 21 speakers from the PFC corpus
(excerpts in “standard french”) shows that decent perfor-
mances are obtained by the system – around 30% Word
Error Rate (WER). However, testing using a recording dur-
ing the rehearsals shows that in real conditions, the perfor-
mance is a bit worse : the WER is 40%.

Thus, the strategy we devised for our final application
includes the use of a constrained automatic alignment al-
gorithm. The aligner is derived from a biological DNA
sequences analysis algorithm.

Using the whole system, the experiments report that
events are triggered with an average delay of 9 s (± 8 s).

The system is integrated into a widely used real-time
sound processing software, Max/MSP, which is here used
to trigger audio events, but could also be used to trigger
other kinds of events such as lights, videos, etc.
Index Terms: tale following, text-dependent speech
recognition, real-time, live performance

1. INTRODUCTION

This paper describes the application of a speech recogni-
tion system to a live performance. The kind of live per-
formance we are interested in in this case involves acting
and musical interpretation. There may be several actors –
and they may speak at the same time – but the text should
be previously known, but not necessarily in the exact inter-
pretation – we indeed want the actors to have some acting
freedom.

The aim of this project is to equip the computer with a
tale follower which listens to the actors’ performance in

Copyright: c©2013 Jean-Luc Rouas et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

order to trigger basic audio events in real time. This per-
formance situation problem is related to the well-known
score following problem in the domain of computer mu-
sic [1–4].

Thus, the designed system may be similar to what one
would call augmented tale telling, where automatically
triggered audio illustrations emphasise the actors’ perfor-
mance. Using such a system, actors are not directed by
the musical score but are in command of the show. Addi-
tionally, a musician or a band may improvise on the audio
track triggered by the actors’ performance.

This paper is organised as follows: first, we present the
motivations for building such a system and which require-
ments should be met. In section 3 we briefly describe the
speech recognition engine and how we adapted it to our
problem. The next section is dedicated to the text align-
ment procedure. The integration of the system into a audio
processing environment is addressed in section 6. Appli-
cation to a live performance is described in section 7.

2. OBJECTIVES

Score following has been studied since the early eighties
in order to use the computer as a virtual musician able to
play a score and accompany a musician in real time. The
computer knows the score that is played by the musician
and also knows the score it has to play to accompany the
musician. Following the tempo of the musician, the com-
puter anticipates the events coming from the musician in
order to optimise the synchronisation between it and the
musician, just like real musicians.

Our objective is to address the same problem by replac-
ing the musician by an actor, thus considering as input the
voice of an actor reading a text instead of a melody played
by a musician. In our project, the computer knows the text
that will be told by the actor as well as the score it has
to play. The computer has to analyse the voice to extract
phonemes, build words and align them with the text in or-
der to know where the actor is situated in the text at any
time.

The problems addressed are the following: efficiency, ro-
bustness, precision and reusability. Firstly, as the system is
to be executed during live performances, it has to be effi-
cient enough to work in real-time (as a score follower) for a
good synchronisation between inputs and outputs – trigger-
ing a sound too early or too late is to be avoided at all cost.
Secondly, in live situations, the system has to be robust to
mispronunciations, forward jumps, as well as repetitions
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and everything that may occur in the context of actors inter-
pretation. Thirdly, the precision of the temporal synchroni-
sation between inputs and outputs depends of course on the
algorithms global efficiency but also on the confidence of
the alignment. For example, as will be detailed later in the
paper, when the signal corresponds to a portion of a word,
confidence is low, whereas confidence increases after the
completion of a word or a sentence. Thus, this considera-
tion provides constraints on the score to be played by the
computer in order to optimise the precision of the synchro-
nisation. Finally, we want to design a system as general
as possible in order to be able to reuse it for quite differ-
ent artistic contexts. For example, it has to be independent
from the voice of the actor, whether male or female, so that
different actors may perform on different occasions. It also
has to be easily connected to the musical tools that are usu-
ally used in live performances in order not to add too much
complexity for sound engineers or musicians.

3. SPEECH RECOGNITION

The speech recognition engine we choose to use is CMU
Sphinx [5] for its real-time capabilities and the availabil-
ity of French acoustic models. The aim of the system is
to recognise words as they are said, find their position in
the (known) text, and trigger audio events that are used to
support the actors’ playing and help the musician to focus
on her improvisation.

3.1 Sphinx

We chose to use Sphinx as it is freely available and a real-
time implementation – pocketsphinx – exists [6]. We will
however not extensively describe the Sphinx system as it
is fairly complex. Nevertheless, we remind that a speech
recognition system has two main processing steps:

• An acoustic processing step, which uses phoneme
models in order to transcribe audio features in a
string of phones. The model used in this step is
language-specific since phonemes differ in each lan-
guage, and may or may not be speaker specific - it
depends on how many speakers were used to train
the models, though models may be speaker adapted
in order to achieve better recognition.

• A “phoneme to words” step, which aims at trans-
forming the string of phones into sequences of
words. This step make use of a pronunciation dictio-
nary, which indicates to the system how the words
may be pronounced, and a language model which
works as a sort of grammar by defining which word
should follow another. The language model is usu-
ally trained on a large database of texts (i.e. newspa-
per articles) and statistics are extracted correspond-
ing to the most frequent sequences of words. The
length of those sequences may vary from one to
three, we then speak of unigrams (word occurences
statitics), bigrams (sequences of one or two words)
or trigrams (sequences of one, two or three words).

The Sphinx system was used with success on French
data during the ESTER evaluation [7] by the Laboratoire
d’Informatique de l’Université du Maine (LIUM). The
LIUM developed French acoustic and language models to
be used with Sphinx for this evaluation [8]. They managed
to achieve a performance of 18.2% WER on broadcast data
from a number of television and radio channels [9]. The
LIUM models are available both from the Sphinx repos-
itory on Sourceforge 1 and from the LIUM website 2 . It
is worth noting that the LIUM French acoustic models are
speaker independent.

3.2 Text Adaptation

In spite of these available models, we need to create our
own language model and add some words and their pro-
nunciation to the dictionary. There is indeed a specific
vocabulary that may be used in poetry but that is not fre-
quently found in the sources usually employed for training
language models – i.e. newspapers.

3.3 Preliminary experiment

We wanted to test this system on a read speech corpus, the
read text being the ideal case of a fake newspaper article
read by several native speakers. The data we used come
from the PFC (Phonologie du Français contemporain) Cor-
pus [10]. The text is composed of 406 words and for this
experiment we used a total of 21 speakers (11 female and
10 males) from the towns of Brecey and Brunoy which are
usually used to represent “standard french”. The total du-
ration of the 21 files is approximately 57 minutes (i.e. 2:42
per file).

On these recordings, the system, without any adaptation,
achieved surprisingly poor performances – 91.1% Word
Error Rate (WER), as shown on the first line of table 1.
These poor performances may be due to the fact that the
LIUM-Sphinx system was trained for broadcast news tran-
scription, which is particularly important considering the
language model, which was trained on newspaper data
(e.g. excerpts from “Le Monde”). However, the text used
in this experiment, which is considered to be similar to a
newspaper article, may not reflect well the training data
used for the language model. It is also worth noting that
the best performing LIUM system mentioned earlier in the
paper is fairly complex since it makes use of a speaker seg-
mentation algorithm, a 4-gram language model and works
in several passes, which are options that we have not con-
sidered here due to real-time constraints.

Considering these facts, we therefore decided to train a
new statistical language model on a combination of con-
catenations of phrases from the text. We did not use a fixed
grammar as language model, because actors may change
the text slightly during a live performance.

Using this language model, specific to the text of the
poem, we managed to decrease the WER to 41.1%. Re-
stricting the language model and dictionary to the original

1 http://sourceforge.net/projects/cmusphinx/
files/AcousticandLanguageModels/

2 http://www-lium.univ-lemans.fr/en/content/
data
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Adaptation Method Corr Sub Del Ins Err
none 9.5 30.1 60.4 0.7 91.1
LM only 59.9 3.9 36.2 1.4 41.5
MAP+LM 63.8 2.6 33.6 1.2 37.4
MAP+MLLR+LM 72.1 1.4 26.5 1.7 29.7

Table 1. Performance obtained using Sphinx with the
LIUM acoustic models and different kinds of adaptation
on PFC data

Take Corr Sub Del Ins Err
#1 81.9 14.5 3.6 19.7 37.8
#2 79.8 15.6 4.6 20.6 40.7

Table 2. Performance obtained using Sphinx with the
LIUM acoustic models on rehearsal data

text also has the welcome effect of speeding the speech
recognition process. Besides, this result could probably
be further improved by training an acoustic model specific
to the speaker or channel. Using Maximum A Posteri-
ori (MAP) adaptation combined with MLLR (Maximum
Log Likelihood Ratio), we obtained a much more decent
WER of 29.7%. The speaker/channel adaptation works
quite well since recording conditions vary greatly in this
database: the microphone is most of the time placed on a
table and the room is not always very quiet.

3.4 Experiments using rehearsal data

The aim of our system is however to be speaker indepen-
dent, since we may want to switch actors if necessary.
There should not be any channel effect in our setup since
we use close capture microphones.

Using the LM-only setup, we thus have tested the per-
formance of the system on rehearsal data. The text of the
poem is in that case told by the two actors (one male, one
female) that will perform during the live show. We have
recorded two sessions of the performance. Each record-
ing has a duration of approximately 40 minutes, the the-
oretical length of the text being 1779 words. Since one
of the aims of the system is to leave as much freedom as
possible to the actors, they obviously took advantage of
it. Instead of simply reading the poem, they played with
it, sometimes speaking together, repeating words that were
mentioned only once etc. The performance of the system
is described in table 2. Even though we did not experiment
with several actors, we are confident that the results should
be similar with any interpreter since the acoustic models
were not adapted here.

The performances are surprisingly better than with the
PFC data in terms of number of correctly transcribed words
(around 80%, to be compared with 70%) , but the number
of insertions (20%) is much greater than in the previous test
(around 1.2%). Although some of these insertions may be
caused by the actors interpretation, this is quite unfortunate
because we certainly do not want to trigger an event at a
wrong time. The figure for the deletions is however much
better on the rehearsal recordings than on the PFC data,
which is encouraging.

These results show that we cannot rely only on the speech
recognition alone to perform the task we want: the quite
high error rate will certainly have some undesired conse-
quences on the triggering of the events. Thus, we have
chosen to use an algorithm for automatically aligning the
recognised words with the text of the poem that allow for
incomplete matching. This algorithm is described in the
next section.

4. ALIGNMENT

The alignment algorithm is issued from research on DNA
sequences. The starting point is the algorithm described
in [11], which allows to transform a character string u in
a string v using different operations: insertions, deletions,
substitutions. Dynamic programming is used to find the
optimal series of operations. As an example, the two fol-
lowing sequences can be aligned using this algorithm :

A T - G T T A T
A T C G T - A C

The algorithm from [12] works on the same principle but
at a local level. This algorithm can find the two sub-strings
of stronger similarity as in the example below:

G T G G A T - G T T A T G T G G
C C A C A T C G T - A C A A C A

It has been successfully applied on audio data for music
similarity purposes [13].

We decided to apply this algorithm to our problem as the
output from the speech recognition system might not be
the exact researched text.

As input to the alignment procedure, we use both the
recognised text and the confidence score given by the
speech recognition system. If this recognition score is over
a certain threshold, we use the algorithm to see if the recog-
nised text may be aligned with the original text. To this
end, we define a search window on the original text, which
has a size proportional to the recognised sentence length.
This window is used to restrict the search space for the
alignment. The best approximate match, given by [12] al-
gorithm, gives an alignment score. If this alignment score
is greater than a second threshold, we consider that we
have a valid alignment of a valid recognition and thus ad-
vance the start of search window to the end of the aligned
sequence. If the alignment score is below this threshold,
the size of the search window is increased without chang-
ing its starting point. This procedure is designed for the
reading of a text: the progression of the reading should
be linear – i.e. the reader must not go back to a previous
element in the text.

5. EVENTS TRIGGERING PERFORMANCE
EVALUATION

The timing of the events that the system should trigger is
a very important point in our system. In order to assess
that every event we designed to be triggered is effectively
detected by the system, we have measured the time delay
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Take Average Delay (s) Standard Deviation (s)
#1 9.20 (s) ± 8.01 (s)
#2 10.42 (s) ± 12.04 (s)

Table 3. Average delay for ten events on the two rehearsal
recordings (average for four trials)

between the real occurrence of the triggering word in the
recording and the time at which this word is effectively
detected by the system.

To do this, we devised a list of ten words distributed along
the text on which we measured the mean square of the de-
lays. The result of this test, for the two rehearsal record-
ings is given in table 3. Since the performances may vary
slightly between two tests using the same recording, the
measurements are averaged on 4 trials.

As seen on table 3, the average delay is quite important.
However, the delay can vary greatly between events, as
illustrated by the confidence intervals. For instance, the
best performing trial on both recordings is given in table 4.
Note that the measured delays may be negative – the event
is triggered before the word is actually pronounced – be-
cause of errors in the recognised stream of words leading
to a false alignment.

The difficult passages are indeed mainly linked to mo-
ments where the actors play a lot with the text. We hope to
improve that point in the future, but the performances are
very dependent on the actors pronunciation and interpre-
tation. Thus, in the actual state of the system, we had to
select the proper words to trigger events efficiently.

word# Take 1 delay (s) Take 2 delay (s)
#1 10.936 -0.510
#2 8.038 -28.745
#3 1.818 -1.036
#4 21.446 -11.447
#5 0.185 0.915
#6 0.901 0.448
#7 0.807 0.953
#8 4.589 9.749
#9 21.135 26.157
#10 18.469 13.064

Table 4. Delay measured for each triggering word on take
1 and take 2

6. INTEGRATION WITH A MUSIC PROCESSING
SOFTWARE

Max/MSP is a visual data-flow programming language
which is widely used to program sound and music pro-
cessing for live performances. Indeed, most of the inter-
active music composers consider that this language is the
standard to process music in real time. Thus, we made a
connection between our tale follower and Max/MSP to in-
tegrate it in a convenient environment and we developed
our own sound modules in MAX.

The integration of the system has been achieved using the
framework described on figure 1. Two HF microphones are

used as input for a first computer (noted “Text follower” on
the figure). The microphones are connected to the sphinx
engine via Jack. Recognised words are then fed into the
text aligner which indicates the progress of the reading.
This information is then transferred via OSC to an audio
processing second computer running Max/MSP. On this
computer, switches triggering events are activated accord-
ing to the received information and a cue list.

The sound coming from the instrument(s) played by the
musician(s) is also processed using the second computer,
which renders different effects and spread the sound on
eight loudspeakers – the effects and the sound spatialisa-
tion characteristics may also be changed using the infor-
mation from the tale follower).

7. THE FLUXUS SHOW

The whole system has been used for two performances of
“Fluxus”. “Fluxus” is the name of a poem in French by au-
thor Donatien Garnier. The performance consisted in the
reading of this poem by two actors (a man and a woman),
and the playing of a musical accompaniment by a musician
and a computer. The musical part played by the computer
was determined before the performance whereas the musi-
cian improvised his own part.

Composer and musician György Kùrtag Jr. composed
a specific music for this poem. The musical illustrations
designed to be played by the computer were previously
recorded in a studio. The musician was also present and
improvising during the show. Although we still have trou-
bles with the accuracy of the speech recognition system,
with carefully chosen target words, the system did per-
form almost flawlessly and the performance was a success
– though this is unfortunately not quantifiable.

8. CONCLUSION

In this paper, we have described a tale-following system
based on a speech recognition system and an automatic
aligner. The performances of the speech recognition sys-
tem in text-dependent mode are quite average – around
40 % WER – in studio conditions. These numbers are
quite different from the results obtained by LIUM using
the same acoustic models because we used the real-time
implementation of Sphinx – pocketsphinx – and 3-gram
language models (as opposed to 4-grams). Using the “reg-
ular” sphinx implementation (of sphinx III), we managed
to obtain a WER of 6.4% on the PFC data – but not in
real-time. This is to be compared to the 29.7% WER ob-
tained using the same training method with pocketsphinx.
We will have to investigate why the performance gap is so
important between the two implementations.

Anyway, as we needed real-time speech recognition, the
system takes advantage of a post-processing using an au-
tomatic alignment algorithm designed to be able to cope
with these errors. But, even with the complete system, trial
events were triggered with a delay that can vary from 0.1
to 20 seconds. Extensive testing allowed us to choose the
most appropriate words to trigger the events, providing a
great experience from the audience point of view.
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Figure 1. integration of the system

9. PERSPECTIVES

In this project, we have addressed only the temporal syn-
chronisation between actors and musical accompaniment.
An interesting perspective of this work is to extract voice
and interpretation characteristics in order to use them for
shaping the musical part. For example, we can consider
adapting the energy of the music to the volume of the voice
to enhance emotional impact. Intonation and speech rate
could be used to modify musical and sound parameters and
musical tempo. Effects could also be applied to the voice
to transform it depending on the words and the sentences
that are said by actors. For this purpose, we plan to use the
iscore interactive sequencer [14, 15] which was developed
during the virage project [16] to make the definition of the
temporal organisation of musical events and the intercon-
nection of different processes easier.

We also plan to adapt this system to singing voice follow-
ing. The problem of speech recognition on singing voice is
however still a challenge. We will adapt the speech recog-
nition system to the singing voice by using specific data,
but the intrinsic models may also need to be modified as
singing voice characteristics differ from speech, particu-
larly in terms of vowel durations, articulatory strategies
and formant spanning. Nevertheless, by knowing the lyrics
beforehand, we hope to be able to design an efficient sys-
tem with real-time capabilities.
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ABSTRACT 

‘many worlds’ is a short narrative live-action film written 

and directed so as to provide four optional linear routes 

through the plot and four endings. At two points during 

the fifteen minute film, decisions are made based on au-

dience biosignals as to which plot route to take. The use 

of biosignals is to allow the audience to remain immersed 

in the film, rather than explicitly selecting plot direction, 

as done in most interactive films. Four audience members 

have a bio-signal measured, one sensor for each person: 

ECG (heart rate), EMG (muscle tension), EEG (“brain 

waves”) and Galvanic Skin Response (perspiration). The 

four are interpreted into a single average of emotional 

arousal. This is used to decide which route to select at 

each of the two plot selection points. The film starts with 

a binaural soundscape composed to relax the audience, 

and depending on which clip is selected at the decision 

points, a different soundtrack is played under the visual 

action as well. ‘many worlds’ is the first live action linear 

plotted film to be screened in a cinema in front of the 

general public which utilizes the above reactive approach. 

1. INTRODUCTION 

This paper documents the design and implementation of 

an engine for real-time detection of biosignal responses 

from an audience which can drive live editing of a film 

and its soundtrack. This generates streaming video for the 

purpose of audience affective manipulation whist they 

watch the narrative of an algorithmic short film written 

and directed by Alexis Kirke: ‘many worlds’. A key vi-

sion behind the film is that at fixed points in the plot the 

audience’s arousal level will be sampled and if is below a 

pre-determined threshold, a more intense version of the 

next scene will be selected. 

   There has been much previous work in algorithmic live 

action film, mostly database cinema [1]. There has also 

been a lot of work in interactive cinema [2, 3], in which 

the audience select plot lines. However most of this work 

has involved the audience consciously selecting film be-

haviour. This has the effect of destroying the immersion 

in the story [4]. [4] has begun to attempt to address this in 

a simple computer-generated graphical drama using sin-

gle viewers at a workstation. A brain-influenced film 

installation has been developed which was displayed in a 

museum [5], also leading to further research in cinema 

and neuroscience [6]. [7] measured peoples’ biosignals 

while they sat in a cinema to see if their emotional reac-

tions could be detected. The result indicated that the de-

tection was possible. [8] attempted to detect audience 

interest during movies scenes using various bio-signals 

but could not quantify the precise nature of “interest”. A 

related study is found in [9] which attempted to detect 

“boredom” in people playing a video game. The power of 

such approaches is that not only can they maintain peo-

ples’ immersion, but can potentially increase it, by reac-

tively manipulating them using plot, edit or soundtrack 

elements which respond to the audience dynamically. 

1.1 Metering affect 

The various models of emotion proposed by affective 

sciences offer complex, and still evolving, representations 

which can be used to map musical features to mood and 

vice versa. The dimensional approach to specifying emo-

tion utilizes an n-dimensional space made up of emotion 

“factors”. Any emotion can be plotted as some combina-

tion of these factors. The 2-Dimensional ‘circumplex’ 

model of affect [10], with emotion comprised of valence 

and arousal, is often utilized in emotional evaluation for 

music [11, 12, 13, 14]. In many emotional music creation 

systems [15] these dimensions are used. In this model, 

emotions are plotted on a graph with the first dimension 

being how positive or negative the emotion is (valence), 

and the second dimension being how physically excited 

the emotion is (arousal). For example “Happy” is high 

valence high arousal affective state, and “Stressed” is low 

valence high arousal state. 

   Self-reporting arousal on such a model [16,17] presents 

problems for the presentation and development of re-

sponsive, immersive music — and particularly as in this 

case, responsive immersive cinema — in that they force 

the interruption of any narrative. The use of a range of 

biosensors to meter affective responses [18, 19] from the 

cinema audience and respond accordingly presents the 

opportunity to bypass self-reporting or self-selection of 

material (for example, in the feature film world when 

DVD audiences can select alternative endings by a root 

level navigation menu) in favour of an affectively driven, 

emotion-synchronous model.   

   ‘many worlds’ attempts this with a pilot system that 

does not currently utilize valence, focusing on the meas-

urement of arousal as a time-based vector. Important fac-

tors of the movie experience (beside emotions) fall out-
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side of what such a system can take into account. Aspects 

of the viewers’ cognitive processes, of aesthetic dimen-

sions, evaluative reactions, etc. – which are central parts 

of the movie experience – fly under the radar of the sys-

tem. However arousal was chosen for this initial imple-

mentation because most biosensor research in the past has 

been more successful in detecting emotional arousal than 

emotional valence [20], and there are no current forms of 

measurement available for the other elements of the cin-

ema-going experience such as those mentioned. 

   As has been mentioned, in emotional measurement, 

arousal is what distinguishes Happy from Relaxed, and 

Angry from Depressed. It measures the physical activity 

of the emotion. So if a watcher is feeling positive about a 

film, an arousal-maximizing strategy will make them feel 

Happy rather than Relaxed, or Angry rather than De-

pressed. This is obviously a fairly blunt instrument but 

provides a first in-road into implementing emotion-

control strategies. 

   The arousal vector is involved in a constant feedback 

loop, as ongoing arousal is continuously ‘pinged’ in real-

time within the limits of a preset buffer. This vector is 

evaluated at various time values, mapping the arousal and 

time value to a video selection, creating a range of possi-

ble narrative routes through the film for the audience. The 

entities involved in this process are time and a high-level 

arousal estimate (at a lower level, raw biosignal data), 

with the relationship between these entities determined 

by the director in order to sustain or increase audience 

arousal whilst watching the film. 

   This pilot system has possible applications in affective 

algorithmic soundtrack selection for film and television, 

as well as affective metering for standalone computer 

music or film. 

2. SYSTEM OVERVIEW 

Four sensors are used to monitor participating audience 

members physiological reactions in real-time. These re-

sponses are combined in an affective estimation algo-

rithm to give a moving average value for audience arous-

al, which is compared with an arousal threshold at vari-

ous decision points in the narrative to give control data 

that maps the next part of the narrative the audience will 

watch, seamlessly creating an edit ‘on-the-fly’.  Previous 

computer music research has made use of similarly col-

lected biosignal data as control inputs for music with 

emotional correlations. Such affective correlations to the 

selected biosignals are well documented in literature [21, 

22]. A flow-chart illustrating the complete signal flow is 

given in Figure 1 (at the end of this paper). The system 

broadly comprises three sections: Biosignal metering, 

Arousal estimation, and Video editing (arousal synchro-

nous narrative selection). These sections are explained in 

more detail below.  

Four biosensors were utilized, all of which have impli-

cated in detecting affective arousal: 

 

1. Electrocardiograph (EKG), indicating mean 

heart rate from the participant above calibration 

threshold, averaged over 2-10 beats [22] 

2. Electromyograph (EMG), indicating muscle ten-

sion from the right forearm of the participant, as 

a mean within each buffer(n) [23] 

3. Electroencephalograph (EEG), using three elec-

trodes to indicate frontal brain activity, filtered 

to give only the alpha region using a band-pass 

8-12kHz two-pole filter [24]. As in [24] the nat-

ural logarithm of the alpha data was calculated 

and multiplied by -1 

4. Galvanic skin response (GSR), giving a normal-

ized value for perspiration on the left wrist and 

forefinger of the participant [22] 

 

2.1 Bio-signal metering 

Sensor responses are digitized and passed to Max/MSP as 

raw data in real-time. Each data stream is calibrated to 

remove background noise using adjustable maximum and 

minimum input level outliers with EEG and GSR re-

sponses, and a simple noise-gating threshold for EKG 

and EMG responses. The responses from each sensor 

were then passed to an affective estimation routine to 

determine an instantaneous audience arousal value with 

which to carry out video selection. 

2.2 Arousal estimation routine 

Affective arousal is estimated from the four biosensors as 

a moving average. The output from each sensor is nor-

malized before being summed across a nominal buffer, as 

shown in Equation 1, where A(n) = estimated arousal for 

buffer (n): 

 

  (1) 

 

Results from the arousal estimation algorithm are com-

pared with a pre-determined arousal threshold (AT) in 

order to generate a control message for selection of video 

playback in the video mapping portion of the code. 

 

2.3 Video editing: arousal-synchronous narrative 

selection 

The first iteration of the Jitter-based video playback en-

gine was designed in order to switch between three dif-

ferent narratives ‘on-the-fly’ by direct comparison of 

arousal values with the pre-determined arousal threshold 

(AT). In the finished system, video timecode is also used 

as a mapping entity such that time and arousal are 

mapped to video selection and playback, creating an 

arousal-synchronous method of video narrative selection. 

7 clips in total are used in this system, as illustrated in 

Figure 2. 
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Figure 2. Illustrating arousal threshold and ‘split’ points 

– editing decisions are made at predetermined timecodes 

by comparing the estimated audience arousal from the 

four biosensors to an arousal threshold and selecting a 

bipolar route through to four separate narratives. 

 

   Table 1 and Figure 2 shows that the 7 clips present four 

possible ‘routes’ for the audience, through two branches 

or ‘split’ points based on timecode values, t(s2) and t(s3) 

respectively. The arousal buffer, (n), is reset after each of 

the split points as part of the affective estimation algo-

rithm. This real-time detection of arousal allows the 

filmmaker to select narrative according, and in direct 

response to, the audience’s arousal. This allows the film 

to adapt to the audience, and the filmmaker to discretely 

target the induction of arousal in the audience, maintain-

ing or increasing arousal through the narrative. The 

choice of trying to increase audience arousal was an artis-

tic decision by the filmmaker (writer / director). Other 

strategies that could have been chosen include minimiz-

ing arousal or creating a certain arousal trajectory. 

   The marking-up of video clips as to which expressed 

higher or lower arousal, was done by the filmmaker.  This 

was a subjective process and part of the artistic decision 

making, as there are no agreed methodologies for meas-

uring such “plot arousal”. The story involves three lead 

characters, and takes place in two locations: one outside 

and one inside in a single room. Clips 1.1 and 1.2 in Fig-

ure 2 are differentiated by action taking place with one or 

with two people respectively. The two-person clip was 

considered to have a higher arousal due to their interac-

tions. Clip 1.2.1 was considered to be higher arousal than 

Clip 1.2.2 for reasons which will not be documented here, 

so as not to reveal the endings: the writer / director 

judged Clip 1.2.1 to be higher arousal for dramatic rea-

sons. Similarly with the decision that Clip 1.1.1 was 

higher arousal than Clip 1.1.2. 

   Four modifier values were applied to ensure correct clip 

selection at the pre-determined split point timecode val-

ues: 

 
[beginning of film +1] 

[first clip reached timecode +1] 

[reached first split point +2] 

[reached second split point +3] 

 

 

Pathway Clips Played Arousal <> Arousal 

Threshold 

1 1, 1.2, 1.2.1 Low arousal, Low 

arousal 

2 1, 1.2, 1.2.2 Low arousal, High 

arousal 

3 1, 1.1, 1.2.1 High arousal, Low 

arousal 

4 1, 1.1, 1.2.2 High arousal, High 

arousal 

 

Table 1. Showing four possible routes through seven 

video clips, with corresponding arousal estimations 

 

  

which, combined with a modifier value for arousal (de-

termined by comparing the moving average arousal with 

the selected arousal threshold): 

 

[arousal >= arousal threshold +1] 

[arousal < arousal threshold +0] 

 

generate a unique reference number for each of the deci-

sion points. This unique reference is used as a control 

message to select the relevant clip and begin playback in 

the Jitter video engine. 

 
clip URN 1 = +1 (beginning of film, no arousal) 

clip URN 2 = +1 (beginning of film) +1 (first clip 

reached timecode) 

clip URN 3 = +1 (beginning of film) +1 (first clip 

reached timecode) +1 (arousal>threshold) 

clip URN 4 = +1 (beginning of film) +1 (first clip 

reached timecode) +2 (reached first split point) 

clip URN 5 = +1 (beginning of film) +1 (first clip 

reached timecode) +2 (reached first split point) +1 

(arousal>threshold) 

clip URN 6 = +1 (beginning of film) +1 (first clip 

reached timecode) +2 (reached first split point) +3 

(reached second split point) 

clip URN 7 = +1 (beginning of film) +1 (first clip 

reached timecode) +2 (reached first split point) +3 

(reached second split point) +1 (arousal>threshold) 

 

3. SOUNDTRACK GENERATION 

A soundtrack was composed by the writer / director for 

each of the film clips had been marked up for arousal. 

The electronic composition was generated with binaural 

beats. These involve two pure tones with frequencies that 

are slightly different. This creates the psychoacoustic 

effect of a beating slowly modulating their frequencies. 

The apparent frequency of modulation increases as the 

difference in pure tone frequencies increases. Although 

there has been work suggesting that binaural beats can 

affect mood [25], they are used here as an aesthetic 

choice by the composer, not with any scientific claims of 

mood manipulation. The use of such an abstract sound-

track is not so unusual. One key example of how audi-
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ences are becoming more used to such soundtracks is the 

sparse sub-bass soundtrack found in the mainstream fea-

ture film Paranormal Activity 2. 

   The composition for ‘many worlds’ was done intuitive-

ly based on scene drama, not based on the arousal mark-

ups. However an interesting structure emerged, as shown 

in Figure. Given that Clip 1.2.1 was marked up as having 

a higher arousal than Clip 1.2.2, it was found in post-

analysis that the soundtrack had a maximum higher ener-

gy peak for the clip whose arousal was marked up as be-

ing higher (i.e. Peak 0.105 > Peak 0.052). Similarly with 

Clip 1.1.1 being marked up as higher arousal than Clip 

1.1.2, the peak energy of the soundtrack turned out to 

have a higher energy in the higher arousal-marked clip 

(i.e. Peak 0.0975 > Peak 0.0920). 

 

Figure 3. Parallel soundtrack structure using binaural 

beats sounds. Peaks indicate the maximum sample peak 

in the soundtrack in a clip. 

 

4. SCRIPT 

Little is mentioned here about the script, as it is desired to 

not reveal key storyline elements except when the film is 

viewed. The actual script was provided to the actors in a 

branching form, with all four routes in one script, as 

shown in Figure 4. (The figure is deliberately unreadable 

so as not to give away key story elements.) In summary: 

two students Charlie and Olivia arrive at the apartment of 

their friend to try and cheer her up on her 19th birthday. 

They find Connie, a physics student, has sealed herself in 

a coffin-sized box with a cyanide gas-capsule connected 

to a Geiger counter. At any time a large enough burst of 

cosmic rays in the atmosphere could trigger the cyanide 

and kill Connie; in fact it could already have happened. 

Charlie – also a physics student – realises Connie is per-

forming a twisted version of a famous quantum physics 

experiment about the nature of reality, but one that was 

never meant to be performed in real-life. Over the next 10 

minutes – through clips from their phones and a mysteri-

ous camera observing the room – the audience learn the 

true reason for the experiment.  

A key inspiration for the film’s creator was that the story 

refers to unresolved philosophical issues in quantum me-

chanics concerning how the observer effects the observed 

in physics experiments. This is paralleled by the audience 

sample affecting the observed story as they watch the 

film. Thus the mode of presentation of the story (live bio-

signal based editing) parallels the story content itself. 

 

 
  

Figure 4. Section of script used by actors; near the top of 

this page the two possible paths each split into two again. 

5. DISCUSSION 

The system allows time-synchronous mapping of biosig-

nal responses from four sensors to audio and video mate-

rial, for the purpose of ‘editing’ a short film on the fly in 

direct response to a simple real-time metric of the partici-

pating audience’s arousal. Four narrative structures are 

implemented, though many more are possible with the 

appropriate processing power — a version making use of 

distributed processing has been developed using User 

Datagram Protocol to send and receive control data and 

trigger video playback via a local area network. Larger 

numbers of sensors might reasonably be implemented by 

similar means. 

   In terms of sensor usage in the cinema environment, 

some people found the EEG headset uncomfortable, and 

one person found the muscle tension monitor uncomfort-

able. The sensors most amenable to calibration were heart 

rate, and also the muscle tension monitor, as the audience 

member could be asked to directly flex the area of muscle 

involved. EEG was the most difficult to calibrate because 

of the noisiness of the data and its artifacts, in fact a key 

addition to the system in future would be an artifact re-

moval algorithm. GSR was also difficult to calibrate 

quickly because it was such a slow moving signal. The 

GSR also contributed the least to story pathway selection 

because of its slow-moving nature. The heart rate sensor, 

as well as being simple to calibrate, was the simplest to 

use. The downside was there was sometimes a false trig-

gering of a heartbeat, so a suitably long averaging win-

dow needed to be used to filter these out.  

   The system might provide a useful platform for further 

work evaluating audience arousal through different narra-
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tive structures, (i.e., for emotional metering of real-world 

test material), or adapted to soundtrack-only manipula-

tion, building on existing research into the affective 

changes which sound-tracking can induce [26, 27]. There 

remains a significant window for further work devising a 

method for incorporating valence metering to the affec-

tive estimation algorithm, applicable both to the real-time 

affective video system described here, and more widely 

to affective composition, music psychology, and emo-

tional performance algorithms in computer music. 

    

6. CONCLUSIONS 

Affective mapping of arousal and timecode to video and 

sound selection, by means of a moving average estima-

tion from four biosignal sensors (EKG, EEG, GSR, and 

EMG) allows the filmmaker to meter and respond to au-

dience arousal in real-time with this system. The system 

described is capable of playing back full HD video and 

synchronous audio whilst monitoring and calculating the 

arousal estimate in real-time and was demoed to a live 

cinema audience at the Peninsula Arts Contemporary 

Music Festival, UK, on February 23rd 2013. Footage 

from the premier can be seen here: 

http://www.bbc.co.uk/news/technology-22436014 
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Figure 1. Flow chart overview of system: Biosignal inputs are calibrated, normalized, and averaged to determine values 

for synchronously selecting video outputs 
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ABSTRACT

In this paper we analyze and improve an audio drum tran-
scription system with respect to real-time constraints. Fur-
thermore, we propose a novel evaluation method, which
allows us to systematically explore situations which are
likely to occur in real-life drum performances. Then, we
evaluate the architecture on a drum loops database, and
discuss the influence of the size of the evaluation window,
and of the classification method. Finally, we present the
implementation in Pure Data and Max MSP, and propose a
“do-it-yourself” technique which allows anyone to modify,
and build a drum transcription system.

1. INTRODUCTION

Drum transcription aims to extract symbolic drum nota-
tion from audio signals. The task involves detecting a set
of event candidates and labeling them. Additionally, a
drum transcription system must face challenges related to
the overlapping of events, presence of different sounds, or
variation in timbre and amplitude of the drum events.

Assigning labels to drum sounds in audio recordings has
been applied to two types of data: drum loops [1], [2], [3],
[4], [5], and polyphonic music including a mixture of in-
struments [6], [7], [8], [9]. All of these systems work of-
fline, and each one of them has a different way of solving
the challenges of drum transcription. A classifier is used
in [3] and [6], while other approaches rely on using a set
of adaptive templates [8] and [9], or non-negative matrix
factorization [7]. The issue of overlapping sounds was ad-
dressed in [5] by using decoy spectral templates along with
the learned Gamma Mixture Model templates. Other meth-
ods, as [2] and [7], detect events in different frequency
bands to separate different classes of sounds that might
overlap.

Regarding online processing, a real-time classification al-
gorithm for isolated percussion sounds, implemented in
Pure Data, was proposed in [10]. The method trains a clas-
sifier using 300 features across ten overlapping windows,
and does not address the subject of drum performances
which are made of a mixture of sounds. Furthermore, an-
other algorithm [11, p 101] implemented in Super Collider,

Copyright: c©2013 Marius Miron et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

is used for approximate bass drum and snare drum detec-
tion, as a part of a real-time beat-tracking system. This
algorithm does not transcribe hi-hats, and was not evalu-
ated in the scope of drum performance transcription. Both
the Pure Data 1 and Super Collider 2 implementations are
available as open-source.

We proposed a real-time system [12], along with an im-
plementation for Pure Data and Max MSP. The algorithm
detects drum onsets, extracts a set of features, and classi-
fies each event as either bass drum (BD), snare drum (SD),
or hi-hat cymbal (HH), from a mixture of the three classes,
plus toms. Additionally, it uses an instance filtering (IF)
stage to filter overlapping events fed to the three K-nearest
neighbor (KNN) classifiers. Similar to other past meth-
ods,( [6] and [8]) a global onset detector is used but the
overall performance is improved by the IF stage.

The offline algorithms have a set of advantages because
they can post-process the data, or use a large buffer. For in-
stance, they can adjust onset times by shifting them back-
wards in order to start the analysis closer to the real onset
of the drum, as in [8]. Tanghe et al. [6] proposed a system
that works with streaming audio, but onset computation is
not causal and the buffer used for onset detection is 105
ms, which is very large for drums. Moreover, during the
MIREX 2005 contest, the time frame to locate an onset
was ± 30 ms. Because of the symmetric window, the eval-
uation does not assume causality.

On the other hand, a system which can transcribe drums
online can be useful in building machine listening driven
interactive systems, in tasks such as instrument syncopa-
tion, or real-time beat tracking. This task is particularly
challenging because a real-time system needs to be causal,
and works under real-time constraints. Such a system faces
several challenges. First, it should reliably transcribe audio
as fast as possible. Furthermore, the minimum time neces-
sary to detect a drum onset or compute features, might be
lower than the time between two consecutive events. Ad-
ditionally, the events might not be aligned to the metrical
grid, and they might overlap.

We present an audio drum transcription system which re-
sponds to the challenges addressed above and has a bet-
ter real-time response than the system discussed in [12].
Morevoer, we propose a novel evaluation of real-life situa-
tion, sound overlapping, and systematically explore it. For
this purpose we design a database which comprises dif-
ferent levels of overlapping events. Additionally, we test

1 http://williambrent.conflations.com/pages/research.html/
2 http://www.sussex.ac.uk/Users/nc81/bbcut2.html
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the system with a sequential K-means clustering algorithm
which doesn’t require a training phase, and classifies the
instances on the fly. This algorithm requires less process-
ing time, hence is a faster alternative when it comes to clas-
sifying data in real-time.

This paper is structured as follows. In Section 2, we
present an overview of the existing system, as well as the
system improved for real time. In Section 3, we evaluate
the improved system along with the existing system. First
we present a novel method, which allows us to systemati-
cally evaluate different levels of sound overlapping, which
are likely to occur in real-life situations. Additionally, we
evaluate both of the systems on a drum loops database. In
Section 4, we introduce a modular implementation of the
drum-transcription system, which can be easily modified
for multiple live setups. Section 5 concludes this paper.

2. METHOD

2.1 Overview Of The Existing System

The existing transcription system, as described in [12], works
with real-time stereo audio, sampled at 44100 Hz, and is
implemented in Pure Data and Max MSP. The architecture
of the system is depicted in Figure 1.

The algorithm uses a high frequency content onset detec-
tion stage to detect global onset candidates for the BD, SD
and HH classes. For each detect event, it extracts three
feature vectors, in the BD, SD, and HH frequency bands.
These bands have fixed cutoff frequencies determined em-
pirically: for BD we have a low-pass filter at 90 Hz, for SD
we have a band-pass filter at 280 Hz with 20 Hz bandwidth,
and for HH we have a high-pass filter at 9000 Hz.

The features are extracted over 10 overlapping frames of
size 43 ms. The feature vectors are averaged with the en-
ergy in each frame. The salient part for extracting the fea-
tures is 132 ms after the onset detection, but can be as small
as 54 ms, if a new event comes earlier.

An instance filtering (IF) stage, for each of the BD, SD,
and HH, comes next and filters the event candidates. The
filtered event candidates are then fed to three KNN classi-
fiers. The IF stage deploys a second onset detection stage,
with higher frequency resolution in each of the BD, SD and
HH frequency bands. Because for this stage we use a larger
window size (1024 samples, 23.2 ms) and hop size (256
samples, 5.8 ms), thus there is better spectral discrimina-
tion, the IF is more efficient at filtering instances. The eval-
uation shows that the IF stage increases the performance of
the existing system.

2.2 Improving The Existing System For Real-Time

There are three major improvements on the original sys-
tem, which increase the real-time performance, and which
are explained in this Section.

First, using separate onset detectors is a better solution
when detecting class specific onsets because we are able to
control the parameters of each onset detector separately.

Secondly, the system can give an output at any time, rather
than waiting a response from the classifier. This is partic-
ulary useful when the interval between consecutive events

Figure 1: Comparison of the existing architecture (A), and
the architecture improved for real-time (B), regarding the
minimum response time

is smaller than the time to compute features or perform the
IF. Additionally, during feature extraction, we do not take
10 overlapping 43 ms frames, but just one.

Thirdly, we use a sequential K-means clustering algo-
rithm which is faster than the KNN classifier in a real-time
situation [13, p 210].

2.2.1 Event Detection

Because the global onset detection can overdetect events
for a class and misdetect for others, we propose an alter-
native to this system, using separate onset detectors than a
single global one. By these means, it is less rather to have
an overlapping situation since the event candidates are de-
tected separately.

This fast onset detector uses a window size of 512 sam-
ples (11.6 ms) and hop size 128 samples (2.9 ms). Using
such a small window does not yield a good enough fre-
quency resolution to correctly separate between BD and
SD. Moreover, the attack of the BD occurs at a higher fre-
quency than the decay, and roughly in the same frequency
band as the SD. Thus, we use a single complex onset detec-
tor in the SD band, 280 Hz with 20 Hz bandwidth, which
captures the attacks of the BD and SD. We keep the high
frequency onset for HH, since this type of drum has signif-
icant high frequency content.

2.2.2 Architecture

The architectures of the exiting system and of the one im-
proved for real-time are portrayed in Figure 1, with respect
to real-time constraints.

First, regarding the response time, the existing system can
give a response in “maximum” of 143 ms. Because we
need to give an answer as fast as possible, we extract fea-
tures in a single window of 43 ms, instead of taking 10
overlapping frames. Thus, the improved system will give a
response in maximum 54 ms: 11 ms, the time to detect an
onset, plus 43 ms, the time needed to extract the features.

Secondly, the existing system has a “minimum” time re-
sponse of 54 ms, the time needed to compute the features
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for the first window. Therefore, when a new onset occurs
in the interval [0-54] ms, the analysis for the current event
stops and the current event is missed. Thus, the existing
system can not deal with situations when an event occurs
earlier than 54 ms, and it misses events.

In the improved version, we would rather have an answer
from the system rather than failing to detect events. If a
new event occurs between 11 ms and 22 ms, then the sys-
tem stops the current analysis, and offers the detected on-
set as an output. Similarly, if another onset is received
between 22 ms and 54 ms, the system stops the current
analysis, and offers as output the event filtered by IF stage.
Thus, we reduced the minimum response time to 11 ms,
the time needed to detect an onset.

In this way, the improved version deals properly with
cases where the interval between two consecutive events is
lower than the time needed to compute onsets or features.

2.2.3 Sequential K-Means Clustering

The existing system uses a binary KNN classifier for each
BD, SD, and HH, in order to assign a class to each fea-
ture vector. Each instance is classified as member or non-
member of the BD, SD and HH class.

The real-time performance of the classification algorithm
depends on the number of points trained p. In this case,
during the classification, finding the nearest neighbor takes
O(pn) time [13, p 210]. A faster alternative would be to
have an algorithm which learns from the data gradually,
rather than storing a database of learned instances. The
sequential K-means clustering allows updating the centers
of the clusters as new data points arrive. The time needed
to classify an instance is O(2n), assuming that we have
two clusters. Thus, we obtain a faster, more real-time re-
sponse by using the online K-means clustering rather than
the KNN classifier.

The algorithm, as presented in [14], starts with the initial-
ization of the initial means mk, where k is the number of
clusters. Having a new instance x, a distance is computed
from x to each mean of each cluster. The closest cluster
i is picked and its mean is updated with thew newly clas-
sified value mi = mi +

1
ni
∗ (x − mi) , where ni is the

number of the instances in a class. A “forgetful” K-means
assumes replacing the counts 1

ni
with a constant 1

a , and,
thus, forgetting the older means by giving more weight to
the recent instances.

We have three sequential k-means binary classifiers which
can start with initial random means or can be initialized.
Because we have binary classifiers, looking for either BD,
SD, and HH, we initialize them with the features extracted
from white noise filtered in the corresponding bands for
BD, SD and HH. The parameters of the filters are as fol-
lows: the cutoff frequency for the low-pass filter is at 90
Hz, for the band-pass filter at 280 Hz with 20 Hz band-
width, and for the high-pass filter at 7000 Hz. Because we
are using a common onset detector for the BD and SD,
both of the corresponding classifiers are initialized with
white noise in BD and a SD bands. The HH classifier is
initialized with white noise in HH and a SD bands.

3. EVALUATION

In Section 3.1, we present a novel method of evaluation
for a drum transcription system by systematically analyz-
ing the overlapping between events. We evaluate the ex-
isting architecture, and the one improved for real-time on
the overlapping sounds database. Then, in Section 3.2, we
test both of the architectures on the original drum loops
database presented in [12]. Finally, we compare the perfor-
mance of the k-means classifier with the one of the KNN
classifier.

The evaluation window gives the maximum time devia-
tion of a detected onset from the actual event. Because we
impose real-time constraints, we set the size of the window
to 18 ms, hence smaller than 35 ms, the one used in [12].
We analyze the consequences of choosing a smaller win-
dow size in Section 3.2.

The evaluation metrics, F-measure, F , precision, p, and
recall, r, are described in [13, p 270]. Because we want
to see distribution of precision across the BD, SD, and HH
classes, we plot the 1 − p value instead of p. If this value
is closer to 1, then the algorithm detects a high number of
incorrect instances.

3.1 Drum Sounds Overlapping Analysis

Live performances are different from simple drum loops in
terms of varying amplitudes and event displacement. We
want to determine in which ways the existing transcription
system described in [12] can be improved for real-time sit-
uations.

Furthermore, when building our system, we do not wish
to make any assumptions about the metrical positions for
any of the drum classes. We want to analyze every possible
case. Thus, we build a database which contains systematic
overlapping between BD, SD, or HH events. This database
allows us to detect possible problems with our algorithm,
when facing various situations that often appear in drum
performances.

Moreover, the database is generated with sounds from a
single drum kit. We are not using other drum kits because
the only variable we want to analyze with this database is
the sound overlapping. For the same reason, the effect of
using the k-means classifier will be evaluated separately in
Section 3.2.2. Therefore, we are using a KNN classifier for
both of the evaluated systems.

Fewer instances in a KNN model result in faster perfor-
mance [13, p 208] . In order to have a faster answer from
the KNN classifier, we reduced the number of the training
instances to 373, compared to 884 in [12], by removing
different loudness excerpts when the sounds have the same
timbre.

3.1.1 Database

We introduce a database made of different overlapping lev-
els between various combinations of BD, SD and HH. Let
C = {BD,SD,HH} be an event with a duration of 100
ms. For each permutation of three C, we generate one file
with a different interval between the events. Thus, we have
a combination of events Ei(a, b, c), where a, b, c ∈ C =
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Figure 2: Two cases of overlapping sounds , i = 0 and
i = −50

Figure 3: The original architecture, used in [12], tested
with the overlapping sounds database

{BD,SD,HH}, and i ∈ {−90,−70,−50,−30,−20,
−10, 0, 10, 20, 30, 50, 70, 90, 120}. For i = 0 an event
starts where a previous event ends. For i < 0 the events
overlap with i ms. For i > 0 there is no overlapping be-
tween events. An example of two situations is represented
in Figure 2.

The database contains 210 MIDI files and the correspond-
ing audio files, having nine events per file, in different
combinations. The audio for the evaluation part is gen-
erated using Timidity++ 3 , by rendering midi drum loops
from different genres, through a single drum kit.

3.1.2 Existing System Evaluation

Evaluating the existing system proposed in [12] , on this
sound overlapping database, allows us to systematically
analyze the behavior of the system along different vari-
ables. For instance, we can look at how the system per-
forms when we have audio made of a single class of sounds,
a combination of two sounds, or a combination of three
different sounds. Furthermore, by comparing the perfor-
mance on different overlapping levels, we can tell how well
the system reacts in real-time.

The performance of the existing system when testing it
on the overlapping sounds database is depicted in Figure
3. The system has few errors when sounds are not overlap-
ping, i > 0. On the other hand, events are missed when

3 http://timidity.sourceforge.net/

Figure 4: Results for testing the improved architecture
with IF on the systematic sound overlapping database

sounds are overlapping, i < 0 , even if the recall for on-
set detection is greater than 0.9 across all classes and delay
times.

Furthermore, we can find important information about
the system by analyzing the 1 − p distribution across all
drum classes. For instance, we can tell that some events
are wrongly classified as snares when we have hi-hats in
audio. Moreover, there are few false positives in the -90
ms delay times because the interval between the two on-
sets, 10ms, is lower than the time resolution of the onset
detection function. Thus, the onsets are detected simulta-
neously.

3.1.3 Real-time Architecture Evaluation

We tested the improved architecture, with the IF stage, on
the overlapping sounds database. The results are presented
in Figure 4. There is clear an improvement, in rejecting
wrongly classified instances, and decreasing the number
of the events missed.

The number of false positives significantly drops, espe-
cially for -50 ms delay time, when the system does not
have the necessary time to compute the first feature win-
dow and classify the event. In this case, the interval be-
tween two consecutive events is 50 ms, and the minimum
time to compute the features is 56 ms. For the -70 ms de-
lay time, the interval between two consecutive events is 30
ms, and the algorithm exits with the output of the fast onset
detector, because the IF stage needs 35 ms for processing.
Finally, for event delay values of -90 ms, the interval is 10
ms, lower than the time needed to compute an actual fast
onset, thus a lot of events are missed. In Figure 4, this
yields a low value for recall.

3.2 Evaluation On The Drum Loops Database

The existing system [12] was originally tested on a drum
loops database, comprising 177 drum loops, from different
genres, at different tempi, and generated with 50 drum kits.
First, we test the improved and the existing systems on this
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18 ms window 35 ms window
F p r F p r

BD OG 0.76 0.88 0.67 0.81 0.93 0.71
BD RT 0.81 0.88 0.75 0.87 0.94 0.81
BD RTv 0.55 0.58 0.52 0.89 0.95 0.83
SD OG 0.74 0.85 0.66 0.78 0.88 0.69
SD RT 0.81 0.89 0.75 0.82 0.91 0.76
HH OG 0.77 0.90 0.67 0.81 0.93 0.71
HH RT 0.78 0.89 0.69 0.81 0.93 0.72

Table 1: The results of the original system (OG), and the
improved systems (RT) with respect to the size of the eval-
uation window

database, by discussing the consequences of a smaller eval-
uation window, which imposes more real-time constraints.
Secondly, we evaluate the k-means clustering method.

3.2.1 Evaluation Window Constraints

In [12], the size of the evaluation window was 35 ms, which
is enough to capture all onsets, but not adjusted to the real-
time constraints. Therefore, we want to see the if we can
reduce this window to 18 ms, approximately half of the
original size. We test the improved system (RT), along
with the original architecture (OG), on the original drum
loops database presented in [12], with window sizes of 18
ms and 35 ms. Furthermore, we test the hypothesis of us-
ing a separate onset detector for BD (RTv), which detects
complex onsets below 90 Hz. We show that using a sin-
gle onset detector for BD and SD is a better option, when
dealing with real-time constraints.

As we mentioned in Section 2.2, because the attack of
the BD occurs roughly in the same frequency band as the
attack of SD, there is no reason to use separate onset de-
tectors for BD and SD. This hypothesis is supported by the
results in Table 1, when comparing the BD RT, the system
with a common onset detector, with BD RTv, the system
with separate onset detectors for BD and SD. There is a
significant drop of performance when looking for the BD
onsets in time intervals smaller than 18 ms. In the case of
BD RTv, most of the correct BD events are detected in the
[18-35] ms interval, on the decay of the sound, rather than
on the attack.

Furthermore, the performance does not drop significantly
for SD and HH, when comparing the OG and the RT sys-
tems across different window sizes. The onsets for the BD
class are better detected in larger time span. As we showed
above, this can be explained by the acoustic features of this
drum.

3.2.2 Evaluation Of The Classification Method

We compare the performance of the system using a sequen-
tial K-means clustering algorithm (KM), with the one us-
ing a KNN classifier (KNN).

First we transcribe every file sequentially. This configu-
ration is called KM ALL. The system learns continuously,
as the means for each class are updated correspondingly
when a new instance is classified.

Figure 5: Comparison of the system using a KNN classi-
fier (KNN), with the same system using the sequential K-
means clustering (KM), in different configurations. ALL is
running all all files through the K-means, EACH is reset-
ting the K-means clustering before transcribing each file.
Then we test the “forgetful” K-means configuration for dif-
ferent values of a

Secondly, in a real-life situation one has to use the se-
quential classification to detect the drum events performed
with a single drum kit. We want to know how a sequential
classifier performs regardless of the previous file. Thus we
reset the K-means classifier each time a new file is tran-
scribed. This configuration is called KM EACH.

Thirdly, we analyze the case of the “forgetful” K-means,
as described in Section 2.2.3, and the influence of the con-
stant a on the performance. We want to see how giving
more weight to the recent instances affects the results. We
assign several values for a ∈ {10, 20, 50, 130, 200}.

The results are presented in Figure 5. Using the K-means
clustering algorithm gives better results than the KNN, when
classifying BD. The F-measure is 4% higher for the KM.
The results for the SD are lower with 3%, since other drums
as toms occur in the same frequency band, thus classifying
this type of drum requires some apriori knowledge about
the spectrum of the sound. The results for the HH are sim-
ilar for both of the KNN and KM. Additionally, resetting
the K-means for each file KM EACH, does not decrease
the performance.

Regarding the influence of the parameter a, the perfor-
mance of the BD classifier is constant, regardless of the
values of a. For the SD, the F measure shows that we need
at least a = 20 instances for a good performance, but we
get the highest value for a = 130. This happens because
the SD needs to separate between many classes of events,
including toms, thus it requires some long-term learning,
rather than using the most recent instances. Furthermore,
the HH class as well requires at least a = 20.

4. IMPLEMENTATION

The implementation of the transcription system can be down-
loaded as open-source from the Github repositories for Pure
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Data 4 and Max MSP 5 .
Users can choose from already built transcription patches

or decide to built a new one. They can patch together dif-
ferent versions of the main modules: onset detection, fea-
ture computation, and classification. In this way, they can
choose from different versions of the algorithm presented
in this paper. For instance, they can use KNN classifier, or
the sequential K-means. In the same way, the BD, SD and
HH parts can use separate or common onset detectors, and
different resolutions for the feature computation.

5. CONCLUSIONS

In this paper we proposed an audio drum transcription sys-
tem improved for real-time performance. Additionally, we
presented a novel evaluation which allowed us to system-
atically analyze the overlapping level between sounds. We
discussed the problems of an existing causal drum tran-
scription system, when facing real-time audio drum per-
formances, and we proposed several improvements.

The evaluation shows that the improved system achieves
better performance when dealing with different situations
of overlapping sounds, which can occur frequently in real-
life drum performances. Furthermore, the improved sys-
tem achieves better performance than the original when
tested on a drum loops database.

Finally, we proposed a “do-it-yourself” implementation
in Pure Data and MaxMSP, which allows non-experts to
build and customize their own drum transcription systems.
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ABSTRACT

A model is presented for representing and generating
piano performance. The model has far fewer parameters
than the number of notes. This model explicitly addresses
one of the fundamental characteristic of music perfor-
mance that different areas in a performance have very dif-
ferent kinds of objectives or strategies that are employed.
A graphical model is introduced to represent the evolution
of the discrete strategies and tempo and dynamic progres-
sion. We design interactive procedures that allow users to
modify the model intuitively. An algorithm is described to
estimate parameters from partial performances that repre-
sent the skeleton of the music. Experiments are presented
on the two-piano version of Rhapsody in Blue by George
Gershwin.

1. INTRODUCTION

Music performance is an indispensable link in the chain
connecting composer and listener. Performers use their
skills, passions, expressions and desires to bring the mu-
sic to life. Musicians have been serving this honored role
for centuries. With the rapid development of computer
technology, a growing interest appears over the role of the
computer in this process. We propose an attempt to struc-
ture the problem. Although the idea could be generalized
to many types of music, this work concerns itself in the
context of Western classical music.

Musical performance usually does not have as many pa-
rameters to it as there are notes in a piece. We believe
a performance is much lower dimensional than the note-
by-note detail level (e.g. the parameters used in MIDI).
Most notes are not acting independently, they are guided
by higher-level notions or “inner motion” [1, 2]. There are
usually strong correlations within a group of notes. This
higher-level notion fits how musicians think of and com-
municate about music.

Many works have been done for modeling piano perfor-
mances. While some [3–5] focus on providing methods
of performance analysis, we want to design a performance
model that is aiming for reproducing, modifying and cre-
ating expressive performances. Thus, it is not necessary
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for our model to have an understanding of musical struc-
tures that are often described by musicians. Rather, we
seek a mathematical model to represent performance with
a higher-level notion that can adapt to most situations. The
model will consist of discrete states that describe different
performance behaviors and continuous variables that de-
scribe tempo, timing and dynamic details of the different
states.

Applications of such a generative performance models
are numerous. One of the motivations of this work is to
provide an easier way for more people to perform music,
though the model could be applied broadly.

While almost all of us enjoy listening to music, being able
to play music is also a very rewarding experience. How-
ever, it is not as easy to perform as to listen. To fill the gap
between musical ideas and performance, musicians usually
spend decades learning, developing, practicing and refin-
ing their techniques. Take piano as an example, the tech-
nique includes how to hit the correct notes at correct times,
how to balance the volume within a group of notes, how
to figure out the fingering etc. To make it even harder, a
pianist once exaggerated, “It is not considered ready for
a pianist to be able to play something right, you need to
play everything 10 out of 10 times right to be ready for
a performance.” As a result, non-professionals can hardly
enjoy performing music that requires certain level of tech-
nique to play. This left us singing, humming, describing
and roughly playing to express and exchange our musi-
cal ideas. These methods are not ideal, but they require
much less skill. iPad apps that allow one to play compli-
cated music just by tapping the screen also gain a lot of
attention recently including the million sold app “magic
piano” [6]. These apps fulfilled people’s needs to play but
they don’t allow much expressive control from the individ-
ual. Practicing still seems to be the only way towards good
expressive performance. But it is fair to say some parts of
practicing are quite “mechanical”. It would be great if we
can have a performance model that will always generate
correct notes and reasonable correlation among them, but
still capable of being expressive. We attempt to use such
model to ease the process of practicing and hope to bring
the joy of performing to more people. Our goal is to cre-
ate a complete performance based on music ideas in few
simple and incomplete reductions played by an user.

As a sub-problem, the question of how to systematically
change a digital performance meaningfully can find a pos-
sible solution using our performance model. For a very
long time, the only way to create an expressive perfor-
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mance digitally is having someone perform on an elec-
tronic instrument and record it directly. In this case often
we may have a decent performance recorded with some
parts of the performance unsatisfying. The only thing we
could do to improve such performance is to “tweak” pa-
rameters at the individual note level and hope some com-
binations might work. This is clearly an unnatural and
unmusical way to modify an expressive performance. It
would be better to operate on a higher-level representa-
tion of the interpretation such as our proposed performance
model that understands the notion of gestures and phrases.
For instance, when we modify the timing or dynamic of a
single note, some other parameters must compensate to re-
tain a musical sense as specified in the performance model.
Score-writing and MIDI-creating program are two of the
obvious examples that could benefit from this method.

Such a method for creating performances could be con-
sidered as a special example of the expressive rendering
problem. The rendering problem comes with growing in-
terest in generating performances that can match the level
of trained musicians along with the development of the
computer technology. The existing rendering systems are
mostly rule-based or case-based. Some systems include
extracting and applying rules with parameters [7, 8], while
others take advantages of statistical model that can learn
from a large dataset and generate predictions for new per-
formances based on similar music context from the dataset
[9, 10].

While building an artificial performer from scratch could
be very difficult [7, 8], creating expressive performance
from a performance model can be an easier task to address.
Although it is less ambitious, we think this approach has its
own advantages. The first advantage of our performance
model is that it is much lower dimensional than the MIDI
performances. Hence it is easier to estimate our model pa-
rameters than to estimate all the details for every note. The
second is that we can use such a performance model in an
interactive system that can learn and improve from more
specified inputs. Our model is not an answer to the orig-
inal rendering problem since it may require many explicit
information from human input. But it is capable of render-
ing expressive music without a professional performer.

A musically meaningful model of performance can also
be used as a visualization tool. It is often an interesting
experience for musicians to listen to a recording of them-
selves. As a listener, one has a different perspective and
judges the performance more objectively. However, lis-
tening to a recording is time consuming, and we can only
access a small amount of information at one time. Our
model can be used to visualize rhythmic interpretation in
a discrete way, so musicians can see and explore an entire
performance at once. Furthermore, such visualization can
also be used to compare different performances, so it will
be easier for musicians to compare with other players.

Another possible application of such model is in creating
an accompaniment system. A traditional accompaniment
system seeks to create a flexible accompaniment to a live
soloist that follows the player [11–13]. It could be useful in
many music collaboration scenarios. Most Western classi-

cal music involves a collection of instruments. So activities
such as practice, rehearsal and performance require multi-
ple people to coordinate time and space with one another.
A computer music accompanist could provide an alterna-
tive solution. A musician would practice with such a com-
puter system when it is difficult to arrange a real rehearsal.
This will be a better experience than practicing alone since
a more realistic music context is provided. For amateurs
and young students, such a system may enable them to play
certain music in a complete form which would otherwise
be impossible, making the musical experience more acces-
sible and enjoyable. The accompaniment problem can be
considered as an estimation problem for the performance
model with an incomplete performance (e.g. a single in-
strument from an ensemble).

We present a mathematical model in section 2. There
is a large literature on models that combine discrete state
variables with Gaussian variables in fields such as eco-
nomics, medical science and control engineering [14–17].
These models are known alternately as Markov jump pro-
cess, hybrid models, state-space models with switching
and switching Kalman filter. We think this type of model
suits our purpose of creating a model for a piano perfor-
mance. An interactive process that uses user input to com-
plete the model is presented in section 3. Experiments are
demonstrated in section 4.

2. THE MODEL

We only consider piano music in this work. Thus, a pi-
ano roll type of representation is most suitable here. A
music score is represented as a series of music notes r =
{r1, r2, ..., rN}. Where rn = {pn, bn, vn, tn, dn, sn}. pn
indicates the pitch of note rn. bn indicates the music time
of note rn and is expressed in terms of measure and beat.
vn is the MIDI velocity of rn that describes the volume.
It is a integer number between 1 and 127. tn denotes the
performed onset time of note rn and is expressed in terms
of seconds. dn describes the duration of note rn in terms
of seconds. sn is the discrete state associated with the
note. The possible discretes states are described by the
set Σ = {α1, α2, α3, α4} which indicate different tempo
behaviors.

Although piano music is often polyphonic and has many
voices, we start with a simpler case first. If a part or a
voice is monophonic, we introduce a switching Kalman
filter model.

One of the most important ideas of our model is the dis-
crete states. Here is a brief explanation of the meaning of
the 4 states. α1: constant speed – represents the scenario
where the performer plays in a steady rhythm; α2: slowing
down– represents a section of music where the performer
gradually slows down; α3: speeding up– represents a sec-
tion of music where the performer gradually speeds up; α4:
stress – This is a common technique to make an emphasis
of a certain note by taking a little extra time before play-
ing that note. The time variables are modeled differently
in each different discrete state setup.

The mathematical definition of timing and tempo behav-
iors in the 4 discrete states are:

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

409



α1. constant speed
If for a segment where sl = sl+1 = ... = sm = α1,

we set the tempo o (measured in seconds per beat) to be
constant

tk+1 = tk + (bk+1 − bk)× o

for k = l, ..,m with an initial o ∼ N(µo, σ
2
o) with an un-

known mean µo that is only effective in this segment.

α2. slowing down
If for a segment where sl = sl+1 = ... = sm = α2,

the tempo inherited from last section o = (tl− tl−1)/(bl−
bl−1) is increasing with a constant unknown rate a ∼ N(µa, σ

2
a)

that applies only to this segment:

tk+1 = tk + (bk+1 − bk)× (o+ (bk+1 − bl)× a)

for k = l, ..,m.

α3. speeding up
If for a segment where sl = sl+1 = ... = sm = α3,

similar to α2, o = (tl − tl−1)/(bl − bl−1) is increasing
with a constant unknown rate a ∼ N(µa, σ

2
a),

tk+1 = tk + (bk+1 − bk)× (o− (bk+1 − bl)× a)

for k = l, ..,m. a is also only relevant for this segment.

α4. stress
The stress state is modeled to only last for one note and

its previous and successor states must both be state α1. So
if sm−1 = α1, sm = α4, sm+1 = α1, o = (tm−1 −
tm−2)/(bm−1 − bm−2) ,

tm = tm−1 + (bm − bm+1)× o+ c

tm+1 = tm + (bm+1 − bm)× o

c ∼ N(µc, σ
2
ε ) is a variable relevant only for this note.

The sequence of the discrete state is modeled as a Markov
chain. Figure 1 shows the Markov model.

Figure 1. A Markov model showing possible transitions
between the discrete states.

The assumptions are: 1) The states can stay in either con-
stant speed state, slowing down state or speeding up state;
2) Before speeding up. there must be a slowing down pro-
cess; 3) before slowing down the performance must be in
constant speed and 4) the constraint for stress as mentioned
in its definition.

One of the main reasons we choose these assumptions
is that the state space of switching Kalman filter grows
exponentially with time [18]. Even with approximation
schemes, we want the number of possible state transitions
in our model to be as small as possible. We think the first
three states with enough transitions that can cycle through
them are capable of capturing most tempo behaviors. We
add the 4th state to have the ability to “remember” an in-
tended tempo after a single note tempo variation. We also
think these assumptions are suitable for capturing local
tempo behavior changes that are within few notes. For
large scale tempo behaviors such as an accelerando over
couple measures, our model can explain them with a com-
bination of several state changes.

The directed acyclic graph (DAG) of the graphical model
is represented in figure 2. The model has both discrete
and Gaussian variables. For every fixed configuration of
the discrete variables, the continuous variable have a multi-
variate Gaussian distribution. Thus, the s1, .., sN , t1, ..., tN
collectively have a conditional Gaussian distribution [19].

Figure 2. The DAG describing the dependency structure
of the time variables in monophonic case. Circles repre-
sent discrete variables while squares represent continuous
variables.

If a section of music contain polyphonic elements, we
can always categorize them into one of the following two
types. The first type is “chord”. A chord here means a
group of notes that should be played at the same time. We
model the time variables of such event in a straightforward
way – the time variables in a chord are exactly the same.

The second type is “multiple voices”. There are occa-
sionally notes that share a same music time belong to dif-
ferent voices (or even different instruments). As a result,
we shouldn’t assume they will be played at the same time.
In the case of more than one voice, we choose one of the
voices as the leading voice (usually the melody), which
operates exactly the same as the switching Kalman filter
in the monophonic case we introduced earlier. As for the
other voices, they are also similar switching Kalman filters
but subjected to constraint that the timing of certain notes
have to be the same with some notes in the leading voice.
These notes are called “anchor points”, the parameters of
the voices are independent if the timing of these anchor
points is given.

Figure 3 is an example of a section of music with many
chords and two voices.
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Figure 3. An excerpt and its DAG describing the depen-
dency structure of the time variables in polyphonic case.
Circles represent discrete variables while squares represent
continuous variables. Although the arrows from discrete
variables to continuous variables are omitted in the graph
for the sake of clarity, they are present in the actual model.

Figure 3 shows the dependency structure if we consider
the 1st and 5th groups (the 1st and 5th chords in bass clef)
of notes that share same music times to be the “anchor
points” while the 2nd-4th groups of notes are considered
to be in two voices.

At the first glance, specifying the “anchor points” could
be a complicated problem itself and require a lot of manual
labor. However, we will introduce an interactive process to
choose them semi-automatically in the next section.

Now let’s introduce the model for dynamic and duration.
Since we set them to be exactly the same, only dynamic
model is discussed here. The modeling assumption for
these two variables can be summarized as “if something
similar happened before, it will most likely act the same”.
Here is an example: figure 4 shows a music excerpt and
one of its possible dependency structure. We will intro-
duce how to construct the dependency structure in the next
section too.

The variables without a predecessor such as da1, da2, da3,
da4, db1, dc1 are modeled as independent. In this example
dbk = db1 + (dak − da1) for k = 2, 3, 4 ; dck = dc1 +
(dbk − db1) for k = 2, 3, 4 and so on. This model assumes
that the balance within a chord is fixed for this excerpt.

Here is another example: figure 5 shows a music excerpt
and it dynamic variables with dependency structure.

Again, the variables without a predecessor such as da1,
da2, da3, da4, db1, dc1 are modeled as independent. In this
example dbk = db1 + (dak − da1) for k = 2, 3, 4 ; dck =
dc1 + (dbk−db1) for k = 2, 3, 4 and so on. This model as-
sumes that similar short sections should have same relative
dynamics.

Figure 4. An excerpt and its DAG describing the depen-
dency structure of the dynamic variables.

Figure 5. An excerpt and its DAG describing the depen-
dency structure of the dynamic variables.

3. SYNTHESIZE PERFORMANCE

In the previous section, there is a very important missing
part that we are going to introduce now – how to con-
struct the dependency structures for timing, dynamic mod-
els. These structures are not specified by hand. Rather,
besides the hidden parameters, we use an algorithm to re-
trieve the structures from user input of incomplete perfor-
mances that represent the skeleton of the music.

Let’s look at an example of the idea first, figure 6 shows
the excerpt we want to play.

Figure 6. An excerpt from Rhapsody in Blue

Even a trained pianist needs quite some time to play this
excerpt fluently. But the music ideas behind this excerpt is
not so complicated. Here are two expected reductions for
our model from an user: 1) a theme as shown in figure 7 :

2) a rhythm voice on the left hand as shown in figure 8 :
Anyone with a little piano knowledge can play the two

parts shown in figure 7, 8 and play them expressively. Our
goal is to complete the performance in figure 6 – specify
the model and estimate the parameters – based on these
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Figure 7. The theme of the excerpt

Figure 8. The second voice of the excerpt

two reductions.
Here are the procedures:
1) Data preparation
We use MIDI file exported from a score writing program

as our starting point. Then we will have an user play the
reductions that are representative in terms of musical ideas
such as those shown in figure 7, 8.

2) Match the reductions to the score
This is a performance alignment problem – given a per-

formance and a score, we want to find out what and when
notes are being played. This can be achieved using Hidden
Markov Model (HMM) type of approach. [20] provided an
algorithm based on HMM to match a performance with a
large portion of missing notes (e.g. a reduction like we
have here) to the score.

3) Construct the timing model
The tasks of constructing the timing model are how to

divide voices and specifying the “anchor points”. Our as-
sumptions are: if there are multiple reductions being played
for a same excerpt and they have different rhythm struc-
tures, they are considered to belong to different voices (e.g.
if music shown in figure 7 and figure 8 are played sepa-
rately, they are considered to be in two voices); the notes
that are being played in multiple reductions are considered
to be the “anchor points” where voices meet (e.g. the low
notes in three chords in figure 7); the notes that are never
played in any reduction belong to the voice with closest
pitch. Although the last one is a naive assumption, it has a
chance of work because the hand of human can only cover
a small range of pitches.

4) Construct the dynamic model
The tasks of constructing the dynamic model are speci-

fying the independent notes and creating the dependency
structure. Our assumptions are: for notes that are being
played in any of the reductions, their dynamics are consid-
ered to be independent; for a group of consecutive notes
that are never being played in any of the reductions, they
depend on the nearest note played previously in the same
voice parsed in the last procedure; for this group of notes,
we search for the nearest played group of notes with the
exact same rhythm structure. If found, dependency rela-
tionships will be established as well. Figure 4 shows the
results of applying these assumptions to the first 4 chords
of reduction in figure 7.

Figure 4 and figure 5 are two examples that work well
with our assumptions. This works with many other cases
as well. But we acknowledge that there are also many cases

where these naive assumptions don’t apply well. Currently
we don’t have a general sophisticated parameter reduction
scheme for dynamics. So we simply treat notes in those
cases to be independent and require user to specify them.
We will work on automating this process without human
input in the near future.

5) Parse the discrete variables for timing model
After we have the voices divided, each voice can be con-

sidered a monophonic excerpt and will be modeled as a
switching Kalman filter introduced in section 2. Let T1, T2,
..., TN be the observed timings from reductions. We define
the data model for timing variables Tn = tn + εn where
εn ∼ N(µε, σ

2
ε ). We can address the problem as finding

the most likely configuration of both discrete variables and
continuous variables ŝ1, .., ŝN , t̂1, ..., ˆtN =

arg maxs1,..,sN ,t1,...,tN P (s1, .., sN , t1, ..., tN |T1, ..., Tn).
Then we can use the method known as the “beam search”

to compute the discrete variables that guide the timing vari-
ables [21].

Note:
At this point, we finally have the complete model. For

real world uses, we can manually refine the model structure
and improve the discrete variables without too much effort
to make the model more “realistic” since the model pro-
vides a lower dimensional structure that relates to how mu-
sicians talk about music. But for experimental purposes,
we’ll proceed with algorithmically generated model.

6) Estimating & computing the parameters
With the fixed discrete variables ŝ1, .., ŝN we obtained

in previous procedure, estimating t̂1, ..., ˆtN is a standard
smoothing problem for Kalman filter: t̂1, ..., ˆtN =

arg maxt1,...,tN P (t1, ..., tN |s1, .., sN , T1, ..., Tn). We can
use the recursive algorithm of Kalman filter to compute the
timing variables [22].

For dynamics, we treat v = (v1, v2, ..., vN ) as a ran-
dom vector where we observe a subset of the variables
{vk1 , vk2 ...}. Then we can compute the rest using the dy-
namic model we introduced in section 2.

4. EXPERIMENT

We choose the two piano version of Rhapsody in Blue by
American composer George Gershwin as our experiment
material. The MIDI score is exported from a score-written
program. In general, the data can be collected from any
reproducing piano or digital piano. We use a high qual-
ity hybrid piano AvantGrand N2 made by YAMAHA. The
reason we choose such an instrument is to ensure that the
reproduction will be exactly as performed. The piano key-
board is the same as YAMAHA C3 grand piano which pro-
vides the same touch of a real grand piano.

For demonstration of how the model works, we choose 3
excerpts from the piece and have an user play some reduc-
tions of these excerpts. The reductions represent the user’s
idea of the model structure which will be captured using
the methods described in section 3. There could be multi-
ple performances of a same reduction but we let the user
pick the best one. These examples can be heard at

https://dl.dropbox.com/u/6449856/Web/smc2013.html.
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The following table shows the number of timing and dy-
namic parameters in MIDI file, the reductions played by an
user and the result of our model for the three excerpts Ex1,
Ex2 and Ex3.

# of timing Parameters Ex1 Ex2 Ex3
MIDI 244 446 240
Played reductions 93 73 53
Our model 20 22 10

Table 1. The comparison of number of timing parameters
in MIDI file, the reductions and the result of our model

# of dynamic Parameters Ex1 Ex2 Ex3
MIDI 244 446 240
Played reductions 99 97 60
Our model 99 97 60

Table 2. The comparison of number of dynamic parame-
ters in MIDI file, the reductions and the result of our model

The examples show that with far fewer parameters than
the MIDI file as shown in the table, we still capture much
expressiveness from human input and use them to render
a complete expressive performance accordingly. Our tim-
ing model is capable of reducing the # of parameters in a
performance to 10% - 20% of those in MIDI files. With
further development, we are expecting a more advanced
dynamic model that can achieve a similar percentage.

5. DISCUSSION

This performance model definitely needs more develop-
ment. There are many assumptions made because of their
simplicity. It is also not the most intelligent model ei-
ther since it requires a lot of human-computer interaction.
However, this model makes an attempt to capture the low-
dimensional nature of music performances and creates a
framework for reproducing and synthesizing expressive per-
formance. This model explicitly addresses the way that
different areas in music performance have very different
kinds of objectives or strategies that are employed. This
is a fundamental characteristic of music performance that
has not been developed much. We try to make mathemat-
ical scientific sense out of this important aspect of perfor-
mance. The model along with procedures introduced in
section 3 provide a computer system that allows anyone
with some basic piano skills to play very technical pieces
such as the Rhapsody in Blue with their own music ideas.
The model also offers a platform for systematically chang-
ing a performance meaningfully and intuitively.

This is our first step towards a good performance model.
We believe there are many aspects that can be researched
and improved. The discrete states for timing model are
clearly something we can work on to make it better. Tempo
can progress quadratically instead of linearly. We are also
developing more sophisticated model for dynamics which
now is almost solely rely on human input. There are much

more dynamic relations among notes that wait for us to
explore.

Another possible follow-up for this model is accompani-
ment system. Our proposed model can be considered as an
offline version of accompaniment system. Since the goal of
an accompaniment system is essentially generating a com-
plete musical performance with partial performance data
that is played by one soloist. We hope with proper modifi-
cations, an online version of our model can be used as an
accompaniment system and play concerto type of music in
real time.

This model also opens a new way of approaching expres-
sive rendering problem. With this model, what we need
for constructing an expressive performance is the different
areas and few key numbers that represent the performing
strategy in those areas. Hence we have far fewer param-
eters to estimate. But of course for fine detail of perfor-
mance, the model may need to be more sophisticated than
simple linear ones.

We look forward to presenting more generally useful ap-
plications of the performance model framework as it de-
velops.
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ABSTRACT

Skalldans is an audiovisual improvisation framework for  
a solo laptop performer. The framework is an instrument 
for performance, developed in Max[2]. Sound and video 
syntheses are piloted with a MIDI interface, a camera, 
and a Wiimote; also, audiovisual streams influence each 
other. The present text discusses some of the hardware 
and software points of interest, for example, how audio 
and video syntheses are piloted, how the streams 
interact, and the camera tracking method with a linear 
regression stabiliser. It also touches upon the sources of 
inspiration for the piece. 

1. INTRODUCTION

Occasionally laptop performers, stony faces lit by the 
computer screen and secretive to the point of 
incredulity, seem to demand from the audience a willing 
suspension of disbelief (“is he really playing or is he on 
Facebook?”). Live coders showcase their creative 
innards, perhaps mixing in a live video of their hands 
pecking away at the keyboard. By and large, audiences 
at concert events are thrilled by the body language and 
facial expression of performers. In the context of 
computer music, I felt that one way to make my laptop 
act more interesting was to involve myself a bit more, 
and to use visuals. In late 2007, I had an accident: 
walked straight into a glass pane and went unconscious. 
The doctors decided to take a MRI scan to check if the 
cranium was cracked (apparently it wasn’t). The bash 
and the scan procedure were sonically amazing 
experiences. I was able to get a copy of the scan data, 
and thought that this must be used for a performance 
piece. Holbein’s famous painting The Ambassadors, an 
excerpt of which is shown in Figure 1, inspired a 

vanitas, a study of a skull to reflect upon the 
meaningless of life. Sculptures of Shiva Tandava 
suggested the idea of a dance with death (Figure 2).

Figure 1. Detail of The Ambassadors (Holbein, H. y., 
1533), showing the skewed image of a cranium.

2. HARDWARE-SOFTWARE

Skalldans has developed over a couple of years 
(2008-11), in different stages of software-hardware 
solutions, seeking to create a responsive hybrid 
instrument with a a ‘rich’ control [1]. The initial 
versions used a joystick to control the ‘dance’ of the 3D 
skull (see section 5, below). The problem was that this 
demanded at least one hand to be dedicated to piloting 
the visuals, which had the inconvenience of reducing the 
amount of control over audio. On one occasion, a 
second performer was engaged to control visuals only, 
but this was felt to be unsatisfactory. A solution was to 
mount a Wiimote onto a set of headphones, to capture  2 
axes of head orientation: pitch (nod) and yaw (left-right 
turn). The Wiimote was eventually hidden in a large cap. 

Figure 2. Shots from a performance of Skalldans at Open Ears Festival in Kortrijk, 2008, showing the ‘analog video 
delay’ and other visual effects. Photos by Finnbogir Péturson.
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In its current version, the performer sits on stage in front 
of the projection screen, which allows for video 
feedback effects. In addition to the physical gesture 
capture device, control is offered by a uc33e USB MIDI 
interface, which has 9 sliders and 24 knobs. Figure 3 
gives an overview of the flows of audio, video and 
control data in the framework. Processing is 
implemented in Max [2]. For reasons of portability, in 
particular to be able to run it on one computer only, 
syntheses are kept simple. 

Figure 3. Audio, video, and control data flows.

3. AUDIO SYNTHESIS

The audio synthesis is influenced by the aesthetics of 
genres such as noise music and drum’n’bass. Audio 
synthesis and mixing are controlled by 7 sliders and 17 
knobs on the uc33a interface. There are three 
instruments:

3.1. Drone

Two channels of additive synthesis, each with 32  
oscillators, create a bass drone. The performer can 
adjust fundamental frequency, (in-)harmonicity, 
randomise phases with a keyboard click, and introduce 
small frequency distortions unequally to right and left 
channels. Figure 4 shows the Max GUI.

Figure 4. Drones with slightly inharmonic partials, 
illustrated by the jagged contours. In the upper part  of 
the illustration is the Rhythm Choppers interface.

These parameters control the ‘hollowness’ of the sound 
and how much the stereophonic image is ‘floating’.

3.2. Coloured Noise

This instrument is created with subtractive synthesis of 
white noise. The skull video, down-sampled skull image 
yields data for two FFT filters: the left side of the image 
for the left-channel filter, and vice versa. See Figure 5. 
In parallel, there is a feedback-delay loop, to prolong the 
ringing of tones of ‘coloured noise’.

Figure 5. Skull image data are sampled and mapped to 
two FFT filters for the Noise instrument as well as for 
the Rhythm Choppers.

3.3. Rhythm

Two parallel ‘Reloopers’, wrapped around the 
“ModSquad” patcher [4], each take as input either the 
Drone, Coloured Noise, or a short percussion sample 
(Tanaka’s original “jongly”, the only non-synthesis 
element of the audio instrument). The Relooper is a step 
sequencer, a rhythm machine that cuts up and meshes 
audio according to a 16-step transfer function. In 
Skalldans, the transfer function is determined by the 
video. As with the FFT filters, each side of the skull 
video frame yields data for one audio channel. The skull 
image is mapped onto the cut’n’mesh transformation 
function from the centre line and towards the edge, i.e. 
the left side is read ‘backwards’. This means that the 
Relooper rhythms are similar just as the image is 
symmetric around the centre line. Since the skull will 
often be in the centre of the image, the first step of the 
Relooper will often include the actual downbeat of the 
input, for example, the sample’s kick drum.
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4. CAMERA TRACKING 

The built-in iSight camera of my MacBook Pro was 
used for camera tracking of the performer’s head 
position in 2 dimensions, left-right and up-down. The 
camera tracking method builds on frame differencing 
and ‘blob’ sorting [3]. Further, there is a linear 
regression method to improve the stability of tracking. 
The (x, y) positions of the ‘top 5 candidate blobs‘ from 
are compared with the predicted position based on the 5 
previous tracking frames, and the best match (smallest 
Euclidian distance) is picked. Figure 6 shows parts of 
the Max implementation. The system was developed for 
Walking Bach Slowly (2011), an interactive installation 
where 3 people were tracked simultaneously with one 
birds-eye camera and the system needed to be able to  
“lock on”, e.g. to distinguish targets crossing paths.

5. VIDEO SYNTHESIS

The MRI scan of my cranium was used to create a 3D 
object in Maya, adding appropriate smoothing, texturing 
and shading. In Max (Jitter), the 3D “skull” object is 
mixed together with concurrent video streams: the raw 
camera input, the “hairpin” of the tracked performer’s 
head, and the linear regression line, thus visualising the 
innards of the tracking method. Compositing effects are 
added in real-time.

5.1. Chromakeying and Sobel Outlining

This allows the skull to be mixed into the camera live 
input (treated or not). A central ‘poetic’ idea of the 
performance is to illustrate the struggle that the 
performer has to ‘fit’ the live head and the skull 
together. The Sobel outlining effect creates a thin outline 
based on connecting points of equal image contrast.  See 
Figure 7 for an example. This effect seems to suggest 
the idea of how fragile the cranium is. 

5.2. Compositing Effects and Video Delay

Basic VFX such as downsampling, compositing effects 
(cellwise multiplication, maximum, difference etc of 
two streams)  allow the performer to make the video 
flow more or less abstract. An analog video delay is 
created by tilting the computer screen upwards so that 
the camera input includes what is projected onto the 
screen behind the performer. See Figure 2 for an 
example.

 In earlier versions, the skull object could also be 
plastically transformed, e.g. flattened and stretched, 
much as in Holbein’s painting. However, this option was 
eventually taken out, because it was felt that such 
manipulations distracted from the more subtle control 
enabled by simply following - albeit sometimes 
imperfectly - the dancing movements of the performer’s 
head. Therefore, skull movement is now entirely piloted 
by the Wiimote and camera tracking, except for one 
slider to zoom in or out. All visual effects and mixing 
are piloted by 2 sliders and 4 knobs on the uc33e 
interface, and a few computer keys.

6. AUDIO-VISUAL INTERACTION

The skull video is downsampled, and greyscale values 
(alpha channel) of two rows are read into audio buffers, 
that will act as FFT-bin filters. The performer can select 
a portion of the lines that will function as amplitude 
modulators of the Noise and Drone instruments in order 
to ‘chop up’ a rhythm that may or may not be in synch 
with the Relooper rhythm machine. See Figure 5 above. 
A switch allows the audio of the Relooper to affect 
settings of the visual effects; when an amplitude 
threshold is crossed (hi-lo gate), a new preset is selected 
at random, and in this way, rhythmic alterations between 
VFXs follow those of the musical beat.

Figure 6. Linear regression prediction for blob tracking.
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7. PERFORMING SKALLDANS

Skalldans has been included in performances in 
Singapore (Choppa Festival 2008), Belgium (Happy 
Ears 2008), see Figure 2, and Iceland (Nordic Music 
Days 2011), a shot from which is shown in Figure 7. 
Because the framework is a rather complex audiovisual 
instrument and still in development, these performances 
have been varied in expression, but the improvisation 
outline (the “composition”, as it were) has followed 
roughly the same narrative: the first section focusses on 
noise and details of the rather mysterious skull object; 
the next section reveals that it is a cranium and it starts 
to dance; then more musical elements are added, i.e. the 
Drone, eventually with rhythmic chopping; a section 
follows where tempo picks up and the two other video 
streams (live, tracking) join, in various guises; at the 
opportune moment, the drum’n’bass takes off and video 
includes more colour; towards the end, rhythms tend to 
synchronise and simplify while the performer ‘live 
head’ fuses visually with the skull; video delay is 
introduced, the performer stands up and dances; before 
the whole audio-visual thing runs into a wall - or at 
least, this is the feeling that I wish to convey - and the 
performance ends.

 There would be little point in writing a score, and I 
prefer the piece to change from one occasion to the next. 
Perhaps this is the best antidote I can find to death, and 

to continue dancing. Parts of the framework, in 
particular VFX and live mixing of video, have gone into 
in Nosferatu Extemporations - The Ship (2012), a piece 
for computer and saxophone. More about this can be 
found on my webpages [5]. Future work on the 
Skalldans improvisation framework will attempt to 
further improve the head (and perhaps hand)  tracking 
with technologies such as Kinect and Leap, as well as 
more ways for interaction between the audio and video 
syntheses.
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Figure 7. Shot from a performance of Skalldans at Nordic Music Days festival in Reikjavijk 2011. Sobel outlining of the 
skull is clearly visible. Photo by Bonnie Right.

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

418

http://www.cycling74.com
http://www.cycling74.com
http://jmpelletier.com/cvjit/
http://jmpelletier.com/cvjit/
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html
http://www.permagnus.net/pm/artwork/multimedia/Skalldans/index.html


NETWORK MUSIC WITH MEDUSA: A COMPARISON OF TEMPO
ALIGNMENT IN EXISTING MIDI APIS

Flávio Luiz Schiavoni
Institute of Mathematics and Statistics

University of São Paulo
fls@ime.usp.br

Marcelo Queiroz
Institute of Mathematics and Statistics

University of São Paulo
mqz@ime.usp.br

Marcelo Wanderley
IDMIL/CIRMMT
McGill University

marcelo.wanderley@mcgill.ca

ABSTRACT

In network music, latency is a common issue and can be
caused by several factors. In this paper we present MIDI
network streaming with Medusa, a distributed music en-
vironment. To ease the network connection for the end
user, Medusa is implemented using different MIDI APIs:
Portmidi, ALSA MIDI and JACK MIDI. We present the in-
fluence of the MIDI API choice in the system latency and
jitter using the Medusa implementation.

1. INTRODUCTION

Network music tools can provide an easy way to facili-
tate cooperation and collaboration in music. Computer net-
works can be used to connect applications and devices in
live music performances, music recording sessions or re-
hearsals.

To integrate music tools, different data types can be trans-
mitted, such as audio and MIDI. Despite some criticism [1]
about the usage of MIDI in Digital Music Instruments,
MIDI continues to be popular because it is a standard pro-
tocol present in several applications and music devices.

In this paper we will present the network MIDI distribu-
tion using Medusa. Medusa is a distributed music environ-
ment that allows users to share audio and MIDI streams
through computer networks [2]. 1

Currently, different MIDI APIs can be used to imple-
ment a MIDI application in a Linux system, such as ALSA
MIDI, Portmidi and JACK MIDI. The Medusa MIDI im-
plementation recently started running on these APIs in or-
der to simplify integration of different tools over a com-
puter network. Moreover, different APIs can influence sys-
tem latency. In this paper we will present how these APIs
can be used and a pragmatic comparison of these APIs in
the Medusa implementation.

There are a few other related tools that allow realtime
network music content distribution. Netjack [3] is an inter-
nal JACK client in JACK2 that is monitored by JACK and
synchronized by JACK sample rate and JACK transport.
1 The source code of Medusa is available on the project website:
http://sourceforge.net/projects/medusa-audionet

Copyright: c©2013 Flávio Luiz Schiavoni et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

This tool runs over UDP/IP multicast using JACK MIDI
only, and allows redundancy in data transmission to avoid
glitches [4].

Other network music tools are similar but their music
content is limited to a specific musical data type. QmidiNet 2

is a network music tool that uses UDP/IP multicast to dis-
tribute MIDI streams. Jacktrip [5] and SoundJack [6] are
network music tools that use UDP/IP and provide audio
only music streams.

Another popular music data type used for device com-
munication in music is OSC [7]. OSC does not necessarily
pack MIDI or audio data and it is a network ready musical
protocol. For this reason, we will not discuss OSC in this
paper.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the MIDI protocol and presents the MIDI
APIs used to develop Medusa. Section 3 presents Medusa
and our proposed MIDI stream implementation. Section
4 presents measurements done with the Medusa MIDI im-
plementation over the previously explained MIDI APIs and
their results. Section 5 presents our conclusion and future
work.

2. WHY MIDI?

MIDI is one of the most widely-used standard protocols for
interconnecting electronic music devices. Proposed as a
unidirectional talker-listener network, MIDI was probably
the first music standard protocol that created possibilities
for music instrument networking [8].

The MIDI protocol facilitates integration between differ-
ent music applications and devices in a single computer.
Some reasons that motivated the development of MIDI in
Medusa are:

• The MIDI protocol enables using digital music in-
terfaces and synthesizers as an alternative or com-
plement to audio transmission channels by reducing
network bandwidth usage.

• MIDI messages can control several music devices
and equipment like mixers and software plugins.

• MIDI Machine Control (MMC) controls recorders
and provides messages that include Play, Fast For-
ward, Rewind, Stop, Pause, and Record.

2http://qmidinet.sourceforge.net/qmidinet-index.
html
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• MIDI Time Code (MTC) is a time protocol that can
be used to sync applications and devices such as loop-
ers and sequencers.

• MIDI Show Control (MSC) is a protocol developed
to control equipment in theaters, live performance,
multimedia installations and similar environments.

These messages can be used to sync and control MIDI ap-
plications and devices that are usually directly connected.
The usage of network MIDI streams can expand the con-
trol and integration possibilities of the MIDI protocol to
a network distributed sound-processing software/hardware
environment.

Different MIDI APIs help software developers to inte-
grate MIDI in music applications.

2.1 MIDI APIs

Initially Medusa was implemented with JACK MIDI only [2].
Since some applications do not implement a JACK MIDI
channel, two other MIDI APIs were integrated in Medusa:
ALSA MIDI and Portmidi.

Since a MIDI event is supposed to be delivered immedi-
ately, the MIDI protocol does not have time-tagging [9].
On the other hand, the MIDI APIs here discussed have
complements to the MIDI protocol that allow synchroniz-
ing different applications. How the application deals with
event sync is an important feature in order to achieve low
latency.

2.1.1 ALSA MIDI

ALSA, the Advanced Linux Sound Architecture, is the part
of the Linux kernel that provides support to USB and PCI
audio / MIDI devices. One of the basic components of
ALSA system is the device driver for sound equipment.

ALSA also provides an API for application development.
This API includes all the required features for developing
audio and MIDI applications that run over ALSA drivers.

ALSA provides two different MIDI event types for MIDI
application development: seq and raw. ALSA seq (se-
quencer) timestamps MIDI messages and monitors ALSA
MIDI software that is bypassed. ALSA raw just operates
MIDI drivers without timestamping.

In ALSA, all MIDI applications are mapped as virtual de-
vices and there is no significant difference between phys-
ical and virtual devices. Once the application has cre-
ated a virtual device, this port stream can be routed to
other devices through a port connection. Some applica-
tions can be used to manage MIDI connections in ALSA,
e.g. qjackctl 3 .

In ALSA seq MIDI, an event uses MIDI ticks for times-
tamping (a discrete time measure related to a track-specific
tempo). Other timestamp information is the relative note
time in seconds and nanoseconds.

2.1.2 Portmidi

Portmidi is part of Portmedia project, a cross-platform API
for music application development. This library supports

3 http://qjackctl.sourceforge.net/

real-time input and output of MIDI data and runs on Win-
dows, MacOS, and Linux [10].

Using Portmidi API, it is possible to list the MIDI de-
vices, physical or virtual, and present their input and output
ports.

Portmidi in Linux runs over ALSA, but differently from
ALSA MIDI it creates a data stream directly connected to a
MIDI device port. This port connection cannot be changed
or routed differently during the application execution.

In Portmidi, a MIDI event has a timestamp related to a
Portmidi internal clock time.

2.1.3 JACK MIDI

JACK (JACK Audio Connection Kit) is a real time low-
latency sound server that allows the creation of audio and
MIDI connections between applications that run on the
JACK API [3]. This sound server runs over different oper-
ating systems such as Linux, Windows and MacOS.

Like ALSA MIDI, JACK MIDI can be used to connect
JACK MIDI capable applications and route MIDI streams
between them. However, Jack MIDI does not access ALSA
MIDI hardware but only FFADO (firewire) MIDI hard-
ware.

Some software bridges, like a2jmidi / j2amidi 4 , can in-
terface Jack MIDI with ALSA MIDI devices in Linux sys-
tems. These applications are an alternative for connect-
ing ALSA MIDI hardware to JACK MIDI capable appli-
cations.

Regarding its performance, there is virtually no jitter in
JACK MIDI and it is sample accurate. JACK MIDI event
process runs with audio sample blocks and for that reason
the system latency can be tuned by adjusting JACK sample
rate and process block size.

JACK MIDI event has a timestamp concept that is not
directly associated with a time clock. It is associated with
the sample position in the audio block associated to this
MIDI event. For this reason, this concept of MIDI event
time depends on JACK audio block size and sample rate.

2.1.4 Theoretical comparison

Despite the fact that these APIs have different approaches
and features, we have grouped some of these features for a
theoretical comparison. A summary of this comparison is
presented in Table 1.

Feature ALSA MIDI Portmidi JACK
Multi-stream Yes No Yes
Cross-platform No Yes Yes
Virtual devices Yes Yes Yes
Multiples devices Yes No Yes
Multiple connections Yes No Yes
Hardware devices ALSA ALSA FFADO

Table 1. MIDI APIs theoretical comparison

ALSA and JACK are the default sound server + driver in
Linux audio context. Being complementary and not con-
current, the choice between one of these APIs depends on
the hardware and software involved. Portmidi in Linux is
4 http://home.gna.org/a2jmidid/
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implemented over ALSA MIDI and combines the possibil-
ity of a direct device connection and porting the application
to other operating systems.

3. MEDUSA

Medusa is a music network environment tool developed
to simplify multichannel audio and MIDI distribution in
computer networks. The Medusa development is divided
into two main lines: 1) a common library (libmedusa) that
contains the network connections, audio and MIDI pack
and transformation, and 2) some specific implementations
to connect libmedusa with different sound APIs [11].

The development is organized in a three layer architec-
ture, as depicted in Fig 1.

Figure 1. Medusa architecture

The Network layer is responsible for creating the net-
work connection and data transmission. Rather than using
only UDP for communication, Medusa implements differ-
ent network transport protocols, namely UDP [12], DCCP [13],
TCP [14] and SCTP [15]. Thus, the user can choose be-
tween a faster and unreliable protocol, namely UDP or
DCCP, or a slower and reliable protocol such as TCP or
SCTP. We grouped the protocol dependent implementa-
tions using two abstractions: a server that sends data to the
network and a client that receives data from the network.

The Control layer is responsible for data management,
data packing / unpacking, and data transformation. Medusa
has two main roles in this layer: sender and receiver. Thus,
a user can choose to provide a network resource as a sender
or to consume a networked resource as a receiver.

Different sounds APIs have different ways to play / cap-
ture audio or MIDI data and need special implementations.
The Sound layer is outside libmedusa and is responsible
for connecting Medusa to specific audio / MIDI systems.
For example, Pure Data uses its own object graphic in-
terface, and a LADSPA plugin has a particular GUI; the
sound layer puts together the sound API and the user ap-
plication interface.

3.1 Medusa data flow

To implement MIDI communication, we developed two
different data flows inside Medusa, one for audio and other
for MIDI, as presented in Fig. 2. While audio can be pro-
cessed, fragmented, converted from different sample rate,
bit depth and byte order, MIDI data flow packs the data

with meta-data to transmit it through the network. The au-
dio data flow converts the audio data to a common format.
With this feature, Medusa can interchange audio and MIDI
data between applications with different audio configura-
tions or be connected through different sound APIs.

Figure 2. Internal Audio and MIDI data flow

3.2 Medusa package

The Control layer packs the sound data for transmission.
This application package has additional meta-data that helps
Medusa management. A field in Medusa package iden-
tifies the data type (audio or MIDI) and the data chan-
nel number. The Medusa package header is presented in
Fig. 3.

Figure 3. Medusa Package

In addition to the data identification and channel address-
ing, the package contains a sequential number to verify
data loss, a timestamp to measure latency and synchroniza-
tion, and a key to separate Medusa data from some possible
network interference.

3.3 Medusa loopback channel

Every network socket is full duplex. Once we have sepa-
rated the sender and receiver roles, this socket feature was
used to implement a loopback channel.

The Medusa loopback channel allows senders and receivers
to measure network performance during data transmission.
When loopback mode is enabled, for every Medusa pack-
age sent by the server, the client will reply with a loop-
back message. The structure of a loopback message, as
presented in Fig. 4, adds two new fields to the Medusa
package. These fields represent the time when the client
received the data package and the time when the client
played the data from the package.

With this implementation it is possible to measure a net-
work performance in different stages: a) the sender adds
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Figure 4. Medusa Loopback Package

the sending timestamp when the data is ready to be sent; b)
when the receiver acquires the package, it creates a loop-
back package using the same packet header timestamped
with the receiving time; c) when the receiver plays the
package data it timestamps the loopback package and sends
it back to the sender; d) the sender returns all the loopback
information to a callback function including the time it was
received.

Thus, a Medusa application can implement a loopback
callback function to measure latency in different commu-
nication stages.

4. PRACTICAL PERFORMANCE
MEASUREMENT

Using Medusa loopback channel we can compare time per-
formance variations between Medusa implementations us-
ing the different MIDI APIs, thus verifying how the choice
of MIDI API influences system latency.

4.1 Measurement environment

To measure the system latency a MIDI sequencer was used
to produce note-on and note-off commands. We chose
Qmidiarp 5 for these tests because it is a MIDI sequencer
that runs over ALSA MIDI and JACK MIDI. Thus, we did
not need to run an extra software bridge to interface be-
tween different APIs.

We set the test loop time to 120 bpm playing two half
notes per bar, which means one note-on and one note-off
per second. The note duration was set to zero which should
result in one note-off event immediately following the note-
on. The test was done by executing the loop 1300 times
which lasted approximately 11 minutes.

We ran two Medusas in the same machine connected us-
ing localhost address. We decided to run these tests on
localhost because the sender and receiver can thus use the
same clock to timestamp the packages. The first Medusa
was sending the MIDI events generated by Qmidiarp and
receiving them back from the second instance which was
set up as a loopback channel.

Theoretically every note-on should be played one second
apart from the preceding and the succeeding note-on, the
same being true of each note-off. We will call this theo-
retical time “expected t(i)” and the actual time when each
event was measured “t(i)”. We assumed that the first event
would happen at time 0 and so all the other expected note
times are integer times relative to the first note. Since the
5 http://qmidiarp.sourceforge.net/

first note can also have some latency, we calculated the
minimum difference between all actual note times and cor-
responding expected note times, as presented in Eqn.1.

min t = |min(t(n)− expected t(n))| (1)

We calculated the latency as an average difference be-
tween the relative note time and the expected note time
adding the minimum latency to all values (Eqn. 2).

latency(∆t) =
1

n

n∑
i=1

(t(i)− expected t(i) + min t) (2)

The jitter was calculated as the mean latency deviation
(Eqn. 3).

jitter =
1

n

n∑
i=1

|rt(i)−∆t| (3)

We also measured the note-off time based on the average
difference between note-off and note-on (4).

∆Note off =
1

n

n∑
i=1

(note off(i) − note on(i)) (4)

4.2 Performance tests results

We calculated the system latency in 4 different stages: 1)
sender transmission time, 2) receiver acquiring time, 3) re-
ceiver playing time and 4) sender loopback receiving time,
as depicted in Table 2.

API Time 1 Time 2 Time 3 Time 4
ALSA MIDI 0.268 0.370 0.745 3.045
Portmidi 2.380 2.574 2.907 5.196
JACK MIDI 3.923 4.033 14.374 14.590

Table 2. Latency measurements (times in ms)

Since the latency varied during the performance, we also
calculated the latency deviation, or jitter, as presented in
Table 3.

API Time 1 Time 2 Time 3 Time 4
ALSA MIDI 0.284 0.295 0.674 1.939
Portmidi 0.609 0.936 0.937 2.016
JACK MIDI 2.749 3.950 2.748 2.759

Table 3. Jitter measurements (times in ms)

The average time difference between a note-on and a note-
off is presented in Table 4. This table also presents the
percentage of note-off events with the same time of the
note-on event and latency jitter.

4.3 Data analysis

The “Time 1” column in Table 2 and Table 3 presents the
latency and jitter in the server. This data represents how ac-
curately the API would play the notes locally. These tables
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API note-off jitter % of same time
ALSA MIDI 0.008 0.009 56%
Portmidi 0.033 0.046 49.5%
JACK MIDI 0.002 0.003 86%

Table 4. Note-off time and jitter (times in ms)

confirm that JACK is the biggest latency adder for play-
ing each note. The data do not confirm the JACK MIDI
theoretical features regarding event synchronization. An-
alyzing the chosen tool documentation, we observed that
Qmidiarp does not use JACK’s MIDI event sample align-
ment feature. We repeated the experiment with other MIDI
tools such as j2a, j2amidi bridge and Hydrogen, but since
they also do not implement this sample alignment feature,
they all present the same issue.

Some other tools implemented over JACK use it only for
audio streams, and use other APIs for MIDI connection;
examples of these tools are Pure Data, QTractor, RoseGar-
den and LMMS. Even if we had chosen one of these tools
to obtain a more precise MIDI event time, this accuracy
would be lost in the MIDI bridge between ALSA MIDI
and JACK MIDI. The only implementation/setup that pre-
sented MIDI event sample alignment with JACK was the
FFADO driver with a firewire sound interface.
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Figure 5. MIDI input latency (Time 1)

The result of the input measurement is depicted on Fig. 5.
In our experiment we noticed that every MIDI event in
JACK was aligned with the first sample of the block, which
explains why JACK latency looks like a sawtooth wave-
form.

In Fig. 5 the worst latency time of a MIDI event is 7.851 ms
with ALSA MIDI, 10.140 ms with JACK and 12.390 ms
with Portmidi.

Portmidi is just a wrapper for developing portable music
applications. In Linux, it runs over ALSA MIDI. Because
Portmidi uses ALSA MIDI through a wrapper interface,
it is predictable that ALSA MIDI performance would ex-
ceed Portmidi. In spite of ALSA’s better outcome, its im-
plementation is not portable and can not be used in other
operating systems.

The second column, “Time 2”, presents the time that Medusa
spent to send the event from the server to the receiver. Sub-
tracting Time 1 from “Time 2”, Medusa latency is between

0.1 ms and 0.2 ms for every API. Since we are running on
the localhost, this time can be understood as the time that
the system spends to pack the MIDI data, copy the data
to the kernel space, copy it back to user space and finally
unpack the data. Medusa transmission time can be consid-
ered small if compared with the API latencies.

The third measured latency is the receiver playing time
(“Time 3”), presented in Fig.6. Again, JACK performance
can be understood as a simplistic implementation of JACK
MIDI sync. Moreover, JACK default is to sync MIDI events
with audio blocks and because of this the JACK configu-
ration influences MIDI latency. In our tests, JACK was
configured with 48Khz sample rate and a block size of 512
samples, meaning that every JACK block is about 10.67ms
long. Since Medusa is not implemented as a JACK inter-
nal client, all received data has to wait for the next JACK
block to be executed. At this stage, ALSA MIDI and Port-
midi latency is very close.
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Figure 6. MIDI output latency

The last latency measured, “Time 4”, is the loopback
time. Since the Medusa loopback package is bigger than
a Medusa MIDI package, the time to receive a loopback
message is bigger than the time to receive a MIDI mes-
sage. These data show that a round trip time to send both
MIDI data and a loopback package is not simply twice the
time to send a package. Furthermore, the loopback time
in Medusa also includes the time to process the data in the
receiver.

The note-off time, presented in Table 4, can be interpreted
as how fast an API responds to two MIDI events occurring
at the same time. Knowing that the application was pro-
grammed to send a note-on and a note-off at the same time,
the way the application reads these events defines how syn-
chronized the events really are. Since JACK aligns both
events with the same sample, it will always be more precise
having the majority of events occurring simultaneously.

5. CONCLUSIONS

In this paper we presented the Medusa MIDI implementa-
tion using different MIDI APIs. We presented these API’s
features and some theoretical comparisons between them.
We also presented the Medusa architecture and how this
tool can be used to obtain feedback about the data trans-
mission. We used the Medusa loopback channel and a
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MIDI sequencer to measure the latency in a network ses-
sion.

Regardless of the best time synchronization advertised by
JACK MIDI, in our measurements we discovered that the
majority of JACK MIDI applications do not use the event
synchronization features present in this API. In our tests,
the JACK MIDI sync feature was present only in a firewire
MIDI interface driver. Unfortunately, several MIDI inter-
faces use a USB connection and are available in Linux
only by ALSA API. Future work should include propos-
ing a better implementation for JACK MIDI applications
concerning the JACK MIDI event sample alignment.

In the latency tests, ALSA MIDI presented the best la-
tency performance. Unfortunately this API exists exclu-
sively for Linux and its implementation cannot be ported
to other operating systems.

Portmidi is a portable API and a solution for porting Medusa
to other operating systems. Portmidi creates a wrapper to
the operating system’s native API and helps developers in
creating portable music applications. Future work includes
testing Portmidi performance in other operating systems.

Our experiments also presented how the different stages
of network communication influence latency. Another im-
portant result was to verify that round trip time does not
reflect directly the time between the data capture in the
sender and the data playing in the receiver.

Since each MIDI API has a different approach and use
context, the present paper does not intend to judge these
APIs but to present some limits to MIDI network streaming
using Medusa.

It is also important to affirm that different implementa-
tions using these APIs may have different results depend-
ing on how the API is implemented or how the application
is executed.

In the future, we intend to consider sending MIDI time-
stamp events in the Medusa package to ensure a better net-
work MIDI synchronization between these different APIs.
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ABSTRACT

This paper presents the mono2eN system, a multi-channel
autospatialisation performance system. Developed through
a practice-led research approach, the system was originally
developed for a multi-channel solo acoustic bass perfor-
mance. Central to the system is an autospatilisation algo-
rithm that controls the multi-channel spatialisation param-
eters of a spatialised mono sound source as well as apply-
ing a magnitude freeze audio effect. The behaviour of both
the spatialisation and freeze effect is dependent upon the
audio content of the signal. The motivation behind the sys-
tem and a technical overview of the autospatialisation algo-
rithm is provided. Two studies are detailed, a performance
case study and a user study. These were conducted to gain
insight into and to convey the impressions and experience
of practitioners and users of the system. Although some
concerns over the audio effect triggering were raised, over-
all the results indicated a positive response to the system.
This suggests that the mono2eN system has potential as an
easy to understand multi-channel performance system that
is able to spatialise any mono audio source, allowing for
its use within a large number of contexts.

1. INTRODUCTION

The mono2eN system is a multi-channel autospatialisa-
tion performance tool developed through a practice-led re-
search approach. Originally developed to augment a solo
acoustic bass performance, it is possible to use any mono
audio signal as the input to the system. This allows for it
to be used within a large number of contexts. Central to
the system is an autospatilisation algorithm that controls
the multi-channel spatialisation parameters of a spatialised
mono sound source as well as applying a magnitude freeze
audio effect. The behaviour of both the spatialisation and
magnitude freeze effect is dependent upon the audio con-
tent of the signal.

Taking a practice-led approach opens up playful and artis-
tic approaches to the use of technology as well as pro-
moting and encouraging unexpected and innovative appli-
cations [1]. The experiential aspect, both in the artefact
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produced, and the relationship between researcher and re-
search problem, is emphasised. In many cases practice-
led research does not start with an identified problem and
“enthusiasm of practice” leads instead [2]. Due to the sig-
nificance experience has within the work, evaluation must
happen through (either direct or indirect) experience of the
research [2]. Commonly, work is shared with the appropri-
ate communities of practice. A works’ adoption into prac-
tice, further development by users or new inspired works
allow for the impact and effect of the work to be mea-
sured. [1]

The the mono2eN system has been shared with, modified
and used by practitioners of spatial music (see Section 3.1).
The code of the initial system 1 has also been distributed
to, and modified by others. 2

This paper presents the development process of the mono2eN
autospatilization performance system from a practice-led
perspective. The inspiration and intentions relating to the
system and a technical overview of the system primarily
focusing on the spatialisation control algorithm are given
in section 2. An investigation into the system via a per-
formance case study and user study is detailed and results
arising from both are discussed in section 3. Finally, con-
clusions and the direction of further development to mono2eN
system are presented in section 4.

2. THE MONO2EN SYSTEM

The work leading to the mono2eN system was motivated
by a personal desire of the author to create a multi-channel
performance for an 8-channel concert. 3 The performance
intended to use an acoustic bass, on which a solo impro-
vised composition was to be played. As such, both the
acoustic bass part and the mono2eN system needed to be
developed to complement each other.

Several design challenges presented themselves in the sys-
tem’s development. The pieces central identity and aes-
thetic was an improvised solo acoustic bass performance,
thus, any method of enabling multi-channel performance
required that the core character of the piece remained. 4

Also, no permanent alterations or augmentations were wished
to be made to the acoustic bass as the piece was originally
intended as single performance. Any additional controls

1 http://sccode.org/1-4T6
2 http://sccode.org/1-4T8
3 http://tai-studio.org/index.php/projects/

4for8/4for82012/
4 That it still sounded like an acoustic bass guitar being played
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could also not hinder the playability of the instrument, due
to the playing and performance style of the piece.

The acoustic bass would be played and heard along side
the multi-channel mix, having the acoustic bass sound spa-
tialised to varying positions around the performance space
was found to best complemented the acoustic sound from
the bass guitar.

Due to the piece being improvised, having a static or pre-
determined mix was not desirable. As the musical con-
tent was to be improvised, dynamic and variable, it was
wished that the spatialisation also contained these charac-
teristics. This raised the question of how to develop a con-
trol method that would allow for the performer to impro-
vise the mixing of the output channels whilst performing.

The solution settled upon was to develop an autospatiali-
sation algorithm that would respond to the acoustic bass’s
signal (a mono audio signal) and use this to control the
spatialisation parameters. This solution accounted for the
aesthetic considerations, and provided an adequate solu-
tion to the design challenges faced relating to control over
the spatialisation.

2.1 Spatialisation Techniques

Spatialisation methods have ever increasingly been used
within electroacoustic music as multi-channel systems have
become readily available [3]. Practitioners today have many
potential methods for spatialisation which can be applied
to a variety of contexts. Two potential methods of spatial-
isation which were considered within the implementation
of the mono2eN system were Vector Base Amplitude Pan-
ning (VBAP) [4] and Wave Field Synthesis (WFS) [5, 6].

VBAP uses changes in the relative volume levels of audio
channels to determine the spatial positions of a sound. As
this method of spatialisation is based upon altering the am-
plitude of the sound, is transparency, allowing the perfor-
mance to retain its sonic character. Spatialisation is how-
ever, very dependent on speaker positioning relative to the
listener.

WFS attempts to overcome this shortcoming through syn-
thesising the wave front of a sound source [6]. In this re-
spect overcoming the requirement for a ‘sweet spot’ where
accurate spatialisation is heard. There as also been work
into interactions with sound sources generated through WFS
[7].

2.2 Implementation

The mono2eN system prototype was developed using Su-
perCollider. 5 Being developed through a practice-led ap-
proach, the exact algorithm that was implemented has been
developed and tuned according to the authors personal pref-
erences. In the process of developing the initial spatialisa-
tion algorithm, it was desired that an additional audio effect
be added. Inspired by the idea of sound artefacts being left
behind as the sound is spatialised, an algorithmically trig-
gered magnitude freeze effect was implemented along side
the autospatialisation algorithm.

5 http://supercollider.sourceforge.net/

Audio Input (Mono)

Autospatialisation
FX Latch

Magnitude Freeze 
FX

Audio Output 
(Multi-Channel)

+

Figure 1. A structural overview of the mono2eN algorithm

The overall structure of the system can be seen as contain-
ing three parts: the autospatilisation, the FX latch and the
magnitude freeze FX. The overall structure of the mono2eN
system can be seen in Figure 1.

2.2.1 Autospatilaization

Autospatialisation (see Fig. 2) is achieved by panning the
mono signal around a ring of speakers. This is achieved
in SuperCollider by using the PanAz 6 function. Whilst
more precise spatialisation could potentially be achieved
by using VBAP or WFS, this project was primarily fo-
cusing on the interaction with the spatialisation. For this
PanAz provided the perfect compromise between ease of
use, only requiring one parameter, the panning azimuth, as
well as providing effective spatialisation for the purpose of
the performance.

Spectral analysis is performed on the incoming signal
through the use of the SuperCollider FFT. 7 The centroid
value of the input audio signal is calculated continuously.
This value is used to determine the panning azimuth (an-
gle) for the PanAz function, and thus the position the sound
is panned to around the speaker ring. Once the sound has
been panned the resulting audio channels are randomised
in order to mitigate the inherent circling present in panning
around a ring of speakers. This also reduces the multi-
channel chorus like sound that can be produced when the
signal is panned around the speaker ring too quickly. Whilst
doing this means that exact spatial positions are unable to
be specified, the overall result is a perceptually more spa-
tial system.
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FFT Analysis

Centroid Calculation

Generating panning 
Parameter

Panning around a speaker ring

Audio Out (Multi-Channel)

Audio Input (Mono)

Figure 2. A structural overview of the autospatialisation
part of the mono2eN system

Pitch Detection

Sine wave Oscilator

Output 
(Latch Control Value)

Audio Input (Mono)

Figure 3. A structural overview of the FX Latch part of
the mono2eN system

2.2.2 FX Latch

The FX latch (see Fig. 3) generates a control signal that
turns the magnitude freeze FX on and off. A pitch value (p)
is calculated using Pitch 8 with an amplitude threshold
of 0.7 and median value of 7. When the input signal is
above the amplitude threshold of the pitch detector. This
value, p, is scaled and then used to set the frequency of
a sine wave oscillator. The instantaneous amplitude value
from the sine wave oscillator is then used as the trigger
value for the magnitude freeze FX.

The sine wave oscillator also functions as a latch. When
the input signal is below the pitch detector’s amplitude
threshold the sine wave oscillator’s frequency is set to zero.
The instantaneous amplitude of the oscillator remains con-
stant until the frequency is set to a non-zero value, produc-
ing the latch behaviour.

Whilst the frequency of the oscillator is non-zero the in-
stantaneous amplitude will vary between -1 and 1, the speed
this occurs at is dependent on the frequency of sine wave

6 http://doc.sccode.org/Classes/PanAz.html
7 http://doc.sccode.org/Classes/FFT.html
8 http://doc.sccode.org/Classes/Pitch.html

FFT Analysis of Channels

Magnitude Freeze

IFFT

Channels re-spread around 
the speaker ring

Audio Out (Multi-Channel)

Audio Input (Multi-Channel)

Latch 
Control 
Value

Figure 4. A structural overview of magnitude freeze FX
part of the mono2eN system

oscillator (which is based on the input signal). This offers
a degree of perceived instability to the latch, as well as of-
fering the potential for skilled users of the system to trigger
the magnitude freeze FX and develop rhythmic patterns.

2.2.3 Magnitude Freeze FX

The magnitude freeze FX (see Fig. 4) is applied to the
spatialised audio signal. The output audio channels from
the PanAz function (also corresponding to each output
speaker) are individually spectrally analysed with an FFT.
This analysis is done continuously. When the latch control
value is above zero the magnitudes of the analysed values
are frozen. This is achieved by using PV MagFreeze. 9

An inverse FFT (IFFT) is performed to reconstruct the
signal, and the channels are re-distributed around the speaker
ring using the SplayAz 10 SuperCollider function. Fi-
nally, both the output of the spatialised signal and the frozen
signal and added together and passed to the output.

2.3 Example Audio Files

Audio examples of the mono2eN system can be found at:
https://soundcloud.com/callumgoddard/sets/
mono2ensamples. An electric bass guitar and a Doepfer
Dark Energy Synthesiser 11 have been used as the mono
sound sources. An 8 channel output has been spread across
a stereo field, both mono and processed audio examples are
provided for comparison.

3. INVESTIGATION INTO THE SYSTEM

The evaluation of digital performance tools is becoming
a much more important factor within the field of sound
and computer music (SMC) and New Interfaces for Musi-
cal Expression (NIME). Whilst earlier methods within the

9 http://doc.sccode.org/Classes/PV_MagFreeze.
html

10 http://doc.sccode.org/Classes/SplayAz.html
11 http://www.doepfer.de/Dark_Energy_e.htm
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Figure 5. Picture of Cartes Flux Performance of wosawip

field have followed ideas from the field of Human Com-
puter Interaction (HCI) [8], more recent approaches have
questioned their suitability in assessing musical interfaces
[9, 10]. This has lead to the assessment of other evaluation
methods, from quantitative to qualitative [9], to consider-
ing multiple perspectives [11]. Common to both [9, 11], is
understanding what is wanted to be evaluated and why.

The investigation into the mono2eN system has been un-
dertaken for two main reasons. The first, to gain insight
into the immediate views and experiences of users of the
system. Understanding and being aware of the users per-
spective, to inform and inspire further developments of the
system. The second reason is to convey the experiential as-
pects of the system through presenting users views. These
views, combined with audio files (Section 2.3, are hoped to
provide sufficient indirect access to the mono2eN system
to enable an insight into the experience the system pro-
vides.

The investigation draws on two cases. The first is a case
study of an individual who adopted and used the mono2eN
system into their performance practice. The second is a
qualitative user study to gain insight into the initial impres-
sions of musicians when using the system.

3.1 Performance Case Study

The mono2eN prototype system was given to, adapted and
used by Till Bovermann within the performance wosawip,
an improvised 4-channel duet. 12 The performance was
performed as part of the Cartes Flux Festival 13 and CARPA
3. 14 Within the performance Till Bovermann played a
monophonic synth called Benjolin 15 through a slightly al-
tered version of the mono2eN patch. This was played along-
side Chi-Hsia Lai who was performing with her own per-
formance system WanderOnStage [12, 13].

Bovermann used the patch for a period of 6 months lead-
ing up to the first wosawip performance. During this period

12 http://tai-studio.org/index.php/projects/
compositions/wosawip/

13 http://cartes-art.fi/flux/en/
ohjelma-programme/

14 http://www.teak.fi/Tutkimus/carpa/
15 http://casperelectronics.com/finished-pieces/

benjolin/

he made his own aesthetic adjustments to the patch via pa-
rameter values. He was interviewed after the Cartes Flux
performance to gain insights into his experiences of using
and performing with the mono2eN system.

Overall his experience was a positive one. It was noted
that the system was easy to play at first and that it “takes
care of the spatialisation aspects in a way I like”. More in-
terestingly was that in using the mono2eN system with the
Benjolin the original sound of the Benjolin was forgotten -
with Bovermann stating: “I honestly forgot how the Ben-
jolin sounds”. This resulted in the Benjolin + mono2eN
system being perceived as a single instrument.

The sound of the magnitude freeze effect was also en-
joyed once it activated. However, the transitions between
it switching on an off were criticised due to their abrupt na-
ture. So too was the control over the triggering, due to its
perceived randomness in action. These factors meant that
whilst the effect was enjoyed the control over it was mostly
ignored, and the system was left to behave by itself.

Bovermann has continued to used the Benjolin through
the mono2eN system in a second performance. Whilst
more control over the magnitude freeze effect was desir-
able, his comments indicated that a lack of control did not
render the system unusable or dramatically detract from
the experience.

3.2 User Study

A qualitative user study was carried out to gain insight into
the initial impressions musicians have when using the sys-
tem. This was undertaken to inform the future develop-
ments of the mono2eN system.

3.2.1 Experimental Methodology

In total there were 4 participants, all musicians, 3 male, 1
female. The sample size was small due to the need for par-
ticipants to both be able to play an instrument and have fa-
miliarity with interactive music systems. Participants brought
their own instruments to use with the system, these in-
cluded: both an electric and an acoustic guitar, a tactile
synthesiser and percussion bowls/blocks.

Each participant was invited, in individual sessions, to
play their instrument through the system. The structure of
each session was as follows:

1. Participants were asked to sign a consent form.

2. Participants were asked to describe their musical back-
ground.

3. Participants were invited to play their instrument through
the mono2eN system.

4. Semi-structured interview was conducted asking par-
ticipants about their experiences and impressions of
the mono2eN system.

Within the interview priority was given to participants
discussions of the system in their own terms. Due to the
possibility for misconceptions or misunderstandings to arise
in this scenario, the following was decided:
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• All participants were allowed to ask questions when
using the system, about how it works or on anything
they were unsure of.

• If a participant wanted to know the details of the sys-
tem it would be explained.

• Participants were allowed to play for as long as they
wanted with no interruption to their playing.

• If they requested, they were allowed to have a second
session after the interview.

The nature of the session was informal and planned to last
30 minutes. 10 minutes being allocated for participants to
play with the system and 20 minutes allocated for the in-
terview. In reality the playing times varied from around 6
minutes to 30 minutes, and with interviews lasting around
10 minutes. All performances were recorded. The mono
input and multi-channel output of each performance were
recorded through the MacBook Pro running the SuperCol-
lider patch. A portable audio recorder with microphone
also recorded the whole session, specifically to record the
interview for transcription.

3.2.2 Analysis

The interviews were transcribed, then analysed based upon
a grounded theory approach. 16 Here the data drives the
theory formation. The interviews were compared for com-
monalities; these commonalities were then used to indi-
cate the users’ initial impressions and experience of the
mono2eN system.

3.2.3 Results

The main areas of interest that arose from the interviews
related to understanding, focus and enjoyment of the sys-
tem. The overall comments indicated that the system was
enjoyable to use. All participants when asked, were able to
describe what the system was doing and were able to pro-
vide an explanation that approximated what the mono2eN
system did. Participants did not find that the focus on their
playing was disrupted by the system.

These results suggest that the system, as it stands, is easy
to learn or at least intuitively understood when used. Play-
ing times also indicate that the system encouraged playing,
especially as 3 of the 4 participants wished to play a sec-
ond time. The participant who did not wish to play again
was satisfied with the playing session as well as with their
understanding of the system deciding that no further play-
ing was needed. They did however, express an interest in
the code used for the system.

The comments from the case study relating to the instru-
ment and system being perceived as one continued with the
use of each instrument. The system also appeared to reveal
parts of the instrument sound that participants were not
aware of. This being indicated through a comment were a
participant stated that they were: “hearing things I hadn’t
heard before coming from my instrument when playing it

16 http://www.aral.com.au/resources/grounded.
html

through the system” and that it “...brings out details you
wouldn’t have heard so obviously...”.

As in the case study, concerns over the FX latch trigger-
ing were raised. Participants responses varied from having
some understanding of control, to not being aware they had
any control over the trigger for the magnitude freeze effect.

The last thing to arise from this user study was the inac-
cessibility of code to musicians. Those participating within
the study were offered a copy of the patch and half de-
clined due to their unfamiliarity with SuperCollider. This
is a consideration needed when the system is further devel-
oped and distributed.

4. CONCLUSIONS

This paper presented the mono2eN autospatialisation per-
formance system which algorithmically spatialises a mono
audio signal around a speaker ring. The design challenges
and implementation were described from a practice-led re-
search approach and the system algorithms described. A
case and user study were conducted to gain insights into
musicians views of the system and to inform and inspire
further development.

The mono2eN system used a relatively simple method for
spatialisation, however, the result was an effective system
for musical performance which does not requiring any spe-
cialised speaker setup (beyond position speakers within a
ring). The effect of using a more sophisticated spatialisa-
tion method within in the system is uncertain and maybe
interesting to explore. However, the main focus of the sys-
tem’s development was to allow for automated control over
sound spatialisation for a musical performance, which the
system has achieved.

The interest of practitioners was positive as were the com-
ments gained through the user tests and suggest the mono2eN
system has the potential as a multi-channel performance
tool. Comments indicated, that whilst the system is easy to
use and understand in terms of the spatialisation algorithm,
the method of control over the FX trigger caused concern.
This concern however, did not prevent users from enjoying
using the system.

The systems accessibility is also a concern and the way
the final system is shared is an important consideration.
Distributing the system as SuperCollider code allows for
greater flexibility and user customisation of the algorithm,
however, it also isolates the system from those who are not
as technically inclined. Reducing the technological barrier
of access, whilst encouraging adoption into practice, will
need to be carefully considered as the system is further de-
veloped.

Practice-led development of the mono2eN system will
continue. Finding solutions to these newly presented chal-
lenges will direct further development of the mono2eN sys-
tem. In addressing these challenges it is hoped further spa-
tial effects and interactions will emerge.
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ABSTRACT

This paper presents an approach for the analysis of musical
pieces, based on the notion of computer modeling. The
thorough analysis of musical works allows to reproduce
compositional processes and implement them in computer
models, opening new perspectives for the their exploration
through the simulation and generation of variations derived
from the original model.

1. INTRODUCTION

During the analysis of a musical work, musicologists won-
der how different decisions in the elaboration of a compo-
sition would have affected the final score. For instance:
how would certain serial piece be affected if the composer
had followed the base series or tone-rows without any de-
viations, or how a different starting parameter would affect
a process-based composition, and so on. In order to face
these situations and investigate the corresponding hypothe-
ses, the more or less conscious, accurate and comprehen-
sive simulation of the pieces’ generative processes is of-
ten essential. The modeling of a musical work requires
the explicit formulation of the underlying relations exist-
ing between different aspects of its compositional process.
Computer tools and environments can be of a precious help
here, and the implementation of carefully designed models
may allow to simulate, explore and compare the potential
results of different possible compositional “choices” or al-
ternatives for a work. We call such alternatives the dif-
ferent instances of the piece, and will use this concept as a
base for our computer-aided analysis approach. We believe
that the study and analysis of musical works through com-
putational modeling and the generation of alternative in-
stances may bring to light new interesting knowledge about
the compositional processes and attitudes at their origins.

The pioneering works by Riotte and Mesnage [10] thor-
oughly explored the idea of modeling compositional pro-
cesses with the computer.The Morphoscope software they
developed permitted the implementation of computer pro-
cesses considering scores jointly with the analytical and

Copyright: c©2013 Charles de Paiva Santana et al. This
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compositional models. However their results laid upon for-
malisation and validation of constructed models, while the
study of compositional decisions and the simulation of al-
ternatives was not a major concern.

Closer to our working perspective, previous works have
also been carried out for the computer-assisted modeling
and analysis of Xenakis’ music in Patchwork [8] and Open-
Music [1], or for the analytical “re-composition” of Boulez’
Structures Ia [2] in the OpenMusic and Rubato software
environments. The approach we propose inherits from these
previous works and develops the concept of model to pro-
duce alternative instances of the pieces.

We consider this idea of modeling and simulating pieces
for the generation of alternative instances, and discuss its
consequences on the musicological approach. We choose
as a starting point the piece Spectral CANON For CON-
LON Nancarrow by James Tenney (1974) and develop a
methodology to question some of Tenney’s compositional
choices and envisage expansions and his use of the “spec-
tral” techniques.

This paper is organized as follows. In Section 2 we present
the model and give preliminary elements for the analysis of
James Tenney’s piece. Section 3 describes the implemen-
tation of our model in the OpenMusic environment, which
is then studied and extended in Section 4 in order to gen-
erate alternative instances of the piece. We conclude with
some perspectives on this musicological approach and its
possible use in future musicological projects.

2. THE MODEL OF JAMES TENNEY’S SPECTRAL
CANON FOR CONLON NANCARROW

This piece Spectral CANON For CONLON Nancarrow by
James Tenney (1932-2006) [11] for player piano is based
on the idea of a correspondence between rhythmic and
pitch interval ratios which recalls us of Henry Cowell’s
homologous ideas described in his book New Musical Re-
sources [5].

Several versions of the piece are known to date. The orig-
inal one by James Tenney dates back from 1974. It has
been rewritten and extended by composer Clarence Barlow
in 1990. 1 Previous analyses of the piece include for in-
stance Polanski’s (1983) [9] and Wannamaker (2012) [12].

1 See http://conlonnancarrow.org/symposium/
ClarenceBarlow.html. More recently, the Irish composer Ciarán
Maher created some other variations based on Tenney instructions. See
http://rhizomecowboy.com/spectral_variations/
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Figure 1. Representation of the series of durations (seen as the intervals between points). Its proportions are exactly the
same of an harmonic series starting with the eighth overtone (9:8 ratio). k is an arbitrary duration value equivalent with the
first octave. Subsequent octaves are equivalent of k · log2(2), k · log2(3) and so forth.

2.1 General Structure of the Piece

The piece consists of a 24 voices canon, where all voices
share a same series of decreasing durations (accelerando),
and superimpose to one another following a precisely de-
termined pattern. When a voice reaches the end of the se-
ries, it begins playing its own retrograde.

2.2 Series of Durations

The series of durations is obtained by calculating the in-
tervals between successive partials of the harmonic series,
starting with the eighth one (9:8, corresponding to a major
second). The general formula to obtain these intervals in
the pitch domain multiplies the value of one octave in cents
(1200) by the binary logarithm of each interval. To calcu-
late series of durations, we replace the octave in cents by
an arbitrary value in seconds, which we call the constant k:

duration(n) = k · log2(
8 + n

7 + n
)

Tenney chose the precise value of k aiming the first inter-
val to last four seconds:

k · log2(
9

8
) = 4, k = 4 log2(

9
8 ), k = 23.539797

As the original series begins with the eighth interval in the
harmonic series, it takes 8 durations to sum the value of k
(or one octave). Figure 1 resumes the previous properties
of durations and intervals. The total number of durations
in the series is related to the number of voices (see next
section).

2.3 Voice entries

The 24 voices enter at the successive “octaves” in the initial
series of durations (hence, every eight elements in the se-
ries). The second voice enters when the first voice is twice
faster, the third voice enters when the first voice is thrice
faster and so forth. Figure 2 shows a reduced scheme of
the voice entries. After 184 durations (8 × 23), the 24th
voice enters and the first voice stops its ‘forward’ motion.

Entry of the voices - Superposition of the same series 

Figure 2. Reduced representation of the voices entries.
Each group represents a cycle of eight durations (the space
of one ‘durational octave’)

2.4 Retrograde voices

The series retrograde is systematically appended to every
voice in the canon.In the original version, the piece ends
when the first voice completes its retrograde, and when the
24th voice ends its regular series, which is a point when all
voices share the same attack.

Barlow’s extended version of the canon continues until
the last voice also finishes a complete retrograde. Since
each voice starts its retrogradation and consequently de-
celerates at different moments, new unexpected textures
emerge, forming melodic patterns, harmonic glissandi and
chords due to occasional points of synchronism.

2.5 Pitches

Each voice plays repeatedly one single tone corresponding
to its position in the canon (and in the harmonic series): the
second voice plays twice the frequency of the first voice
(octave), the third voice plays thrice the frequency of the
first voice (fifth), and so forth. In this way, this piece is
also a melodic canon (even if a very elementary one) where
each voice plays a transposition of the first one at a precise
interval, starting with the traditional ones (transposition at
the octave, fifth) and going up to the most unusual inter-
vals, smaller than one semitone.

3. IMPLEMENTATION OF THE MODEL

Our present work mostly takes place in the OpenMusic
computer-aided composition environment [3, 4]. Open-
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Figure 3. Generating the series of durations for Spectral
CANON for CONLON Nancarrow in OpenMusic. The s-
dur and find-k modules at the top of the figure refer to the
functions implementing respectively the formulas for the
series and first duration given in section 2.2.

Music is a visual programming language allowing to de-
fine and connect together functions and data structures in
graphical programs, and to evaluate these programs to pro-
duce and transform musical data.

From the specifications given above we can easily imple-
ment functions in OpenMusic to generate the durations for
one voice of the canon and to determine k for any chosen
value for the first duration. The process of retrogradation is
also implemented by simply appending the resulting series
of durations with its reversion. This whole process is illus-
trated in Figure 3. Figure 4 shows the computation of the
voices’ entry times and of the pitches via the implementa-
tion of the specification given in section 2.3, and using an
harmonic series generator for the pitches.

Starting from this implementation of the canon’s genera-
tive process, we build a global model allowing to generate
the piece, and highlighting a number of parameters iden-
tified in the previous sections: first duration of the series,
pitch fundamental, number of voices, number of elements
in the series, application (or not) of the retrograde, etc. (see
Figure 5). These parameters (and others to be described in
the next sections) will allow us to control and generate the
score instances. With Tenney’s original parameters, we ob-
tain the score in Figure 6.

Figure 4. Computation of the voice entries and pitches for
Spectral CANON for CONLON Nancarrow in OpenMusic.
The s-starting-time module at the left refers to the function
calculating the voice entries as specified in section 2.3. The
harm-series module calculates the n (here, 24) first partials
or harmonics of a fundamental pitch.

Figure 5. The model of Spectral CANON for CONLON
Nancarrow in OpenMusic. The spectral canon box is an
abstraction containing the previous implemented aspects
of the canon.

4. EXPLORING THE MODEL

4.1 Compositional Choices and Parameters of the
Models

Through the parametrization of the model we can explore
the implication of the decisions and choices made by the
composer at creating the piece.

We can for instance examine the compromise of an initial
duration of 4 seconds, and the number of elements in the
series of durations (184) related to the number of voices.
Thanks to the modeling process, every simulation produces
musical data structures (scores) which can be stored, visu-
alized and listened in the computer environment. Quanti-
tative elements of analysis could be for instance the total
duration of the resulting score and the minimal (last) dura-
tion in a given parametrized sequence.
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Figure 6. Complete score of the original version of Spectral Canon For Conlon Nancarrow generated from the implemen-
tation of the model, without any score edition. Interested readers can compare with the published score [11].
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Figure 7. An instance of the canon with initial ratio of 2:1. a) Schematic 2D visualization of the pitches and onsets. b)
Beginning of the score.

Figure 8. An instance of the canon beginning the harmonic series with the interval 9:8. a) Schematic 2D visualization of
the pitches and onsets (0”-140”). b) Excerpt of the score from (appx. 44” to 60”).

With Tenney’s values, we obtain at total duration around
216 seconds, and a minimal duration for the last element in
the series of about 176 ms. This minimal value is still long
enough for a sensible perceptual appreciation, and gener-
ally speaking the acceleration and subsequent ritardando
have an adequate variation rate to keep the attention from
the listener. This would not be the case, for instance, with
an initial duration of more than 6 or less than 3 seconds.
(see [7] for a deeper discussion about the perception of
continuous accelerations). Experiments in varying these
parameters (while maintaining the others) actually show
very few interesting score results: we therefore suppose
that Tenney’s choices for these values correspond to some
kind of an ideal state for the model.

A more flexible parameter to explore through the model
is the initial superparticular number at the origin of the se-
ries of durations’ formula. As we have seen, Tenney be-
gins the series of durations with the eighth interval of the
harmonic series (corresponding to the ratio 9:8), when he
could have chosen any of them, including the first one (2;1,
the octave). By tuning this initial value as a parameter in
our implementation, we can experiment with possible vari-
ations. Figure 7 shows an instance of the piece generated
with an initial ratio of 2:1. This ratio equals the initial one
used for the series of frequencies and voice entries. 2

We see that while the piece is equally well structured, its
texture in the “forward segment” is more of a “choral” (i.e.,
mostly constituted of chords and/or synchronized attacks)
than the polyrhythmic texture that Tenney was probably

2 This configuration gives us a more compact version of the piece. For
a better visualisation, we will use this 2:1 ratio in the other examples
given later on in this paper.

looking for in his homage to Nancarrow.
In Figure 8 at the contrary, we keep the initial 9:8 ratio

for the series of durations, but we apply it for the pitches
as well, so that the first pitch of the first voice is not the
fundamental but the the eighth partial in the harmonic se-
ries. In this case, however, we see that pitch ambitus be-
comes too narrow and the canon looses most of its timbre
richness and perceptual features (although this can be of an
aesthetic interest, or compensated with the manipulation of
other parameters).

4.2 Generalizing the model

A second step in our modeling and simulation approach,
enabled by the computer implementation, is to explore and
modify the functional definitions in its generative processes.
In particular for Tenney’s canon, we can integrate addi-
tional “spectral” processes such as filtering and distortion,
and expand the realm of the possible instances produced
by this model, yet still driven by the same compositional
concepts. These two examples are envisaged below.

4.2.1 Spectral distortion.

The interest in spectral distortion comes from the well-
know fact that the overtone series we calculate is actually
an ideal model, which is rarely found as such in natural
phenomena. In the sounds of acoustic instruments, partials
usually deviate more or less from the exact multiples of
the perceived pitch or fundamental (this distortion is easy
to hear in the low notes of the piano). To model the spectral
distortion we use the formula:

partial = fundamental · rankdist

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

435



A distortion index dist < 1 causes a compression of the
harmonic series, and at the contrary dist > 1 causes a
dilatation of the series. (see also [6], p. 93).

In our model of Tenney’s Spectral Canon, and following
the principle of correspondence between pitches and du-
rations, we use this formula to compute the harmonic and
duration series, as well as the voice offsets (in order to stay
in the “default” configuration, we simply set dist = 1).
This extension of the model enables slight deviations in
the voices entries, sweetening the mechanical character of
the polyrhythms in the accelerando and changing our per-
ception of the harmonic intervals. More radical deviations
from the default configuration lead to surprising, unex-
pected versions of the piece. Figures 9 and 10 are examples
of the possible results of these distortions.

Figure 9. Slight distortions of the canon. a) dist = 0.9; b)
dist = 1.1. Both examples have 24 voices and begin the
series of durations with the ratio 2:1.

Figure 10. Extreme distortions of the canon. a) dist =
2.5; b) dist = 0.1. In this case the canon is perceived as a
sequence of repeating patterns.

While maintaining the relative integrity of the model, the
distortion either moves the voices entries and durations
nearer to the beginning of the piece, or away from it. It is
therefore likely compensate some undesirable effects pro-
duced by other previous choices in the model parametriza-
tion (e.g. the duration of the first note in the series).

4.2.2 Filtering.

Another possibility for expanding the model is the filtering
of the series. This procedure, commonly used in the the

Figure 11. Illustration of the filtering process. a) Dura-
tions (filter = 1/2), and b) pitches (harmonic series) (filter
= 1/2). (a) has 24 voices, and (b) has 12 voices. In both
instances the initial ratio of the series of durations is 2:1.

harmonic domain, can also apply to the duration series in
the canon.

The filtering of harmonic series is present as an option in
the OpenMusic function harm-series 3 which we used to
compute the pitches in our model (see Figure 4). In this
function partials can be selected according to a pair of at-
tributes given in the form of a fractional expression (for
instance, 1/1 selects all partials; 1/2 selects every other
partial; 2/5 selects the first two partials of each group of
five, etc.) We therefore added this feature and correspond-
ing parameters in our model (see Figure 5). In the default
configuration the two filtering parameters are both equal to
1, hence selecting all the partials and all the elements in
the duration series. Figure 11 shows two instances of the
canon, generated respectively with the duration and fre-
quency filtering processes.

5. CONCLUSION

We showed with the example of James Tenney’s Spectral
Canon that the modeling and simulation of a work could
bring new light on its internal processes, and reveals that
the potentialities of a piece are not necessarily limited to
the composer’s version of the score. In our approach, the
model is a fundamental means toward the more compre-
hensive understanding of the musical work: At each step
we give towards the complete implementation, we can in-
quire compositional choices with the advantage of easily
simulating the results. Our work distinguishes itself from
the conventional approaches in musicology where analy-
sis and composition are two different disciplines. It leads
us to permanently rethink the model, its parameters and
their relative configurations, which enables creativity and
dynamism in the musicological process.

Spectral CANON For CONLON Nancarrow is a relatively
simple composition illustrating important aspects in our
approach, which we believe constitutes a relevant basis

3 Harm-series is a tool from the Esquisse library, developed by com-
posers involved in the spectral school, such as Tristan Murail and Jean-
Baptiste Barrière.
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for the study of more complex works. Despite its appar-
ent complexity, it can be generated entirely with relatively
few simple functions, so that compositional decisions have
a straightforward relations to the results. However, we
showed how the concrete instances obtained from modi-
fications of the functional processes and parameters could
produce radically diverging aspects, forms and perceptive
feelings.

An interesting aspect in computer modeling is the pos-
sibility to implement systematic approaches in the explo-
ration of the different variations enabled by the model. By
producing and observing exhaustive sets of instances pro-
duced by different parametrizations, we can test and eval-
uate until which point the characteristics of the piece, or of
the composer’s style or intention, is preserved. This ques-
tion leads us to aesthetic considerations, whether or not
the instances of a model are to be considered as part of the
composer’s work and which are their artistic and creative
potentialities. The means and methodologies to explore
this complexity in the compositional process, and its rela-
tion to the results’ aesthetic and perceptive characteristics
are some of the main challenges we plan to address in fu-
ture works.
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ABSTRACT

In this paper bow and fingerboard sensors for measure-
ments of synchronization between musicians in group mu-
sic making are introduced. They are evaluated in sev-
eral performing situations from advanced musicians in a
new founded string trio up to a professional, long time
experienced string quartet. The small form factor of the
sensors allowed to measure synchronization in musicians’
daily life situations. These are a rehearsal, tuition in cham-
ber music class, and a concert situation. Additionally, the
musicians filled out a questionnaire rating their grade of
preparation, the influence of the sensor while playing, and
some more data in each recording session. With the sen-
sors, different rhythmic inaccuracies in seemingly simulta-
neous bow and note changes between the musicians while
making music together are measured and quantified. Fur-
ther a possibility for sensor based rhythmical regularity
measurement while playing equal notes is presented. The
results of the questionnaire confirm the unobtrusiveness of
the setup and the possible use of it in daily performing sit-
uations and even on stage. At the end of this paper an out-
look for synchronization skills is introduced and possible
impacts into the field of new music is shown.

1. INTRODUCTION

A sensor setup for data acquisition and measurements of
musical instrument playing parameters, here synchroniza-
tion in group music making, which is often discussed
among musicians, but difficult to objectify. These are
synchronization related parameters like rhythmic inaccu-
racies (delay and anticipation times) in simultaneous fin-
ger changes, cues and bow changes and rhythmical regu-
larity of isochronous notes. Several technologies for mo-
tion and gestures’ detection during instrumental musical
playing exist. Diverse works e.g. by Maestre in [1] show
several approaches to objectively capture gestures, par-
ticularly those associated to the bowing of string instru-
ments. The most used measuring methods are based on
the use of acceleration sensors and gyroscopes. Among
others, the first sensors applied to violin, bow, and vio-
lin gestures were the acceleration sensor on the bow by
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Bevilaqua et al. [2]. Wearable, left hand pressure, and po-
sition sensors were introduced by Grosshauser et al. in [3].
First measurements of fingers and hand coordination and
synchronization between two violinists are carried out in
Grosshauser et al. in [4] and of tongue and finger coordi-
nation in saxophone playing (Goebl et al. in [5]). Com-
pared to the latter, in this paper a more flexible and partly
wireless setup for group measurements is evaluated. To
round up the field of musical instrument sensing, hyperin-
struments with similar technologies (see Machover in [6])
and the commercially available K Bow by McMillen have
to be mentioned. Nevertheless, sensing of synchronization
of two or more musicians playing music together is clearly
underrepresented in the literature, especially with unobtru-
sive sensors, allowing unhindered playing and ready for
real-life, on stage measurements.

The sensors presented here are small 9 degree-of-freedom
(DOF) sensor boards with onboard batteries and SD-card
slots, described in sec. 2.2 and shown in Fig. 1 and flexible
capacitive left hand finger position sensors (sec. 2.1).

Figure 1. The 9DOF ETHOS module, with the dimensions
of 14x45x4mm and a weight of 4.2 gr. without battery.

They are fixed on the bows and fingerboards and used
for measuring rhythmic inaccuracies in synchronized cue-
ing and performing situations of string ensembles. The
setup allows precise measurements of the synchronization
of two and more musicians while playing together. The
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setup was evaluated with advanced musicians in a recently
launched music group and a professional, long time experi-
enced group. The test subjects range from amateur violin-
ists up to professional musicians. We measured different
performing situations, ranging from rehearsal, tuition in
chamber music class, and a concert situation. We show that
the present setup allows unhindered playing while measur-
ing. It further works with a high temporal resolution and
can be used in the field of string players, from beginners
up to professionals alike. To support musicians and mu-
sic teachers in daily exercising, particularly during their
technical training, here, the sensors allow to show synchro-
nization inaccuracies and regularity parameters, difficult to
detect and quantify, but meaningful for music making. The
results achieved in the measurements could lead to teach-
ing and practicing support in string instruments. Also the
integration of the final set-up into electronic music scenar-
ios and new playing techniques is possible.

2. SENSOR SETUP

For the right hand bowing the 9 DOF ETHOS sensors are
used and for the continuous left hand finger position mea-
surement flexible capacitive sensor stripes.

2.1 Flexible Capacitive Finger Position Sensor Stripes

The left hand finger sensors are thin stripes fixed on the
fingerboard between the strings of each participant’s in-
strument of the higher strings (Cello not yet). For the ca-
pacitive sensor the MPR121 chip from Freescale Semicon-
ductor is used (2 each stripe) and the working principle
is shown in Fig. 2. An Arduino Mini connected via I2C
is used for data collection and for data transmission to a
laptop computer via USB. This solution showed lower and
more stable latency than the cap sense library for Arduino
(around 25 ms, 40 Hz).

Figure 2. Working principle of the capacitive sensor
stripes. Each red area (Area 1, Area 2, ... Area n cop-
per areas) on the top layer is read out independently. This
allows continuous finger position detection of each finger
with a median sampling frequency of 50 Hz.

The resolution of the final setup is, but not limited to,
around 2 mm depending on the placement of the fingers
more between or on the strings, but enough for position and
note detection, the scanning frequency is around 100 Hz. If
a finger is put on the fingerboard, one or two of the stripes

are touched. With this information the actually played
string is detected.

Figure 3. Capacitive sensor stripes are fixed on the finger-
board for continuous finger position capturing.

2.2 ETHOS 9DOF Sensors

The used ETHOS sensor (see Harms et al. in [7]) is a 9DOF
miniature board with 3 axes acceleration, 3 axes gyro-
scopes, and 3 axes magnetometer. A three-axis accelerom-
eter (Linear Technology, LIS3LV02DL) is implemented
and can be configured to resolve 2/6G with a 16-bit resolu-
tion. Earth magnetic field is sensed by an integrated digital
compass IC (Honeywell, HMC5843) in all three axes. A
three-axes gyroscope (Invensense, ITG-3200) allows sens-
ing of the rate of change with a maximum measurement
range of 2000 degr./s at resolution of 16-bit. We use a
sampling frequency of 500Hz, meaning temporal reso-
lution of 2ms. It is powered with a 140mAh LiPo bat-
tery for at least 3 hours recording time at this sampling
frequency. The ETHOS unit dimensions are WxLxH of
14x45x4mm3. The central processing unit of ETHOS is a
16-bit dsPIC. The ETHOS sensors are fixed on the bow of
each musicians for motion capturing (see Fig. 4).

It features an integrated real time clock, which is cru-
cial for tagging of data and synchronization of multiple
ETHOS units. The system gathers the individual infor-
mation by three MEMS devices: an accelerometer, a gy-
roscope and a magnetic field sensor. Moreover a temper-
ature sensor and system power monitor are implemented
for automatic self-calibration. The maximum difference of
the clocks are 40msec each 3600 sec. In our study we
only used the data of 600 sec, meaning a deviation based
on the run time difference of the real time clocks of max-

Figure 4. The ETHOS sensors fixed on the bow.
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imum 6.67msec. Grosshauser et al. in [4] demonstrated,
that there is no delay between the bowing initial acceler-
ation and the sound generation at the musical instrument.
Based on this measurement we estimated, that our setup is
precise enough for synchronization measurements. For the
synchronization measurement, only the bow acceleration
data are analyzed.

Each board further comprises an 8-channel ultra low
power ANT module for wireless communication. ANT al-
lows interconnection of multiple ETHOS units for creation
of wireless body area networks (BAN). This network could
be extended by other ANT or ANT+ enabled devices, e.g. a
heart rate belt, step counter, or GPS module. Moreover, it
allows to interface the unit with mobile computers. While
the ANT standard is impractical for streaming of raw data,
the bandwidth would allow a transmission of gathered ori-
entation data at a maximum frequency of up to 200Hz. For
the study introduced in this paper, the sampling rate was
too low. Due to this fact, ANT was not used, therefore the
data were recorded on a SD card. The onboard microSD
card slot was used (see Fig. 1) to store data, timestamps
and system configuration. MicroSD flash memory is of
small dimensions, available with high capacities and can
be easily replaced in case of low memory. System power
is provided by an external lithium-polymer battery with a
nominal voltage of 3.7V . If the system is connected to an
USB port the system battery is loaded by an integrated Li-
Ion battery charger. In our standard configuration we use a
miniature 300mAh battery with W x L x H dimensions of
20 x 30 x 3mm3. In the test setup of this experiment, we
used a smaller battery with 140mAh to reduce the weight
in the bows.

Figure 5. Screenshot of the bow acceleration data synchro-
nized with the video recording. The data show additionally
to the video the acceleration peaks of the bow changes of
each player. This example shows an accurate bow change
with no delays of all four musicians.

3. MEASUREMENTS AND RESULTS

A string trio and a string quartet was measured in differ-
ent playing situations for one hour each. The string trio is
a new founded group with advanced and professional mu-
sicians. The string quartet is an experienced group with
four professional musicians. The music pieces were all
of classicism from Haydn and Beethoven. The situations
were daily rehearsals, tuition in a chamber music class, and
a concert situation. The different situations should proof
that unhindered playing with the presented setup is possi-
ble. This was evaluated with a questionnaire, results see
in sec. 3.1. The sampling frequency of the capacitive left
hand finger sensor will be increased due to low temporal
resolution of around 10 ms. Each recording session was
recorded with an A/V camera. The recorded data were an-
alyzed per hand with a labeling tool, see Fig. 5. The ac-
celeration peaks of the bow changes are easy recognizable
in the data viewer. You simply mark the clear bow change
points and if two, the time between these two points is cal-
culated. The additional A/V view simplifies this task and
helps to find the key points.

3.1 Results of the Questionnaire

To obtain information about the unobtrusiveness of the
setup, a questionnaire was filled out before and after each
recording session by the musicians of each test group. First
a self estimation about their own mood and tiredness was
ask to avoid e.g. negative influence of these factors to the
reaction times. No noticeable extreme conditions were in-
dicated, other than an increase of excitement before the
concert. The participants were between 31 and 44 years
old. The over all average age was 34.71 years (Trio: 38,
Quartet: 32.25), the average experience of musical instru-
ment playing was 24.85 years (Trio: 24.33 and Quartet:
25.25). There was one advanced musician and 6 profes-
sionals. All participants state no or positive influence of
the measurement setup and the usefulness of the data. For
further information please see Fig. 6. The sensors were
not distracting, but still were noticed by 4 of 7 musicians.
The new founded trio stated positive influence of the setup
while playing with it. According to the trio members, this
is due to the fact, that they concentrated more on synchro-
nized playing, knowing that it is measured. All partici-
pants agreed, that the measured data are useful, 2 two of
them rated the data as “very useful”. An interesting aspect
is, that even the professional quartet did not feel hindered
while playing and suggested a data recording in a real con-
cert situation.

3.2 Measurement of Temporal Inaccuracies in
Synchronized Music Making

The stacked sensors are synchronized with clear acceler-
ation movements in front of the camera, allowing a later
re-synchronization of sensor and video data with the data
labeling tool (see Fig. 5). The synchronization is done be-
fore and after the recording.

The measurement of the string quartet showed signifi-
cantly lower delay times while playing together in com-
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Figure 6. Statistical data of the test subjects. Each participant filled out a questionnaire after each measurement.

Figure 7. Delay between the earliest and latest musician
in synchronized cueing.

parison to the trio. The average delay between the musi-
cians of the string quartet was 19ms, maximum is 98ms,
minimum 0ms. The average delay of the trio is 43ms,
maximum is 171ms, minimum is 0.05ms. Also the de-
lay in cueing situations is higher in the trio compared to
the quartet (see Fig. 7). The left hand sensor data are col-
lected via USB and recorded with a laptop computer with-
out delay. The temporal resolution of around 20 ms was
not good enough to find reliable left hand synchronization
data. Only the bow changes are considered in the analysis.

In Fig. 8 the temporal deviations of bow changes are
shown. In a straight series of eighth notes, faint delays
are recognizable. This could be due to expression reasons,
but e.g. in rhythm training situations, this temporal anal-
ysis is crucial. The sampling frequency of the capacitive
sensor stripes is too slow to get precise synchronization
information, especially of the experienced quartet. Delay
higher than 20 ms can be detected. Also coordination mea-
surements between left hand fingers and right hand bowing
of each musician are possible, again with the above men-
tioned temporal limitation.

Figure 8. Rhythmical regularity: Delays of bow and note
changes of isochronous, equally long notes.

4. POSSIBILITIES FOR NEW MUSIC
INTERFACES IN PERFORMANCE AND

TEACHING

If the musicians control synchronization delays, this play-
ing method could be used for musical expression. Live
data transmission with the integrated ANT rf transmitter
Bluetooth allows beside the visualization of the acceler-
ation, magnetometer, and gyroscope data the mapping of
these data with musical effects or sound generation. Aug-
menting the sensor data with additional feedback e.g. soni-
fication could be useful for synchronization training. Fur-
thermore the sonification itself could be used as an expres-
sion parameter e.g. like micro-rhythmical patterns. The
simplicity of the setup further allows easy integration of
the measurement method in the course of daily practicing
and rehearsing. Without wireless data transmission, every
sensor can be fixed on the bows after calibration and af-
ter rehearsing, the data can be visualized and observed in
standard chart programs.

5. CONCLUSIONS

The setup presented in this paper is a further step into get-
ting more objective data in music making and perform-
ing. Beside the unobtrusiveness of the setup (based on the
statements given in written form on the questionnaire filled
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from the participants in every measurement session and on
interviews and discussions), findings of latencies between
musicians while playing together are shown. Although
synchronization is just one parameter of many, it is a very
significant one. Measurements in different playing situa-
tions and different levels will allow comparisons, not only
between two or more groups, but also for progress tracking
in learning and exercising situations. In this direction, also
the effectiveness of exercises can be observed. The indi-
vidual observation of rhythmical regularity provides useful
information in daily exercising.

In the future observations, tests for the importance and
the stability of the measurement will be made. When com-
bining measurements with the right exercises, the latency
factor could help beginners or new-formed music groups
to improve their playing skills. To do so, the resolution of
the left hand sensors will be increased.

Furthermore, the work represents a new step towards
novel measurement setups to quantify usually hidden pa-
rameters pivotal to music making, which are difficult to be
objectively shown. While usually the individual impres-
sion of “uncoordinated” or “not in time” playing may be
right, its objective depiction and quantifying is a challenge.
By using the presented measurement setup and sensors it is
possible to measure parameters like rhythmic inaccuracies
and irregularities.

The next steps will also include the simplification of the
present setup and its refinement to still enhance its already
high acceptability among musicians and especially the in-
crease of the sampling frequency, spatial resolution and the
size of the capacitive left hand finger sensor. Easily under-
standable real-time feedback modalities and the use of the
sensor setup in other types of musical instruments will be
a long-term goal. This may ultimately contribute to the
development of new methods of instrumental training and
provide new interfaces based on traditional instrument for
musical expression.
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ABSTRACT 

This paper is concerned with acoustic retroreflectors, 

which reflect sound back towards any sound source. They 

are constructed here of two reflecting panels connected 

with hinges and placed on a hard reflecting floor. Acous-

tic retroreflectors can replace electroacoustic monitoring 

in music performance when sufficiently large panels are 

placed at an appropriate distance from performers. A 

good distance is between about 3 and 8 m from a p layer, 

corresponding to propagation delays of between approx-

imately 20 ms and 50 ms from a player to the 

retroreflector and back. We have conducted acoustic 

measurements in an anechoic chamber using various 

retroreflector structures, including symmetric V-shaped 

and asymmetric L-shaped reflectors of two different 

heights with various opening angles and incident angles. 

Our data show that the 90° opening angle produces the 

strongest reflection. Surprisingly, increasing the opening 

angle to 100° or more decreases the magnitude of reflec-

tion by more than 10 dB, while a smaller angle, such as 

80°, mainly weakens the reflection at high frequencies. 

User tests with musicians indicate that acoustic 

retroreflectors can provide the desired feedback in per-

formance spaces in which natural reflections to the stage 

are missing, such as in large ha lls far away from the walls 

or outdoors. 

1. INTRODUCTION 

For a performer, some places are easy to play in while 

others are difficult. This ease or difficu lty is related to the 

reflections of the performance space sending the player’s 

own sound back to her or his ears [1]. Without such audi-

tory feedback provided by the walls or other reflective 

structures, the performer does not hear her or his playing 

well, which feels uncomfortable. This in fluences espe-

cially amateurs. Professionals notice this as well, but they 

are more competent to make adjustments. Through expe-

rience they look for a better position to stand or sit and 

their muscle memory helps them to maintain good ergo-

nomics even when the space does not support the sounds 

they are making. Reflect ions that are too early or too late 

do not help (see Fig. 1). 

 

This paper considers a light-weight acoustic arrangement 

corresponding to ‘stage monitor speakers’ used in ampl i-

fied music performances. The function of monitoring is 

for players to hear their own performance and also a mix 

of other performers. How much monitoring feedback is 

needed, and how can this be implemented acoustically  

without building heavy structures on the stage? Can a 

portable set of good reflectors be made which can be 

carried by performers themselves to schools, museums, 

outdoor places, and other environments not allowing a 

loudspeaker-based monitoring system? 

 

Figure 1. Rough division of usefulness of 

retroreflections in music and speech performances.  

This paper suggests acoustic retroreflectors, which are 

constructed of three orthogonal acoustically reflective 

boards: two boards connected together at a right angle 

placed on a hard floor, which acts as the third board. 

Such a retroreflector echoes sound back towards a sound 

source placed at any angle in its vicinity [1, 2]. The best 

location for a retroreflector is inevitably in front of the 

performers, i.e., between the players and the audience. 

This implies that the construction must not be visually 

intrusive. The main emphasis in this work is  to find low, 

ramp-like constructions, that can be hidden among chairs 

and music stands. Furthermore, knowing how far on the 

side of an ensemble a retroreflector can be installed while 

still working efficiently, is of interest. This is, in practice, 

connected to finding out how wide a horizontal range of 

angles can be covered with one retroreflector, i.e., how 

large a group of performers can benefit from each reflec-

tor. This paper does not consider what the audience hears, 

although good stage acoustics may greatly improve a 

music performance.  

 

The rest of this paper is organized as follows. Sect ions 2 

and 3 discuss the basics of reinforcing sound reflections 

and acoustic reflectors. Section 4 explains our arrange-
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ments for measuring the performance of acoustic 

retroreflectors. Section 5 analyzes the results of the 

acoustic measurements , section 6 presents user experi-

ments conducted with performers, and section 7 con-

cludes the paper. 

 

2. REFLECTIONS ARE IMPORTANT 

General room acoustics theory has shown that the listen-

er’s impression of a room, its envelopment by music and 

other similar features is formed by sound informat ion 

(preferab ly lateral) that arrives 30 to 100 ms after the 

direct sound [1, 3, 4]. Th is has been corroborated in many 

ways through studies of audience experience. 

 

Some literature on stage acoustics exists [4] but noticea-

bly less. Even less can be found about music making in  

smaller ensembles and in non-concert-hall environments. 

 

If the first reflected sound reaches the performer only  

after 50ms (corresponding to a distance of 8.5 m), the risk 

that the performer perceives an audible echo is greatly 

increased, making singing, playing and even talking very 

difficult. This phenomenon is not uncommon in long 

festivity halls of the 19
th

 and 20
th

 centuries. To free per-

formers of this bad situation, it often suffices to add an 

extra reflect ion in the range 30--40 ms. Additional de-

layed sound in this range does not produce coloring to the 

spectrum as earlier reflections would. 

3. ACOUSTIC RETROREFLECTORS 

This paper considers only retroreflectors, i.e those return-

ing the incident sound to the direction of the source (Fig. 

2). Such reflectors have been in use also in electromag-

netic waves, e.g with navigation radars [1, 2]. The 

phenmenon of retroreflection occurs with light as well, as 

can be seen in Fig. 3. 

 

The minimum size of the reflector is  determined by the 

longest wavelength to be reflected efficiently. The fre-

quency range that is the most important for this applica-

tion is the middle audio range from about 400 Hz to 

about 2 kHz, where the perception of spatial characteris-

tics are at its best. This was verified in a series of field  

tests, where the reflection was art ificially produced with a 

(guitar) loudspeaker. 

4. TEST ARRANGEMENT 

Measurements were conducted in a semi-anechoic cham-

ber to collect data to answer the following questions: 

 What geometrical features are needed to get an 

adequate reflect ion? 

 How do reflectors of different shapes and in dif-

ferent placements operate acoustically?  

 What is the operative coverage angle of a single 

reflector? 

The right-angled retroreflector made of water-t ight ve-

neer of size 60 cm x 60 cm was used as a reference. 

 

Figure 2. Principle of the corner retroreflector illustrat-
ed with sound rays [2]. 

 

(a)                        (b) 

Figure 3. (a) An optical retroreflector, consisting of two 

mirrors at right angles, displaying the single-reflection 

mirror images of a candle on the sides and the double-

reflection image behind the hinge of the mirrors. In this 
case the floor reflections are not specular but diffuse 

and thus blurred. (b) A single and double retroreflection 

from the reference device as seen from a camera with 

flashlight. The strong double reflection is around the 

hinge and at the left edge, the single reflection is visible 
partially (90° opening and oblique incidence). 

This material was used in all tested devices. Only the 

corner reflector construction, as in Fig. 2, was tested. 

 

The study methodology was to compare the frequency 

responses of the reflections from the retro reflector in  

different configurations. The reflection response was 

computed from the impulse responses obtained from a 

Farina-type sweep signal [5]. The magnitude axis in all 

figures is scaled so that the average magnitude of the 

direct sound corresponds to 0 dB. 

 

The measurements were conducted in the large anechoic 

chamber of the Aalto University. The measurement setup 

consisted of a Genelec 8030A active monitor, a  

Brüel&Kjaer 4191 free-field microphone, and a MOTU 

UltraLite mk3 audio interface. The used measurement 

and analysis software was Matlab. Furthermore, the met-

al-net floor of the anechoic chamber was covered with 

2 m by 7 m laminate flooring in order to create a semi-

anechoic chamber for the reflectors. Figure 4 shows pho-

tos of the measurement setup.  

 

The loudspeaker and microphone were positioned at one 

end of the laminate flooring with the reflector at the other 

end. The distance between the microphone and the reflec-

tor was approximately 4 m. As shown in Fig. 4(a), the 

microphone was positioned just in front of the loudspeak-

er in order to capture the reflected sound waves before 

being scattered by the loudspeaker.  
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(a) 

    

(b) 

 

(c) 

Figure 4. (a) Microphone and sound source, (b) a V-

shaped reference retroreflector, widely opened (over 

170°), and (c) an L-shaped retroreflector with differing 

wing lengths. 

 

Figure 5. Example of impulse response with emitted 

sound on the left and the reflected sound well after 
20 ms. 

Figure 5 shows an example impulse response of a meas-

urement, where the direct and reflected sounds are clearly 

separated. As can be seen, the direct sound starts around 

1 ms, whereas the reflected sound appears around 

24.5 ms. Thus, the delay between the direct and reflected 

sound is approximately 23.5 ms, which corresponds to 

sound traveling 8 m at the speed of 340 m/s. 

 

5. MEASUREMENTS 

We tested three basic types of retroreflectors. Figures 6 

and 7 show the frequency responses from a test series 

with the reference device, and figures 8 and 9 a test series 

with lower but longer devices, with the incidence angle 

being varied.  

 

Figure 6. Reflection responses of the reference device 
with opening angles smaller than 90°. The black lines  

show the cases of 90° and without reflector (WR). 

Figure 6 shows that in the range of interest, from 

400 Hz to 2 kHz, the reflection response decreases 

systematically as the 'receiv ing area' o f the reflector 

becomes smaller. Above 3 kHz the response drops 

quickly. The opening angle of 60°  makes an exception  

and is better than others. This may be exp lained by 

the fact that  this angle creates a formation of six 

coinciding images, just as 90° forms four efficient 

coinciding mirror images. Other opening angles do 

not create such simple image formations. 

 

 

Figure 7. Reflection responses of the reference device 

with opening angles larger than 90°. The black lines  

show the cases of 90° and without the reflector (WR). 

In Fig.7, a dramatic drop in the reflection response is 

apparent in the frequency range of interest and beyond 

for opening angles exceeding 90° upto the angle 180°, 

which corresponds to a single board with one mirror 

image. In fact, an opening of 100° gives the weakest 

reflection of all the measured opening angles, despite it 

physical similarity to a 90° reflector. 
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Figure 8. Reflection responses of a lower but longer re-

flector with equal wings for different incident angles. 
The black lines show the cases of 90° and without the 

reflector (WR). 

 

Figure 9. Reflection responses of a lower but longer re-

flector with unequal wings for different incident angles. 

The black lines show the cases of 90° and without the 

reflector (WR). 

For incidence angle tests with lower but longer 

retroreflectors (responses in Figures 8 and 9), we used a 

scale where 45° means that one of the wings points di-

rectly towards the sound source and thus is  invisible from 

the source. 

 

Figure 8 indicates that the reflectivity of a symmetrical 

retroreflector is excellent for a wide range of incident 

angles (80° wide in practical use) with only the extreme  

of 40° showing more peaks and dips in the frequency 

response. Also, the L-shaped retroreflector keeps the 

reflection strong over a wide incidence angle range, as 

seen from the response in Fig. 9. Interestingly, it shows 

less peaks and dips and less variance between the inci-

dence angles. This makes the  L-shaped retroreflector 

more suitable than the symmetrical, V-shaped reflector. 

At 10° there is a significant dip just above 600 Hz, but so 

was there a similar dip in the V-shaped retroreflector as 

well, but at 40° incidence. Furthermore, dips in the fre-

quency response are not perceived as clearly as peaks , if 

at all. 

6. USER EXPERIMENTS 

The same reflectors were also tested in real situations : in 

real music and festivity halls, the rehearsal room of a 

symphony orchestra, in outdoor performance venues and 

in an anechoic chamber. 

 

 

Figure 10. A right-angled V-shaped retroreflector test-

ed with the Jyväskylä Sinfonia in the rehearsing room 

among chairs and music stands. 

Players of Jyväskylä Sinfonia stated that in a group per-

formance the panels opened the possibility to hear all the 

performers. In a quartet formation the Viola player heard  

the first violin 'for the frist time', not only the adjacent 

players, and in an orchestra configuration, all p layers 

noted an improvement in hearing the ensemble as a 

whole. Four reflectors of the type shown in Fig.10 and 

wider were tested. 

 

Antoher test series was made with professional viola 

player Teemu Kupiainen, who has an extensive side ca-

reer in playing Bach on the streets, including in Africa, 

China and India. 

    

Figure 11. Violist Teemu Kupiainen with document  

microphones at both ears and the sound recorder for the 

simulated reflection signal in front. The cable leads the 

reflection signal to the loudspeaker. 

For the tests, we created artificial reflection with loud-

speaker at twice the distance of a retroreflector from the 

performer. The level was thus controllable and could be 

played back separately. The sound at the musician’s ears 

was recorded (see Fig.11). The results in Fig.12 show that 

in an anechoic room a much weaker reflection is needed 

(-40 to -70 dB) and tolerated (-20 to -40 dB) than in a 

more normal and reverberant room. Even -5 dB is tolera-

ble and as loud a reflection level as -15 dB may be need-

ed to have a noticeable effect. The signal spectrum in  

both cases is the total sound coming to the ears of the 

performer, with adjustments for less bass and treble, 

which were found annoying. 
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(a)                         (b ) 

Figure 12. Empirical SPL range of a favourable added 

reflection for a violist 5 m away from reflector (a) in an 

anechoic chamber and (b) in a room with 1.5 s long re-
verberation time. The lower edge of the red area repre-

sents the threshold level of noticing the reflection and 

the upper edge the level that is experienced as too loud 

and annoying.  

Thus, the study implies that simple, portable 

retroreflectors can be successfully used in performance 

situations where the performers feel that the acoustics 

have inadequate ensemble balance or timbre control. The 

most promising construction is L-shaped two-board cor-

ner reflector, with opening angle not exceeding 90° (Fig. 

13). This reflector is effective if all performers are within  

80° seen from the reflector.  

  

Figure 13. A low L-shaped retroreflector being tested 

by a speech coach in the Festivity hall of Helsinki Uni-

versity. 

7. CONCLUSION 

This paper has focused on the use of acoustic 

retroreflectors to replace monitor loudspeakers in music 

performances. The retroreflectors consist of two reflect-

ing panels placed on a hard floor at a right angle. When a 

retroreflector is positioned at a suitable distance from the 

performers, it can reflect each p layer’s own sound back to 

them, thus providing an unplugged approach to stage 

monitoring. An appropriate distance is one where the 

reflections arrive at the player with a delay of about 20 to 

50 ms, since then the player’s own sound is reinforced 

but a distinct echo is not perceived. 

 

Acoustic measurements on retroreflectors were conduct-

ed in an anechoic chamber, which was converted to a 

semi-anechoic space by using laminate flooring. We 

measured the impulse response of a basic V-shaped 

retroreflector made of two 60 cm x 60 cm boards. The 

opening angle of the hinged retroreflector could be freely 

adjusted.  The best reflection was observed the boards 

were at the right angle. When the opening angle was 

decreased, the reflection weakened main ly at frequencies 

above 3 kHz. However, at lower frequencies, the 

retroreflector still worked fairly well with the magnitude 

of the reflection decreasing by less than 10 dB even in the 

case of a very narrow 40° opening angle. However, in-

creasing the opening angle quickly destroys the reflec-

tion. A 100° opening angle leads to 10 to 25 dB weaker 

reflections, depending on the frequency, than of a right 

angle, making such a configuration useless in practice. It  

is recommended that the angle between the panels be 

adjusted very close to 90° or slightly smaller but not 

larger. 

 

Additionally, longer and lower, 30 cm tall, retroreflectors 

were investigated. The dependence of the magnitude of 

the reflection on the incident angle of sound was varied. 

The data show that the retroreflector produces a strong 

reflection for a wide range of incident angles, with only 

narrow notches appearing in the magnitude response at 

some frequencies. This verifies the basic assumption that 

a retroreflector can send the sound back to (almost) any 

direction.  

 

User tests with professional and amateur musicians and 

with a speech coach confirm our belief that a 

retroreflector placed in front of the performer can provide 

helpful auditory feedback, when other natural reflections 

are missing. Retroreflectors can indeed replace electro-

acoustic monitoring in a music performance, when mi-

crophones are undesirable or electricity is unavailable. 

The most obvious uses for acoustic retroreflectors are 

acoustic music performances in large halls or outdoors in 

a square or in a park, for example.  
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ABSTRACT 
Starting from a (music) analytical question arising from 
the study of Jonathan Harvey’s Speakings for orchestra 
and electronics (2008) we propose a computer-based 
approach in which score (symbolic) and recorded (audio) 
sources are considered in tandem. After extracting a set 
of relevant features we used machine-learning algorithms 
to explore how compositional and auditory dimensions 
articulate in defining the identity of certain sound-events 
appearing in the first movement of the composition and 
how they contribute to their similarity with events occur-
ring in the second movement. The computer-assisted 
approach was used as basis for discussing the metaphor 
that inspired this particular piece, but has the potential to 
be extended to other compositions in the repertoire.  

1. INTRODUCTION 
A significant part of the orchestral music composed 

since the end of World War 2 has made extensive use of 
non-standard playing techniques, of microtonal tuning 
systems and/or elaborated complex “sound masses”. The 
corresponding works have stretched the capacity of the 
written score to provide a complete mental “image” of a 
composition’s overall sound to its limits. When orchestral 
and electro-acoustic sounds are superimposed in a single 
performance or, even more so, when they are intention-
ally seamlessly blended together, the gap between the 
written score and the sounding results may become even 
more acute. In the effort to analyze such compositions, 
the possibility to include and articulate information ex-
tracted from both the written score and the recording of 
its performance becomes a crucial issue.  

Today’s computer technology provides important re-
sources that can be applied to tackle either audio or sym-
bolic (MIDI) data. The transcription of a recorded per-
formance into visual representations can serve as “proto-
scores” that can be annotated and, if need be, aligned 
with a written score [1, 2]. MIR techniques permit to 
extract specific aspects of an audio file and have thus 
paved the way towards more differentiated perspectives 
on recorded sources [3, 4]. Comparable resources can 
also be found in the processing of written information. 
Specialized libraries exist that extract ”statistical” fea-

tures, such as density or degrees of inharmonicity, from a 
MIDI file and retrace their evolutions in time [5]. Despite 
such resources, few examples can be found in the music 
analytical literature that explicitly seeks to articulate 
observations obtained from (and referable back to) the 
musical score and the recording of its performance.  

In this article we present and discuss an example of 
such an attempt based on a (music) analytical question 
that arises from the study of Jonathan Harvey’s Speakings 
for orchestra and electronics (2008).  

This work cumulates both characteristics mentioned 
above. It makes extensive use of non-standard playing 
techniques deployed in complex textural structures and 
blends orchestral and electronic sounds together, at times 
in such a way as to make them indistinguishable from one 
another. When considering questions of identity and 
similarity between sound-events occurring in the piece, 
features extracted from both written and recorded sources 
bear, a priori, equal weight as a basis for investigation.  

As it turns out, a wealth of information exists about this 
composition’s genesis [6]. This has not only provided a 
basis for a preliminary analysis of the work but has also 
quite straightforwardly suggested questions of the type 
just mentioned. These, together with a brief description of 
Harvey’s composition, will be presented in the first sec-
tion of the present article.  

How computer support was brought in, first to extract 
“global features” from the sound events considered and 
then to decide on how to classify and compare them 
within the context of our analysis, are the subjects of 
sections 3 and 4.   

Although the questions underlying our discussion heav-
ily rely on information provided by the composer – thus 
making them quite specific to the work at hand – the 
application of the suggested approach to a wider context 
should also be viable. This possibility will be the subject 
of the discussion provided in the closing section.  

2. ABOUT J. HARVEY’S SPEAKINGS 

2.1 Form and General Characteristics  

Composed in 2008, Speakings is the result of collabora-
tion between composer Jonathan Harvey and researchers 
at the IRCAM. As a byproduct of this collaboration, an 
article was published [6], describing some of the techno-
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logical means applied to its realization (spatialization, 
real-time transformations, synchronization between or-
chestral and electronic sounds…).  

From this source, we learn that: “an evolution of speech 
consciousness […], starting from baby screaming, cooing 
and babbling, through frenzied chatter to mantric seren-
ity [provides] the basic metaphor of the half-hour work’s 
trajectory”. As it turns out, this metaphor actually oper-
ates at two different levels.  

First, as mentioned in the above quote, it provided an 
“abstract narrative” to the work’s overall three-
movements structure (played without interruptions) of, 
respectively, 5’30, 14’00 and 8’30 durations. The first 
movement, dominated by the string instruments, occupies 
the lower dynamic range (up to f) and displays a darker 
and more “agitated” activity than the other two. The sec-
ond movement involves more brass and woodwind in-
struments and progresses through an extended orchestral 
crescendo that culminates at fff. The last movement, fi-
nally, displays an overall calmer mood that mixes all the 
orchestral colors encountered during the previous two 
movements.  

At a second level, the metaphor entered directly in the 
elaboration of some of the musical material appearing in 
the composition. In a way reminiscent to the spectralist 
approach, the composer used computer analyses of com-
plex sounds to derive some of his material. The “baby 
screaming, cooing and babbling,” mentioned in the quote 
were obtained from recordings of actual baby sounds. As 
detailed in [6], these (the sounds, not the babies) were 
subjected to automatic transcription of speech signals into 
symbolic (melodic and harmonic) musical notation and 
the result transcribed to the orchestra so as to mimic the 
voice’s rhythm and natural inflections. In order to render 
the corresponding passages even more speech-like, a real-
time transformation was applied during the performance 
to a selection of (solo) instruments within the orchestra. 
Another example of a similar procedure used a recording 
of the composer singing a short mantra. The correspond-
ing “transcription” for orchestra enters gradually towards 
the end of the second movement and announces the “se-
renity” of the work’s concluding section.  

The present analysis concentrates on the baby sounds 
that appear in the first movement and relates them to 
sound-events that bear similar characteristics and occur in 
the second movement. We now describe these in more 
details.  

2.2 The “Baby Sounds” and their Categorization 

The baby sounds appear in the first movement of the 
composition starting at measure 39. Whether they are 
“screams”, “cooings” or “babbles”, they all share a set of 
clearly identifiable characteristics:  
 They are played by the violins accompanied by two 

(transformed and amplified) solo instruments;  
 They occur in the high to very high register;  
 The dynamic markings are between ppp and mf fol-

lowing a crescendo-decrescendo overall shape; 

 The string parts always include a high proportion of 
glissandi, often played tremolo, with sounds often 
produced as harmonics.  

With few exceptions, labels (actually instructions re-
lated to the electronic part) appear in the score that indi-
cate the “category” to which the corresponding sound 
belongs. In accordance with the composition’s underlying 
metaphor, the first are baby screams, the second baby 
cooings and the last are baby babbles. They appear, re-
spectively, 6, 4 and 8 times over the course of the move-
ment. Although they are quite clearly distinguishable 
aurally as pertaining to separate categories their general 
features as read from the score are very similar and the 
factors contributing to their differences are far from obvi-
ous.  

During the second movement, between measures 133 
and 190, a series of 30 sound-events can be heard, each 
of between 1.5 and 4 seconds in duration, which share 
very similar orchestration, playing modes, register etc. as 
the baby sounds of the first movement. As no real-time 
transformation is applied at that particular moment of the 
piece, no label appears alongside their appearance in the 
score.  

The two questions that will provide the main thread 
through the remainder of this article are as follow: con-
sidering elements from the score as well as from the re-
cording of the piece [7] is there a way to identify the 
differences between the three categories of baby sounds 
that appear in the first movement? Based on this informa-
tion, is it possible to determine to what kind of baby 
sounds, if any, the events in the second movement per-
tain?  

3. FEATURES EXTRACTION  

3.1 Preliminary Remarks 

To tackle these questions, features were extracted from 
each of the baby sounds of the first movement as well as 
from the “potential” ones of the second movement. 
Acoustic features, which are often used for genre classifi-
cation and instrument identification tasks, were calcu-
lated directly from the audio excerpts as found in [7]. 
Symbolic features were calculated using MIDI files ob-
tained from the score via its transcription using a music-
editing software. 

In all the tests performed acoustic and symbolic fea-
tures were first considered as forming separate data sets 
before being combined into a single one (which will be 
called the “comprehensive set”). In all three cases, the 
quantification not only allowed for computerized treat-
ment but also offered the common ground on which 
audio and symbolic aspects could be brought together. 
The following two subsections describe the specific fea-
tures that have been extracted.  

3.2 Audio Features 

The acoustic classification process was based on calcu-
lating features that not only can describe audio excerpts 
in a vector space, but also correlate to human perceptual 
aspects (described below).  
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To obtain the features for each excerpt, we first divided 
each audio file in frames of 43ms, multiplied it by a Han-
ning window and calculated its DFT. Each feature, 
briefly described below, was calculated for each frame. 
 The energy (which is closely related to the loudness) 

[8], is the sum of the squared absolute values of the 
samples of a frame. 

 The spectral roll-off [8, 9] is the frequency under 
which 95% of the energy of the signal lies. It gives 
an idea of the roughness of the sound. 

 The spectral flux [9] depicts the spectral difference 
between the current frame and the previous one. It 
tends to highlight note onsets and quick spectral 
variations. 

 The pitch [10] is also calculated for every frame. The 
algorithm used, based on autocorrelation, retrieves 
the most prominent pitch in the frame. If no pitches 
are found, the algorithm yields zero. 

The mean, variance and the time-domain centroid of 
each feature are calculated [8, 9] along the frames. At the 
end of this process, each audio excerpt is described by a 
12 dimensional feature-vector. As is shown in works 
related to audio classification, the Euclidian distance 
between two vectors tends to be small when the related 
audio excerpts sound alike [9]. 

3.3 Symbolic Features  

The symbolic features extracted were obtained using 
the OpenMusic library called SOAL [5, 11]. It allows for 
the extraction of quantified measures on symbolic (MIDI) 
data relating to the statistical dimensions such as densi-
ties, inharmonicity and relative-range, either considered 
“a-chronically” (i.e., spatial, vertical or out of time) or 
“diachronically” (in time). More details about this library 
can be found in [5]. 

All the symbolic features extracted here are related to 
“textural” qualities of the excerpts considered. These 
were established as the following:   
 Virtual-fundamental: gives the “fundamental” note 

obtained by evaluating the distance between the first 
two lowest pitches of each except; 

 E-deviation in harmonicity: corresponds to the devia-
tion between the file's total pitch-content and the 
harmonic series deduced from the virtual fundamen-
tal.  

 Relative density: is obtained by dividing the total 
number of pitches by the theoretical maximum pos-
sible number of them within the total range of the 
excerpt. A typical chromatic cluster, for instance, 
would correspond to the maximum relative density. 

 Absolute Range: corresponds to the difference be-
tween the highest and the lowest note present in the 
excerpt.  

 Relative Range: the range occupation of the excerpt 
considered with respect to the range spanned by all 
the excerpts considered. In the case of Speakings, 

this total range goes from F4 (or 6500 Midicents) to 
G#7 (or 10400 Midicents).  

The symbolic features extracted considered each single 
excerpt a-chronically.  

4. CLASSIFICATION AND EXTENSION 
The experiments described in this section aimed at ob-

taining a classification of the features that best repre-
sented each of the baby-sound categories. For this pur-
pose all data was normalized to zero mean and unity 
variance, so that all features would be considered with 
equal weight. 

General-purpose computer-based classification proc-
esses are frequently based on vector descriptions of data 
points. They highlight correlations in the data that are 
usually hard to identify manually. Although such general-
purpose algorithms ignore specialist knowledge they have 
achieved important results in many fields.  

Two different algorithms were used and compared: 
support vector machines (SVM) and C4.5 binary decision 
trees (BDT). 

A SVM is a supervised machine-learning algorithm that 
yields a classification based on the maximization of a 
decision margin [12]. Although it has been used to gener-
ate efficient classifiers from data, its internal parameters 
are hard to interpret. SVMs are especially important be-
cause of their known ability to find hidden relationships 
between features [12]. They tend, furthermore, to yield 
models that generalize well, usually leading to better 
results in testing data at the expense of a lower perform-
ance when the model is executed over the training data. 

A BDT is a supervised machine-learning algorithm 
whose training process consists of selecting features from 
data that yield an optimal entropy classification [13]. For 
this reason, the classification model is easy to interpret 
but, at the same time, may have limited generalization 
ability. The BDT may reveal decision processes that can 
be hard to obtain manually but, crucially in the present 
context, are easy to interpret [13]. 

4.1 The Classification of the Baby Sounds in the 1st 
Movement 

In a first experiment both algorithms were trained using 
the labeled data from the first movement and the resulting 
systems applied to the classification of that same training 
data. This test aimed at detecting if the features made 
sense for classification. The accuracy of this process is 
shown in Table 1. 

 
Number (and %) of 
correctly classified 
baby sounds 

 
SVM 

 
BDT 

Audio 14 (77%) 17 (94%) 
Symbolic 11 (61%) 14 (77%) 
Comprehensive 15 (83%) 17 (94%) 

Table 1. Classifications of the Baby Sounds in the first 
movement.  
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We note that the results obtained by the SVM are nota-
bly worse than those obtained by the BDT, in spite of the 
former being a more sophisticated model. This, however, 
is in line with the fact that its training process aims at 
optimizing the generalization capability of the system. 
The BDT, on the other hand, maximizes its results con-
sidering the training data alone.  

Furthermore, the BDTs training process showed the 
most discriminative features in both sets. In the symbolic 
features set, the algorithm selected the relative density 
and the relative occupation while in the acoustic set as 
well as in the comprehensive set, it selected the average 
energy, the average spectral flow and the average spectral 
roll-off.  

4.2 Extension to the Second Movement  

The systems resulting from the training of both algo-
rithms were then used to determine the category to which 
the baby sounds that appear in the second movement 
could be said to belong to. The results are shown in Ta-
ble 2. 

 

 

Table 2. Classifications of the Baby Sounds in Second 
movement. 

Although data from the second movement is not labeled 
(no ground-truth is provided) it can be observed that the 
results of most executions are consistent between them-
selves. This means that, considering the specific features 
selected (both acoustic and symbolic), the sound events 
of the second movement are closer to the first move-

ment’s baby babbles than to the others baby sounds. 
Since this is true for all three feature-sets, it is important 
to discuss this result more thoroughly. 

The classification of excerpts of the second movement, 
using the BDT only matched the results yielded by the 
SVMs when symbolic features were considered. This is 
to be expected, as the auditory similarity depends on the 
correlations between acoustic features, while symbolic 
features are meaningful even if analyzed individually. 

The BDT decision process considered only two features 
from the symbolic dataset: Relative Range and Relative 
Density. In order to explore the combinations further, 
these two features were removed from the set and a new 
learning process initiated. The remaining features formed 
the “Symbolic 2” set. When training was based on this 
set, the algorithm considered two further features: E-
harmonic Deviation and Relative Range.  

The results in the second movement, shown in Table 2, 
are consistent with the ones obtained previously with a 
clear prominence of baby babble sounds. 

5. DISCUSSION  
Looking back at the music analytical questions formu-

lated at the beginning of this article the results may now 
be interpreted within the “basic metaphor” underlying the 
composition. Leaving aside all considerations about what 
the composer’s actual interpretation has been, the “remi-
niscences” of the baby sounds that precede the process 
leading to the “mantra” can be argued to correspond to 
the last of the three types of baby sounds. Remaining at 
the metaphorical level, the baby babbling, albeit in a 
more discreet form, become part of the “frantic chatter” 
through which the music – and the speech consciousness 
– evolves until reaching its final “serenity”.  

Such an observation, of course, does not in itself consti-
tute an analysis of the composition. How it would fit into 
a more extensive study of the work would also greatly 
depend on the particular angle taken in such an endeavor. 
The results to be underlined here have more to do with 
the method employed and, in particular, with the dual 
role the computer played in reaching our conclusion.  

The first of these roles is to be found in the increase in 
precision and in the associated extension in the number of 
“parameters” that can be taken into consideration in the 
analytical process. As a correlate, the quantification proc-
ess that underlies these new possibilities offers a more 
objective basis for discussion and for communication of 
results.  

The second role played by the computer is more obvi-
ous: namely in systematization of the exploration of these 
parameters. In this context, the fundamental difference 
between the two algorithms should be stressed again. The 
SVM generalizes user-labeled data but does so without 
providing any feedback as to the reasons that underlie its 
decisions. The BDT, on the other hand, provides an ex-
plicit hierarchy of features that can be discussed inde-
pendently and may become the basis of a new set of ex-
periments.  

In both cases, the results provided by the algorithms 
depend, in two distinct senses, on the particular features 
that have been extracted. First, at the algorithmic level, a 
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poor selection of features may lead to unsatisfactory 
classification. Second, at the analytical level, the same 
may weaken the interpretability of the results or their 
meaningfulness.  

In the analysis presented here questions of segmentation 
and categorization were directly suggested by informa-
tion provided by the composer. In a more general context, 
such data would have to be obtained from other sources, 
including independent (music) analytical decisions. Ques-
tions of identity and similarity, however, are bound to 
arise in a variety of contexts. In the face of the increasing 
complexity of a certain type of repertoire, the help of 
computerized processes such as the ones described here 
are likely to become increasingly important.  

6. CONCLUSIONS 
The computer-based music analytical approach pro-

posed here, albeit still being in its preliminary stages, 
provided concrete support in tackling musical repertoire 
in which both written and recorded sources are best con-
sidered in tandem.  

None of the features extracted was obtained by a 
method new to either the field of music information re-
trieval or to that of music analysis per se. Their handling, 
however, opened the way for a more comprehensive 
approach, in which information obtained form different 
sources could be considered simultaneously. The use of 
the machine learning techniques also showed the com-
puter’s potential as a tool to explore and make sense of 
the multiplicity of data that such an approach implies.  

Amongst the tasks envisioned in the future are: the 
elaboration of further analytical examples, more detailed 
discussions of the methodological issues that may arise 
from the extension of the method as well as a harmoniza-
tion of the computational tools involved.  
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ABSTRACT 
This paper presents an overview of research and devel-
opment of Network Music in Brazil, and particularly the 
production of two concerts at the University of São Paulo 
in partnership with the Sonic Arts Research Centre in 
Belfast, Northern Ireland. We present technical issues 
encountered that were of substantial impact on the reali-
zation of rehearsals and concerts, and also discuss aes-
thetic issues related to composition, performance and 
perception on distributed environments. From these con-
certs we emphasize the lessons we learned and also the 
perspectives for future research, always from both tech-
nical and artistic points-of-view. 

1. INTRODUCTION 
Since the appearance of the Internet there has been sever-
al approaches for using it for music creation and perfor-
mance, ranging from network transmission of purely 
symbolic information, with all heavy processing (such as 
analysis and synthesis of digital signals) carried out local-
ly on each node, to full-duplex high-quality multi-channel 
Audio/Video transmission, frequently resorting to high-
end dedicated network infrastructures [1],[2],[3],[4]. 

A handful of musical works for the Internet unveils the 
different ways composers have adopted the new medium 
to place their musical knowledge. Online pieces such as 
“Cathedral” (1997) or “Auracle” (2004), by recently de-
ceased composers William Duckworth and Max Neuhaus 
respectively, have proposed networked multi-user envi-
ronments where musicians and nonmusicians are able to 
interact through sound. Installations such as Ataú 
Tanaka`s “Global String” (2000) and Chris Chafe`s 
“Ping” (2001) have suggested the metaphor of a string 
that resonates over the Internet between geographically 
distant points. Taking advantage of non-synchronic inter-
action and social network paradigms, new musical exper-
iments are being proposed for the Web 2.0, such as 
“Graph Theory” (2005) by Jason Freeman,  “It Space” 
(2007) by Peter Traub or “In B flat 2.0” (2009) by Darren 
Salomon. Since Internet connection has become an ubiq-
uitous facility and bandwidth has expressively increased, 
network musical performance has became a reality. In the 
last decade, regular collaboration projects have been cre-
ated, mainly in North America and Europe, establishing 
dispersed groups of musicians exploring the network as a 
musical performance platform. Remarkably, Telematic 
Circle project, conducted by American composer Pauline 
Oliveiros, has been organizing and staging network per-
formance collaborations and concerts over Internet2.  

Despite the enormous potential for artistic exploration 
and technical development related to Network Music, the 
currently available infrastructure in Brazil still imposes 
limitations and difficulties, both for the home user and 
Academia, accounting for the fact that networked musical 
collaboration hasn't yet gained widespread popularity 
here after nearly 20 years of research. 

1.1 Brazilian challenges on Network Music 

When the Internet first appeared, expectations on its po-
tential for musical use were high. Although dial-up 56 
kbps connections could barely sustain a lossy-encoded 
voice transmission without occasional drop-outs, let 
alone reasonable 128 kbps MP3-encoded music signals or 
1411 kbps CD-quality stereo signals, bandwidth has 
largely increased ever since, reaching 30~100 Mbps for a 
home user and 1~10 Gbps within Universities nowadays 
in Brazil. Despite this obvious improvement, home users 
still face severe download fluctuations, because Internet 
providers are only required by law to ensure 20% of the 
nominal acquired speed, and also very low upload rates, 
usually about 3~5% of the corresponding download rates. 

Technological difficulties have not prevented many at-
tempts of bringing together music and networks among 
the general public in Brazil. A few very recent examples 
outside research circles are the joint rehearsals of the 
Deutsches Symphonieorchester Berlin and the Orquestra 
Jovem do Estado de São Paulo [5], a Rock/Rap distribut-
ed concert in São Carlos [6] and the event "Challenges of 
Network Art" with A/V exchange between Fortaleza and 
Rio de Janeiro [7]. 

Turning to research circles in Brazil, back in the 1990's 
Iazzetta and Kon were concerned with two main issues 
that affected musical performance on the Internet: time 
discontinuity (latency and jittering) and the lack of a suit-
able musical representation specifically designed for net-
work transmission [8], [9]. Miletto and Pimenta started 
out in 2003 what would become the CODES Web-based 
environment for collaborative musical composition 
[10],[11]. Also in 2003 other works dealing with symbol-
ic network transmission have appeared in the archives of 
the Brazilian Symposium on Computer Music, addressing 
problems such as distributed musical instruments [12], 
distributed performance [13] and multiagent distributed 
music processing [14]. In 2004 Kon and Lago studied the 
perceptual influence of latency on musical performance 
[15], suggesting that tolerable latencies are highly de-
pendent on users perceptions and stimulus type (rhyth-
mic/melodic, visual and haptic). 
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1.2 Network Music at University of São Paulo 

From 2001 onwards there has been a continuous conver-
gence of interests between research groups in the music 
and computer science departments at the University of 
São Paulo (USP). Music research with a technological 
component, spanning topics such as electroacoustic and 
interactive creation and performance, psychoacoustics 
and sonology, had clear potential interrelations with 
computer science research on digital sound processing, 
numerical simulation, distributed systems and artificial 
intelligence. A collaborative effort was created, first cen-
tered on room acoustics [16], then on technologically-
mediated interactive music performance that ultimately 
grew into a research organization called NuSom (Re-
search Center on Sonology). Over the years, this group 
produced several works both with scientific/technological 
as well as artistic contributions and creations. 

As far as technological solutions for network perfor-
mances are concerned, a few shortcomings were identi-
fied for every available software, either regarding cost, 
unavailability of source code or lack of specific function-
alities (e.g. data compression, delayed local feedback or 
graphical user interfaces). Two parallel projects were 
launched, one aimed at adding compression and a de-
layed feedback option to JackTrip (in collaboration with 
its authors), and another (the Medusa project) based on 
JACK and aimed at transparently managing shared audio 
resources in a heterogeneous network [17], [18]. 

Academic exchange of students and researchers be-
tween the SARC (Sonic Arts Research Centre) at Queen's 
University Belfast and the Mobile group at USP has mo-
tivated a series of artistic collaborations. Among these 
two networked concerts (nicknamed NetConcerts) have 
been carried out, aiming the incorporation of an academic 
network as the platform for music performance and com-
position. The preparation phase preceding these concerts 
has involved a set of tests, rehearsals and the setup of an 
interconnected stage, put into effect by a team of graduate 
students from both institutions. 

This text focuses on the problems that appeared in at-
tempting to carry out these projects and concerts, and the 
solutions devised to overcome or bypass some of the dif-
ficulties that may (or may not) be specific to this Brazili-
an scenario. The following section discusses the main 
technical and artistic challenges that were addressed in 
putting together the NetConcerts. Section 3 presents de-
tails of each NetConcert, including preparations and re-
hearsals, compositions included and also some of the 
lessons learned. Finally, section 4 presents some perspec-
tives and unsolved problems for further research. 

2. TECHNICAL AND ARTISTIC CHAL-
LENGES 

There are a few general and well-known technical prob-
lems that impact a distributed concert, such as bandwidth 
limitations, latency and jitter. Other problems may be 
specific to a particular setting, for instance the need to 
think of mixing console control also as a distributed prob-
lem, since an operator on one stage doesn't know how a 
particular sound mixture is perceived on another stage 

due to acoustical differences. The choice of software for 
signal streaming may also be specific to the type of net-
work connection available and the musical paradigm 
adopted. 

The distribution of performers, instruments and roles 
also bring important challenges on composition and per-
formance. Some specific issues have been identified and 
discussed [19], [20], and taken into consideration in our 
network performance practice such as the perception of 
time, the remote interactivity, the distributed nature of 
performance space, the notation and control resources for 
the network. Artistic intentions have started from the 
premise that in a networked concert, performance not 
only takes place in the physical space, but also in a non-
physical one, a virtual space of communication that can 
be embodied by specific audiovisual clues on each site. 
Thus, the representation of this interconnected space has 
leaded to a particular concern about the staging process in 
networked musical contexts. The search for stage re-
sources that enhance the interconnected nature of the per-
formance has been our main artistic goal. 

2.1 Technical issues 

Several software solutions are available for performing 
music in different places using the Internet, but some 
applications are meant only for asynchronous symbolic 
information exchange (such as netpd [21], the Pd object 
netsend and JAM with Chrome [22], whereas others are 
concerned with synchronous audio streaming, such as 
SoundJack- [23], JackTrip- [24], eJamming- [25], net-
jack- [26], llcon [27] and the Pd external netsend~ [28], 
and also NINJAM [29], which has a very particular ap-
proach towards synchronization (players are synchro-
nized with previous bars played by remote users). There 
have also been extreme cases where musicians performed 
through a Skype# call, but since it is a VoIP solution its 
audio quality is poor (it uses speech codecs aiming at 
intelligibility) and it may produce latencies up to 250 ms 
[30], whereas network music performances ideally re-
quire less than 50 ms [31]. 

In the NetConcerts between USP and SARC, both 
SoundJack and JackTrip were used. Initially, JackTrip 
was chosen because it is capable of interacting with the 
JACK audio server, but after some connection difficulties 
(as discussed in the sequel), performances were made 
using SoundJack. These alternatives differ in many as-
pects, which will be described briefly. 

The SoundJack software was created by Alexander 
Carôt for his Ph.D thesis providing interesting options for 
network music performances. Despite its name, it cur-
rently doesn’t connect to JACK (a feature that was avail-
able in earlier versions), but uses the PortAudio library 
instead. It allows sending uncompressed 48 kHz 16-bit 
audio streams, or OPUS-compressed streams (OPUS is 
an IETF standard defined on the RFC 6716 that gives 
high quality lossy audio compression with low algorith-
mic latency [32]) with 48, 96 or 192 kbps. The user also 
chooses the size of the audio block (64, 128, 256 or 512) 
and the number of samples in each network packet (128, 
256 or 512). The lower these settings, the smaller the 
latency, provided that the audio block size is not set too 
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low so that the computer can’t handle it. The size of the 
network packet directly influences the amount of band-
width needed. It is possible to adjust the buffer size dur-
ing performance to avoid audio glitches caused by buffer 
underruns. There are two ways of connecting to other 
nodes: automatically or manually. In the automatic mode 
the application connects to a server that helps finding 
other users and works as a hub, helping in the NAT tra-
versal process, whereas in the manual mode the user is 
required to set the IP address and port of the remote host. 

The JackTrip project was developed at the CCRMA by 
Juan-Pablo Cáceres and Chris Chafe, and provides high-
quality audio streaming while maintaining low latencies. 
It allows accessing the sound card through the JACK 
audio server, allowing the musician to connect it directly 
to any other software compatible with the JACK API 
(e.g., Pure Data patches). It is also possible to use the 
RtAudio library to access the audio device directly, as 
SoundJack does. It uses 8/16/24/32 bits per sample and 
any sampling rate desired, but it doesn’t use audio com-
pression, requiring fairly large amounts of network 
bandwidth in exchange for high audio quality. Theoreti-
cally, it allows the user to transmit as many audio chan-
nels as he/she wishes. There is no central server to help 
locating other users, so it requires the manual adjustment 
of IP address and port. 

JackTrip’s buffer size cannot be adjusted during per-
formance, but only on startup. When the buffer becomes 
empty during a session, the current implementation starts 
to playback the audio received as soon as possible, which 
actually negates the buffer’s main purpose. However, 
when JackTrip is used on academic research networks 
this is not much of an issue, since the jitter observed in 
these conditions is very low, and not enough to cause 
buffer underruns and/or audio glitches. For instance, 
when analyzing the network conditions between USP and 
SARC over 24 hours with the ping tool, a mean latency 
of 257.96 ms was observed, but with only 0.786 ms 
standard deviation. 

From a non-technical user point-of-view, SoundJack is 
much more user-friendly, by including a graphical user 
interface and offering an automatic connection scheme, 
while limiting some configuration options that would 
appeal to musicians with access to a high-end network 
infrastructure. On the other hand, JackTrip is a command-
line tool which require a little more user skill, but allows 
greater flexibility and can be considered a better choice in 
the context of academic music performances. As will be 
seen in the next section, it hasn’t been favored over 
SoundJack due to a practical limitation on the number of 
channels. It turned out that depending on the JackTrip 
and audio device settings, the packet size may become 
bigger than the maximum allowed on the TCP/IP proto-
col (65535 bytes), causing the software to fail to transmit 
data appropriately, and effectively limiting the number of 
channels being streamed. 

2.2 USP network infrastructure and required tests 

University of São Paulo is a strategic point of connectivi-
ty in Brazil since it has been a founding partner of the 
ANSP (Academic Network of São Paulo) and manages, 

as from 2004, one of the Brazilian backbone Points of 
Presence (PoP). It facilitates the integration of the Brazil-
ian National Research Network (RNP - Rede Nacional de 
Pesquisa) with foreign high-end networks that serve other 
regions of the globe, such as Clara, Internet2, Geant or, as 
was the case in the NetConcerts, with Janet in the UK. 
Broadband connection within the RNP backbone called 
“ipê” achieves 10 Gbps, and receives privileges and mon-
itoring services. 

During the NetConcerts preparations, connectivity is-
sues between USP and SARC were observed. While try-
ing to connect using JackTrip, only SARC was able to 
receive the stream correctly, which made it seems like 
there was a firewall on the USP side blocking UDP traf-
fic, since changing port or public IP wasn’t helping estab-
lishing the connection. After contacting USP central net-
work administrators, they guaranteed that there never was 
any kind of firewall blocking, which made those issues 
were completely unexpected (testing with netcat on the 
same ports confirmed that indeed there was no firewall at 
all). It was possible to transmit UDP messages between 
the sites but, for some unknown reason, no connection 
was possible using JackTrip. 

Another suspicion was that the bandwidth required 
could be part of the problem, triggering some behavior 
that blocked UDP traffic on this route. To test this hy-
pothesis, the number of channels were lowered and, in-
deed, the connection with mono audio could be made 
successfully between USP and SARC. Further investiga-
tions showed that the bandwidth needed, while related to 
the issue, wasn’t the cause of it. Inspecting the network 
traffic with Wireshark showed that the packet size used 
was the main problem. Since the network packet sent by 
JackTrip depends directly on the number of samples per 
frame and the quantity of channels, depending on the 
settings chosen, the packets were being fragmented by 
the IP layer of the protocol stack. 

With only one channel and 512 samples per frame, the 
packet was sent without being split and everything 
worked fine. Increasing the number of channels, the 
packet had 2140 bytes, becoming too big to be sent at 
once and was fragmented in two segments, one with 1514 
bytes and other with 626 bytes. Interestingly, the larger 
one would arrive without issues, but the smaller one 
wouldn’t arrive at all. This also explains why SoundJack 
was able to connect without issues, since, by default, it 
transmits an OPUS stream, using much smaller network 
packets and avoiding fragmentation on the IP layer. 

With the problem completely characterized, the net-
work administrators at USP were called for again to final-
ly solve this issue. To avoid their understandable tenden-
cy of blaming the software (since they don’t know Jack-
Trip), a simple Python script was written that sent in-
creasingly bigger UDP packets and showed that, on the 
USP↔SARC route the packets were only correctly 
transmitted until a certain packet size, whereas with other 
routes no problems were observed at all. With this im-
portant piece of information, they were able to investigate 
the issue, identifying that the cause of the problem was 
outside of the USPnet backbone, and fixed it with the 
collaboration of external partners, making it possible to 
send up to 32 uncompressed audio channels between the 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

455



concert sites. Unfortunately, such a solution was only 
found after the concerts, which explain the use of 
SoundJack in both NetConcerts. 

In this case there were problems on the infrastructure 
that required much more investigation than it is generally 
needed, but it shows how important it is to be able to con-
tact your network administrators and to be able to work 
with them to perform networked music, since it is not 
unexpected for the user to face at least some security re-
strictions or NAT issues. 

The problem described in this section could also have 
been solved by adding features to the JackTrip code that 
could circumvent the issue, since it is an open-source 
software. Allowing JackTrip to split and join the network 
packets inside the application itself would have offered a 
quick solution, but would also mask the real underlying 
network infrastructure problem instead of solving it. 

2.3 Artistic issues 

The process of selecting, designing and adapting the per-
formance space for different network music pieces was 
especially rewarding. Performers’ and audiences’ geo-
graphic displacement challenged the way we used to set 
up the live stage. In order to represent the shared space of 
communication between musicians, some aspects were 
taken into consideration. 

Stagecraft elements such as screens and projections 
help audiences become aware of the interconnected na-
ture of the performance. Fed with live content, they in-
tensify the sense of community and enhance the liveness 
experienced in a telematic event. Live video resources on 
stage suggest a televisual reference that helps the audi-
ence strengthen causal relations between sound and per-
formers’ activity. 

The above-mentioned difficulties in connecting Jacktrip 
between the two sites limited the audio setup to a bidirec-
tional 44.100 Khz stereo Soundjack connection. Thus, it 
required the creation of three local sound mixtures related 
to the different sound outputs needed in a telematic event. 
The first mix was defined with the criterion of leaving, as 
intelligible as possible, the sound produced on stage in 
São Paulo. This stereo audio signal was sent to Belfast 
via Soundjack. The second mix was created for the stereo 
PA in São Paulo, and gathered the local sound and the 
incoming stereo signal from Belfast. A third mixture was 
created in order to produce a recording, and it was also 
used to transmit the concert by an online audio-streaming 
channel.  

Notation resources have also been considered as an im-
portant concern in network performance and composi-
tion. Through live scores, graphic environments running 
locally on each side of the connection, the composer is 
able to conduct the performance remotely. Performers are 
able to follow the movements and changes in the graph-
ical environment as musical directions or instructions 
sent by the composer (in our case through OSC messag-
es). 

Live video processing procedures have also been incor-
porated. Such strategy suggests a quite different approach 
with respect to live scores, since the goal here is meta-
phorically resizing the performance space in order to find 

new boundaries for the musical stage. Rather than creat-
ing a visual content for the music or a graphic score, the 
manipulation of live images from the remote stage rein-
forces performers’ and audiences’ sense of a shared 
space. 

 
3. ARTISTIC CONTRIBUTIONS AND 

NETCONCERTS 
 

NetConcert is a series of networked events hosted by the 
Mobile research group at the University of São Paulo 
(USP). Through live concerts with remote partners, 
NetConcert project aims to create an interdisciplinary 
laboratory for experimental work on the subject of inter-
connected musical performance, composition and distrib-
uted creativity. It intends to build a technical framework 
at the School of Arts and Communication that allows 
staging and commissioning Networked Music pieces. 
Among other transmissions and participations on net-
worked events, two concerts have been carried out in 
cooperation with the Sonic Arts Research Centre (SARC) 
at the Queen’s University Belfast (QUB), the former on 
June 6th, 2011 and the latter on March 23rd, 2012.  

The repertoire was chosen keeping the balance between 
new commissioned pieces for the event and existing net-
work music pieces by contemporary composers. Some 
pieces by SARC members that have already been played 
with other partners were performed whereas others were 
premiered. An adaptation for a geographically distributed 
laptop ensemble was made from a work composed origi-
nally for a local area network environment. Postgraduate 
students from USP Music Department engaged in the 
Mobile project were commissioned to compose pieces for 
the events. 

3.1 NetConcert 1 (June 2011)  

The first NetConcert took place on June 6th, 2011, and it 
was the first public experience with the network infra-
structure installed in the LAMI laboratory at the Music 
Department. We performed pieces recently composed by 
SARC members such as Pedro Rebelo’s “NetGraph” 
(2010) and Felipe Hickmann `s “Summer Snail” (2010). 
They included live score resources with different inten-
tions; in the case of NetGraph remote controlled images 
become a platform for musical socialization. In the case 
of Hickmann, live score followed a game-like direction. 
New pieces were composed for the event: “Paulista” 
(2011) by Rui Chaves, that included the image from a 
live earth-cam# located at the Paulista Avenue (one of the 
main streets in São Paulo) and “Disparity” (2011) by 
Julián Jaramillo where the live images of two sax players 
are cut in vertical fragments and reassembled, creating a 
new live image from the two dislocated performances. 
The resultant image is different on each site because local 
video processes are driven by remote performance. Spe-
cific coincidences between pitch and amplitude are rout-
ed to video events. 

Performers and collaborators engaged with the Mobile 
group were invited to participate in the first NetConcert. 
The improvisatory structure of the pieces implied that 
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many rehearsals were devoted to jam sessions controlled 
by the composer. As temporal discontinuity used to be 
the main drawback in networked environments, periodi-
cal time structures and idiomatic musical languages were 
deliberately eluded. On the other hand, the preparation 
phase aimed towards the search for an appropriate sce-
nography, thus two screens were disposed on the stage. 
One of them showed the performance space in Belfast. 
This element worked better when the camera was taking 
a close view of the remote performance space. The in-
coming video signal was projected next to the musicians 
trying to preserve the one-to-one scale. The existence of 
such a crude, unprocessed, remote live image from the 
partner stage granted an evidence of the interconnected 
status of performance. The other screen was dedicated to 
represent the communication space in specific ways for 
each piece. 

 

 
Figure 1. São Paulo view of SARC composer Pedro 
Rebelo performing “NetGraph” with USP double bass 
student Miguel Antar. 

3.2 NetConcert 2 (March 2012)  

The second concert was carried out on March 2nd, 2012, 
with closer academic relations between SARC members 
and the Mobile group. We performed Pedro Rebelo`s 
“Cipher Series” (2011-2012) and Felipe Hickmann’s new 
version of “Summer Snail” (2011) from SARC. Automat-
ic live score resources were included in the pieces we 
commissioned in São Paulo. “Scratch-shot” (2012), by 
young Brazilian composer Andre Damião Bandeira, pro-
posed a Pure Data Patch whose aleatoric behavior and 
chance directions guided the performance. The USP Mu-
sic Department laptop ensemble was invited to perform 
“VAV” (2008) by Californian composer and The Hub 

member Chris Brown. The performance included six lap-
top players in São Paulo, two in Belfast, and a conductor. 
Performing “VAV” over the Internet was a great experi-
ence. A very simple dynamic notation environment was 
also created exclusively for the performance. The goal 
here was visualizing and making evident the rules of in-
teraction and improvisation the piece called for. 

 
Figure 2. Live score of “Scratch-Shot” by Andre Bandei-
ra. 
 

“Ser Voz” (“To Be Voice”, 2012) was commissioned to 
Michelle Agnes and Julián Jaramillo and performed with 
Mobile members Lilian Campesato and Vitor Kisil. The 
piece suggests a strategy to deal with latency since timing 
is dictated by a system of cued vocal events between per-
formers. From gutturalities, onomatopoeia and imitative 
sounds, a vocal soundscape is progressively created by 
two pair of geographically displaced duets. As opposed to 
the first NetConcert preparation process, in the case of 
“Ser Voz”, rehearsals were devoted to determine regions 
of synchronicity through specific vocal events. Video 
processing resources were also adopted but in this case, 
the one-to-one scale was not adopted. Each performer of 
“Ser Voz” had a webcam close to his face, thus by com-
puter vision means the lips of each performer were isolat-
ed from the background and relocated in a new abstract 
image including the four performers’ mouths. 

 
 NetCon-

cert 1 
NetCon-
cert 2 

Preparation phase 
(weeks) 

5 7 

Total Number of pieces 4 5 
Original pieces by 
SARC members 

3 2 

Original pieces by USP 
members 

1 2 

Original pieces by oth-
er composers 

0 1 

Rehearsals 2 3 
Performers at SARC 5 4 
Performers at USP 4 14 
Technical collaborators 
at SARC 

3 4 

Technical collaborators 
at USP 

5 6 

Table 1. Human resources of the NetConcerts. 
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Academic 
Network at 
SARC 

Janet Janet 

Academic 
Network at 
USP 

RNP RNP 

Institutional 
support at 
SARC 

QUB QUB 

Institutional 
support at 
USP 

USP/FAPESP USP/FAPESP 

Software SoundJack, 
Max/Msp, 

Unreal Media, 
Processing 

SoundJack, 
Jacktrip, 

Max/Msp, 
Pure Data 

Table 2. Technical resources of the NetConcerts. 

4. PERSPECTIVES AND FURTHER RE-
SEARCH 

In this article we presented some issues regarding experi-
ences in the field of networked music in Brazil. Although 
Brazilian researchers and artists have been concerned 
about it since the 1990s, it is only recently that this sub-
ject has been regularly researched. Particularly the Mo-
bile project at the University of São Paulo has held a reg-
ular work in producing NetConcerts in recent years.  

One of our main challenges has been to carry out a mul-
tidisciplinary investigation that takes into account both 
technical and aesthetical issues. 

We have devoted a lot of attention to the solution of 
traditional technical problems of networked contexts (de-
lay, connectivity, jittering) because we believe that stabil-
ity in music network environments is a crucial point to be 
addressed, with an obvious impact on artistic perfor-
mance. However, our main concern is related to the aes-
thetic possibilities brought by this context. More than 
relying on the remote connection between musicians per-
forming on different locations, our main concern is to 
explore the creative potential of networked environments. 
This leads to many interesting open questions. 

One of our major concerns is related to the control of 
networked environments. Achieving connection stability 
is fundamental to provide a background for the develop-
ment of a creative use of the Internet. Since most of this 
production is essentially based on collective interaction, 
the development of a common platform that could be 
efficiently employed in different environments is a key 
point. Also, the integration and synchronization of audio, 
video and metadata is very important since it improves 
the communication between musicians during perfor-
mance, and allows the development of complex strategies 
of music coordination that go beyond free improvisation. 

Events held with SARC left us an important artistic ex-
perience and many lessons. They pointed out problems to 
be solved and future perspectives. On one hand, as a con-
sideration of our experience with networked dynamic 
scores, we could assert that this new kind of notation 

suggests new connotations for the musical stage. Live 
scores create an instance of communication where the 
composer or conductor participates in the performance. 
Since notation is strongly related to sound and live score 
symbols usually do not resemble traditional musical nota-
tion, audience will take it as a clue to better understand 
the performance. On the other, the creation of an inter-
connected perspective for both performers and audiences 
encounters particular challenges in the setting up of the 
stage. Although each piece demands a specific set of 
connections, a common technical framework should be 
prepared for a telematic concert, thus, depending on the 
configuration of each piece,  a proper order should be 
previously defined and rehearsed. 

One of the main perspectives for our NetConcert pro-
ject is to carry out an event that involves more than two 
sites by establishing a multisite connection. In collabora-
tion with Icesi University, in Cali, Colombia and Univer-
sidad de Caldas in Manizales, Colombia, a multisite col-
laboration is being prepared. As part of the 2013 musical 
program at the Festival de la Imagen a version of John 
Cage “Four6” (1992) is being adapted for a network per-
formance. The setup incorporates a multi-site jacktrip 
connection over colombian Renata and brazilian RNP 
network infrastructure. 

The NetConcerts served as a laboratory for experimen-
tation with different systems and platforms required to 
transmit and synchronize various information channels, 
but this very diversity was one of the main obstacles in 
assembling the performances. In our own experience the 
problem of remotely connecting musicians using distinct 
hardware and software platforms proved to be very diffi-
cult, and for practical reasons several choices have had to 
be made in order to guarantee the feasibility of those con-
certs. It seems that a clean solution to this problem de-
pends on a more thorough abstraction with respect to 
operating systems and sources of stream data. 
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ABSTRACT 
Sonification is the intentional use of sound to represent 
data. As visual displays both shrink and grow, as datasets 
grow in size and complexity, and as mobile data access 
increases, sophisticated auditory displays become crucial. 
Computers and devices that support audio are wide-
spread, but there remains relatively little knowledge and 
experience among user interface designers in how to use 
auditory displays effectively. This paper present a taxon-
omy of auditory display methods, and discusses imple-
mentation and design issues in multimodal interaction. 
Some examples of auditory displays developed by the 
author’s research group, the Georgia Tech Sonification 
Lab, are presented. 

1. BACKGROUND 
Sonification is the intentional use of sound to represent 
data, analogous to scientific visualization. As screen sizes 
for visual displays shrink (e.g., mobile devices) and grow 
(e.g., wall-sized displays), there arise new communica-
tion challenges to the information architect or interface 
designer. Further, it is increasingly common for data to 
be consumed by users who are moving, have their hands 
or eyes busy, or are in environments where visual dis-
plays are difficult to access. Using sound to present data 
in these situations where a user is unable to look at or 
unable to see a visual display, has been shown to have 
great success. It should also be noted that sonification and 
auditory displays actually have other advantages over 
visual displays. Auditory displays exploit the superior 
ability of the human auditory system to recognize tem-
poral changes and patterns. As a result, auditory displays 
may be the most appropriate modality when the infor-
mation being displayed has complex patterns, changes in 
time (both of these are often associated with large data 
sets), includes warnings, or calls for immediate action. 
For a more detailed overview of sonification theory and 
design, see Walker and Nees’ chapter [1], and also see [2-
10]. 

Auditory displays and sonification is a field that has 
been around for several decades, with considerable ad-
vances in both theory and design practice. Clearly, given 

the brief nature of this paper and presentation, the main 
aim is to open up the world of sonification to those who 
may have been more focused on visual display of infor-
mation and data, or on the non-data uses of computer-
generated sounds (e.g., computer music) to help them 
with terminology and provide pointers to more extensive 
research results and design guidelines. It is hoped that a 
more sophisticated and scientifically grounded under-
standing of what sonification and auditory displays are, 
and the range of ways they can be implemented, will help 
to make all displays more effective—especially given 
that multimodal is really how all user interfaces and ex-
periences must be designed now—and encourage wider 
deployment and adoption of auditory interfaces. 

2. TAXONOMY OF SONIFICATION 
As detailed more thoroughly in [1], the use of sound in 
user interfaces can be roughly categorized into three 
types: (1) alarms, alerts, and warnings; (2) status and 
monitoring messages; and (3) data displays. These sounds 
can supplement visual interaction, or in many cases, re-
place it. 

Alerts and notifications are sounds that indicate 
something has occurred, or is about to occur, or that the 
listener should immediately pay attention to something in 
the environment or in the display. They are usually quite 
simple, and quite obvious, but do not convey much in-
formation other than that something requires attention. 
For example, the doorbell is a clear signal that a guest is 
outside, but does not indicate exactly who has arrived.  
Alarms and warnings indicate that one of a few types of 
events has happened. The sounds convey the general ur-
gency of the situation, and are very good at capturing the 
auditory attention of a listener. There can certainly be 
degrees of urgency, so a simple alert is often less acousti-
cally arresting than, say, a radiation leak warning sound. 
More sophisticated alarm sounds can encode more infor-
mation into the auditory signal, such as actual location or 
type of problem. These so-called trendsons blur the line 
between alarms and status indicators. An example of a 
trendson use is the warning indication designed to convey 
irregular rotor speed in a helicopter—the warning sound 
is, itself, modified on the fly to convey information about 
the percentage over- or under-speed, so the pilot does not 
have to immediately consult a visual gauge, nor guess 
about how bad the problem is. 

Status and progress indicators communicate what 
is happening with a system, and what changes are occur-
ring in various system parameters and variables. They 

Copyright: © 2013 Bruce Walker. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
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leverage the listener's ability to detect small changes in 
sounds, and allow a user to know what is happening, 
without needing to look at a visual display. This enables 
more eye-free operation. We have seen examples ranging 
from health care monitoring, to telephone hold times, to 
sophisticated interfaces for mobile devices. 

Data exploration sounds are those that are intended 
to represent data with sound, so a listener can explore or 
interpret a dataset. These sounds are generally described 
as “sonification”, and offer a more holistic sense of the 
data in the system, rather than momentary states, as is 
usually the case with alerts and process indicators. Stock 
market data or weather information or web server traffic 
are just a few examples of what can be represented via 
sonification. There are also plenty of examples of scien-
tific data being sonified, such as solar flare activity and 
physics particle models, so that researchers can under-
stand patterns and cycles and irregularities in the dataset. 

Entertainment, sports, and leisure applications of 
sound are also certainly prevalent. For all the reasons 
listed above, sound can be used effectively and enjoyably 
in fitness, games, competitive sports, and travel applica-
tions. It is also true that auditory displays can open up all 
these activities to people with visual impairment. In fact, 
there is a whole subfield of audio-only games, very popu-
lar with both visually impaired and sighted players. Art is 
another area where the intentional use of sound is clearly 
important, and whole compositions can be developed to 
produce (musical) sounds based on climate, movement, 
or other kinds of data. 

Within each of the categories above, there are many 
specific techniques that can be used to produce meaning-
ful auditory displays and sonifications. Some are simple, 
such as speeding up speech even to the point it is no 
longer recognized as speech (“spearcons”), whereas other 
methods require the development of sophisticated models 
of physical systems (e.g., a molecule), and then “driving” 
that model with data to produce sound via perturbations 
of the model. It is important that those who are contem-
plating the use of sound in, or as, an interface, be aware 
of the many approaches, along with the times and places 
where their use is optimal. 

3. DESIGN ISSUES 
Auditory display and sonification designers must consid-
er many factors, as do visual designers. In general, these 
include elements of the data or information to be repre-
sented, and aspects of the listener’s task. In particular, as 
detailed in [1], designers must know: (1) what the user 
needs to do (i.e., the task); (2) what information the user 
needs to accomplish the task; (3) what kind of (auditory) 
display to use (e.g., simple alert, status indicator, or full 
sonification); and (4) how the user will need to filter, 
transform, or otherwise manipulate the information or 
data. The details of these issues will constrain how the 
auditory (or any) display is developed, and will make it 
more clear what elements and functionalities the designer 
needs to include. Consider, for example, a meteorologist 
who needs to know what the current temperature, humidi-
ty, barometric pressure, and wind speed are, and then 
predict the weather for later that day. She will need to 

know specific values of individual variables (e.g., what is 
the current outside temperature?). She will also need to 
compare that value to a specific value of another variable 
(e.g., is the temperature above or below the dewpoint?). 
Then she will need to understand trends in the data varia-
ble (e.g., is the temperature rising or falling?), and con-
sider the rate of change and compare that to the rate of 
change in the other variables (e.g., wind speed). All these 
subtasks contribute to the larger task of understanding 
current conditions, in advance of predicting future condi-
tions. And all may require different displays (whether 
auditory or visual), and methods for interacting with the 
data (selecting, choosing, filtering, zooming, playing, 
pausing, comparing, etc.). 

3.1 Multimodal Displays 

While unimodal auditory displays can often be effective 
(as can unimodal visual displays), it is much more com-
mon to utilize a combination of sounds, visuals, and even 
tactile components into a multimodal display. This will 
require the designer to understand the capabilities, limita-
tions, and needs of each modality individually, as well as 
to consider how the display components interact with 
each other, to maximize display bandwidth and avoid 
confusions. As just one small example, the use of a rising 
pitch to represent increasing temperature may be perfect-
ly reasonable on its own, but if a visual display uses a 
horizontally-oriented bar to represent the same concept, 
there may arise “compatibility” conflicts between the 
visual and auditory components of the display. Designers 
need to be aware of these multimodal interactions, and 
(1) avoid them through good design, and (2) evaluate the 
design to check for unintended conflicts or mismatches. 
On the other side of the same coin, designers can often 
leverage redundancies in multimodal displays, so that 
users get the same information in multiple modalities, 
with each reinforcing the other. 

3.2 Mappings and Scalings 

Once the nature of the data and the task are determined, 
sonification involves mapping data source(s) onto audito-
ry variables. For example, a designer might choose to 
represent temperature with pitch: as temperature changes, 
so, too, does the pitch of the sounds in a sonification. 
Some auditory dimensions are better for representing 
certain types of data variables. For example, pitch is gen-
erally good for representing temperature, but tempo is not 
as effective [11]. Tempo can be more effective for speed. 
Once an effective mapping has been chosen, it is im-
portant to determine how much change in the pitch of the 
sound is used to convey a given change in the tempera-
ture. This is known as scaling. That is, if the pitch goes 
up an octave (a doubling of frequency), does that mean 
that the temperature has also doubled? In some cases, 
yes, but this is not a universally recognized relationship. 
Scaling values can be determined from studies that have 
been conducted, or by experimentation by the designer. 
In all cases, it is important to have a representative sam-
ple of listeners provide feedback about the mappings and 
scalings in the display, during the development phase. 
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3.3 Context and Aesthetics 

Other issues arise, such as how the data sonifications are 
set into an auditory context. That is, what are the auditory 
equivalents to axes, tick marks, labels, trend lines, etc.? 
And will there be background noise (or music?) compet-
ing with the display? Will the device be used while a pe-
destrian walks along a busy urban street, or perhaps in a 
factory assembly line? Finally, designers always need to 
consider the aesthetics of the display. It is important for a 
sonification or auditory display to sound nice, as well as 
effective. Otherwise, the listener will simply turn it off. 
Of course, this also applies to visual displays! 

4. SOME EXAMPLES FROM THE GT 
SONIFICATION LAB 

4.1 SWAN: System for Wearable Audio Navigation 

Blind pedestrians need to know where they are, how to 
get to their destination, and what is around them along 
the way. The System for Wearable Audio Navigation 
(SWAN) [12] uses a variety of sensors and algorithms to 
determine the user’s exact location, and then uses an au-
ditory display to convey location, route, and surround-
ings. Route information is presented via a 3D auditory 
display, such that the listener simply faces the apparent 
location of the beacon sound, and walks toward it. The 
user’s orientation/heading is tracked via several sensors, 
and the sound is played via bone conduction headphones, 
to leave the ears uncovered. Objects of interest in the 
environment (e.g., stairs, doors, obstacles, coffee shops) 
are represented using non-speech sounds that evoke the 
object (e.g., a descending three-note arpeggio to indicate 
descending stairs). 

4.2 Sonification Sandbox 

This is a software package that supports the import and 
editing of a multi-column data set (via a spreadsheet), 
visual graphing, and auditory graphing. The Sonification 
Sandbox program [13-14] is written in cross-platform 
Java on top of the flexible and powerful Accessible Gra-
phing Engine (AGE), and supports a wide range of im-
port and data ingestion methods, and a wide variety of 
export formats (images, MIDI, WAV, movies). The 
MathGNIE [15] software package is another Java appli-
cation that was built on top of the AGE platform, and is 
being successfully used by blind students in their mathe-
matics classrooms. 

4.3 Spearcons 

Auditory menus are often used to allow a user to navigate 
through a list or menu of items (e.g., songs on an MP3 
player, or the menu of a desktop computer’s operating 
system). Typical auditory menus use text-to-speech 
(TTS) technology to speak aloud the menu items. How-
ever, this results in a very slow interaction, even when the 
speech rate is increased. Spearcons are non-speech 
sounds that are created by speeding up TTS-generated 
words (typically via a SOLA-type algorithm). The spear-
cons can then be used in place of, or in front of, the TTS 

items, resulting in a much faster and more enjoyable user 
experience. [16] 

4.4 Spindex 

When there are very long lists in an auditory menu, such 
as the list of fonts or hundreds or thousands of songs on a 
device, TTS, and even TTS+spearcons are not a very fast 
way to choose an item. The spindex, or “speech-based 
index” is a set of sounds that represent the first sounds of 
the TTS items, typically the “a”, “b”, “c”, etc. sounds. 
[17] Prepending these spindex cues to the TTS allows the 
users to scroll very quickly through the list, arriving at 
the section of the list that interests them. For example, 
they can quickly get to the songs that start with “T”, 
without having to listen to the TTS for all the songs that 
start with A, B, and so on. These sounds are especially 
useful in longer lists, and work well on mobile devices 
that employ swiping, flicking and wheeling input ges-
tures. [18] 

4.5 StockScapes 

Some displays that use sound can serve as ambient dis-
plays, in that they are always present in the environment 
(e.g., in an office), and can be listened to or “tuned out” 
by the room’s occupant. If the sounds are driven by data 
(e.g., recent stock market data [19-20]), the person can 
listen to the sounds, and determine what is happening in 
the market. The sounds can be ignored again, and simply 
serve as background music. Any sudden changes in the 
sounds/music (i.e., in the stock market) will be noticed by 
the person, simply because the auditory system is tuned 
to detect changes. Of course, aesthetics are crucial in this 
kind of ambient display. We have developed software 
that can ingest data and generate a range of interesting, 
nice-sounding, and informative soundscapes that are al-
ways fresh and can be listened to for long periods, be-
cause they have built in variety and randomness, based on 
sounds occurring in nature. 

5. CONCLUSIONS 
Electronic systems with visual displays are having sounds 
added to them all the time. For the most part, there really 
are only multimodal devices being developed. Unfortu-
nately, the hardware engineers, software developers, and 
interaction designers of many of these systems have little 
or no knowledge of modern theory and methods for soni-
fication and auditory displays. It is hoped that this over-
view, with hooks into the sonification literature, will help 
introduce visual display designers, sound designers, mu-
sicians, and researchers into the auditory realm, and thus 
improve the inevitable new multimodal displays. The few 
examples presented here are really only a tiny sample of 
the breadth and depth of all the great work happening in 
the auditory display community. Through this talk and 
paper, it is hoped that we can continue to build bridges 
between the communities of computer music and audito-
ry display researchers, including sessions at conferences 
such as SMAC/SMC, and encouraging interested re-
searchers and designers to attend the annual International 
Conference on Auditory Display (www.ICAD.org).  
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ABSTRACT 

In this paper we present the first step towards a novel 

approach to visual programming for sound and music 

applications. To make the creative process more intuitive, 

our concept enables musicians to use timbral attributes 

for controlling sound synthesis and processing. This way, 

musicians do not need to think in terms of signal pro-

cessing, but can rely on natural descriptions instead. A 

special point of interest was mapping timbral attributes 

into synthesis parameters. We proposed a solution based 

on fuzzy logic which can be applied to different synthe-

sizers. For a particular synthesizer, an audio expert can 

conveniently define mappings in form of IF-THEN rules. 

A prototype of the system was implemented in Pure Data 

and demonstrated with a subtractive synthesizer. A sur-

vey conducted among amateur musicians has shown that 

the system works according to their expectations, but 

descriptions based on timbral attributes are imprecise and 

dependent on subjective interpretation. 

1. INTRODUCTION 

The visual programming paradigm became very popular 

among computer musicians and multimedia artists in the 

last decade. One of the main reasons for the increasing 

acceptance of this approach is a faster learning curve 

compared to traditional textual programming [1]. Graph-

ical representations of computer programs are closer to 

the way how humans mentally represent problems, so it is 

easier to understand and develop programs using the 

visual approach [2]. Many visual programming editors 

support direct manipulation of graphical objects which 

further helps users to perceive how their actions affect the 

program [3]. The visual programming paradigm also 

brings other psychological benefits which are particularly 

important for musicians and artists as they usually do not 

have strong backgrounds in programming [4]. 

Besides these benefits, there is one more factor specifi-

cally related to computer music, multimedia, and interac-

tive art. In this domain, digital processing of audio sig-

nals, images, and videos is a fundamental part of every 

application. Many modern visual programming environ-

ments offer ready-to-use program elements which im-

plement digital signal processing algorithms and facilitate 

integration with peripheral devices. In the context of 

music and sound processing, such elements are oscilla-

tors, filters, audio effects, score following algorithms, 

auto-tuners, etc. Using prepared elements, musicians and 

artists do not need to cope with low-level signal pro-

cessing. Thanks to the general psychological benefits of 

the visual programming paradigm and visual program-

ming environments designed to meet practical needs, 

visual programming is now widely recognized among 

computer musicians and multimedia artists. 

In visual programming environments for sound and mu-

sic processing, audio signals usually participate in the 

data flow. Pure Data, Max/MSP, Kyma, AudioMulch, 

and Reaktor are some of the most popular environments 

which rely on this paradigm. While visual programming 

based on signal flow ensures maximal flexibility, it forces 

the user to think about music and sound art in terms of 

signal processing. Musicians have to understand how 

certain program elements affect the audio signal and 

which parameter values should be chosen to achieve the 

desired sound quality. 

With regards to these benefits of visual programming 

and to make the creative process more straightforward for 

musicians, within this research we present our vision and 

the foundations of a novel approach to visual program-

ming for sound and music applications. One of the cor-

nerstones of this concept relies on the notion that control 

over sound synthesizers, audio effects, and other ele-

ments for generating or modifying audio signals is estab-

lished through timbral attributes. Instead of manipulating 

audio signals and parameters of program elements, musi-

cians can focus on their musical ideas and realize them by 

describing timbral characteristics of a desired sound. For 

example, a musician can specify that the sound needs to 

be “metallic”, “bright”, and “harsh”. Besides the target 

timbre, it is also possible to define timbral changes 

through time. The focus of this paper is, thus, on the 

usage and transformation of timbral characteristics. The 

approach presented in this research will be later used as 

one of the main building blocks of the aforementioned 

innovative visual programming language and environ-

ment. 

There are two main factors which make the described 

concept challenging. The first one is a lack of theoretical 

and notational support related to timbre [5]. While other 

characteristics such as pitch and rhythm have more for-

mal notations, timbral attributes are not standardized. 

Copyright: © 2013 Antonio Pošćić, Gordan Kreković. This is an open-

access article distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits unrestricted use, distri-
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They are meaningful to musicians, but not convenient as 

an input to computer systems. 

The second big challenge is mapping timbral attributes 

into parameters of sound synthesizers or audio effects. 

Such relations are usually complex and ambiguous. Addi-

tionally, mappings should work for different synthesis 

techniques and different types of audio effects so they 

have to be adequately generic. Existing works include 

several attempts at synthesizing sound specified by tim-

bral attributes. Miranda used a machine learning algo-

rithm to induce relations between quasi-timbral attributes 

and synthesis parameters [6]. However, the available 

attributes were always associated with the structure of a 

sound synthesizer so Miranda’s approach would not work 

for any synthesizer other than the one designed as a part 

of his system. A research conducted by Gounaropoulos 

and Johnson employed a neural network to learn map-

pings between timbral attributes and audio features of a 

sound characterized by such attributes. This research used 

the backward-propagation algorithm to control the syn-

thesizer [7]. As the algorithm was specifically designed 

to work in the case when synthesis parameters are direct-

ly related to audio features, it can be only applied to addi-

tive synthesis. The problem of controlling synthesis pa-

rameters with timbral attributes was not sufficiently ex-

plored nor solved in such a way that the solution could be 

adapted to different synthesis techniques. 

Since this is also one of the central problems in our 

concept of a visual programming language and environ-

ment based on attribute flow, as mentioned before, in this 

paper we primarily focused on that issue. We devised, 

implemented, and evaluated a novel approach for map-

ping timbral attributes into synthesis parameters using 

fuzzy logic. Such a solution can be applied to an arbitrary 

sound synthesizer. The concrete implementation and 

demonstration was done using the programming language 

C and the visual programming environment Pure Data. 

We developed an external (Pure Data plugin) which ena-

bled using a fuzzy logic library within Pure Data and 

demonstrated the solution on a subtractive synthesizer. 

2. ATTRIBUTE-BASED VISUAL 

PROGRAMMING FOR MUSICAL 

COMPOSITION 

The encompassing approach and concept presented in 

this paper are based on the notion that combining intui-

tive inputs (such as timbral characteristics) with visual 

programming elements and time-dependent control flow 

will enable musicians and other users to innovate their 

approaches towards music, sound creation, and sound 

modeling. Similar concepts based on a fusion of different 

paradigms can be observed throughout various works and 

designs in the field. One notable example is the sound 

design language Kyma [8] which enables the manipula-

tion of sound objects in the domain of time. 

Our concept defines that timbral attributes should be 

used in a way that can be usually found in the field of 

dataflow languages while also allowing time-based con-

trol of sound flows. This duality of our approach, not 

found in similar works, results in a visual programming 

language and environment relying on two paradigms [9]: 

icon based [10] and diagram based [11] visual program-

ming. The icon based programming portion is linked with 

defining and selecting the timbral attributes through vari-

ous possible user interfaces. On the other hand, the dia-

gram based side of the concept is related to the links and 

interdependence between various manipulation objects 

such as synthesizers, VST plugins, etc. The time-bound 

connection between portions of the target sequence of 

sounds is established in a manner that resembles audio 

editing software such as Audacity [12]. 

Considering the aforementioned concepts, it’s im-

portant to stress that attribute-based flow has not been 

selected by accident but it's rather a design choice made 

to enhance symbiosis with the targeted visual program-

ming paradigm. The paradigm thus contains user inter-

face elements derived from tools such as the aforemen-

tioned Audacity as well as elements belonging to visual 

programming languages such as Pure Data. By combin-

ing these traits, we enable the users to efficiently explore 

the possible synthesized sounds both in the time domain 

and in the different domains of sound characteristics. 

Using concepts that are usually present in diagram and 

dataflow languages, such as the possibility to connect 

blocks that manipulate the attribute flow, the user will be 

able to architect sound sequences and define links be-

tween sounds. On the other hand, the user will have 

means to change and adapt the individual generated 

sounds by directly influencing the behavior of sound 

synthesizing blocks. The approach based on fuzzy logic 

that is demonstrated in this article should be seen as one 

of the possible methods encapsulated in these blocks. Our 

preliminary research has shown that attribute flow is best 

suited to achieve these objectives and desired characteris-

tics. These ideas and implementations will be further 

explored in future works. 

One of the crucial characteristics of the system is also 

the ability to include a variety of different approaches 

with regards to mapping timbral attributes into synthesis 

parameters. The possible methods, beside the fuzzy logic 

method described in this research, include neural net-

works, classifier cascades, regression tree analysis, etc. 

3. PROOF OF CONCEPT 

The first and very important step towards the concept of 

visual programming based on attribute flow was to estab-

lish mappings between timbral attributes and synthesis 

parameters. To solve this problem, we suggest an ap-

proach which uses an expert system based on fuzzy logic. 

Within this research we implemented that solution and 

tested it with a subtractive sound synthesizer. 

3.1 Mapping timbral attributes into synthesis param-

eters 

Previous attempts to synthesize sounds from their timbral 

descriptions relied on machine learning algorithms [6, 7]. 

The idea was to induce relations between timbral attrib-

utes and synthesis parameters by learning from examples 

of synthesized sounds. Such a problem is hard to solve 

for a general case, since there can be more than one solu-
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tion in the space of synthesis parameters for a certain 

sound quality. Relations between timbral attributes and 

synthesis parameters are therefore ambiguous. To formu-

late the problem so that it can be solved with known 

machine learning techniques, both previous researches 

were limited to one specific sound synthesizer. As de-

scribed in the first chapter, authors used a priori 

knowledge about employed synthesizers and adapted 

algorithms to work with them. 

To find a solution which could be applied to sound syn-

thesizers with different structures, we decided to use an 

expert system based on fuzzy logic instead of a machine 

learning technique. Fuzzy logic is a form of probabilistic 

logic derived from the mathematical branch of fuzzy sets 

[13]. Compared to the traditional two-value logic where 

variables can be either true or false, fuzzy logic supports 

the concept of partial truth so variables can have a truth 

value that ranges between 0 and 1. This concept makes 

fuzzy logic convenient for quantifying imprecise infor-

mation and making decisions based on incomplete data 

[14]. Furthermore, facts and rules can be described using 

linguistic terms which make the concept closer to human 

reasoning. 

Linguistic variables are subjective and context-

dependent variables whose values are words. For exam-

ple, if the timbral attribute “warmth” is observed in the 

role of a linguistic variable, its values could be “very 

high”, “high”, “moderate”, “low”, and “very low” as 

shown in Figure 1. Inputs in a fuzzy logic system are 

usually numeric so it is necessary to convert these numer-

ic values into linguistic terms. The linguistic terms can be 

considered fuzzy sets since an input value can have par-

tial membership in more sets at the same time. For exam-

ple, if the attribute “warmth” has the numeric value 0.85, 

it is situated between “very high” and “high” according to 

Figure 1. Therefore, the value belongs to both sets but not 

by the same degree. Fuzzy sets can use different types of 

membership functions such as triangular, trapezoidal, 

bell-shaped, and sigmoid functions. 

 

Figure 1. Fuzzy membership functions for the attribute 

“warmth”. 

A model for making decisions based on fuzzy logic us-

es a rule set defined by linguistic variables. Typically, 

fuzzy rules are specified in the form of IF-THEN state-

ments: 

IF (x1 IS S1) AND/OR ..., (xn IS Sn) THEN y IS T, 

where xi represents input fuzzy variables, y is the output 

variable, while Sn and T stand for input and output fuzzy 

sets. The first step of applying the model is to convert 

input variables into fuzzy logic variables using member-

ship functions. Subsequently, output variables are calcu-

lated by evaluating the rules. In most applications, out-

puts have to be numerical values so fuzzy output varia-

bles must be defuzzified. Algorithms used for evaluating 

the rules and for the defuzzification process are explained 

in [14, 15]. 

Fuzzy rule sets are appropriate for representing expert 

knowledge of a certain domain. As the rules have a sim-

ple form, they can be conveniently written, discussed, 

and tuned by human experts. Systems based on fuzzy 

logic have been used in many different fields such as 

engineering, economics, finance, geology, meteorology, 

and sociology. Various problems from the musical do-

main were also approached using fuzzy logic. It has been 

employed for evaluating computer music [16], recogniz-

ing rhythmic structures [17], coding of musical gestures 

for interactive live performances [18], analyzing the emo-

tional expression in music performance and body motion 

[19], mapping visual information into aural information 

and vice-versa [20], sound synthesis [21], and several 

other applications. 

For setting synthesis parameters, Hamandicharef and 

Ifeachor employed an expert system based on fuzzy logic 

[22]. The purpose of their system was to find such syn-

thesis parameters so that the synthesized sound mimics 

the target sound. The inputs of the expert system were 

audio features extracted from the target sound, while the 

outputs were parameters for the sound synthesizer. Audio 

experts were involved in building the fuzzy model and 

specifying relations between audio features and synthesis 

parameters. 

We believe that having experts define rules is also ben-

eficial in our case. Namely, for each synthesizer intended 

to be controlled using timbral attributes, a fuzzy model 

has to be defined once. Since the model is stored outside 

the program code, there is no need for programming, so 

the model can be easily defined and tuned by sound syn-

thesis experts. In practice, such experts could be synthe-

sizer manufacturers or users who thoroughly understand 

the architecture of a specific synthesizer. Once the model 

is ready, other users can control the synthesizer by adjust-

ing timbral attributes without writing or changing the 

fuzzy model. 

This way, the expert system based on fuzzy logic can be 

used for sound synthesizers with various structures. The 

only requirement to adapt the system to work with a dif-

ferent synthesizer is to write a new fuzzy model. On the 

other hand, the previous solutions based on machine 

learning algorithms were not capable of such adaptation. 

Those solutions relied on a priori knowledge about the 

synthesizer structures, so training machine learning algo-

rithms to work with different synthesizers was impossi-

ble. 

We expect an expert system based on fuzzy logic to 

work well with synthesis techniques for which the rela-

tions between timbral attributes and synthesis parameters 

are continuous or semi-continuous. Most of the popular 

synthesis techniques, such as subtractive and additive 

synthesis, satisfy the criterion. On the other hand, fre-

quency modulation is not one of the supported synthesis 

techniques since the ratio of modulator and carrier fre-
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quencies is in a very complex relation with the perception 

of harmonicity. For that reason, we will limit this re-

search to subtractive synthesis and extend it to other 

synthesis techniques in the future. 

The selection of attributes used to describe the desired 

sound in our system was taken from [7]. Those attributes 

are: bright, warm, harsh, thick, metallic, woody, hit, 

plucked, and constant amplitude. The set of timbral at-

tributes is not supposed to be orthogonal and it should 

instead only serve as an intuitive vocabulary for defining 

target sounds. In the sound description, an absolute value 

between 0 and 1 is assigned to each attribute. A value of 

0 means that the particular quality is not presented in the 

sound, while the value 1 indicates that the quality is very 

prominent. 

3.2 Implementation 

Within this research we have developed a system for 

mapping timbral attributes to synthesis parameters which 

can be used in the Pure Data visual programming envi-

ronment. To create an interface between Pure Data and a 

fuzzy logic library, we have implemented an external 

Pure Data component. It accepts a list of timbral attrib-

utes as input and calculates defuzzified outputs for the 

variables declared in the Fuzzy Control Language file. 

The Fuzzy Control Language (FCL) is a standardized 

(International Electrotechnical Commission standard, 

IEC 61131-7) language used to define and implement 

fuzzy logic models. 

A similar implementation of a Pure Data external exists 

which is based on the libfuzzy library and the Fuzzy In-

ference System (FIS) notation [23]. However, the FIS 

notation is inferior both in usability and flexibility when 

compared to FCL. One example of the characteristics 

which make FIS less ergonomic is the requirement for 

each rule to be written using variable indices. This kind 

of deficiency could prove to be an insurmountable obsta-

cle for typical users such as musicians when creating a 

large rule set. 

The fuzzy logic implementation described in this paper 

relies on the jFuzzyLogic library [24]. Since Pure Data 

externals are natively written in C, a number of different 

C/C++ fuzzy logic libraries had been evaluated before we 

chose the jFuzzyLogic library. For example, the afore-

mentioned libfuzzy library presents a valid fuzzy logic 

implementation in cases when the FIS input format is 

acceptable. None of the available open source C/C++ 

libraries were adequate due to obsolescence and improper 

or incomplete support for the Fuzzy Controller Language. 

Since jFuzzyLogic was written in Java, wrapper func-

tions that rely on Java Native Interface calls [25] have 

been implemented. These functions serve as glue code 

between the main functions of the external written in C 

and the jFuzzyLogic library. Proper error handling is also 

provided through these wrapper functions. To improve 

performance, a caching system based on the sglib library 

[26] has been implemented to reduce the number of out-

put recalculations. 

For demonstration and evaluation of the system we 

used a simple subtractive synthesizer with one oscillator 

and sub-oscillator, a noise generator, two filters (low-pass 

 

Figure 2. Block diagram of the subtractive synthesizer 

used in the experiments. 

and band-pass), an amplitude envelope generator, two 

low-frequency oscillators, and a chorus effect. The block 

diagram of the synthesizer is shown in Figure 2. 

This is obviously a simple synthesizer which is not 

completely capable of producing sound qualities for all 

chosen timbral attributes as one might expect. However, 

it should not be considered a limitation, because the main 

goal of our system is to mimic a human expert and do the 

best with a given sound synthesizer regardless of its 

structure and capabilities. For the purposes of the evalua-

tion, we implemented the synthesizer as a Pure Data 

patch and connected it to our external object as shown in 

Figure 3. 

 

Figure 3. Example of using the external object within a 

Pure Data patch. The external object for fuzzy logic is 

called fuzzext. 
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The fuzzy logic model for mapping timbral attributes 

into synthesis parameters was defined in the FCL lan-

guage. Inputs of the model are 9 timbral attributes rang-

ing from 0 to 1 and there are 24 outputs with different 

ranges representing synthesis parameters. For the fuzzifi-

cation and defuzzification processes, we defined triangu-

lar and trapezoidal functions specifically for each input 

and output variable. As the defuzzification technique, the 

model uses center of gravity. The rule set for calculating 

synthesis parameters consists of 85 rules in IF-THEN 

form. Some examples of the rules are as follows: 

IF harsh IS little THEN filterlfo_r IS small; 

IF plucked IS very_prominent OR hit IS prominent OR 

hit IS very_prominent THEN volume_s IS very_small; 

IF warm IS prominent OR warm IS very_prominent THEN 

filterfreq_r IS moderate; 

IF warm IS prominent OR warm IS very_prominent THEN 

osc1type_r IS square; 

IF woody IS very_prominent OR woody IS prominent OR 

woody IS moderate THEN osc1type IS square; 

4. EVALUATION 

The purpose of the evaluation was twofold: to test the 

functionality of our system and to assess to what extent 

the chosen timbral attributes are appropriate for describ-

ing sounds. The evaluation was conducted among 6 ama-

teur musicians who were asked to manually set synthesis 

parameters for 5 given sound descriptions. These descrip-

tions were formed in the same way as the inputs in our 

system. For example: 

bright 0.8, warm 0.6, harsh 0.1, thick 0.2, metallic 0.1, 

woody 0.7, hit 0.1, plucked 0.1, constant amplitude 0.6 

The participants did not receive any further explanations 

regarding the attributes so they had to interpret the given 

descriptions entirely by themselves. To compare the re-

sults of manual parameter manipulation with the results 

obtained algorithmically, we used the same descriptions 

as inputs in our system and generated the sounds. 

After the participants finished their tasks of manual sound 

design, they received the sounds generated by our system 

and a survey. In the first set of questions they were asked 

to evaluate how the sounds synthesized by our system fit 

the sound descriptions. The second set of questions re-

garded the similarity between their sounds and the sounds 

generated using our system. All these questions were of 

rating scale type with 5 available options. For the first set 

of questions the scale included a range from very poor (1) 

to very well (5), while the second set included options 

ranging from very different (1) to very similar (5). Final-

ly, the third set consisted of the following general ques-

tions: 

1. How clear were the given descriptions based on at-

tributes? (1 - very unclear, 5 - very clear) 

2. How difficult was setting the parameters manually? 

(1 - very easy, 5 - very difficult) 

3. How helpful the system for automatic synthesis 

from timbral attributes can be helpful for musicians? 

(1 - very little, 5 - very much) 

5. RESULTS 

The average grade for the questions concerning how the 

generated sounds met the given descriptions was 3.9 and 

the median grade was 4. These statistical values were 

calculated taking into consideration all 6 participants and 

all 5 sounds. The best rated sound with the prominent 

"plucked" attribute had an average grade of 4.2, while all 

other sounds had averages 4.0 or below. The questions 

regarding perceptual similarity to their sounds were grad-

ed by the participants with an average of 2.7. The median 

was 4. Distribution of all grades is shown in Figure 4. 

The average grades on last three questions were 3.7, 

3.2, and 3.9 respectively for clarity of such descriptions, 

difficulty of manual parameter setting, and potential use-

fulness of our approach. 

 

Figure 4. For each grade from 1 to 5 this chart shows 

how many times that grade appeared in the answers 

from all participant and for all sounds. The blue bars 

represent grades for achieving given sound descriptions, 

whilst the red ones represent grades for perceptual simi-

larity to participants’ sounds. 

6. DISCUSSION 

The results have shown that descriptions based on timbral 

attributes are somewhat imprecise for synthesizing exact 

sounds. The sounds that were created manually are per-

ceptually different from automatically generated exam-

ples, but the participants were still quite satisfied with the 

results. To overcome this problem, our system could be 

improved to generate more than one option for any given 

description, thus allowing musicians to choose the most 

accurate instance of a sound. 

The answers on the last three questions suggest that the 

problem of synthesizing sounds from timbral attributes is 

relevant to musicians and that our approach could be 

viable. 

7. CONCLUSION 

Parameters of a sound synthesizer can be successfully 

controlled from timbral attributes using an expert system 

based on fuzzy logic. For different types of synthesizers, 

fuzzy models can be defined by audio experts and later 

used without adaptation. Using an example based on a 

subtractive synthesizer, we have shown that the system 
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satisfies expectations of target users. The main problem 

of this approach is the lack of unified and strict relations 

between the chosen timbral attributes and the general 

perception of the sound. For that reason, future research 

could examine other sets of timbral attributes and im-

prove the system so that it can generate several options 

for a given description. 

The results of this research are generally encouraging 

with regards to our intention to develop a visual pro-

gramming environment for music and sound processing 

based on attribute flow. 
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ABSTRACT

We present a quantitative review of the mappings and meta-
phors used across the most popular musical iOS applica-
tions. We examined 337 applications in terms of both the
metaphor they present to the user (piano, guitar, etc), and
the exact nature of their mappings (pitch mapped horizon-
tally, time mapped vertically, etc). A special focus is given
to applications that do not present a well-known interac-
tion metaphor to the user. Potential reasons for the popu-
larity of certain metaphors are given. We further suggest
that this data could be used to help explore the iOS design
space, and offer some examples.

1. INTRODUCTION

iOS is the dominant platform for touch-based musical ap-
plications [1] [2], and more and more musicians are us-
ing iOS devices and applications to perform, produce, and
practice their music. In any sort of instrument or interface
for making music, mappings are important [3], as are the
metaphors for those mappings.

On iOS devices, the hardware inputs being mapped are
very limited: a capacitive multi-touch surface, an accelerom-
eter, and a microphone. Yet the software to capture these
inputs is limitless - does the application capture each touch,
complex gestures, or somewhere in between?. The sonic
output generated by the application software is also essen-
tially limitless: anything from simple sample playback to
complex synthesis techniques can be used to create sound.

Hunt et al. have written about the value of mappings in
mediating between these two layers [4], and Jacob et al.
have also written about the value of mapping parameters
that are related in an integral way [5]. On iOS, the integral-
ity of parameters largely rests on the metaphor presented
by the application.

Fels et al. have written about the value of metaphor in
human-machine interactions, and how it can improve a per-
former’s understanding of the mapping and the instrument
[6]. On iOS devices, as will be seen, the metaphors tend to
be exceedingly obvious: pianos and guitars abound. Some
applications, however, have non-obvious mappings (tone
control based on where a piano key is touched, for exam-
ple) that a metaphorical piano does not have. Furthermore,
the wide range of abstract applications make the question

Copyright: c©2013 Thor Kell et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

of metaphor (or lack thereof!) a key one. Wessel and
Wright have also written about more abstract control meta-
phors, in terms of the relationship of gesture and metaphor
to the acoustic results [7]. Finally, McGlynn et al. have
written about the expressive possibilities of interfaces that
are not modelled on existing metaphors [8]. Their paper
does not explicitly mention mapping, but mapping choices
are inherent in each interface they discuss.

We hope to provide real-world insight into how meta-
phors and mappings are used for music making on iOS de-
vices. We examined the most popular iPhone and iPad mu-
sic applications (as of February 2013), categorized them in
terms of the metaphor used by the application, e.g. a piano
keyboard or synthesizer console, and reviewed the exact
mappings used, e.g. pitch mapped horizontally via dis-
crete buttons, with low pitches on the left. Based on this
overview, we offer suggestions as to how to best use this
data to create effective iOS music applications (apps), in
terms of both standard and non-standard mappings.

2. METHOD

From the approximately 800,000 apps on the iOS app store
[9], 1,200 music apps were chosen for review. These were
selected by examining the ’Top Paid’, ’Top Free’, and ’Top
Grossing’ subsections of the iOS music app page, Each of
those subsections lists 200 apps and differs across iPhone
and iPad, giving 1,200 applications. Of these music apps,
337 deal with music creation in some way. These 337 apps
were looked at in detail. ”Music creation” is given a broad
scope here: any application that allows creative interaction
with music, in real time or not, is counted. This includes
karaoke applications, but does not include radio applica-
tions, simple sound recorders, fingerprinting apps, or artist
themed apps.

A cursory overview of the apps indicated that they could
be organized into categories based on overarching metaphor
- the most obvious being piano apps. Each app was as-
signed a metaphor, and then the total number of apps for
each metaphor were added up. The goal of this classifica-
tion was to delimit categories that would have broadly sim-
ilar mappings. As the numbers for each app were added, it
became clear that there were ten main categories, and then
a large number of varied, heterogenous apps. Indeed, out-
side of the ten categories (all of which had at least thirteen
apps), the largest metaphor was that of a violin, with two
apps.

The final list of categories was as follows: Piano, DJ,
Digital Audio Workstation (DAW), Music Production Con-
troller (MPC), Guitar, Drum Kit, Synthesizer, Sequencer,
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Karaoke, Amp Sim, and Other. For each category, the
metaphor and the general mappings for the metaphor were
examined. A number of apps from each category were
looked at in detail in order to discover novel or additional
mappings. All apps in the Other category were looked at
in detail. Regardless of category, each app was analyzed
in terms of the direction and layout of its mappings, giv-
ing an overview of how musical parameters are mapped
regardless of metaphor.

Note that only a subsection of the applications with stan-
dard metaphors were downloaded and tested; their map-
pings are assumed to be consistent across the category.
A larger subset of these applications were examined via
their websites. However, every app in the Other category
was looked at in detail. When an application could not
be downloaded and tested by hand (due to hardware or
price restrictions), it was examined via screenshots and
video. Specifically, those applications are: Korg iKaosilla-
tor, Rockmate, Ocarina 2, and Live FX.

3. METAPHORS

Table 1 contains an overview of the number of applications
in each category. Note that we have split the Other cate-
gory into apps that represent known acoustic instruments
(a trumpet, for example), and apps that have no acoustic
referent. It must also be noted that apps that appeared on
both the iPhone and iPad are counted twice.

Table 1. Metaphors
Metaphor iPhone iPad Total
Piano 25 43 68
DJ 17 15 32
DAW 14 16 30
MPC 14 14 28
Guitar 12 13 25
Drum Kit 7 14 21
Synthesizer 4 16 20
Sequencer 6 13 19
Karaoke 9 9 18
Amp Sim 5 8 13
Other 21 34 55
Other (Acoustic Instruments) 4 4 8
Total 138 199 337

As can be seen, piano apps are the standout category,
followed somewhat surprisingly by DJ apps. The other
two acoustic instruments, Guitar and Drum Kit, are below
DAWs and MPC apps. This primacy of the electronic is
perhaps not surprising given that iOS is an electronic plat-
form, but it is belied by the massive popularity of piano
applications. The piano may simply be such a well-known
metaphor that it transcends the limitations of the iOS plat-
form (lack of easy volume and timbre control, etc).

Continuing down the list, we find Synthesizers, Sequen-
cers, Karaoke apps, and then Amp Sims - applications that
mimic guitar amplifiers and effects pedals. In the Other
category, a small subsection of apps mimics other acous-
tic instruments, against suggesting that non-acoustic meta-

phors are more dominant. The rest of the Other apps present
no consistent metaphor.

The following sub-sections detail each category in terms
of its metaphor and mappings, and discuss some of the
variations within each category.

3.1 Piano

Piano apps display a traditional keyboard that plays dis-
crete pitches. Pitches are mapped from left to right, low to
high, in steps of one semitone. The vast majority of apps
display a keyboard, though some simply display abstract
circles (Smule Magic Piano) Playback of multiple pitches
is possible. Volume control is generally not possible, nor
is timbre control, though some apps offer a ’pedal’ button,
for sustained notes (Piano Infinity), or give control over the
amount of reverberation added (Piano Complete). Some
apps provide a toggle to switch between instruments - pi-
ano, grand piano, harpsichord, cat, dog, and so on (Real Pi-
ano HD, Piano Infinity, Cat Piano Concerto). Exact tuning
control (A440 vs. A442, for example) is also sometimes
available (Real Piano HD), and some apps give access to
a synthesizer-esq pitch bend wheel and a mod wheel for
real-time volume control (Pianist Pro). Solutions for vol-
ume control include a ’force based’ volume control (Real
Piano HD), and a volume control based on where the user
strikes each key - higher up the key is softer, near the bot-
tom of the key is louder (Pianist Pro). Some programs
include teaching modes where notes fall from the top of
the screen to the bottom, and must be played as they hit the
bottom (Smule Magic Piano, Piano Infinity).

Figure 1. Cat Piano Concerto, a typical piano app

3.2 DJ

These apps provide two virtual turntables, with a virtual
mixer. The volume of each turntable is controlled by a
vertical fader, with louder being higher. The mix between
turntables is controlled by a horizontal fader. Play, stop,
and pause commands are controlled by buttons. The speed
of each turntable is controlled by a pitch fader; faster is to-
wards the user for some apps (djay), matching a traditional
turntable, and away from the user for other apps (DJ Rig
Free). This fader is generally in percent. ’Pitch bends’,
small corrections to the speed of each turntable, are con-
trolled by buttons. The user can touch the ’turntable’ to
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scratch or backspin, but not to change the speed (DJ Rig
Free).

Figure 2. djay, a typical DJ app.

3.3 Digital Audio Workstation

DAW apps provide a complete solution for producing mu-
sic and working with audio. They often include synthe-
sizers, sequencers, and MPCs, as well as effect sections
and mixers. Some go so far as to include auxiliary sends
(Auria). The key distinction between a DAW app and a
full-featured sequencer is that DAWs work with recorded
audio: audio is recorded with a traditional red ’Record’
button, and represented in clips wherein time moves from
left to right, and amplitude is represented vertically (FL
Studio Mobile HD, Music Studio Lite).

Figure 3. Auria, a typical DAW app.

3.4 MPC

These apps are based on the Akai Music Production Center
line, a classic of hip-hop production. They have some num-
ber of trigger buttons in a grid - traditionally 16 buttons in
a 4 x 4 grid. These buttons play a user-configurable sample
when triggered. The user typically records one line, then
loops it and records another line. Tempo can be tapped
in (iMPC) or set with a slider (BeatPad Lite). The app
may have a dedicated mixer (iMPC), or set volume via a
slider on each pad (Rhythm Pad). There may be a sepa-
rate FX section (DJ Soundbox Pro), or deep synthesis con-
trol of each drum sound (Impaktor). Finally, instead of the

traditional 4x4 grid, some MPC apps have fewer buttons
(Rhythm Pad has 8).

Figure 4. iMPC, a typical MPC app.

3.5 Guitar

A guitar, with ’strummable’ strings and a fretboard. Frets
are selected by holding down the appropriate area, and
lower notes are placed to the left, as when holding a guitar.
The lowest string is likewise placed closest to the user, and
the strings are mapped vertically, again as when holding a
guitar. Some apps provide direct access to complex chords
via buttons (Guitar!, Real Guitar Free). Some apps pro-
vide vibrato by shaking the device (Smule Magic Guitar),
and others allow effects via virtual pedals, with the timbre
controlled by rotary knobs (PocketGuitar). Most apps do
not provide timbral control or volume control.

Figure 5. Pocket Guitar, a typical guitar app.

3.6 Drum Kit

A traditional drum kit, with some number of drums. Tap-
ping each drum plays an appropriate sample, or one of a set
of appropriate samples for that drum, and rolls can some-
times be performed by sliding a finger on a drum head;
a faster slide leads to faster rolls (Ratatap Drums Free).
As with the piano apps, volume and exact timbre control
are generally not available. However, some applications
provide force-based volume control (Ratatap Drums Free),
and some play differing samples based on the exact loca-
tion of the tap - playing the bell vs. the edge of a cym-
bal, for example (Drums!). Finally, the user can often
switch between drum kits or drum kit layouts (Drum Kit
Pro, Drums!)
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Figure 6. Ratatap Drums, a typical drum app.

3.7 Synthesizer

A synthesizer app exposes a selection of controls to a syn-
thesis engine, and provides a piano-style keyboard for trig-
gering the synthesized sounds. Control of the synthesis
parameters is typically done with rotary knobs, but hori-
zontal (Alchemy) or vertical (Minisynth) sliders, and XY
pads (Alchemy) are also often used. Common parameters
include:

• Wave type - sawtooth, sine, square, etc (Magellan)

• Filters - cutoff, type, resonance (Alchemy)

• Frequency modulation (iMS20)

• ADSR envelope control (iMS20)

In addition to triggering sounds with a piano keyboard,
sequencers are included in some synthesizers (Magellan,
iMS20), as are grids with volume mapped vertically (Mag-
ellan), and XY pads (iMS20). Indeed, some synthesizers
can set the scale used by the keyboard or XY pad (Ani-
moog, iMS20). In the case of the Animoog, this changes
the layout of black and white keys! Finally, some synthe-
sizers apps include extra effects, which are controlled with
rotary knobs (Magellan) or with virtual patching environ-
ments (iMS20, Audulus).

Figure 7. Animoog, a typical synthesizer app.

3.8 Sequencer

This category is inclusive of both drum machines and step
sequencers. Time is divided into some number of dis-
crete steps (16, 32, or 64), and time then moves step-by-
step from left to right, according to a set tempo. One or
more sounds or drum can be triggered on each step. Some

sequencers model traditional drum machines (Korg iElec-
tribe), and only allow access to a single track at a time,
whereas others offer a grid with multiple tracks (EasyBeats
2 Pro). Some include DAW-style mixers with vertical slid-
ers (KeyZ), some add effects sections with rotary control
(Molten Drum Machine), and some have an MPC-style in-
terface for adding events to the grid (FunkBox Drum Ma-
chine). The mapping of time also varies: some only display
a single bar of time, whereas others allow a bar to be se-
quenced, and then allow the bar itself to be sequenced with
other bars (Genome MIDI Sequencer, DM1). Zooming in
time is occasionally provided by a rotary knob that controls
the subdivision of a beat (Molten Drum Machine). Finally,
volume per sound is sometimes controlled by the vertical
position of the sound in the grid (Looptastic Producer).

Figure 8. Molten Drum Machine, a typical sequencer app.

3.9 Karaoke

Karaoke apps allow the user to sing along to the instrumen-
tal track of a known song. At the very least, they present
and somehow highlight the lyrics to be sung. Some pro-
vided visible pitch mapping, usually with pitch mapped
vertically (higher notes are higher in pitch, lower notes
are lower) and time moving from left to right (StarMaker:
Karaoke+). Other options include additional reverb or echo
(Soulo Karaoke), automating tuning effects that can be tog-
gled on and off (Sing! Karaoke, StarMaker: Karaoke+),
and toggles and level sliders for guide vocals (StarMaker:
Karaoke+).

Figure 9. StarMaker: Karaoke+, a typical karakoae app.
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3.10 Amp Sim

These apps provide some sort of model of a hardware FX
box, usually a guitar pedal or guitar amplifier. Control of
the effect is provided by rotary knobs (AmpliTube) hori-
zontal faders (AmpKit), and on/off switches (AmpliTube,
AmpKit). Some examples of the effects & parameters un-
der control, from AmpliTube, are:

• Octave Pedal: direct level, octave level

• Delay: Delay time, feedback, delay level

• Phaser: speed

Some apps additionally allow the user to position a virtual
microphone in front of the virtual amplifier, providing non-
linear, two dimensional control of timbre (Ultimate Guitar
Amps and Effects).

Figure 10. AmpliTube, a typical amp sim app.

3.11 Other

The Other category ranges from touch-based implemen-
tations of acoustic instruments to wildly abstracted music
applications. Violin, harmonica, and trumpet applications
were examined, along with gravity-based sequencers, iso-
morphic pitch-space controllers, and granular synthesizer
experiments. In general, the most atypical mappings ap-
peared in this category. For example, Rework maps pitch
radially out from the centre, and ThumbJam allows the user
to add vibrato and tremolo by shaking the device.

4. MAPPINGS

Beyond the metaphors listed above, we examined the raw
mappings behind each app. For example, a standard pi-
ano application maps pitch horizontally from left to right
(all directions given imply an increase), with discrete but-
tons. Likewise, a standard DAW application has a mixer

Figure 11. Borderlands, an app from the Other category.

that maps volume vertically, from bottom to top, contin-
uously. Table 2 breaks down mappings in terms of pitch,
trigger, time, volume, and timbre, across the ten metaphors
listed above: Piano, DJ, DAW, MPC, Guitar, Drum Kit,
Synthesizer, Sequencer, Karaoke, and Amp Sim.

It is important to note that some apps contain multiple
mappings for a given parameter. Thus, the numbers in Ta-
ble 2 will not add up to the total number of apps listed in
Table 1. Secondly, despite the fact that many applications
present rotary knobs or dials to control parameters (espe-
cially for timbral controls), these are not controlled in a ro-
tary manner. They are in fact controlled as a vertical slider,
and are notated here as such. Finally, some apps do not
rotate when the device rotates. If the app presented a know
metaphor (such as with guitar apps), the device was ori-
ented to match the way the metaphorical instrument would
be held. If the app presented no known metaphor, a best
guess was taken, based on orientation of text, icons, and so
on.

In Tables 2 and 3, each column refers to the parameter to
be mapped. Pitch, Trigger, Volume, and Timbre should be
self-explanatory. The Time column applies to applications
like sequencers and DAWs that allow a user to queue or
schedule events in time, and to tempo controls in DJ apps
and sequencer apps. Each row refers to the mapping used.
Most mappings should be self-explanatory. The Known
Layout mapping is less clear: it refers to controlling a pa-
rameter through some visual layout that does not fit in a
simple horizontal or vertical mapping, but is nevertheless
clear to the user. For example, a drum kit app would con-
trol timbre via a known layout - that of a drum kit. Like-
wise, a trumpet app that mimics the valves of a trumpet
would control pitch via a known layout.

4.1 Results

As can be seen from Table 2, the mappings for those stan-
dard categories do not cover a wide range of the possibil-
ities. The runaway winner for pitch input, for example, is
discrete pitches mapped left to right - almost certainly on a
piano keyboard. It is important to note that mappings based
on the keyboard are so common because users understand
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Table 2. Mappings for standard categories
Mapping Pitch Trigger Time Volume Timbre
Horizontal:
Left-to-
Right

143 67 32

Horizontal:
Right-to-
Left

32

Vertical:
Top-to-
Bottom

32

Vertical:
Bottom-to-
Top

73 142 114

Continuous 50 48 174 114
Discrete 178 19 174 114
Known
Layout 49

Toggle 45 50
Touch 243
Gesture 43
Microphone 18 18

them instantly, without having to build up their own model
for how an app maps pitch. Mapping pitch using a system
of gestures would be interesting and novel, but would not
be easy to use.

4.2 Other

In order to get a clearer view of potentially novel map-
pings, the raw mappings for each of the apps in the Other
category (from Table 1) are listed in Table 3.

Most mappings listed in Table 3 should be self-explanatory.
The Touch Area mapping refers to the width-times-height
area touched, in terms of the size: a tap with a pinky fin-
ger covers a smaller area than a thumb, for example. The
Physics mapping refers to some model of the physical world:
virtual balls bouncing with pitch matched to their speed,
for example. Finally, the Location mapping refers to plac-
ing a virtual object at a certain XY location in the app:
Moving an virtual loudspeaker closer to a virtual micro-
phone, for example.

4.3 Results

As can be seen from Table 3, these mappings are substan-
tially more creative than the mappings for known meta-
phors. Indeed, many new mappings appear, and some of
them are used for only single apps! Standard horizontal
and vertical mappings remain very popular, but in general,
these apps are more interesting - though they may also be
correspondingly more difficult for an end user to grasp.

5. DISCUSSION

Our categorization of applications has shown that the ma-
jority of iOS music applications are based on known meta-
phors, and that piano applications are by far the most pop-

Table 3. Mappings for Other category
Mapping Pitch Trigger Time Volume Timbre
Horizontal:
Left-to-
Right

22 15 4 11

Horizontal:
Right-to-
Left

1

Horizontal:
Edge-to-
Center

1

Vertical:
Top-to-
Bottom

2 1 1

Vertical:
Bottom-to-
Top

16 6 12 16

Rotation:
Clockwise 2 5

Rotation:
Counter-
Clockwise

1

Radial:
Center-to-
Edge

2 1 1 1

Radial:
Edge-to-
Center
Diagonal:
Bottom-
Left-to-
Top-Right

1

Continuous 9 18 17 28
Discrete 40 9 2 2
Known
Layout 3 4

Toggle 1 7 16
Touch 26
Touch
Area 1

Gesture 1
Microphone 9 3
Shake 1 2 1
Tilt 4 2 1 2
Physics 2 2
Location 4 1 1
Colour 3 2

ular, followed by emulation of electronic music interfaces:
DJ rigs, DAWs, and MPCs. Taken as a single class, the
Other category would be the second most popular category,
just behind piano apps. However, as these apps vary from
simple percussion apps (iMaracas) to sophisticated iso-
morphic pitch controllers (SoundPrism), it would be disin-
genuous to group them together and point to their high
number as evidence of the power of novel metaphors. Fur-
ther investigation of this category would be needed in order
to draw more accurate conclusions.
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To the contrary, this research indicates that simple or known
mappings and metaphors, such as the all-powerful piano
keyboard, are the most popular. Even complex synthesis
applications emulate physical synthesizers, with sundry di-
als and faders for timbral control. In the Other category,
where apps lack a common metaphor, standard horizontal
or vertical mappings still appear. However, numerous apps
present novel mappings and novel inputs, indicating that
there is more design space to be explored outside of key-
boards and drum kits. Indeed, regardless of their lack of
known metaphor, apps like Figure, Borderlands and Sam-
plr show that successful applications can be made with
novel mappings.

The importance of metaphor cannot be overstated. The
massive popularity of piano apps, DJ apps, and so on, can
be explained by Fels et al. [6] and their discussion of how a
metaphor provides the user with a ”literature” of common
knowledge about the interface. This leads to transparency
between the mappings and the user, which makes the map-
pings more effective for beginners. Wessel and Wright [7]
discuss the value of metaphors in terms of organizing mu-
sical material. They also discuss the value of more abstract
and creative metaphors across parameters like pitch and
timbre. As has been shown in the above tables, most iOS
applications lack such a creative metaphor: only 55 out of
337, just less than a sixth of the examined apps, do not fit in
to known categories. It may be possible to bring new cate-
gories to life, however. The lack of success of, say, iPhone
violins could be because no app has made the correct set
of mappings with which to emulate a violin.

In terms of mappings, Tables 2 and 3 could be used to
aid the design of new iOS applications. While it seems
premature to relate these mappings directly to profitabil-
ity and financial success (especially as the App Store does
not provide sales numbers for each app), the fact that the
vast majority of applications map pitch from left to right
indicates that an app aimed at widespread success should
at least include such a mapping as an option. The same
can be said for the mapping of volume vertically, and of
time from left to right. Tables 2 and 3, however, could
also be used to create spectacularly atypical iOS apps, sim-
ply by utilizing mappings that are under-represented. Such
an app might map pitch from right to left, continuously,
while controlling timbre via the microphone, and select-
ing rhythms via certain gestures. Or, the app might run
time counter-clockwise, control pitch via the area of each
touch, and map volume radially. These examples highlight
the possibilities for deeply creative mapping solutions that
exist on the iOS platform.

The most successful use of these tables, however, is prob-
ably in a combination of these two approaches. A scatter-
gun, unfocused collection of novel mappings will proba-
bly result in a scattergun, unfocused app. However, an app
with some traditional mappings and some novel mappings,
especially in underutilized areas such shaking and tilting,
or with underutilized parameters such as timbre, may be
both more of a research success and more of a popular suc-
cess

Finally, it is also important to note the limitations of the

iPhone and iPad hardware, and how those limitations im-
pact mappings. Though capable of exceptional capacitive
multi-touch input, iOS devices lack the ability to easily
tell how hard a user is tapping them, or any way of giv-
ing the user tactile feedback on their input. In some cases,
this leads to creative mappings to work around these lim-
itations. For instance, Smule Magic Piano maps the tone
of each note vertically: touching higher up a key plays a
darker sound. Likewise, Ratatap Drums uses data from
the accelerometer to detect the force of a tap, and adjusts
the volume accordingly.

6. CONCLUSION

We have summarized the most popular categories, map-
pings, and metaphors for musical iOS apps, as of February
2013. It must be noted that the iOS App Store is an ever-
changing world: the top 200 apps of February 2013 are
almost certainly not the top 200 apps of July 2013 - and
are without question not the top 200 apps of 2015.

As of February 2013, however, we found a massive preva-
lence of piano apps, and of apps that show known meta-
phors to the user. We also found a subset of apps with
no known metaphor, which were, as a rule, the applica-
tions with the most creative mappings. Across all apps,
the vast majority used simple mappings: pitch from left to
right, volume from top to bottom, and so on. Even within
the Other subset of apps, these simple mappings were the
most popular. However, this subset also included deeply
creative mappings, making use of tilting, physics models,
radial lines, and more. We then suggested that these lists of
mappings could be used to explore underutilized designed
spaces on iOS and similar platforms.

Touch applications for music, on iOS and on other plat-
forms, will only become more popular as such technology
becomes more and more available. It is hoped that this re-
port has helped expose how mappings and metaphors are
currently used on these devices, and helped shine a light
on mappings that have not yet been investigated.
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ABSTRACT

To ideally expand a sound synthesis parameter mapping
strategy is to introduce complexity and capability without
sacrificing its ease of use. Following work done with dy-
namical systems and catastrophe theory by René Thom, Sir
E.C. Zeeman and others, we are able to create a general
purpose model for introducing extended behaviors, akin to
the dynamics of acoustic instruments, in low complexity
interfaces without adding control parameters or losing the
possibility of reverting to a simple, near-linear mapping.

Herein, we explore the principles of catastrophe theory,
paying particular attention to the cusp model in which two
input parameters yield a third and fourth describing the
“catastrophic” events after which the theory is named. As
acoustic systems possess several attributes of the catas-
trophic models, we experiment using the cusp model to
enhance mapping of control parameters to FM synthesis
parameters, in an attempt to give these signal-based vir-
tual instruments the nuance and capability of their acoustic
counterparts.

1. INTRODUCTION

The quality of a parametric sound synthesis model is not
only determined by its produced sound, but also by the
richness, depth, and intuitiveness of its control. As is the
case with their acoustic counterparts, virtual musical in-
struments should engage users with music and sonic pos-
sibilities, allowing for exploration, discovery, and expres-
sion, with increased use, practice, and familiarity. A map-
ping strategy, therefore, may be evaluated by its “virtuosic
ceiling” (potential for maturation with extended use) and
its “entry fee” (ease of initial interaction) [1]. Balancing
these two attributes is an important aspect in designing a
system whereby performative gestures will be translated
into synthesis parameters.

Physics-based synthesis models often have a myriad of
possible synthesis parameters, offering possibilities in the
produced sound akin to their acoustic counterparts. Though
the complete set of possible parameters is usually too large
to be effectively controlled by the user in realtime, there
is usually a subset of “control parameters” that is naturally
intuitive, largely because they are physical and relate to
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acoustic instruments with which the user has some famil-
iarity and experience: blowing harder produces a louder
sound; shortening the string produces a higher pitch. In
addition to offering a low “entry fee” (ease of use) with-
out requiring additional mapping, a quality physics-based
model implements the dynamics of the system (the pro-
duced sound being dependent on both the current state of
the model/parameters and their change over time), which
also, by nature, offers possibilities that raise the “virtuosic
ceiling” (maturation): blowing harder produces not only
a louder sound, but also one that is brighter, harsher, de-
tuned, or even the octave above (overblowing).

In signal-based models, the relationship between control
and synthesis parameters is far less obvious (to both de-
veloper and user), and a mapping strategy is required to
achieve a balance between ease of use and maturation. These
mappings can be difficult to create, due to both their ab-
straction from a more obvious linear mapping, and their
potential to create densely connected and difficult to de-
bug and describe interactions. Existing strategies have in-
corporated generative methods to produce these mappings
[2–4] and many have developed taxonomies to enable the
decryption and development of these complex mappings
[5, 6]. In this work we present an approach to parameter-
mapping that, by borrowing concepts and models from catas-
trophe theory, aims to enrich signal-based models with the
inherent complexities/intuitiveness of those that are based
on some more natural, physically based musical interac-
tion.

In an attempt to further the current mapping toolset, we
have chosen to examine catastrophe theory as a potential
set of theorems and models. Work done to extend the
toolset available in creating these mappings is valuable to
performer, composer and designer alike, as creating new
primitives in mapping strategies yields a better set of de-
sign choices for the development of new mappings of con-
trol to synthesis, and therefore a more dynamic and nu-
anced interaction between instrument/interface designer,
composer and performer.

In Section 2, we will examine catastrophe theory, its mod-
els and those attributes that indicate its potential value to
parameter mapping development. In Section 3, we discuss
its implementation, specifically in code via Pure Data and
in a parameter mapping paradigm within frequency mod-
ulation synthesis. In Section 4 we discuss the results of
these initial implementations, in Section 5 we examine the
research to suggest possible topics for expansion and in-
vestigation, and in Section 6 we discuss the conclusions
derived from our research.
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2. CATASTROPHE THEORY

René Thom, a twentieth-century French mathematician,
developed catastrophe theory as a means of explaining a
set of complex singularities in geometry and mathemat-
ics. [7] [8] Thom’s work inspired many to pursue the con-
clusions of catastrophe theory, not only in mathematics,
but across disciplines. In his book Catastrophe Theory, Sir
E.C. Zeeman, a British mathematician and champion of the
relevancy of catastrophe theory across disciplines, presents
several examples of simple, catastrophic systems outside
mathematical fields [9]. A number of other researchers
have used Thom’s work in modeling a number of sociolog-
ical [10], economic [11], physical [12], and biological [13]
systems.

Catastrophe theory describes simple geometric models to
explain systems that yield drastic changes in state in re-
sponse to slowly changing attributes or parameters. These
models have been developed from theorems proposed by
Thom, that describe higher-dimensional geometry, specif-
ically that of bifurcating sets of higher-order polynomials.
His work concerned itself specifically with the disconti-
nuities yielded by a number of special multi-dimensional
geometric equations he termed elementary catastrophes,
which are classified by the dimensions of their behavior
and parameter spaces. The models Thom and Zeeman use
to describe these systems are eloquent in that they are sim-
ple polynomials, whose real roots yield the stable states of
the system, and whose coefficients shape the attributes of
the thresholds and surface of the models [14].

While these previous implementations of catastrophe the-
ory have little to prove for our mapping here, they point to
the validity of catastrophe theory models in a range of ap-
plications and disciplines.

The elementary catastrophe we will concern ourselves
with herein will be a lower dimensional model, due to its
potential for representation on paper and its relative ease
of comprehension and application. The model is the cusp
catastrophe, which is described by a simple cubic poly-
nomial, and from a two dimensional control space yields a
third, potentially bimodally distributed behavior axis, whose
value is dependent on previous states and trajectory through
our control space. The cusp is manipulated by adjusting
the coefficients of a polynomial, using two of these coeffi-
cients as navigational axes of a control space.

2.1 The Cusp Catastrophe

Catastrophe theory comprises a number of models that re-
late or map “attributes” to “behavioral” states. One such
model, called the cusp catastrophe, is given by

chx
3 + bcwx+ a = 0, (1)

where ch and cw are used to change the cusp height and
width, respectively, and coefficients a and b are input con-
trol parameters. The surface C in Figure 1 is the control
surface created by axes a and b, while the manifold cusped
surface M (above C) is defined by the real roots of (1).
The positive and negative values of x create the two sheets
(upper and lower regions) of M .

Figure 1. The elementary cusp catastrophe. Our variable
axes b (splitting factor) and a (normal factor) and behavior
axis x are labeled in the control surface C, and several tra-
jectories through this control surface are traced both on C
and their resulting values for x are traced on the behavior
manifold M .

Since (1) is a cubic polynomial, it has three roots. The
shaded area on control surface C, indicates values of a and
b for which all three of these roots are real—the bifurcating
set. These three real roots define the folded or “cusped” re-
gion of the manifold surface M . Outside the shaded region
in C lie values for a and b yielding only a single real value
for x. The two curved lines outlining the shaded area are
thus thresholds for which a and b yield single or multiple
(bifurcating) values of x. Bifurcating values of x appear
for values of b > 0. For b < 0, x increases continuously
with a. Static coefficients, ch and cw, effectively scale the
coefficients a and b, thus skewing the dimensions of the
cusp.

Fig. 1 shows several trajectories, labeled 1-4, of linearly
changing values for a and b. Trajectories 1 and 2 on C,
which originate on either side of the bifurcating set, pro-
duce different values for x, shown by corresponding trajec-
tories 1 and 2 on M , despite a common destination point
and similarly changing values of a and b. This exemplifies
the first of the catastrophe model’s attributes:

Attribute 1. The behavior resulting from a given set of
control values is dependent both on initial conditions and
previous behavior.

Trajectories 3 and 4 illustrate the characteristic jumps, or
“catastrophes,” after which the models are named, which
occur when moving from the bifurcating set to the non-
bifurcating set (jumps are illustrated in Fig. 1 using dashed
lines on M and occur at points on C when the trajectory
moves from inside to outside the shaded area). Further-
more, if a trajectory exits across the same threshold from
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Figure 2. The effects of different values of ch and cw on
the shape of our cusped surface. Axes are the same scale
in all four plots.

which it entered, i.e. remains on the same “sheet”, no jump
occurs. This exemplifies the second of the model’s at-
tributes:

Attribute 2. Jumps in the value of x occur only upon ex-
iting the bifurcating set onto a new sheet.

2.2 Applying to Dynamic Systems

Though the cusp model has two input parameters, it gen-
erates another two, yielding a total of four possible syn-
thesis/application parameters: a, b, location x on the cusp
manifold surface, and a binary value indicating whether x
is on the upper or lower sheet. This increase indicates a
potential value in parameter mapping, as it suggests a pos-
sible mapping of a simple control space to a more complex
dynamic or sound synthesis system.

Any system that exhibits:

1. bimodal distributions of behavior for a dynamic in-
put (relating to Attribute 1),

2. drastic changes in behavior despite slowly changing
control parameters (relating to Attribute 2).

is a potential candidate for representation by a catastro-
phe model. Several such systems exist in music appli-
cations. In particular, blowing into the mouthpiece of a
saxophone presents an example of an acoustic system that
exhibits these two attributes: slowly varying embouchure
and blowing pressure (corresponding to control axes a and
b) for a given fingering, produces a sound that can leap in
register/octave—a bimodality in state (Attribute 1) that can
result in a jump in x (Attribute 2). That is, the tendency
of the horn to lock into an upper or lower register, based
on its previous state, exhibits Attribute 1. The tendency

for a horn to jump catastrophically in register despite slow
changes in control exhibits Attribute 2.

This simple catastrophic model of the saxophone shows
the natural and musical behavior of control parameters fed
through a cusp model. This nuanced behavior, coupled
with the simplicity of the mathematics and rules of behav-
ior, point to a potentially rewarding mapping strategy.

3. IMPLEMENTATION

In implementing catastrophe theory and polynomial equa-
tions in a mapping strategy, we are looking for complexity
and capability in expression without diminishing the abil-
ity to use an interface effectively and easily. Furthermore,
we hope to reward maturation with an interface, provid-
ing a more complex and nuanced interaction with the inter-
face over time, more so than previously available without
a complex mapping. The cusp model (1) is implemented
as a Pd external object (written in C) [15], which offers
a real-time interactive programming environment popular
among computer musicians. Several patches from our ex-
perimentation, and the cusp˜ external, are available for
download [16].

The first step in implementation is to fully understand the
effects of manipulating the coefficients of (1). Initial tests
were run in graphing programs to illustrate the width and
height of the cusp for different values of ch and cw (see
Figure 2). Following this, implementation is straightfor-
ward. First, the Cusp model is coded as a function hav-
ing four input parameters, two static (cw and ch) and two
dynamic (a and b), and two returned values, x and a bi-
nary indicating on which sheet, HIGH or LOW, x lies.
Through experimentation, ch was deemed unnecessary as
it was nearly a scaling of x that could instead be more ef-
fectively and predictably applied as a linear scaling of the
output (reducing required inlets in the Pd external to three).

The function uses the cubic polynomial solver in the GNU
Scientific Library, as it returns only real values (and not
complex values that have nothing to do with surface M ).
This function takes our three coefficients above and three
pointers to memory locations in which it stores the returned
roots of our equation. It also returns an integer indicating
whether there is one or three real roots, effectively indicat-
ing whether we are in a bifurcating or non-bifurcating set
of values for a and b.

Finally, a state variable is used to “remember” on which
sheet of the cusp surface x resided in the previous time
step, determining which of the roots of x, lower or upper,
should be returned (the middle value is not considered in
these models). Therefore, in this example we have a dou-
bling of possible control parameters: the original a and b,
plus two more given by the cusp model, x and sheet of x.

This code can be further optimized by implementing our
own polynomial solver instead of calling an outside func-
tion (which itself makes several outside function calls).
Furthermore, a number of other techniques can be used
to determine the correct root, and some of these may be
more optimal. Because this code, wrapped as a Pd exter-
nal, is computed for every sample, it may be used in wave-
shaping and audio-rate modulation, as well as control rate
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paradigm.

4. APPLICATION AND RESULTS

Here, we choose to explore its use in the context of an FM
(frequency modulation) synthesizer, to see how acoustic
behavior as described in Section 2.2 can be incorporated
in a signal-based model. A very simple implementation
can be observed in Figure 3, where the index of modula-
tion is controlled by both x and the binary HIGH/LOW
sheet variable, while the carrier and modulator frequency
are controlled by a and b, respectively.

The patch illustrated in Fig. 3 was used as an experi-
mentation platform for determining the effect of our two
generated parameters in very minimal signal-based synthe-
sis system. Frequency modulation was chosen for our fa-
miliarity with its common control mappings and produced
sound.

The interface chosen for initial experimentation was a
touch sensitive trackpad, which returned an x and y value
for a finger moved about its surface. By implementing our
mapping with the cusp modeling, we essentially are able
to traverse the lower and upper sheets of the model with
our finger, and dictate the behavior based on our trajectory
across and around the thresholds of the model, much as
the paths in Fig. 1. This allows nuanced control of the out-
put values, as it is immediately possible for a novice user
to locate, empirically, the location of these thresholds and
quickly learn to exploit or avoid their happening.

4.1 Cusps in Timbre, Amplitude and Pitch Control
Paradigms

The cusp in the above patch maps timbre to our cusp model
and pitch to our input a and b. Several other implementa-
tions were made systematically to determine by isolation
the effect of cusp models on signal-based synthesis’s most
often used parameters, timbre, amplitude and pitch.

In Fig. 3 we have mapped our FM timbral parameter, the
index of modulation, to the x output by the cusp model. We
also tested this same system without the changing pitch,
and therefore isolated timbral control with the cusped model.
This yields an interesting, pseudo-vocal behavior, jumps in
sideband presence and spread affecting a dynamic, albeit it
expressively limited, control of timbre.

In other experiments, amplitude and pitch were controlled
with the new complex yielded parameters x and sheet of x.
An interesting result of this experimentation was the ef-
fect of the changing x without leaving the current sheet.
The effect was to obtain a vernier control of a small sub-
set of the accessible control space, effectively enabling a
magnification of the values of x available on a given sheet.
When mapping to amplitude, at higher values of b, where
the sheets are most distant and the values of x therefore
more disparate, this amounts to an ability to make nuanced
changes in loudness at either a lower piano dynamic or,
after jumping sheets, fine adjustments at a higher forte dy-
namic.

It is in our mapping of this model to pitch that the afore-
mentioned “magnification” of certain subsets of the con-

Figure 3. A simple patch illustrating the mapping of
our four synthesis parameters (two generated by our cusp
model, two direct from control) to a simple FM-based syn-
thesis algorithm.

trol space is most notable. The lower portion of the control
space allowed minute control of a lower pitch subset, and
after a jump, minute control of a higher pitch subset. As the
middle pitches can be accessed by simply decreasing b, this
introduces a very interesting paradigm of control. A scale
running from lowest to highest pitch sets therefore runs in
a horseshoe shape, retreating around the bifurcating set of
values of a and b and back out to the higher sheet, without
encountering catastrophic jumps but increasing the nuance
of control at all points. Furthermore, jumps of different
sizes between registers can be made easily and with some
precision by simply locating the proper crossing point of
the threshold to take a path through.

These mappings to signal-based synthesis parameter prim-
itives helped illustrate the value of these models to the ex-
pansion of available parameter mapping strategies. To our
initial goal of introducing acoustic-like behavior to these
simpler signal based models, it points to observed behav-
iors, like the selective magnification, that may map to acoustic-
like paradigms.

4.2 Introducing Acoustic-like Behavior to a Signal
Model

The main purpose of these experiments is to determine if
the two additional parameters generated by the cusp model,
x and sheet of x, are useful and intuitive synthesis parame-
ters. As previously illustrated, it can be shown that acoustic
systems have a tendency to behave like the cusped model,
so our aim was to investigate the presence of some more
natural or acoustic-like behavior in the mapping.

We can show this behavior by observing Attributes 1 and
2 in the process of using the interface, and determine if
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they are related as predictable and controllable features to
a user.

By default a simple FM synthesis model has no inherent
acoustic-like qualities, as FM linearly mapped to the con-
trol parameters of a trackpad or other continuous controller
is dissimilar from any existing acoustic system. This al-
lows us to track the effect of introducing the cusp mapping,
and evaluate it independently of the synthesis algorithm’s
behavior. This isolation of a mapping is key to evaluating
its worth, as many synthesis algorithms behave naturally
and effectively without an intermediate mapping between
control and synthesis parameters.

First, the implementation of this model effectively en-
larges the parameter space of our sound synthesis system,
as Attribute 1 shows that a large portion of our control sur-
face has two possible values of x. By introducing this bi-
furcating behavior, like that found in acoustic systems, the
parameter space of our interface widens, and therefore a
larger portion of the sound space of the synthesis algorithm
is available to a performer.

Furthermore, by using cusp-generated parameters x and
sheet of x to control the index of modulation, an abstract
synthesis parameter without an acoustic analog, we intro-
duced a way of jumping between timbres of the synthesis
algorithm. Each sheet of the cusp maps to two different
sound spaces, with finer adjustments accessible using x,
and a user can switch purposefully from one to another.
These jumps, described by Attribute 2, introduce a trig-
gered, more dynamic behavior to our previously linear in-
terface.

Also, the complex behaviors of wind instruments dis-
cussed in Section 2.2 can be modeled with careful appli-
cation of the cusp model in mapping control parameters.
In experimentation, the sheet of x was mapped to pitch,
while x was mapped to index of modulation. This map-
ing closely resembles the articulation of a single keying of
the saxophone, where an increase in embouchre and blow-
ing pressure will push the horn to both jump in octave (a
catastrophic jump in pitch) and harshen in timbre (an ac-
companying increase in x).

The selective magnification also has many acoustic analogs.
Jumps between registers as desribed above, with some small,
more nuanced adjustments available on either end of these
jumps, also closely resembles paradigms present in wind
instruments. Again, the jumps can be associated with pitch,
but if mapped with proper scaling of x instead of the binary
sheet of x, small adjustments in intonation can be made in
each register with some precision.

By identifying and exploiting these acoustic behaviors in
our new mapping, which introduce more complex expres-
sion and control in an otherwise simple system, we have
increased the potential for engagement and discovery in the
process of learning a musical interaction with a digital sys-
tem. We have done this by relating the interaction with a
digital musical instrument to interactions a performer and
composer are more likely to have some experience with.
Furthermore, we have helped mediate the potential expres-
siveness of the vast sound space available in signal-based
models to a much smaller and simpler control space.

4.3 Balancing Complexity and Cost

Another main focus of these experiments is to determine
the ability for a user to easily acquire the mapping and be-
havior of the interface, and if maturation with the system
is rewarding over time. While the initial experiments are
basic, results indicate that the mapping has the potential to
fulfill our two desired features of a new mapping, namely
the low entry fee and high virtuosic ceiling.

By scaling and offsetting our input parameters, the bot-
tom half of the trackpad can be kept near-linear, or without
bifurcation (by keeping b < 0, as shown in Fig. 1), and
therefore more immediately intuitive, while still allowing
the top half to exhibit the more complex bifurcating behav-
ior. By building this duality into the interface, it is possible
for a simple interface to yield both easily accessible and
more complex behaviors.

Furthermore, several cusps can be implemented with dif-
fering dimensions and locales on the control surface by
simply adding more of these models in the intermediary
mapping layer. These additional mappings afford the same
designed duality in simplicity and complexity. We can
therefore introduce the complexity in behavior available
with several cusps without accumulating complexity in the
lower half of our mapping and eliminating its ease of ac-
quisition. These two conditions satisfy the desire to find
mappings both easy to acquire and rich in complexity and
nuance that can be acquired over time.

5. CONCLUSIONS

Catastrophe theory, as laid out by Thom and others, allows
us the means by which to extend the currently available
tools used in parameter mapping. It does so by supplying
models in which a low number of parameters yield new
and complex output behaviors.

The cusp model from catastrophe theory is ideal for sev-
eral reasons. First, it is relatively easy to understand, due
to its ease of representation in three dimensions on paper,
and its low order polynomial description. It is also easy to
implement in code, and easier still to include in a mapping
strategy once encapsulated into an external or its equiva-
lent outside of Pd.

The likeness of the cusp model to acoustical systems fur-
ther extends the implemented mappings, by extending their
behaviors, size of control space, and introducing control
that is intuitive and nuanced like that of an acoustical sys-
tem. It allows for an acoustics-like dynamic for a signal
based synthesis algorithm, by introducing an intermediary
mapping layer. We can see the real mapping benefits of in-
troducing both dynamic jumps in parameter range and the
effect of bifurcating control surfaces in both ease of control
and likeness to acoustic analogs.

Furthermore, the cusp model, and other polynomials like
it, is possible to implement in a non-complicating man-
ner. It can be subtle or drastic, with or without linear map-
ping possibilities behind some threshold, and multiplied
in number, all potentially without cost to the initial acqui-
sition of the interface’s function and the ease that simple
mappings allow novice users to begin making sound in
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a purposeful manner. It is this introduction of complex-
ity without cost that highlights the possibilities of these
equations as tools in the mapping strategies of larger, more
complex algorithms.

6. FURTHER RESEARCH

While this paper focuses on a simple implementation of a
lower complexity model of catastrophe theory, there is still
more to do in terms of applying these models and evaluat-
ing their wider uses and conclusions.

First and foremost, examination of all of catastrophe the-
ory’s models, not simply those more conveniently laid out
on paper, is called for. While they do not guarantee the pos-
sibility of nuanced or simple behavior like the cusp catas-
trophe does, their higher level of input and output parame-
ters suggest their potential relevancy. One such model, the
butterfly model, is suited for further research, as its surface
can also be traced with two parameters, and its coefficients
and behaviors are more complex. Initial experimentation
with the butterfly model’s behaviors show some promise
for parameter mapping.

Second, catastrophe theory itself may well be worth ex-
amining in music and sound synthesis outside of parameter
mapping. Its relevancy in physics to describe complex be-
haviors resembling resonance point to its potential use in
modeling the behavior of musical instruments, in terms of
musical information retrieval or parameter estimation tech-
niques.

In effect, catastrophe theory’s implementation herein has
only been the initial stages of applying a theory to a new
discipline. The scope of this article was necessarily smaller
in scope to more carefully explore a single implementation,
and without expansion outwards, this topic is not fully ex-
plored or tested.
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ABSTRACT

The aim of this paper is to evaluate whether foley sounds,
real recordings and low quality synthetic sounds can be
distinguished when used to sonify a video and if foley sounds
can be rated as more expressive than real sounds. The main
idea is to find a motivation for having such a solid tradition
in using foley sounds for a film track. In particular this
work focuses on walking sounds: five different scenes of
a walking person were video recorded and each video was
then mixed with the three different kind of sounds men-
tioned above. Subjects were asked to recognise and de-
scribe the action performed, to evaluate their confidence,
the realism of the action and its expressiveness. Early re-
sults shows that foley sounds and real sounds cannot be
distinguished by the subjects. A preliminary audio-only
test was performed with the sounds used in the audio-video
test in order to assess the recognition rate without the vi-
sual help.

1. INTRODUCTION

While existing for several decades, Foley sound effects
(cf. [1]) are still an elusive research topic. They are widely
used in the movie and video industries because the direct
location recordings of scene sounds are simply not good
enough or plagued anyway with all sorts of noises that are
bound to appear on a crowded set, but their techniques of
production are still considered an art which defies expla-
nation (cf. [1, 2]). In general, Foley artists learn by experi-
ence and know what to do in every particular situation they
have to represent, but they hardly know why the sounds
they produce work well in a given context – being often far
more expressive than the direct recording materials. Fur-
thermore, scientific literature about Foley effects is quite
scarce (cf. [3–5]) and a wide area of investigation, ranging
from multi-modal perception to audio feature evaluation,
is available to researchers. However, several experimental
studies can be found on the identification and classifica-
tion of environmental sounds [6], for instance comparing
different kind of synthesis [7], introducing the concept of
types of similarities that can be used as a strategy in a clas-
sification task [8, 9], or analysing in depth the lexicon that
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is used for different environmental sound categories [10].
In [11] the authors claim that according to listener exper-
tise and their confidence scores the similarity approach that
they used can be predicted quite well: expert participants
usually refer to acoustical similarities, while non experts
refer to causal similarities. Following the results of the
mentioned work, we decided to ask our non expert sub-
jects to identify the action performed, implicitly suggest-
ing to find a causal similarity to identify the sounds they
had to judge.

The sounds of walking over different surfaces and ma-
terials occupy a special place within the domain of ev-
eryday sounds (or environmental sounds) present in video
sequences. This everyday life task is really quite com-
plex to reproduce faithfully in a virtualized environment
(cf. [12, 13]) but its ubiquity constitutes an indispensable
know–how in the idiomatic repertoire of any professional
foley artist. Thus, in this experiment walking sounds were
considered the most fitted to investigate the current status
of sound perception in a direct confrontation between fo-
ley, real and synthetic sounds.

The main purpose of this investigation is to compare user
recognition and appreciation of footstep sounds in an AV
production context. The starting idea was to assert the
recognition capabilities and their precision first with audio–
only stimuli and then with audio–video ones. In order to
do that, an experiment was conducted by asking subjects
to express preference and confidence ratings over a group
of stimuli presented both in audio–only and audio–video
forms. The subjects were also asked to describe the ac-
tion generating the sounds they were hearing and complete
freedom was left to them for the description. A large ma-
jority of subjects ended up describing both an action and
the supposed material over which it was performed. A very
crude early semantic analysis was then applied to the de-
scriptions of the audio–only sounds in an attempt to discern
whether the subjects were actually recognizing actions and
materials at all or whether they were recognizing appropri-
ately one or the other.

2. METHOD

To achieve the goal stated in the last paragraph of Sec.1,
we recorded footstep sounds on several surfaces, and we
also reproduced their Foley counterpart, using techniques
adopted from the movie industry. Moreover, we re–synthesized
a low–quality version of the original sounds to be used as
a control condition in the assessment of sound quality.
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Figure 1. Recording footsteps on sand by massaging and
squeezing a little bag filled with salt.

2.1 Visual stimuli

The videos were recorded with a Canon 7D camera. They
all last about 20 second and they represent 5 different scenes:
a man walking on a wooden pavement, a men walking out-
side on concrete, a men walking outside on sand, a men
walking outside on gravel, a men walking outside on grass.

2.2 Auditory stimuli

2.2.1 Foley sounds

All audio recordings were performed inside the anechoic
chamber at AAU Copenhagen, Multisensory experiences
lab. The ”foley artist” was not a professional one, but
a well documented PHd student, that used the same ac-
knowledge techniques and the same professional equip-
ment that is usually used in a foley recording studio. On the
floor in the anechoic chamber a platform consisting of two
large wooden boards with slices wall-to-wall carpeting in
between was placed. The platform was resting on six legs
that were fixed below the wire floor. Footsteps were pro-
duced with a walking-in-place-like treading. A Neuman
U87 microphone was used for the recording, connected to
an RME Fireface 800 audio interface.

• Footsteps on Sand:
Salt was put into a shoe bag made of thin fabric.
The final footstep sounds consisted of two record-
ings: one where the bag with salt was patted in a
waving motion. This was to emulate the impact of
the foot. The other recording was with the bag being
held in one hand while being moved in circular pat-
terns with the other hand. This was to emulate the
sand being moved around by the foot. See fig. 1

• Footsteps on Gravel:
A Foley pit created with a wooden box (16mm MDF
boards, dimensions 60, 100, 15 cm) was built. The
insides were covered with polystyrene material to
help dampening the wooden resonance of the wooden
construction. A thick felt blanket was also added on
top of the polystyrene. The box was filled with ap-
proximately 25 Liters of gravel (8-16 mm stones).

Figure 2. Recording footsteps on wood by walking in
place.

• Footsteps on Concrete: A concrete slab was placed
into the Foley pit filled with gravel (described above).

• Footsteps on Wood: A wooden pallet was placed on
the platform. Thick felt blankets were stuffed under
the boards of the pallet to alter the resonance of the
pallet, see fig. 2

• Wooden creaks: Creaks were recorded by using a
partially broken wooden pallet. The wooden creaks
were added to the recordings of footsteps by manual
editing during postproduction.

• Footsteps on grass: Tape from a VHS cassette was
placed on the platform and patted on with waving
strokes to emulate the walking on grass.

2.2.2 Real sounds

The following real recordings were chosen because they
were recorded on actual locations (but different from where
the videos were recorded) and not Foley:

• Grass sounds were taken from Freesound.org user
Zoom H4 ;

• Gravel sounds were taken from user Spleencast ;

• Sand was taken from user DasDeer;

• Concrete was taken from user conleec

• Wooden floor was taken from user sinatra314.

2.2.3 Environmental sounds

To compensate the cleanliness of the foley sounds (recorded
in anechoic conditions) and of the synthesized sounds ver-
sus the real sound samples, a fake background was added
to them. The purpose was to avoid accidental recognition
of the foley/synthesized sounds related to the difference in
noise content between audio samples.

The two environment sounds used in the experiment were
recorded with a Zoom H4n recorder. One recording is of an
outdoor environment with distant traffic noises, the other
recording was made inside an apartment living room.
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The editing and synchronizing of the all the footstep sounds
to the videos were done in Adobe Audition CS6. The edit-
ing of the Foley recordings were done as would have been
normally edited in a film mix with post-production applied
where it was deemed necessary.

2.2.4 Synthesized sounds

In order to assess whether subjects rated a lower quality
reproduction of the recorded sounds with a lower mark, a
set of synthetic footstep sounds was created. The sounds
were created as follows. First of all the amplitude envelope
of the original recordings (real sounds) was extracted, by
using the following simple non-linear low-pass filter pro-
posed by Cook ( [14]):

e(n) = (1− b(n))|x(n)|+ b(n)e(n− 1)

where

b =

{
bup if |x(n)| > e(n− 1)
bdown otherwise

with bup = 0.8 and bdown = 0.995.
The original sounds were also passed through a 48th or-

der LPC filter, in order to estimate the main resonances.
The synthetic sounds were obtained by using white noise

as input, which became filtered through the LPC filter and
with the amplitude obtained by multiplying sample-wise
the original amplitude to the values of the estimated am-
plitude envelope.

The resulting synthetic footsteps present a similar ampli-
tude evolution of the original ones, but the content is sig-
nificantly noisier given the input signal used for the LPC
filter. This can be easily perceived in the simulated foot-
steps on solid surfaces such as wood, where the sharp at-
tack obtained in the original sounds is lost in the synthesis.

2.3 Testing interface and procedure

The same testing interface has been used for both the audio-
video test and the preliminary audio only one. It was cre-
ated using Max/MSP: subjects could see the video (or a
black window in the audio test) and listen to the sound,
make their evaluation on the same window and switch to
the next trial when done, see fig. 3. The order of presenta-
tion of the stimuli (both audio and audio–video) was ran-
domized for each participant. They were asked to describe
the action that they were looking/listening to, to rate how
confident they were with their identification, how realistic
and how expressive was the scene in the likert scale from
1 to 5. No further explanation were given to them, letting
them free to describe as much (or as little) as they wanted.
We wanted to investigate how much they were going to de-
scribe the scene in the two different tests: will they focus
on the action or also something else, like the materials in-
volved, the environment, the speed walking etc.). There
were 16 subjects (7 female and 9 male) who participated
to the preliminary audio test. The mean age was 27 years,
and the range was 21 to 42 years. All participants reported
normal hearing and either normal or corrected-to-normal
vision. All the participants completed the test. The same

Figure 3. The Max/MSP patch dispensed to the subjects
for evaluation of video and audio.

16 subjects plus other 14, for a total of 30 subjects (10 fe-
male and 20 male) participated to the audio-video test. The
mean age for this test was 28 and the range was from 21
to 46 yars old. The test lasted around 20 minutes for each
condition.

The test was performed using a HP ProBook 6460b with
a 14 inch screen along with the RME Fireface 800 and
Sennheiser 600HD. The videos were presented at a reso-
lution of 960*540 pixels.

3. DATA ANALYSIS

The audio and audio–video tests produced two very dis-
similar overall results: the audio–video tests featured of
course a solid recognition both in terms of actions and ma-
terials, while in the audio–only test recognition was much
more of an issue. Therefore, we decided to supplement the
analysis of the audio tests with an evaluation of the quality
of the recognition through the textual description proposed
by the subjects.

3.1 Audio test

In order to qualify appropriately the evaluation given by
subjects about the sound stimuli that were dispensed to
them, it was necessary to discern the extent to which the
subjects themselves had recognized the action and/or the
material present within each stimulus. The audio-only test
shows some preliminary and qualitative results concerning
this aspect: most of the subjects could not identify cor-
rectly the action performed both the action (walking) and
the material (concrete, gravel, grass, sand, wood), but we
found out that many of them could identify just one of the
two aspects.

Since the subjects were left completely free to describe
what they were hearing both in terms of the action per-
formed and in terms of the materials on/over/with which
the action was performed, we then re-processed all free-
form answers attributing to them two different scores, one
concerning the action and one concerning the recognition
of the material.

Given the preliminary status of this work and the (small)
amount of data collected, we did not perform a fully de-
tailed statistical analysis of the results (such as that found,
for example, in [11]). However, we are fully aware that
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Figure 4. Correctness of the answers of the participants
concerning actions.

such an analysis is to be carried out on a more definitive
statement on this subject.

The scores were attributed on a scale from 0 to 2 in the
following way:
0 was attributed to the text when the subject expressed the

impossibilty of discerning anything out of the stim-
ulus proposed (i.e. phrases like “I don’t know” or
“. . . ” or “I cannot figure it out” etc.)

1 was attributed to the text description when the subject
was actually able to provide an explanation as to
what kind of action was being performed and what
kind of material was being used, but the explanation
was clearly wrong (i.e. the subject did not recognize
either the action and/or the material)

2 was attributed to the text description when the subject
was actually able to provide an explanation as to
what kind of action was being performed and what
kind of material was being used, and the explanation
was correct to some extent (i.e. the subject provided
a description that was amenable to let us understand
that she/he indeed did recognize the action and/or
the material used in the given stimulus)

The rationale behind this scoring system is that in this
case a wrong answer is better that no answer at all, and
this is reflected in the way grades are applied to each text
description.

Figg.4 and 5 show quite distinctly some specific features
of these results:
a) in general, actions (cf. fig.4) are better recognized than

materials (cf. fig.5);
b) the stimulus “walking on wood” (columns 13, 14 and

15) is distinctly the better recognized one both in terms
of action and of material by most subjects, at least as
far as foley and real sound actions are concerned

c) the stimuli “waking on concrete” (columns 1− 3) and
“walking on gravel” (columns 4 − 6) come next in
terms of recognition

d) the stimuli “walking on grass” (columns 7 − 9) and
“waking on sand” (columns 10 − 13) give the worst
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Figure 5. Correctness of the answers of the participants
concerning materials.

results in terms of recognition; the difficulty comes
mostly from the recognition of the material, but this
very often jeopardizes the recognition of the action too

e) the recognition of synthetic sound probes (columns 3,
6, 9, 12 and 15) is much more difficult and unstable

An early conjecture regarding these results is that there
seems to be some correlation between the quantity of acous-
tic resonance present in a stimulus and the capability of
recognition: more resonating materials (wood, concrete,
gravel) stand a larger chance of being recognized than less
resonating ones. However, this conjecture has not been in-
vestigated further at this time as it has been left for future
research.

3.2 Audio-Video test

The audio-video test was analysed starting from the media
and its variance. The variance was found to be too large to
further proceed with anova tests over it. The median values
were then evaluated and the Wilcoxon–Mann–Whitney test
performed. Figures 6, 7, 8 shows the median values for
each trial:

1. Walking on concrete with foley sounds, real and syn-
thesized sounds

2. Walking on gravel with foley sounds, real and syn-
thesized sounds

3. Walking on grass with foley sounds, real and synthe-
sized sounds

4. Walking on sand with foley sounds, real and synthe-
sized sounds

5. Walking on wood with foley sounds, real and syn-
thesized sounds

A preliminary observation of the data already shows some
interesting results:

• given the video of the action the confidence 6 of the
subject on their answers were quite high showing al-
ways better confidence on videos with foley and real
sounds then on synthesised sounds.

• this trend is even more evident looking in figures n. 7
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and 8 where both the expressiveness and the realism
of the action are rated higher for the first two kinds
of sounds.

• the realism of the videos on walking on sand and
on grass where rated lower than the others (gravel,
concrete and wood).

• the expressiveness of the video with gravel sounds
as feedback is the highest
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Figure 6. Median values of the confidence ratings for each
trial
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Figure 7. Median values of the realism ratings for each
trial

4. DISCUSSION

The Wilcoxon–Mann–Whitney test was performed to test
the null hypothesis that data of two trials are samples from
continuous distributions with equal medians, against the
alternative that they are not. For each material (concrete,
gravel, grass, sand, wood) the p value has been computed
between the 3 possible combination of the sound feedback:
foley and real, foley and synthetic, real and synthetic. For
the confidence rate it was always possible to confirm the
null hypothesis, giving the analysis always high p values,
while the analysis was slightly more interesting for the
evaluation of the action realism and expressiveness. It was
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Figure 8. Median values of the expressiveness ratings for
each trial

always possible to reject the null hypothesis comparing
real or foley sounds with the synthetic ones, showing that
even with the video, subjects could recognise the poor au-
dio feedback, while subjects could not really distinguish
between real and foley sounds. This was true both for the
actions that got quite high median values and for the ac-
tions that got bad evaluation in terms of the median value
(in particular sand and grass). It is interesting to notice
that walking on gravel and walking on wood were the two
actions with the higher expressiveness median value: the
same behaviour can be noticed in the evaluation of the re-
alism of the scene, showing a correlation between the two
aspects.

5. CONCLUSIONS

This work is a preliminary study on foley walking sounds.
The analysis of the data shows that recognizing the walk-
ing action by just listening to the sounds is a really difficult
task. Very few subjects could recognise both the action and
the material upon which the action was performed, without
any significant difference between real and foley sounds.
The same result was achieved in the audio-video test: in
this case the action was recognised for all trials, but re-
alism and expressiveness of the action were dramatically
dependent on the sound feedback used and on the mate-
rial used for the walking surface. Subjects could recognise
the synthetic sounds and expressed their preferences for
real/foley sounds; walking on sand and walking on grass
were the two lowest rated actions as they were the hardest
to recognize. This aspect is particularly interesting because
these two actions were performed in some awkward way as
foley, using other materials-gestures to mimic the sound of
a walking gesture. That was the way they are usually per-
formed when foleys of such sounds are required. So, the
original idea was that for some reason these sounds should
be more expressive, since that is the way these foleys are
usually performed. But this was not the case. Further in-
vestigation should be carried out in order to analyze why
some materials-gestures work better than others and what
kind of information about the walker or the walking ges-
ture can be conveyed using the different surfaces.
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ABSTRACT 
 

This paper introduces Urb, a system for automated 
analysis and storing of an urban soundscape. 
Urb complements traditional sound maps, allowing 
the direct access of its features at any arbitrary moment 
since the system's boot, thus facilitating the study of the 
soundscape's evolution and the differences between 
specific timeframes, and facilitating artistic approaches to 
such data. In this paper, we will describe the creative and 
technical aspects considered during its early 
development, whilst addressing its three fundamental 
parts: the hardware and software for capturing and 
transmitting audio recordings, the software for analyzing 
the soundscape and the management of the database. 

 
Keywords: Sound Scape, sound analysis, Networked 

Music, Timeline; Database. 

1. INTRODUCTION 
The youth has been completely conquered by this 

electronic world that is acoustic, intuitive, “holistic”, this 
is, global and total, a new world that put in the shelve the 
old scientific world with its quantities, its immensities, 
our “First World” super-industrialized. The youth 
prefers the Third World because he is still acoustic and 
oral, and invites to total immersion (…)”[1]. According 
to McLuhan’s critical thought, the 60’s and 70’s 
electronic revolution marked the return of the ear as a 
sovereign organ for cultural human perception. This 
socio-cultural transformation underlined the Western 
man’s necessity of constant absorption. It is within this 
frame that the soundscape studies become more 
systematic and its presence as an artistic tool more 
persistent. This was not a new subject, but rather a new 
one that found fresh stable grounds within the constant 
multidirectional cultural and ecologic awareness that 
dictates the Electronic Era. 

The notion of soundscape is increasingly relevant not 
only in contemporary culture and acoustic ecology, but 
also in many other fields, such as artistic productions. 

The soundscape concept and movement were presented 
to us and based on Schafer’s considerations of 
environment studies in the early 70’s [2]. According to 
Iges, Murray Schafer's utopia, with some similarities of 
Pierre Schaeffer’s analyses about the sound, it would be 

to impose some kind of order in the sound environment 
with the aim of achieving a "sound ecology"[3].  

With the development of studies and sound collections, 
near the turn of the century, is made aware that the 
soundscape depends on the listeners' understanding and 
interpretation of a soundscape[4]. With sound files so 
freely available, like freesound project1, and portable 
memory-based recorders so inexpensive, sound maps 
have become increasingly common on the Internet. 
Usually the sound maps are based on a Google-style map 
that is used to situate the geographic origin of the 
recordings, e.g. World Listening Project2. However, 
lacking any coherent temporal perspective, and usually 
lacking any interpretative analysis, the listener is left 
trying to imagine what has been recorded and what 
significance it has.[5]. An interesting variant of this 
approach is a live microphone in a fixed location that is 
constantly streaming audio like the Locustream Sound 
Map developed3 [6].   

Given the project relevance, in partnership with artists 
and research center interested in networked music and 
sonic performance, is developed as one of the important 
parts in the recent created NMSAT (Networked Music & 
Soundart Timeline) to support important collaborations in 
this area as Eu-phonic (with SARC Belfast, CRiSAP 
LCC University of the Arts London, CultureLab 
University of Newcastle, LORNA Reykjavik, KIBLA 
Malibor, Le Hangar Barcelona, STEIM Amsterdam), 
Audio Ambiances (LAMES CNRS Universite´ de 
Provence, CRESSON CNRS E´ cole d’Architecture de 
Grenoble, ENST/Telecom Paristech/Eurocom Sophia-
Antipolis/EHESS), TransatLab puf— Franco-American 
academic partnership (School of the Art Institute of 
Chicago SAIC), Locustream (in collaboration with 
communities of field recordists and phonographers such 
as WLP—World Listening Project)[7]. 

To support the project, they developed an autonomous 
«LocustreamBox» - a small computer dedicated to task of 
streaming audio and configured to connect automatically 
to their server and related systems such as online 
interfaces or setups for installations[8]. 

The Locustream sound map has a very interesting 
approach to the soundscape but still has the time problem. 
It is very hard to have a good description if you cannot 
compare with different moments of the past. So, 
                                                             
1 www.freesound.org 
2 www.worldlisteningproject.org 
3 http://locusonus.org/soundmap/034/)by de Locus Sonus project 

493

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



 

combining the problem of temporal coherence presented 
by most of the Sound Maps with conceptual and physical 
path shown by Locus Sonus, we started to develop a plan 
to work a complementary access to a sound map that is 
discrete in time. 

2. PROPOSAL 
Urb claim to be a complement to the approach of the 

sound environment study, presenting a proposal for a 
system based on available and cheap hardware and open 
source software. Thus, it may be a tool with a very large 
ramp of development and flexibility to be used, not only 
by environmentalists and urban planners, but also by 
artists with creative intentions. 

The implementation of the project is divided into 3 
phases: 

1st: design, prototyping and development of a listening 
point and database; 

2nd: Create 4 listening points in the city of Porto; 
develop tools to access the database; invite artists from 
different areas to develop work with the data in real time 
and non real-time. 

3rd: Make the site, database and the software public; 
make integration with Project Locustream Sound map; 
present approaches to data processing systems for artistic 
purposes; encourage spontaneous initiative for the 
multiplication of listening points. 

3. HARDWARE 

3.1 Raspberry Pi 

The first approach to the microcomputer choice was 
analyzing the Locustream Box. They used a PC Engines 
500 MHz AMD Geode LX800 using Gentoo Linux 
distribution[9]. 

This hardware was sufficient for what we need. The 
problem is that it would be needed to order the different 
parts and put them together, plus the total cost is around 
150€. For us this seemed to be a major problem to a 
project that wants to grow spontaneously under the 
individual motivation. The Raspberry Pi is a credit-card-
sized single-board computer developed in the UK by the 
Raspberry Pi Foundation with the intention of promoting 
the teaching of basic computer science in schools. It has 
an ARM1176JZF-S 700 MHz processor VideoCore IV 
GPU, and 512 megabytes of RAM. It does not include a 
built-in hard disk or solid-state drive, but uses an SD card 
for booting and long-term storage.[10]  

The Raspberry Pi presents a solution for most of our 
needs. It is quite cheap, it is already built, and it has a 
very enthusiastic community working to develop the 
hardware and system. Most of them, around the Pure 
Data4 on Rasperry, a fundamental tool for our project.  

 
3.2 USB ADC 

 
The Raspberry PI does not have an analogic input, so it 

is necessary a USB sound card. Not all the USB Analog 
                                                             
4 http://puredata.info/ 

to Digital Converters work with the Raspberry Pi and it´s 
important to slow down the speed device to 1.1 adding  

 
$>> dwc_otg.speed=1 

 
to the string in the file /boot/cmdline.txt [11]. 

As we are only using the computer as a listening point, 
we change the USB ADC to default changing the 
/etc/modprobe.d/alsa-base.conf file replacing the 
  

$>> options snd-usb-audio index=-2 
 

string to  
$>> options snd_bcm2835=-2 

 
and creating a /.libao in the home directory with  
 

$>> driver=alsa 
$>> dev=default 

 
strings. 

 

3.3 Electret Microphone 

This is a critical point, because it is very complicated to 
found a microphone that resists to the weather conditions 
and with an enough small size to put in places like 
windows or breathers and not expensive enough to be in a 
public place. We decide to use the Peter Sinclair 
suggestion for the Locus Sonus Project with a DIY 
microphone, Figure1, that only needs 5v power (perfect 
for the USB connections) using a electret 
microphone.[12] 

 
Figure 1. The Locus Mic DIY circuit. 

 

4. SOFTWARE ARCHITECTURE 
DESCRIPTION 

4.1 Sending and Storing Data 
 

When sending and storing data on-line, Urb relies on 
Python and MySQL to preform the tasks. The Python 
module works as an outside agent, responsible for 
building a query out of a float package put together by 
Pure Data, and sending it to a MySQL database. This 
second component introduces a concurrent programming 
paradigm5 into Urb’s software architecture, as Python 

                                                             
5	  “A concurrent application will have two or more threads in progress 
at some time. This can mean that the application has two threads that 
are being swapped in and out by the operating system on a single core 
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and Pd are seemingly working simultaneously through 
unidirectional message passing communication, via 
[shell] object. The presence of a second programming 
language on the client side of the system is deeply 
connected to the aesthetical and functional aspirations of 
the project.  While is advisable to keep a clean 
architecture and, therefore, avoid the presence of 
additional languages, the presented solutions for a Pd 
based project led to the decision of using a second 
language as a mean of keeping the project intentions 
intact facing technical distortion. 

As a programming environment focused on media and 
artistic production, Pure Data relies on community 
developed externals and libraries in order to preform SQL 
connections. At the moment, communication between Pd 
and SQLite or PostgreSQL databases are ensured by 
some externals6, which is still a far from optimal set of 
solutions when, like in Urb, as we will explain, using 
MySQL as a relational database management system is a 
binding need. 

Although PostgreSQL presents itself as the most 
advanced open-source database system available7, its 
usage implies the necessity of a dedicated server8; a 
service that exceeds the dimensions of an embryonic 
project like Urb. On the other hand, SQLite lacks the user 
and permissions management needed9 to build a much-
needed community around this project. As was 
underlined before, Urb’s aesthetical agenda comprises 
easy access to the database in order to progressively build 
a clear picture of the city’s soundscape and promote a 
consistent usage of that material within the composition 
scope. Therefore, between PostgreSQL’s over complexity 
and SQLite’s deficiency on social tools, MySQL turns 
out to be the fittest solution to Urb’s data storage 
necessities, being a system that guarantees the possibility 
of social management with a simple shared server hosting 
service. Also, MySQL is a quite popular database system, 
which in the long term implies a much more rapid and 
responsive community, and a rather extensive collection 
                                                                                                  
processor. These threads will be “in progress”—each in the midst of its 
execution—at the same time.”	  [21]	  
	  	  
6	   Listed on Pd’s official website are two different collections of 
externals whose purpose is to provide connection to a variety of 
relational databases.  SQL library has no external to connect to a 
MySQL database and psql is reserved to PostgreSQL [22] 
 
7 “PostgreSQL is the hammer of the database world (…) It has plug-ins 
for natural-language parsing, multidimensional indexing, geographic 
queries, custom datatypes, and much more. It has sophisticated 
transaction handling, has built-in stored procedures for a dozen 
languages, and runs on a variety of platforms.” [23] 

8  Right now, Urb is being hosted at a Hostgator’s shared server. 
According to Hostgator’s services PostgreSQL is only available for 
Dedicated and VPS servers upon request. 
https://support.hostgator.com/articles/specialized-help/postgresql  
 
9 “An SQLite database has no authentication or authorization data. 
Instead, SQLite depends on file system permissions to control access to 
the raw database file. This essentially limits access to one of three 
states: complete read/write access, read- only access, or no access at 
all. Write access is absolute, and allows both data modification and the 
ability to alter the structure of the database itself.” [24]	  

of web articles and forum threads, both positive attributes 
for a development tool. 

With MySQL laid down as a vital option for the project, 
Pure Data’s insufficiencies towards this database system 
needed to be overthrown. Without any available externals 
and with C’s development time being drawback to the 
challenge of writing some new ones, the usage of 
additional languages became a viable hypothesis. Within 
Max, connecting to a MySQL database is a process that 
needs the support of Java. Queries are sent through Nick 
Rothwell’s MySQL Java class10 loaded into the [mxj] 
object; an approach easily ported to Pd through its [pdj] 
object, whose API is based on the [mxj] 
implementation11, making classes transferable between 
the two environments. So within Max, Java works as an 
interpreted language just like his host, using Java Virtual 
Machine as an interpreter for the loaded code12. Every 
time a message passes through the [pdj] inlet an access to 
the JVM is taking place, which can turn out to be minor 
step back in terms of performance, even though in this 
specific case, the message being passed is a list 
containing all the needed values.  

In addition, and most importantly, by using these 
objects, one is importing into the patch the connection 
time needed for the code to access the on-line database 
with its query. So, this means that Pd would be 
responsible for handling both analysis and connection, 
being the second an obstacle to the first. Although this 
freezing time represents no significant disadvantage for a 
patch with a sampling rate of 5’’, the same cannot be said 
to a patch with a dynamic sampling rate, responsive to 
significant audio events captured at the input. 

With C representing an unnecessary amount of time in 
development and Java a blockage within the patch, 
Python revealed himself as a reasonable solution.  Python 
is a high-level easy to learn multi-purpose language that 
is historically known for its harmonious cooperation with 
Linux and MySQL, a fact that in part led to the formation 
of the LAMP software bundle13. One can argue that 
Java’s inclusion in the system through the [pdj] object is 
not mandatory. OSC could easily serve the purpose 
without damaging the performance of the patch.  
However, when developing for Raspberry Pi, not only 
Python is officially the primary programming language 

                                                             
10net.loadbang.sql.mxj.MySQL 
http://www.maxobjects.com/?v=objects&id_objet=3571&PHPSESSID
=09ef5816e5d955699b350dedd401d647 
 
11 “PDJ enables you to write java code to interact with pure-data 
objects. The API is totally based on Cycling74 Max/MSP 'mxj' object 
implementation. This will enable java mxj objects to run on pure-data 
with pdj.” [25] 
 
12 “The class files that live in the classes folder are what are known as 
byte code files. Unlike C externals, which are compiled into platform-
specific machine code, Java byte code can be executed on any system 
that will run the JVM (Java Virtual Machine).” Max6/java-doc/tutorial  
	  
13 “MySQL is the dominant open source database management system: 
it is being used increasingly to build very significant applications based 
on the LAMP (Linux-Apache-MySQL-PHP/Perl/Python)(…)” [26] 
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for the hardware14, but also, interpreter and packages are 
available by default on both Debian and Gentoo 
distributions[13]. The readiness of Python when 
compared to the strict hardware and software 
specifications to make Java to compile builds a scenario 
where Python outstands as a much more robust and 
pragmatic solution than Java. [14] 

Python’s easy and flexible syntax allied to a stable 
MySQL library, MySQLdb, result on a fast 
implementation of a straight-forward yet effective script 
to send queries to a MySQL database that is easily 
accessible through the shell thanks to the language’s 
script mode. Assuming that Urb’s python script is in the 
/home/pi directory, the following command sends the 
appended list of 12 floats, one for each audio feature, to 
the MySQL database.  

 
$>> python home/pi/urbsql.py  0 0 0 0 0 0 0 0 

0 0 0 0 0 
 
When run from Pd, the command can be constructed 

with a combination of [pack], [list] and [prepend] objects 
resulting on a string that is ready to be passed through the 
[shell] object, figure2. 

 

 
Figure2.  Construction of the shell command on a Pd 

patch. 

 
4.2 The Database  

 
At the moment, since Urb is still on a prototype phase, 

the amount of data being produced and stored is minimal 
and as so, database management is yet to become a 
challenge. It is well established for now that each 
location, each sound recollection point will have its own 
table on the database, being that each table will take the 
name of its actual urban location, figure3. 

The structure of each table is rather simple. Thirteen 
columns, one for each audio feature plus a first row that 
is using Unix Timestamp as a mean of identification and 
time localization of the event described in the row.  The 
continuous nature of the timestamp provides not only a 
stable sequence to order entries but also enclosures 
meaningful information in itself by tagging the exact 
moment of the event and allowing further readings by 
                                                             

14 “Does it have an official programming language? By default, we will 
be supporting Python as the educational language. Any language which 
will compile for ARMv6 can be used with the Raspberry Pi, though; so 
you are not limited to using Python.” [10] 

crossing data from other sources. For the exception of the 
first column that takes integers with a display width of 
11, all the other columns store varchar data width a 
display width of 255.  

 

 
Figure3.  Structure of a generic Urb MySQL table  

Along side with Urb’s database, a series of data 
visualization and retrieval tools are being designed in 
order to keep the dialogue sustainable even for the non-
technical user. It is of the most importance that Urb’s 
data remains relevant and useable for the musician, 
composer or citizen without computational expertise, 
furthermore, all records are intended to be cleared of any 
composition methodology. The handling of Urb’s data 
does not mean to be programmatically defined in any 
way.   

Already implemented are two different PHP scripts that 
play a small part on what is expected to be a stable and 
refined project of data visualization and retrieval. For 
now, these two scripts are responsible for the following 
outputs:  

— Displaying the data of a specific table as an HTML 
table.  Regarded as a production tool, this allows 
monitoring the data flux without needing to log in to the 
host control panel.  

— Export the data of a specific table as a .csv file. Due 
to safety constraints, the direct accesses to the contents of 
a MySQL database are often not possible.  This is the 
case with Javascript and other JS based languages and 
frameworks like ProcessingJS. The way to avoid this 
technical predicament is to build a server side script that 
queries the database and exports the result as text file. 
Urb’s actual script exports all the data on a database; each 
call o to the PHP script downloads the .csv file with the 
most recent set of data, making it accessible through 
Javascript. 

Multiple users and restrictions strategies are yet to be 
defined and such decisions will be taken according to 
what the project itself dictates as more appropriate.  
Software architectural foundations have been set in a way 
that the gathering and distributing functions of the system 
work fluently and in a robust way, keeping options open 
as how exactly accesses will be managed in the future. 
For now, the main intention is to keep Urb as an inviting 
platform for the users of the so-called creative 
programming frameworks such as Max/MSP, Pure Data, 
Processing, ProcessingJS, openFrameworks, Cinder, 
Nodebox, Shoebot, among others.[15] With the already 
implemented code, Urb has reached a maturity state that 
guarantees a fast and thorough development and 
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evolution of the project into a ready-to-use tool and sharp 
investigation document.  
 

5. SOUND ANALYSIS AND 
INFORMATION FOR THE DATA 

BASE 
All the sound analysis is made on the Pure Data patch. 
The first part of the patch is about the audio input. It is 

for adjusting the level, figure 4, and to equalize the sound 
in case that you have some problems with noise, as from 
a vent or electricity, figure 5.  

Figure 4. pd input 

 

Figure 5. pd equalizer 

The second part is where the analysis happens. The 
patch analyzes 12 different elements or descriptors of the 
sound. The first two are Pitch and Amplitude.  

Pitch: using the native Pd-extemded object sigmund~. 
Sigmund~ analyzes an incoming sound into sinusoidal 

components, which may be reported individually or 
combined to form a pitch estimate.15 

Amplitude: using another native object avg~ that 
computes the mean amplitude of its input signal since it 
last received a bang. The mean amplitude is the sum of 
the absolute values of the input divided by the number of 
samples received.16  

The other 10 features are from the timbreID17. 
timbreID is a Pd external collection developed by 

William Brent. It is composed of a group of objects for 
extracting timbral features, and a classification object 
that manages the resulting database of information. The 
objects are designed to be easy to use and adaptable for 
a number of purposes.[16]  

It implements a collection of low-level spectral audio 
descriptors, such as: 

Centroid is defined as the center of gravity of the 
magnitude spectrum,  

Kurtosis gives a measure of the flatness of a 
distribution around its mean value, 

                                                             
15 sigmund~ object's help patch 
16 avg~ object's help patch 
17 http://williambrent.conflations.com/pages/research.html. 
 

Flatness is the ratio of the geometric mean of 
magnitude spectrum to the arithmetic mean of magnitude 
spectrum. A very noisy spectrum without clear shape 
should have a high flatness value,  

Flux is defined as the squared difference between the 
normalized magnitudes of successive spectral 
distributions,  

Irregularity is the comparison of how much each 
frequency bin compares to its immediate neighbors. A 
jagged spectrum, irregularity will be high, and for smooth 
contoured spectra, it will be low, 

Mfcc represents the shape of the spectrum with few 
coeficients,  

Roll-off is a measure of spectral shape, which is used to 
distinguish between voiced and unvoiced speech. 

Skewness is a measure of the asymmetry of a 
distribution around its mean value,  

Spread is the spread of the spectrum around mean 
value,  

Zero-crossing rate is the number of times the signal 
cross the zero axe. [16][17][18] 

The reasons that we are using are timberID are: the 
Open Source nature, is very robust and stable, and was 
already tested and validated in other projects like 
earGram[19]. 

Such complete timbral features increase the project 
ability to respond to future demands or needs leaving the 
project scope flexible to ecological or artistic exploration 
and investigation.  

Every five minutes the patch calculates the main value 
of each feature of that time and sends that value for the 
database, figure 6. During our tests we realize that the 
five minutes window is a sustainable amount of time to 
provide a clear “image” of the urban soundscape in a 
larger scale of time. It is a manageable number of entries 
to the database and doable to its storage in a long-term 
situation. It is around 553MB for a century of information 
for each listening point. 

 

 
Figure 6. pd descriptors  

As a future work we are studying a possible interest in 
developing an intelligent window that changes its 
duration, according the sound characteristics. 

This descriptors data is a very powerful information. In 
the last years, the research about sound classification and 
genre identification is increasing exponentially.  With the 
classification and similarity tools, Urb, in very near 
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future, can give detail information about every 5 minutes 
of a soundscape, not only quantitative information but 
also especially qualitative information. Saying if the 
sound is more industrial or natural, speech or non-speech, 
noisy or pitched, and compare with other moments or 
with other soundscapes.  

This is not only an ecological and social tool but also an 
artistic tool. The classification tools are already used in 
concatenative sound synthesis[19][16][20] for example, 
and with Urb this process can be controlled by a sound 
scape. Eco-Structuralism18 already uses sound and 
ecological structures to apply in music creation, and with 
Urb you have a repository of eco structures from 
soundscapes that you can use to music or visual creation.  

The final patch part is the connection to the database 
previously described in section 4. 

6. FUTURE WORK AND PERSPECTIVES 
The first tests to assess the resistance of the hardware 

have shown a very positive outlook about the data sent to 
the database. With about 24 hours of analysis, and even 
with a brief look, it was easy to draw some conclusions, 
as the peak times of loudness (8:13 – 8:23) or silence 
(4:53 – 5:03) during that day, 

 
 Year month day hour min amp 

2012 12    13  4    53  0.228982; 
2012 12    13  4    58  1.114694; 
2012 12    13  5    3   3.069494; 
(…) 
2012 12    13  8    13  48.119511; 
2012 12    13  8    18  50.113361; 
2012 12    13  8    23  46.514568; 

 
or that the rain around 20:00 increases spectrum’s 
frequency center and size.  
 

Year month day hour min centroid spread 
2012 12    12  20   18  1432     2.104941; 
2012 12    12  20   23  1487     2.042615; 
2012 12    12  20   28  1398     2.102901; 
(…) 
2012 12    13  4    43  1218     1.732905; 
2012 12    13  4    48  1167     1.8436; 

 
 

With the system working it will be possible to develop 
and link to tools that use the maximum capacity in having 
such detailed descriptors of sound. And thus, we have 
access to accurate sound characteristics of a particular 
location, not only during a certain time window, but also 
since the Urb’s boot. 

It will be possible to access to the database, not only 
through a temporal index, but also through some sound 
characteristics. For example, moments that the sound 
exceeded certain intensity, number of times that the 
sound had a more clear pitch, situations mainly 
constituted by the sound of voices, … 

Using the data will serve to feed an adaptable viewer 
where you can graphically assess the soundscape 
evolution. 

                                                             
18 Eco-structuralism is a new approach to music composition designed 
to maintain the characteristics and context of a sound whilst not 
necessarily using the original recording data directly. [27] 

Anyway, the project is very focused on developing 
research and finding ways on how this data can be used 
in a creative and artistic process and we will spend great 
part of our efforts in this area of the investigation. Some 
experiments in this field are already ongoing and we are 
simultaneously interact with artistic communities that 
work with sonorization, visualization and composition 
from data to systematize approaches to this material and 
create or adapt tools to facilitate this process. Although 
the results are promising, it is still too early to propose 
systems and draw conclusions.  

The next steps will be the multiplication of listening 
points and dissemination of the project to get, as much as 
possible, to interested communities in order to study and 
understand the specific needs and approaches.  
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ABSTRACT

The paper presents a non-realtime implementation of the
sonomotiongram method, a method for the sonification of
motiongrams. Motiongrams are spatiotemporal displays of
motion from video recordings, based on frame-differencing
and reduction of the original video recording. The sonomo-
tiongram implementation presented in this paper is based
on turning these visual displays of motion into sound using
FFT filtering of noise sources. The paper presents the ap-
plication ImageSonifyer, accompanied by video examples
showing the possibilities of the sonomotiongram method
for both analytic and creative applications.

1. INTRODUCTION

Motiongrams were originally developed for analysing the
motion of dancers and musicians, with the aim of visualis-
ing spatial motion features over time [1]. Due to the visual
similarity of motiongrams to spectrograms, motiongrams
have also been used as the basis for sonification, through
a method I call sonomotiongram [2]. The first implemen-
tation of the sonomotiongram method was focused on cre-
ating realtime sonifications of the motiongrams, and the
sonification was based on an interpolated oscillator bank.
Realtime here means that it is possible to listen to the soni-
fication while watching the original video, hence listening
to the sound of motion as it unfolds.

A realtime implementation is useful for realtime applica-
tions, such as in sonic feedback or in creative applications.
It is less useful, however, for applications in which long
video recordings need to be analysed. For such material it
would be better to use the high temporal capacity of our
auditory system to listen through long video recordings at
a much higher speed than the video could be watched.

This paper presents a non-realtime implementation of the
sonomotiongram method, based on FFT filtering of a noise
source. This implementation allows for (much-)faster-than-
realtime sonification of the input motiongrams. The paper
starts with an overview of the motiongram and sonomo-
tiongram methods, before the non-realtime implementa-
tion of the sonomotiongram method is shown. Finally,
some examples of how the method can be used for analyt-
ical and creative applications are presented and discussed.

Copyright: c©2013 A. R. Jensenius. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

2. BACKGROUND

2.1 Motiongrams

A motiongram is a visual display of (human) motion, cre-
ated by frame differencing and averaging a video file, as
illustrated in Figure 1. This makes it possible to see the
temporal unfolding of motion features on the X axis, and
the vertical location of the motion on the Y axis. Motion-
grams therefore give a holistic representation of the spa-
tiotemporal unfolding of motion from a video recording,
albeit only in one spatial dimension. This is because infor-
mation about the spatial distribution of motion in the plane
that is averaged over is represented by only one pixel for
each row (see [1] for details). Thus a horizontal motion-
gram visualises vertical motion, while a vertical motion-
gram visualises horizontal motion.

1. Original image 2. Motion image 3. Threshold

4. Noise reduction 6. Motiongram5. Avg.

Figure 1. The steps involved in creating a motiongram: (1)
original video image, (2) frame differencing, (3) threshold-
ing, (4) noise reduction, (5) averaging over each row, (6)
drawing the average matrices over time.

2.2 Sonomotiongrams

The sonomotiongram method is based on what could be
called an “inverse FFT” process. The idea here is to treat
a motiongram as if it were a spectrogram, with frequency
information on the Y axis and time on the X axis, as il-
lustrated in Figure 2. In the first implementation of the
method, this was accomplished using an interpolated oscil-
lator bank [2]. The implementation presented in this paper
is based on doing FFT filtering of a noise source based on
the matrix values of the motiongram. Both implementa-
tions result in a direct sonification of the image, in which
lower sound frequencies are based on pixel values in the
lower part of the image, and vice versa.

Even though they may appear to be visually similar, a
motiongram is, in fact, very different from a spectrogram.
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Figure 2. A sketch of the sonomotiongram method, show-
ing how the motiongram matrix is “mapped” to spectral
audio data.

A spectrogram of an audio recording displays the energy
level of the frequency bands resulting from doing a Fourier
transform on the audio. A motiongram, on the other hand,
is a reduced display of a series of motion images. There is
no analysis being done when creating a motiongram, it is
only based on a reduction algorithm. The simplicity of the
approach may be seen as a problem, but it is also what has
made motiongrams useful in several different application
areas [3].

Despite the fact that motiongrams and spectrograms rep-
resent different features, they share one property: the tem-
poral unfolding of shapes of either motion or sound. Fur-
thermore, the Y axis in a motiongram represents vertical
motion, which is often associated with pitch/frequency [4],
meaning that there is also a conceptual link between the Y
axes in a motiongram and a spectrogram.

2.3 Image sonification

While the idea of using a motiongram as the basis for sound
synthesis is novel, the general idea of sonifying an image
has been around for decades. An early example of such
an idea is the Pattern Playback machine built by a group
of speech researchers in the late 1940s [5]. This system
made it possible to “draw” shapes that could afterwards be
played back as sound. Iannis Xenakis developed the UPIC
system in 1977, which made it possible to create complex
timbres by drawing with a digital pen on a computer screen
[6]. Nowadays, the idea of making sound from drawings is
available in the Metasynth software, along with the possi-
bility of sonifying any type of images and photos [7].

There are also examples of how audio analysis software,
like AudioSculpt [8] and SPEAR [9], allow for screen-
based manipulation of spectrograms and resynthesis of the
manipulated image into sound. This makes it possible for
researchers and composers to edit the timbral content and
development of sounds in the visual domain.

Closer to the non-realtime sonification approach presented
in this paper are examples of how image sonification strate-
gies are used in art installations and realtime applications.
One example here is the installation SoundView allowing
the user to move a pointer device over an image while lis-
tening to the sound [10]. Here the pointer can be thought of
as a “tape-head” that scans through the image following an
auditory information seeking principle [11]. Other related
projects include the 2D spatiotemporal mapping strategies
presented in the case of EEG sonification [12] and video
sonification based on Hilbert curves [13].

3. IMAGESONIFYER

The original implementation of the sonomotiongram method
was presented in [2], and was developed in Max/MSP/ Jit-
ter as modules for the open framework Jamoma [14]. The
non-realtime version presented here has been created as a
standalone Max patch and application called ImageSoni-
fyer [15]. A screenshot of the user interface of the applica-
tion is shown in Figure 3.

Figure 3. Screenshot of the ImageSonifyer application.

3.1 Features

The ImageSonifyer application is based on opening pre-
made image files of motiongrams, and use these images as
the starting point for the sonification. Motiongrams can be
created in Max using the above-mentioned Jamoma mod-
ules, and can also be created using the standalone appli-
cation VideoAnalysis [16]. It is also possible to use other
types of images as input to ImageSonifyer, which will lead
to more “traditional” image sonifications. The following
features are available:

Load image file Any image file supported by QuickTime
can be loaded and displayed. There is no limit on
the pixel size of images that can be loaded, but the
image will always be displayed at a fixed 4:3 ratio to
get a full view of the image and to avoid scrolling.
The sonification will still be based on the original
image data and not on the reduced image presented
on the screen.

Image mode A raw motiongram usually has a white fore-
ground (pixel value 255) on a black background (pixel
value 0). For visual reasons, however, it may be
convenient to invert the motiongrams so that they
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Regular Inverted

Figure 4. Illustration of the difference between a regular
and inverted motiongram.

end up with a black foreground on a white back-
ground, as illustrated in Figure 4. There is an op-
tion to (re)invert the motiongram in ImageSonifyer
in case a user loads an inverted motiongram and wants
to sonify it as a regular motiongram.

Sound source The current implementation only allows for
choosing between pink and white noise as the source
material for the synthesis. In future research it will
be interesting to explore other sounds as source ma-
terial for the synthesis.

Panning Since motiongrams have a temporal direction from
left to right, the horizontal location in the image is
used to control the panning from left to right in Im-
ageSonifyer. Hence, the sound starts in the left chan-
nel, and then gradually pans over to the right side
when moving through the image.

Playback Sound can be played back by hitting the space
bar button on the keyboard. Looping of the playback
can be turned on and off with a toggle.

Duration The ability to freely select the duration of the
sonification allows the user to experiment with both
fast and slow sonifications of the same material. The
duration value will default to the duration of the orig-
inal video recording, assuming that the video was
recorded at 25 fps. This means that an image file
with a width of 1500 pixels will be played back over
1 minute. The user is free to set other durations (in
seconds) to alter the playback speed.

Scrubbing As an alternative to a linear and clocked play-
back of the image file, it is also possible to scrub
through the image using the mouse. Then the hori-
zontal position of the mouse will control the location
of the sonification, and the vertical position will con-
trol the sound level.

An example of ImageSonifyer in use can be seen in Video 1. 1

3.2 Implementation

The sonification part of the ImageSonifyer application is
inspired by the Metasynthy patch presented in [17], and
the Max pseudo patch in Figure 5 shows an overview of
the implementation. The first step is to load an image file
into a jit.qt.movie object, and read individual matrix

1 Video examples are available from www.arj.no/smc2013/

columns from this image using a jit.submatrix ob-
ject. These numbers are passed to an MSP buffer using
jit.buffer∼, and used as the basis for an inverse FFT
process using the pfft∼ object. There is also a simple
crossfade function used to pan the sound from left to right
following the position in the image.

Figure 5. Pseudo Max patch showing the sonification pro-
cess from input image file.

In the current implementation of the sonomotiongram method
there is no use of the colour information in the image.
Some experimentation has been done in using the colour
information to alter the timbral quality, but this has not
ended up working particularly well. After all, the main
aim of this method has been to sonify motion features, and
quite often the colour information in a motiongram is not
particularly relevant. It will, however, be interesting to ex-
plore the use of colours at a later stage.

4. SONIFICATION EXAMPLES

The following sections will present some examples of how
different types of video material can be sonified using the
ImageSonifyer.

4.1 Sonification of standing still

What type of motion can be observed when a person at-
tempts to stand physically still? This has been the topic of
some recent experiments in our lab, using a high quality
motion capture system able to detect motion at the scale of
millimetres [18]. An alternative measurement approach is
to place a video camera on the head of a person standing
still, since even small motion in the head will lead to a large
amount of changing pixels in the recorded image. Figure 6
shows the motiongram resulting from a 10-minute record-
ing of a person standing still with a sports camera (GoPro
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Hero 2) attached to the head. The recorded image is not in-
teresting in itself, but the motiongram and the sonification
are able to represent the rhythmic pattern and the temporal
development of the micromotion (Video 2).

4.2 Sonification of a high-speed guitar recording

How does a sonification of moving guitar strings sound
like? Figure 7 shows a motiongram of a high-speed record-
ing of a single strumming of the strings on an acoustic gui-
tar. The recordings were made with a high-speed video
camera (Phantom V711), at a speed of 7 500 frames per
second and with an image resolution of 1280 x 800 pix-
els. Due to the memory limitations of the camera (21 GB),
the maximum recording duration was 1.1 second, which
results in a video file with more than 8 000 frames.

Video 3 shows a playback of the video file at 100 frames
per second, and Video 4a and 4b shows sonifications of the
recording with durations of 10 and 1 seconds, respectively.
These sonifications were created slightly different than the
other sonifications presented in this paper. Motiongrams
are usually created by averaging over the rows in the video
matrix. A regular motiongram, however, would not work
so well for this particular recording, since the strings are
not entirely horizontal in the recording. Thus the averag-
ing happening when creating the motiongram would make
the “height” of each string larger than they really were, and
will lead to an imprecise rendition of the actual motion.
The solution has therefore been to create a motiongram us-
ing a slit-scan approach, selecting a single pixel column in
the middle of the sound hole on the guitar, and using this
pixel column for drawing the motiongram before doing the
sonification.

4.3 Sonification of long videos

While the sonomotiongram method was mainly developed
for studying music-related body motion, it may be relevant
for other applications as well. One example is that of the
sonification of long video recordings. Such sonifications
may be used to listen to rhythmic patterns and structural
changes in the recordings, which may not otherwise be
easily recognisable by watching the video in its entirety,
or looking at different types of compact visualisations.

Figure 8 shows a motiongram and Video 5 shows a 60-
second sonification of a 7.5 hour documentary film of the
scenic train ride from the city of Bergen on the west coast
of Norway to the capital Oslo. Fortunately, the Norwegian
broadcasting company NRK has decided to release a full
HD recording of the documentary, with a creative com-
mons license allowing the reuse of the material [19].

When creating a sonification of the Bergensbanen record-
ing, I decided to start out with what I call a videogram in-
stead of a motiongram. The difference between the two
is that a videogram is based on averaging the input video
image instead of the motion image, that is, skipping step
(2) in Figure 1. The end result is a videogram in which
the colours reflect the colours of the original image, which
is more meaningful for a recording in which movement of
the camera is as prominent as movement within the image.

4.4 Sonification of abstract images

It is, of course, also possible to sonify other types of im-
ages than motiongrams or videograms, thereby using the
ImageSonifyer application more like MetaSynth. Although
this was never the intended use of the application, it can be
creatively interesting to explore how different types of ab-
stract images sound like, such as shown in Video 6a, b, c,
and d. Such images are also interesting to explore through
the scrubbing functionality of ImageSonifyer.

5. DISCUSSION

Although still in an exploratory state, the sonomotiongram
method, and its implementation presented in this paper, has
been versatile for both analytic and creative applications.
On the analytic side, the possibility to create fast sonifica-
tions of long videos is useful, since it allows for listening to
long videos in a much shorter time than it would have taken
to watch through the recordings. I also find that listening
to the sonifications reveal other features than what can be
seen from the motiongrams, particularly when it comes to
rhythmic and periodic elements in the material.

On the creative side, the scrubbing functionality of Im-
ageSonifyer has proven creatively inspiring to work with.
Here the application can be used for image-based improvi-
sations, or using an image as a “score” for a fixed compo-
sition. This has already been tested in a concert, and will
be explored further in future performances.

One of the positive sides of the sonomotiongram method
is its flexibility, being able to sonify image files based on
all sorts of video material: long and short recordings, dif-
ferent types of image resolution and qualities, different im-
age framing (close-ups of hands to full body motion). The
implementation in Max has been stable and reliable, and it
runs comfortably on a normal laptop.

That said, there are also several issues that will have to be
explored further in future research:

Dimensions Since they are based on averaging over each
row in the video matrix, motiongrams are limited
to displaying the distribution of motion in only one
spatial dimension [1]. It will be interesting to ex-
plore different ways of sonifying multiple spatial di-
mensions, including two dimensions for regular video
recordings and three dimensions for recordings from
depth-cameras. This could, for example, be done
through spatial or harmonic relationships.

Time and temporal resolution A challenge when work-
ing with video recordings as the source material for
sonification is how to handle the temporal aspect.
This is particularly apparent when working with re-
altime sonification of video recordings, due to the
poor temporal resolution of video as compared to
audio. Faster-than-realtime sonifications may over-
come this problem, and allows for utilising the po-
tential of our auditory system. Still it is important
to find a balance between the temporal aspects of
motion features in the video recording and the audio
features of the sonification.
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Figure 6. One frame from the video (left) and motiongram (right) of a person standing still for 10 minutes with a camera
on the head. The motiongram illustrates the micromovements in the head of the person standing still. The sonification can
be heard in Video 2.

Figure 7. Motiongram of a high-speed guitar recording: one frame from the original video (left), motiongram of the first
1000 frames of the video recording (right). The motiongram has been inverted for visual clarity (black on white). The
dotted line in the original video frame indicates the pixel column that was used for creating the motiongram. The original
video can be seen in Video 3, and sonifications can be heard in Video 4a and 4b.

Figure 8. An image (left) and videogram (right) of the 7.5 hour documentary Bergensbanen, a recording of the entire train
ride from Bergen to Oslo. The black vertical lines represent when the train were travelling inside tunnels, and the white
horizontal stripe near the top is the NRK logo. The sonification can be heard in Video 5.
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Analysis and/or performance The original idea of the sono-
motiongram method came from an analytic point of
view: creating a tool to help in the analysis of vari-
ous types of music-related motion. While the method
certainly works for this type of application, I find
that it may be even more interesting from a creative
point of view. Here the scrubbing functionality pro-
vides the user with a tool for creating what could
be called interactive sonifications [20]. It would be
interesting to take this one step further by using a
realtime motiongram as the basis for such a scrub-
bing process, which makes it possible to create an
interactive loop between motion and sound features.

Colour The current implementation of the sonomotion-
gram method does not make use of the colour infor-
mation in the image. Future experiments will look
into how the colour information can be used to change,
for example, the timbral features of the sound.
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ABSTRACT

A method is presented to estimate the impulse response
of a filter that describes the transformation in sound that
takes place between a close-mic recording of a vehicle
engine and the sound of the same engine at another
point in or near to the vehicle. The proposed method
makes use of the Dual Channel FFT Analysis technique
and does not require the use of loudspeakers, computer
modelling or mechanical devices. Instead, a minimum
of two microphones is required and the engine itself is
used as the source of sound. This is potentially useful for
virtual reality applications or in sound design for computer
games, where users select their virtual position at points
inside or outside the vehicle. A case study is described
to examine the method in practice and the results are
discussed. The described method can be readily extended
for surround sound applications using spatial microphone
array recording techniques.

1. INTRODUCTION

In this work, we are interested specifically in the accurate
auralisation of the sound of an engine at points inside and
near to its vehicle, using a close-mic recording of the en-
gine as the source signal. The idea is that using a single set
of engine sounds recorded at only one point, Finite Impulse
Response (FIR) filters can be used to accurately recreate
the sound at other points in the vehicle in real-time. In
virtual reality applications such as computer driving sim-
ulations, this reduces the need for multiple sets of sound
assets recorded at different points around the vehicle. Also,
multi-channel surround-sound auralisation can be achieved
without drastically increasing the amount of memory and
disk space that is required by the application. Another
advantage of such an approach is that a recorded engine
sound from one car can be easily transplanted into another
virtual vehicle, while preserving the acoustic characteris-
tics of the vehicle. In addition, using only one sound source
for the engine means that any sound design, audio effects
or alterations that might be applied to the engine recording,
for example to simulate a damaged or enhanced engine in
a computer game, need only be applied once.

Copyright: c©2013 Simon Shelley et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

In order to implement the auralisation of a vehicle engine
at different points in space around the vehicle, appropri-
ate predetermined acoustic impulse responses are required.
These impulse responses, known as acoustic transfer func-
tions when transformed into the frequency domain, de-
scribe the relation between the close-mic recording of the
engine and the sound of the same engine at the points of
interest around the vehicle. This article presents a method
to obtain the impulse responses that describe the filters
required for the auralisation process.

The work described in this paper is designed to be
applied in gaming, computer simulation and virtual reality
applications that require the design of filters to describe
complex vibro-acoustic systems for auralisation purposes.
The use of FIR filters is particularly useful in applications
where users are given the choice of switching in real-time
between multiple listener positions. In driving computer
games, for example, users are often given the choice
of multiple camera positions, either internal or external
to the vehicle, from which to observe the action. The
proposed technique may also have use in other areas
relating to sound and music computing. One potential
such application could be the estimation of vibro-acoustic
transfer functions that take place in a classical string
instrument such as a violin. In this case the string of
the instrument would act as the sound source for the
measurement, perhaps recorded at close distance by an
electric pick-up.

The measurement and prediction of the acoustic transfer
function between the engine of a vehicle and the driver’s
ears in the cockpit has been investigated in some detail
in the area of Noise, Vibration and Harshness (NVH),
also known as Noise and Vibration (N&V) [1, 2]. The
aim of aforementioned work is to study the noise and
vibration characteristics experienced in vehicles in order
to then modify them according to specific design goals.
Typically, a combination of vibratory and acoustic (vibro-
acoustic) energy is considered to travel from one point in
a vehicle to another through both air-borne and structure-
borne pathways. The analysis of these vibro-acoustic
pathways by which the energy is transferred from one point
to another is known as Transfer Path Analysis (TPA) [3–6].

One approach to measure the air-borne acoustic transfer
function between two points is to use a loudspeaker and
a microphone. A broadband transfer function can then be
acquired using a number of possible methods. One robust
and reliable approach is to drive the loudspeaker with a
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swept-sine wave, as described in [7].
Unfortunately both the loudspeaker, and to a lesser extent

the microphone, take up space within the measurement
environment. This means that their presence not only
has some effect on the transfer function itself, but also
that there are limitations on where in the vehicle they
can be placed. With current technology it is possible to
build high quality microphones that take up very little
space, however high quality loudspeakers with a wide
frequency range and a flat frequency response can be
difficult to fit into small awkward spaces. A common
solution that is employed to deal with this problem is to
exploit the acoustic reciprocity theorem, which dictates
that the positions of the loudspeaker and microphone are
interchangeable [8, 9]. This means for example that to
measure the transfer function between a point in a car
engine bay and the ears of the driver, the loudspeaker can
be placed in the driver’s position where there is plenty of
space, and the microphone can be placed under the bonnet
of the car in the engine bay.

Transducers that are used to measure the acoustic transfer
function in this way should ideally have omni-directional
characteristics, or at least have a known directivity pattern
that is frequency independent. They should also have a flat
frequency response and cover a wide spectrum of audible
frequencies. This presents another problem, because in
practice it is highly difficult to build a loudspeaker that
meets these specifications and the introduction of inaccu-
racies are inevitable.

In addition to these issues, measurements using
loudspeakers and microphones do not take into account the
structure-borne contribution of the acoustic transfer func-
tion. The structure-borne contribution is mostly made up
of acoustic energy transferred through the chassis of the
car via the connecting power-train mounts. This makes
up a significant part of the overall sound experienced in
a vehicle interior [10]. Calculation of the structure-borne
contribution is not trivial, and can be done using predic-
tive models [11] or measurement using mechanical devices
[12]. Both approaches have limitations and require consid-
erable time and effort to implement.

Contrary to the requirement of Transfer Path Analysis
techniques, to meet the goals of this work the separation of
air-borne and structure-borne components of the acoustic
transfer function is not a necessity. Instead, the goal is to
generate a filter that integrates all components and results
in a realistic sounding and immersive auralisation of the
engine at different points around the vehicle. As an alter-
native, the use of Dual Channel Fast Fourier Transform
(FFT) Analysis is investigated as a relatively fast and sim-
ple method to obtain a broadband transfer function that can
be used to derive a transformation filter [13, 14]. With the
proposed technique, the engine itself is used as the sound
source, removing any requirement for a loudspeaker or me-
chanical devices, and instead using only microphones. Al-
though a minimum of two microphones is required, and
this basic case is considered in this paper, the method can
be readily extended to measure multiple points in and
around the vehicle simultaneously, and also to capture spa-

tial information at the points of interest using a microphone
array such as the coincident tetrahedral soundfield micro-
phone [15] or a spaced multichannel array [16].

The paper is organised as follows: Section 2.1 introduces
the dual channel FFT analysis technique. In Section 2.2
the proposed method is described using a case study in
which an impulse response is measured in a car. Section
2.3 presents an analysis of the results of the case study,
demonstrating the validity of the method. Finally, conclu-
sions and future work are found in Section 3

2. METHOD

2.1 Dual Channel FFT Analysis

Using dual channel FFT analysis, it is possible to calcu-
late the transfer function that describes the relationship be-
tween two signals, with the assumption that they are cou-
pled by a linear time-invariant (LTI) system [13, 14]. This
relationship is described by (1) where a(t) is the input
signal, b(t) is the output signal and h(t) is the impulse
response of the linear time-invariant system that describes
the relationship between the two signals.

b(t) = a(t) ∗ h(t) =
∫ ∞
−∞

a(t− τ).h(τ)dτ (1)

The LTI system can also be described in the frequency
domain by its transfer function H(ω), which can be
calculated by taking the Fourier Transform of the impulse
response h(t). The convolution theorem states that the
output of the LTI system in the frequency domain B(ω)
is the product of the input spectrum A(ω) and the transfer
function of the system H(ω). The transfer function of the
system can therefore be calculated by dividing the output
spectrum B(ω) by the input spectrum A(ω), as follows:

H(ω) =
B(ω)

A(ω)
(2)

In theory, by applying a broadband signal to the input of
the system that covers the frequency range of interest, the
transfer function of the system can be directly measured
using (2). However real-world measurements can be
contaminated with noise which causes a degree of error.
The effect of this noise can be greatly reduced by repeating
the measurement and performing a complex average [13].
This is done in practice by multiplying both the numerator
and the denominator of (2) by the complex conjugate
A∗(ω) in order to give the cross spectrum GAB and the
input auto spectrumGAA. Averages are taken forGAB and
GAA over a number of measurements in order to calculate
the transfer function H(ω), as described by (3). This
complex averaging process has the effect of reducing the
level of random noise introduced in the output signal b(t).

H(ω) =
GAB

GAA

(3)

Finally the impulse response of the system h(t) can be
calculated, if required, by performing an Inverse Fourier
Transform on the transfer function H(ω).
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A

B

Figure 1. Diagram showing positions of microphones in
the car used for the case study.

To demonstrate how the Dual Channel FFT Analysis
technique can be used to obtain the transfer function
between two recordings of an engine made at different
points within a vehicle, a case study is described in the
following section.

2.2 Case Study

To describe the method, we look at the specific case
where the aim is to auralise the engine sound in the
cockpit of a real car, a Subaru Impreza, using a close-
mic recording of the engine. In order to obtain the data
required to perform the dual channel FFT analysis, the
engine must first be simultaneously recorded at a close
location and at any other locations where the sound will
be auralised. In practice, to record the engine at a
close distance, an omni-directional Behringer ECM8000
microphone was suspended under the bonnet of the car
in a small pocket of open space near the engine, position
A. A second omni-directional microphone, an Earthworks
M30, was mounted on a microphone stand inside the
cockpit at the position of the driver’s head, position B.
Figure 1 illustrates the microphone positioning inside the
car. The two measurement microphones have relatively flat
frequency responses in the frequency range of interest, and
although ideally they should be perfectly matched, they
were considered close enough in specification for this case
study.

Measurements were performed by recording the engine
simultaneously at both microphone positions while con-
trolling the throttle of the engine in a neutral gear with the
car standing still. In order to measure the full frequency
range of sound that the engine of the car can produce, the
revolutions per minute (RPM) of the engine were increased
from a low idling level to a relative high rate and back
to idling speed for a duration of about 23 seconds. The
process was repeated 12 times and recordings were made
at position A and B simultaneously, resulting in 12 record-
ings of the engine from each microphone, 24 in total. All
recordings were made at a sampling rate of 96 kHz, and a
bit depth of 24 bits per sample.

The sweep of the RPM of the engine was performed by
the driver while monitoring a stopwatch and the tachome-
ter of the car in order to attempt to produce similar record-
ings in each of the 12 measurements. It should be noted
that the exact reproduction of engine sweep in each mea-
surement was not a requirement during this process. The
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Figure 2. (a) Impulse response and (b) frequency response
of derived FIR filter.

aim of repeating the measurements was to provide a large
amount of data in order to attempt to improve the signal
to noise ratio of the result using the averaging process de-
scribed in in Section 2.1.

2.3 Analysis

For each of the 12 recordings, the two signals A and
B were split into overlapping segments with a length
of M=262144 samples and an overlap of M/2 samples.
Each segment was windowed using a Hann function and
then zero padded at the end to a length of 2M before
calculating the discrete Fourier Transform. The cross
spectrumGAB and the input auto spectrumGAA were then
estimated for each segment and averages were taken over
all measurements, according to the Welch method [17].
The transfer function was then calculated using (3) and
finally the signal was cleaned by removing information at
frequencies above 22 kHz and below 22 Hz. These limits
were chosen to ensure that the measured frequency range
lies comfortably within the operational frequency limits
of the two microphones. The impulse response h(t) and
frequency response of the resulting filter are illustrated in
Figure 2.

In order to auralise the engine sound inside the cock-
pit, the engine recording at microphone position A is con-
volved with the impulse response illustrated in Figure 2(a).
The filtered engine sound can then be directly compared
with the real engine sound recorded simultaneously in the
cockpit itself. The real recording made in the cockpit con-
sists mostly of the engine sound, however it is also contam-
inated slightly by microphone self-noise and environmen-
tal sounds such as the movement of the accelerator pedal
and some creaking and rattling sounds from the body of
the car, caused by engine vibration and changes in temper-
ature.
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Figure 3. Spectrograms of the car engine (a) recorded at
position A, (b) recorded at position B and (c) auralised at
position B using the recording at position A as the source.
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Figure 4. Normalised cross-correlation of the recording
of engine at position B with (a) the auralised sound at the
same point using the proposed method (b) the auralised
sound using the reciprocal method and (c) the unprocessed
recording of engine at position A.

Demonstration audio files relating to this work can be
accessed online at [18] on the OpenAIR website [19].

Figure 3(a) and (b) are spectrograms of the engine sound
recorded at microphone positions A and B respectively for
one of the 12 measurements, presented over a frequency
range of between 0 and 2000 Hz. Figure 3(c) is the spec-
trogram of the virtual auralised engine sound at position B,
that has been generated by processing the signal recorded
at position A.

A similarity in the spectral content between the real and
the auralised sounds is evident from comparing spectro-
grams in Figure 3(b) and (c), and this similarity is further
confirmed by listening to the files themselves. However
it is evident from the spectrograms in Figure 3 and the
frequency response of the filter, illustrated in Figure 2(b),
that certain frequency bands are suppressed. In addition
the auralised sound appears to be low-pass filtered in com-
parison with the actual recorded sound in the cockpit.

The comparison between the real recordings and
auralised sounds is further investigated by measuring the
normalised cross-correlation of the signals. Figure 4(a)
shows the result of the cross-correlation between the real
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sound recorded in the cockpit and the auralised sound pre-
pared using the filter described in Figure 2 for one of the
12 measurements. For this measurement, the correlation
between the two signals is 0.67 at 0 s lag (1 would be
exactly the same and 0 would indicate no similarity at all).
Calculated for all 12 measurements, the mean peak corre-
lation is 0.59 with a standard deviation of 0.09.

To compare the proposed method with an alternative
technique, a third auralisation was prepared using the re-
ciprocal method. For this method, an impulse response de-
scribing the sound transformation between positions A and
B in the car was obtained by placing a loudspeaker at po-
sition B, in the cockpit of the car, and an omni-directional
microphone at position A. A sine sweep measurement tech-
nique was then used to obtain the impulse response, as
described in [7]. This method is a potential alternative to
the one described in this paper, however it is not expected
to perform as well mainly because it does not measure
the structure-borne contribution to the transfer function.
Note that this approach also has the disadvantage that it
is not trivial to obtain coincident spatial impulse response
measurements, as can be readily measured with the Dual
Channel FFT method via a microphone array such as a
soundfield microphone.

Figure 4(b) shows the result of the cross-correlation be-
tween the real sound recorded in the cockpit and the au-
ralised sound prepared using the reciprocal method, using
data from one of the 12 recordings. Using this method,
the mean peak correlation for all 12 measurements is 0.26,
with a standard deviation of 0.06. The relatively low value
of correlation is supported by the audible quality of the
auralised sound, which reveals a lack of low frequency
content in comparison with the actual sound recorded in
the cockpit.

Finally, Figure 4(c) shows the cross-correlation between
the unprocessed engine sound recorded at position A and
the sound recorded in the cockpit, recorded at position B,
for one set of measurement data. The unprocessed engine
sound results in a mean peak correlation of 0.15 for all
12 measurements, with a standard deviation of 0.04. As
expected, the unprocessed engine sound shows the least
correlation with the sound recorded in the cockpit.

3. CONCLUSIONS

This paper presents a method to auralise the sound of a
vehicle’s engine at selected points in the vehicle’s interior,
such as the cockpit or passenger compartment. The method
is designed to be used in virtual reality applications and
computer games. The aim is to provide a realistic and
immersive audio experience to users both in terms of how
the engine is filtered by both airborne and structure-borne
transfer paths before reaching the ear, and in terms of
the spatial characteristics and reverberation of the sound
within the virtual space. At the same time, the method
allows sound designers and developers of such applications
full flexibility in designing and manipulating car engine
sounds.

The first stage of the method is to measure the transfer
functions that describe the relationship between a close-

mic recording of the engine and the sound of the engine
at the points of interest in the vehicle’s interior. Once
the transfer functions are determined, the derived impulse
responses can be used to provide real-time audio from any
recorded engine using auralisation techniques. The method
is described here for a single channel output, however it
can be readily extended for multi-channel systems in order
to provide a surround sound experience from an engine
recorded at a single point. The simplest way to achieve this
would be to replace the single microphone in the cockpit
with a microphone array, such as a Soundfield microphone,
and calculate the transfer functions for each microphone
channel.

Results from the case study show that the method works
well, providing an auralised signal that exhibits a relatively
high correlation with an actual recorded signal measured at
the same point in the cockpit of a car. However, although
the auralised signal sounds similar to the real signal, there
are some audible differences meaning that there is room for
improvement. Observations of the signals in the frequency
domain reveal that certain frequency bands appear to be
suppressed in the auralised signal, and that the auralised
signal is low-pass filtered in comparison to the real signal
recorded in the cockipit. Further investigation is required
to understand the cause of these errors.

One explanation could be that the method assumes that
the relationship between a close-mic recording of an en-
gine and the sound of the engine in the vehicle interior
can be described by a linear time invariant system, but
in fact non-linearity is inevitable in such a system a com-
plex vibro-acoustic system. Another cause of difference
between auralised and measured audio would be the influ-
ence of other sounds and noises in either the cockpit of the
car or the engine bay that are not correlated with sounds
coming from the engine. Examples of such sounds are
creaking in the bodywork of the car, fan noise and noise
from the exhaust.

In future work, we would like to investigate if and how
the method could be improved by taking into account other
sources of sounds that are experienced in a vehicle interior,
for example from the exhaust pipe. We would also like
to investigate causes of error with the method, and the
possibility of improving the results using post-processing
techniques. We would like to apply the method to a variety
of different vehicles in order to further test its validity and
flexibility. Finally we would like to conduct a series of
listening tests in order investigate how the difference is
perceived between the virtually auralised engine sounds
and recorded engine sounds recorded under the same
conditions.
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& Kjær Technical Review, no. 1984-2, 1984.

[15] M. A. Gerzon, “The design of precisely coincident
microphone arrays for stereo and surround sound,” in
Audio Engineering Society Convention 50, 1975.

[16] M. Williams and G. L. Du, “Multichannel microphone
array design,” in Audio Engineering Society Conven-
tion 108, 2000.

[17] P. Welch, “The use of fast Fourier transform for the
estimation of power spectra: A method based on time
averaging over short, modified periodograms,” IEEE
Transactions on Audio Electroacoustics, vol. 15, no. 2,
pp. 70–73, 1967.

[18] S. Shelley and D. T. Murphy. (2013) Audio
demonstration of the auralisation of a car engine.
[Online]. Available: www.openairlib.net/resources/
vehicle-engine-auralisation

[19] D. T. Murphy and S. Shelley, “Openair: An interactive
auralization web resource and database,” in Audio
Engineering Society Convention 129, 2010.

511

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

www.openairlib.net/resources/vehicle-engine-auralisation
www.openairlib.net/resources/vehicle-engine-auralisation


IMAGE SONIFICATION BASED ON OBJECT AND 
FEATURE EXTRACTION 

 
Keunhyoung Luke Kim Woon Seung Yeo 

Audio and Interactive Media Lab,  
Graduate School of Culture Technology, 

KAIST, Korea 
doiluvu@gmail.com woony@kaist.edu 

 
 

ABSTRACT 
We introduce a new paradigm for image sonification 
based on extraction of abstract features. Unlike most im-
age sonification examples that convert low-level raw data 
into sound, this method utilizes scale invariant feature 
transform (SIFT) for image abstraction to obtain higher-
level information, thereby producing more robust results 
with a variety of images and visual transformations. To 
separate visual components from an image and enhance 
hierarchical information to SIFT features, the sonification 
also utilizes an image structure analysis algorithm. Being 
invariant to object-level changes such as rotating, mov-
ing, or scaling, sonified sound describe the characteristics 
of different polygons well. We first describe our sonifica-
tion model with SIFT features, and discuss its perfor-
mance. 

1. INTRODUCTION 
Sonification of visual information is a popular subject 
with many application areas. In addition to creating audi-
ovisual art, image sonification techniques can provide a 
special “augmented reality” environment for the visually 
impaired by presenting live camera view as sound [1]. 
Moreover, certain visual features of images that are hard-
ly noticeable by eyes can be easily heard and detected. 
This shows that auditory display an effective tool for di-
agnostics and/or data exploration of visual information 

Sonification of “high-level” features abstracted from an 
image usually reduces sensitivity to minor visual changes 
and, compared to the raw data (e.g., bitmap pixels), can 
provide more meaningful information. When the level of 
abstraction becomes too high, however, it may become 
too purpose-specific and not generally applicable.  

This paper deals with sonification of abstract image fea-
tures – local key points that are used to recognize objects 
in computer vision techniques, and aims to suggest a new 
method for sonification of abstracted images which a) 
produces results that are reasonably invariant to visual 
transformations of abstract objects, and b) performs rea-
sonably well with different kinds of images (e.g., typical 

photos, still-life, abstract paintings, etc.). The method 
separates visual objects in an image and sonifies local 
features of each object using additive synthesis. Since 
local features lack of structural information, we used Su-
zuki’s structure analysis algorithm [2] to group them into 
objects. Each object is regarded as a tone that consists of 
one or more harmonics that are determined by the fea-
tures of the object. Then the tones are placed separately 
in time and properly localized. 

To obtain desired features and design characteristic 
timbre for each object, we use scale invariant feature 
transform (SIFT) – a well-known visual object recogni-
tion algorithm that produces abstracted image features to 
compare or find out objects in images [3]. SIFT uses dif-
ferences between multiple Gaussian-blurred images to 
find the “key features”, and the direction, magnitude and 
position of each key feature are used as parameters. Im-
age features generated by SIFT are invariant to image 
translation, scaling, rotation, and are partially invariant to 
illumination changes as well as affine or 3-D projection: 
this is analogous to the properties of neural responses in 
inferior temporal cortex in primate vision [3], an allows 
us to extract more invariant and meaningful information 
from images. 

2. RELATED RESEARCH 

2.1 Image Sonification 

Image Sonification is a relatively recent branch of data 
sonification. The idea of data transformation from image 
to sound is interesting and challenging for their dimen-
sional and perceptional differences. 

Examples of direct, low-level image to sound mapping 
include raster scanning [4], which is one of the most 
deeply studied techniques of image sonification with no-
table follow-up research. The mechanism is bidirectional 
and reversible: each image pixel corresponds to an audio 
sample in a row-by-row manner. This technique is useful 
for analysis of pitch- or frequency-related features of au-
dio, but its linear scanning paradigm limits the feature of 
displaying information on visual “objects” in images. 

Some researchers tried to extract more “abstract” in-
formation from images to overcome this limitation of 
sonifying raw data. Payling et al used basic image pro-
cessing techniques to extracted local color information to 
generate music clips [5]. However, the information ex-
tracted was too simple and results were not generally 
applicable. A more advanced approach can be found in 

Copyright: © 2013 Keunhyoung Luke Kim and Woon Seung Yeo. This is 
an open-access article dis- tributed under the terms of the Creative Com-
mons Attribution License 3.0 Unported, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original 
author and source are credited. 
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[6]: here the authors extracted and sonified the edge in-
formation to help visually impaired “hear” the overall 
structure of images. It worked partially for simple and 
nicely processed images, but had problems with rather 
complex ones. Edwards et al worked on a purpose-
specific image sonification of problematic biological cells 
from medical imaging data for diagnostic purpose [7]. 

2.2 Object Sonification 

Similar to our work featured in this paper, some tech-
niques have been suggested to enhance data exploration 
experience by providing auditory displays of virtual ob-
jects for sonification of symbolic information. For exam-
ple, Shelley et al provided multimodal feedback for inter-
action with a virtual object [8]: they proposed four cate-
gories of sound abstraction and sonification methods 
from physical models to earcons. Despite the lack of de-
tailed research on sonification method, this work presents 
a useful insight into levels of abstraction for object soni-
fication. 

3. SONIFICATION MODEL 
Our sonification process takes two steps: 1) data extrac-
tion from images and 2) sonification of extracted data. 

3.1 Data Extraction 

While the major ingredient of this sonification is SIFT 
feature data, it represents only local characteristics of an 
image and lacks structural information. Sonified results 
from these features altogether may sound very chaotic 
and unrecognizable. Here we use image structure analysis 
techniques to obtain more “object level” point-of-view 
and conserve generality of application. 

Once SIFT features are extracted, they are grouped into 
objects according to their positions and the result of 
structure analysis. 

3.1.1 SIFT 
With SIFT algorithm, image features are extracted in the 
following steps. 

First, a “pyramid” of the original image, which consists 
of differences between multiple level Gaussian blurred 
images, is constructed. Each level of pyramid is a differ-
ence image of two adjacent levels. 

Second, local maxima and minima from the pyramid 
are detected. The pyramid is three-dimensional; two di-
mensions are analogous to the dimensions of the original 
image, and one comes from the level of the pyramid. 
These points are stored as candidates of local image fea-
tures. 

Third, “weaker” points, including those with too low 
contrast or those whose gradients are along the edges of 
the image, are removed. Then the remaining points are 
finally marked as local features. 

Lastly, the directions and the magnitudes of image gra-
dients at each feature point are calculated. These proper-
ties are used as image comparison cue in object detection 
application, and as harmonics of tones representing each 
object in this sonification. 

 

 
Figure 1. Original images (left) and their SIFT features 
shown as arrows (right).  

SIFT feature describe characteristics of objects using 
color gradient and it successfully find the same object 
from different images even they are scaled or trans-
formed. Example of SIFT extraction is shown in figure 1. 
The features found from the original images on left are 
shown on right. For polygon objects, SIFT features usual-
ly have directions according to each side of polygons. 
Upper two images show a triangle and SIFT features of a 
triangle. Each arrow represents a brightness change from 
dark to bright color. The size of arrow means amount of 
change. In the triangle, there are three sudden color 
changes, or gradients, since there are three sides in a tri-
angle. In the lower images, there is a rectangle with 5 
large arrows. The arrow heading to 2 o’clock is an excep-
tional one, which comes from position of the rectangle. 
These exceptional features can be rejected by limiting the 
SIFT feature extracting algorithm. Still, the four orthogo-
nal large arrows strongly represent presence of a rectan-
gle.  

3.1.2 Representation of Objects 
Objects represented by SIFT feature are high identifiable, 
but SIFT feature itself does not store edge or structural 
information and it cannot be determined whether a fea-
ture is in an object or not, where a need for image pro-
cessing to extract structural information arises. Edge in-
formation is retrieved by the difference of Gaussian 
method [9]. With edge information, the structure of the 
image is analyzed by Suzuki’s algorithm [2]. If an edge 
makes a closed loop, it is regarded as an object and fea-
tures inside the loop become characteristic of the object. 
Result of structure analysis is a tree-like data of detected 
closed loops. Figure 2 shows the outlines of each object 
and which SIFT features belongs to which objects.  
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Figure 2. Borders of object area marked in red (left), 
and the SIFT features with object borders (right). 

 
Finally we obtain a list of the objects that contains SIFT 

features. Additionally, magnitudes of each feature are 
normalized so that they do not exceed 1. Direction values 
are also scaled to fit into the range from 0 to 4. In the 
sonification step, each object is interpreted as a musical 
note played by an instrument. Features of an object de-
termine the frequency and harmonics of its tone. 

 

3.2 Sonification 

3.2.1 Sonification of Each Object 

We use additive synthesis method for sonification, where 
each feature corresponds to a sinusoid. Frequency of a 
sinusoid is determined by the gradient direction of its 
according feature, as 

f = fbase ⋅2
direction,                        (1) 

where fbase  is the fundamental frequency and direction 
is the normalized direction value of each feature. Since 
the direction value ranges from 0 to 4, a 90 degree differ-
ence between two features results in separation by one 
octave in frequency. Likely, an ideal rectangle will have a 
fundamental frequency, the second, the third, and the 
fourth octave sinusoids. 

The amplitude of each sinusoid determined by the gra-
dient magnitudes and decreases gradually. Sinusoids of 
an objects rings simultaneously, which makes them heard 
as a tone with various harmonics. For a single triangle 
(see figure 1 and 2), there are 3 major features with dif-
ferent directions. Figure 3 shows the sonified result of a 
triangle: here we can notice three major frequency peaks 
in the spectrum. 

 

 
Figure 3. Sonification result of a single triangle (See 
figure 1 for the original image): the waveform (top) and 
the spectrum (bottom). Screenshots were taken using 
Audacity. 

3.2.2 Composition of Objects 

Objects in the 2-dimensional space of visual domain 
should be arranged over time in the auditory domain. 
Here, the vertical position of an object in an image de-
termines when its corresponding sound will be played. 
More specifically, playback of an object sound is delayed 
according to how far it is placed from the top edge of the 
image. Horizontal position of an object is used for stereo 
panning. The position information of objects can be also 
used for more sophisticated sound localization.  

Figure 4 shows the sonified result of an image with two 
different objects, which is shown in figure 1 (bottom 
left). In this example, it is clearly shown that the tone of 
the triangle comes before that of the rectangle with pan-
ning characteristics determined by their horizontal posi-
tions. 
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Figure 4. Sonification result of a triangle and a rectan-
gle (see figure 1, bottom left for the original image). 
The waveforms (top) and their spectrograms (bottom) 
are shown. The tone for the triangle rings first from 
right, then the tone for the rectangle rings from left. 
Screenshots were taken using Audacity. 

 

4. RESULT 
We used five different sets of images to test the perfor-
mance of the sonification model. Sonified results as well 
as the original images can be found at the author’s web-
site. 1 

4.1 Basic Shapes 

Images with simple shapes (i.e., triangles and rectangles) 
were tested for comparison of basic transformations. Test 
image sets were created by transposing, rotating, and 
scaling the original images. 

The results show that, in spite of these geometric trans-
formations applied to generate the test image sets, we can 
obtain very similar sounds from the same shape, and dis-
tinguishable ones between different shapes. Transposition 
featured results with the least different (except timing and 
panning). While rotation may affect spectral distribution 
of the sound, the results are still recognizable. Scaling, 
obviously, can change the loudness of the sonified result. 

4.2 Combination of Basic Shapes 

This time we put two or more shapes in each image. 
Combinations include 1) two squares, 2) two triangles, 3) 
one square and one triangle, 4) two square and one trian-
gle, 5) one square and two triangle, and 6) two squares 
and two triangles. From the sonified results, we can easi-
ly tell if the image contains two or more shapes. In addi-
                                                             
1
http://aimlab.kaist.ac.kr/~dilu/research/SIFTSo

nification 

tion, the listener should be able to notice the type of the 
shapes and their positions with basic information on the 
mapping mechanism. 

4.3 More Complex Basic Shapes 

We further tested more complex forms of triangles and 
rectangles. Some of them were “decorated”, some were 
abstract paintings, while others were real photos of sim-
ple objects. Simpler examples result in sounds that are 
highly similar to the first set of examples. More complex 
shapes such as abstract paintings produce quite different 
tones, but certain level of similarity can still be found. 

4.4 Patterns 

General application to objectless images (such as pat-
terns) is one of the important long-term objectives of this 
research. While polygon-based patterns generate stable 
and shape-representing sounds, line-based and irregular 
patterns are less recognizable. However, similarity be-
tween similar patterns can also be noticed from the re-
sults. At this point, our conclusion is that this method can 
generate a tune of pattern images with unique characteris-
tics: this will be investigated further.  

4.5 Complex Images 

Some highly-complex images, such as photos of complex 
objects and paintings, were also sonified for comparison. 
While it can hardly be said that the results are generally 
evocative for complex images, some of them featured 
sound that are reminiscent of certain local characteristics 
of the images. If the complex images can be more simpli-
fied using filters or image processing techniques such as 
“posterize” or “cartoon filter”, they should produce more 
recognizable sounds. 

5. CONCLUSIONS 
This research aims to propose a sonification method that 
enables the listener to recognize objects in image regard-
less of their positions and visual transformations. To this 
end, we proposed the use of SIFT features as a new way 
to sonify feature-level information of images. The sug-
gested model partially achieved the goal for sonification 
of simple objects, and showed certain characteristics of 
mid-level abstracted images. 

In summary, sonification of image feature information 
showed advantages in keeping object-level characteristic 
as it is more robust to object-level changes such as scal-
ing, moving, or transposing an object. It can also deal 
with certain level of image textures. Not only these char-
acteristics are useful for previously attempted image soni-
fication works, but also they show a strong potential for 
new application areas. The technique catches essential 
visual characteristics and makes identifiable sound, 
which can be used for audio support for the visually im-
paired, or generation of earcons from simplified images. 

For further research, more object recognition techniques 
(including as edge detections) will be introduces to the 
model to provide even more abstraction to the data. Other 
sonification models and synthesis methods will also be 
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incorporated and tested to find out methods with more 
natural and evocative results. 
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ABSTRACT 

The simulation of visual hallucinations has multiple ap-

plications. For example in helping diagnosis, in helping 

patients to express themselves and reduce their sense of 

isolation, for medical education, and in legal proceedings 

for damages due to eye / brain injuries. We present a new 

approach to hallucination simulation, which was devel-

oped initially for a performance but proved to have po-

tential uses to sufferers of certain types of hallucinations. 

The system allows real-time audio and visual expression, 

using an iPad. An individual can overlay their hallucina-

tions in real-time on the iPad screen over the iPad’s video 

camera image. The system has been developed focusing 

on the visual symptoms of Palinopsia, experienced by the 

first author, and hence has initially been user-led re-

search. However such an approach can be utilized for 

other conditions and visual hallucination types. The sys-

tem also allows the hallucinations to be converted into 

sound through visual sonification, providing another ave-

nue for expression for the hallucinating individual. A 

musical performance is described which uses the system, 

and which has helped to raise awareness and to comfort 

some people who have Palinopsia symptoms. Although 

no formal experimentation was done outside of perfor-

mance preparation, we report on a number of unsolicited 

informal responses to the simulator from palinopsia suf-

ferers and a palinopsia charity. 

1. INTRODUCTION 

Palinopsia is a visual symptom involving trails in the 

visual field [1], as shown in Figure 1. In addition to this it 

can lead to very strong after-images [2], similar to when 

anyone stares at the sun and looks away – but this can be 

much stronger for Palinopsics and can be caused by ob-

jects which are not particularly bright – for example a 

door. One interesting aspect of Palinopsia is that it can 

occur in individuals who show no other ill effects. Palin-

opsia is a symptom rather than a condition. Oliver Sacks 

the author and neuroscientist, has had the symptoms of 

Palinopsia [3].  

   The academic study of Palinopsia is still in the early 

stages. Scientists are divided in their terminology, using 

differing terms such as Polyopia and Visual Perservation 

[4]. They also have different ideas about the causes of the 

condition. One possibility is a reduction of inhibition 

function in certain neurons in the visual cortex [5]. This 

could both explain how the after-image of a moving ob-

ject is not cancelled out more firmly, and why the evolv-

ing patterns seem to come from nowhere, perhaps from 

under-supressed random firing of cortical neurons. There 

have also been interesting initial results concerning a 

common “visual trail rate” of 15-20Hz [6].  

 

 

 
 

Figure 1. Visual Trails in Palinopsia 

 

   This lack of understanding of the condition could per-

haps be aided by tools to enable Palinopsics to express 

their visual hallucinations more clearly to others. The 

Palinopsia Foundation in the USA have said that the 

“therapeutic uses for this application are endless. It could 

significantly help spread awareness of Palinopsia and 

understanding for those living with Palinopsia.”[7]   Thus 

software that can enable some of these people to express 

and discuss their visual disturbances with a close friend, 

or perhaps a therapist or medical professional they are 

working with, may be beneficial. It could help medical 

professionals and neuroscience researchers to gain a 

deeper insight into visualising precisely what the subjects 

are seeing. 

   For some the condition of Palinopsia is debilitating, for 

others they fail to realise the images are not real, and for 

many it is a lonely condition they are afraid to reveal to 

anyone. Oliver Sacks estimates that up to 90% of people 

with the hallucination condition Charles Bonnet syn-

drome do not mention their hallucinations to others [8]. 

In addition an artistic performance involving this soft-

ware by a Palinopsic may help to raise awareness of the 

condition and help those who have the condition, and are 
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unaware they are not alone, to seek help if they need it; or 

just feel comfort if the symptoms are not debilitating. 

2. SIMULATORS AND AUGMENTED RE-

ALITY  

Static hallucination simulators are used to help people 

express exactly what hallucinations they have. There has 

been some work in the use Virtual Reality to model hal-

lucinations to help in teaching people about schizrophre-

nia [9] and the pharmaceutical company Janssen Pharma-

ceuticals have actually developed a system for laptop and 

stereo glasses to simulate hallucinations [10] for training. 

But neither of these systems are truly interactive, or based 

on real-time augmented reality.  

    Augmented reality is a method of combining live cam-

era data on a smartphone or tablet with real-time genera-

tively generated images, both appearing on the screen 

simultaneously [11]. There are many applications availa-

ble involving this. What is more rare are applications 

which manipulate the visual field to simulate what people 

are subjectively seeing. This is the application which was 

developed here, which has been labeled the “Halluci-

phone”.  

3. HALLUCIPHONE 

The Halluciphone was originally developed for a perfor-

mance called “Insight”. The basic system used in the per-

formance consisted of an iPad with custom software al-

lowing the first author to attempt to represent his halluca-

tion effects. This data was sent to a laptop which then had 

MAX/MSP software for sonifying the visual effects. 

There has been previous work on sonification of visuals 

[12, 13] and also the sonification of medical data [14, 

15]. The initial purpose of the sonification here was per-

formative, and to draw attention to the hallucinations, 

giving them more ‘reality’. However it may be that such 

sonification could help people to express their halluca-

tions helpfully in a multi-modal way.  

   The augmented reality application that was developed 

could be made to ‘hallucinate’ in ways similar to the first 

author’s vision. Whatever the iPad camera is seeing can 

be manipulated by my using the iPad multi-touch screen. 

Effects that can be controlled includes having groups of 

pixels randomly switch on and off. When these are com-

bined with other elements related to Palinopsia, including 

visual after-images (see Figure 2) and trails on the iPad, 

the screen will be able to show a representation of the 

experienced visuals. This includes a simple interface to 

allow the performer to indicate where he is seeing pat-

terns and images by touching the screen. Thus the audi-

ence is enabled to see some semblance of what is being 

experienced internally in what is usually “private” vision. 

It was this expression of private visual states which was 

the artistic motivation for the performance, but as time 

went on it became clear that many sufferers of hallucina-

tions and their carers could gain benefits from having 

access to such a system. 

3.1 iPad 

   The openframeworks development platform has ad-

vanced image processing features that can be integrated 

into the iOS platform for mobile deployment. This allows 

the Insight application to display a continuous video feed 

from the iPad’s camera. The feed acts as input to the hal-

lucination algorithms and provides a background layer to 

the hallucination effect layers which are overlaid. This 

provides a real-time projection of a reality layer and also 

hallucination effects, which are updated in-line with the 

video feed. 

 

 

 

 

Figure 2: Halluciphone simulation of after-images 
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The hallucination controls are split into three modes that 

can overlap creating multi-layers of hallucinations. These 

modes are defined by their methods of user control and 

their resultant visual and audio functions and effects. 

Modes are entered via display-area specific touch com-

mands on the reality layer. This allows for a continuous 

reality layer on screen, avoiding the need for any naviga-

tion menus or buttons that may obstruct an audiences’ 

view of the projected mirrored display and detract the 

conductor from the hallucination experience. Mode spe-

cific commands provide control for instigating and ma-

nipulating layers of hallucinations.  The three modes; 

single touch, multi-touch and visual echo; dictate the type 

of hallucination that can be applied to the display. 

   Single touch mode allows for an area of the video feed 

to be mapped into an after-image layer. The location of a 

users’ touch dictates the on screen position of the after-

image. The size of the after-image is defined by the time 

of the touch command, and the on-screen duration of the 

after-image is defined by the distance of a swipe move-

ment after the initial touch command. Multiple instances 

of single touch commands can be initiated and over-

lapped. 

   Commands in multi-touch mode generate clusters of 

small after-image areas akin to stochastically arranged 

groups of circles. The cluster size and duration are, again, 

user definable, whereas individual after-image position-

ing within a cluster is fixed to a random ordering to mir-

ror the randomness and blurring that occurs within Palin-

opsia.  

   Within the visual echo mode the video input is pro-

cessed and generates echoes of delayed images. This cre-

ates the effect of visual trails surrounding a moving ob-

ject whilst motionless background content is unaffected. 

Controls allow for speed of echoes and the duration of the 

effect. A feature of the visual echo mode is layers con-

taining clusters of after-images, triggered and still visible 

before any echoes have been initiated, are also echo af-

fected and echo simultaneously with the primary visual 

trails. 

   The technical implications of a software algorithm de-

signed to emulate states envisioned only by a subject of 

Palinopsia offers a number of design and implementation 

issues. Successfully interpreting a neurological condition 

based upon text and conversational based descriptions 

requires considerable attention to detail as development is 

undertaken using limited references. A descriptive 

framework defines one persons’ ultimate reality so wide 

margins for constant adjustment and refining need to be 

employed. 

3.2 Laptop 

   The performances’ success lay in the communication of 

the visual effects of Palinopsia to an audience. This al-

lows for experimentation in how the visual effects of the 

condition can be musified. A dynamic framework of 

mapping visual effects to audio parameters allows for the 

user to select controls based on aesthetics. This assisted 

in creating a more engaging experience for an audience, 

where the performance is true to the condition, whilst 

allowing for creative artistic interaction 

   Figure 3 shows a view of a MAX patch to give an idea 

of how the various hallucination effects could be mapped 

onto the parameters of the synthesis units on the laptop. 

Figure 4 shows one of the 5 units which were available to 

the composer. Each unit could be loaded with a WAV 

file, which was then processed live by the mapped infor-

mation from the iPad.  

   The actual mappings for the performance were selected 

through experimentation by the composer. This involved 

a process of setting up possible MAX/MSP mappings 

using a patch of the form shown Figure 3 (though the 

patch has been compressed here to fit into page) and try-

ing them out in rehearsal. The top half of Figure 3 shows 

the various inputs from the iPad touchscreen. For exam-

ple the brightness and variation on average across the 

screen, or the size of area over which an afterimage was 

switch on. These can be mapped onto the filter or effects 

parameters below. One of the most perceivable effects, in 

terms of linking it to hallucinations, turned out to be the 

delay at the bottom of Figure 3 – in particular as feedback 

loops built up. Levels of loudness were also significantly 

affected by the various visuals.  

4. SCORES 

The score has three elements. The performance involved 

a flute player, the first author controlling electronics via 

his laptop and the Halluciphone, together with lighting 

design so as to create a contrasting set of visuals for the 

Halluciphone. The audio score style was motivated by the 

commission being from a contemporary classical music 

festival, and a desire to create a “mysterious” sound that 

would echo the “mystery” of our internal perceptions and 

how they relate to other peoples’. 

   The purpose of the flute was to make the performance 

more organic, and sonically and visually dynamic for the 

audience, as well as more accessible for those coming to 

it as a contemporary classical concert. The flute also had 

an element of ephemerality which it was felt captured the 

unreal feel of the hallucinations. The flute score was in 

the idiom of contemporary classical music.  

   The first and third movements of the flute were con-

structed using motifs quoting classical electronic dance 

music from the late 1980s and 1990s. The second move-

ment was written with some help from DJ Pierre, credited 

with developing the first “Acid House” [16] bass-line for 

the track “Acid Trax” as a member of the band Phuture. 

He sent an acapella version of a higher tempo version of 

the bassline from Acid Trax which was used as raw mate-

rial for electronics in the third movement. The second 

movement was actually loosely based on the approach 

taken in DJ Pierre’s bassline in Acid Trax. In acid house 

music, filtering is often used to change bassline charac-

teristics – sometimes called “filter sweeps”. The filter 

sweeps in the “Acid Trax” bassline can be seen in Figure 

4. An excerpt from the 2
nd

 Movement is shown in Figure 

5. The second movement was largely made up of the flute 
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playing the repetitive bass loop from Acid Trax. Parts of 

the line are played with notes having extended or reduced 

duration and loudness, reminiscent of the effect of filter 

sweeps. 

   The electronics utilized the audio provided by DJ Pierre 

directly, and also simple sounds which were chosen by 

the composer / first author for aesthetic reasons, but also 

because he knew from past experience that he found them 

hypnotic and they could therefore potentially focus him 

on any hallucinations. They were Binaural Beats, Sub-

bass and White Noise. These were loaded into three of 

the sample channels shown in Figure 6. It was these elec-

tronics which were manipulated by the Halluciphone sig-

nals’ patching using Figure 3. 

 

 

 

 

Figure 3: Mappings Available for Visuals Sonification 

 

 

 

 

Figure 4: Waveform of Acid Trax bassline, plus spectra-

gram of Filter Sweeps 

 

 

Figure 5: Excerpt from 2
nd

 Movement 

 

 

 

Figure 6: One of the Sonification channels on the Laptop 
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Figure 7: Part of the Lighting Score use in the Perfor-

mance 

 

   The lighting was designed so as to give a variety of 

visual effects to trigger and highlight hallucinations. They 

were controlled live by the lighting technician who knew 

the score and timings, and followed a lighting score, part 

of which is shown in Figure 7. An example photo of the 

visual echoes effect, highlighted by the lighting, is show-

ing in Figure 8. 

5. FEEDBACK 

Because the project has so far been primarily performa-

tive in nature, no formal results are reported on the usage 

of the system as a hallucination simulator. However in-

formal commentary from the Palinopsia Foundation and a 

number of sufferers of Palinopsia provide initial feedback 

together with motivation to extend the study into more 

formal realms.  

   The USA Palinopsia Foundation [17] are using a video 

demo of the iPhone version of our software to introduce 

their webpage. The following is a quote from a comment 

received anonymously as a result of the writer viewing a 

video of the Insight performance (sic): “I have been suf-

fering from these visals for about 14 years now, its only 

been in last few months that ive been learning about pal-

inopsia and also hppd, i felt relieved knowing there was a 

name for something i have been suffering with for many 

years and just thought i was going mad…im really inter-

ested in talking to you i have just gone on the website you 

provided and was amazed by what you have done its ex-

actly what i see.” (sic) This also shows how the perfor-

mance itself can be an effective vehicle for education as 

well as for raising awareness about the symptoms. A link 

to the video the person is referring to is given at the end 

of this paper. The next three quoted messages are from 

people who watched a demo of the simulator on Youtube: 

“hi, I watched your iphone/ipad hallucination software 

video. Never ever thought I would find anyone else with 

this condition. I too have been suffering with it for almost 

a year now. I don't experience the trails but definitely the 

afterimages.”  “I have had visual echoes for a month now 

and this is comforting that this isn't something much 

more serious.”  “Thank you so much for this video... it 

allowed me to show people i love what i see when i have 

palinopsia, which is quite hard to describe just with 

words. Thanks!!” (sic) 

 

 

Figure 8: Visual Echo Simulation during the Perfor-

mance Premiere 

 

The performance premiered at Peninsula Arts Contempo-

rary Music Festival 2012 at Plymouth University. It was 

found that the synthesizer at times suffered from feed-

back instability which needs to be investigated. It was 

also found that to create a sufficiently interesting perfor-

mance the visual effects of the Palinopsia had to be 

slightly over-emphasized by the performer. However, 

allowing for this over emphasis, the performer in particu-

lar found that the visual echoes and the after images were 

quite often reasonable simulations, especially with the 

lighting score was implemented. The performance can be 

seen here:  

http://www.youtube.com/watch?v=a5cKUkDyR1U 

6. CONCLUSIONS 

We have introduced a performance which highlights a 

new approach to hallucination simulation, allowing real-

time audio and  visual expression, using an iPad. An in-

dividual can overlay their hallucinations in real-time on 

the iPad screen over the iPad’s video camera image. Such 

an approach could be utilized for other conditions and 

visual hallucination types. The system also allowed the 

hallucinations to be converted into sound through visual 

sonification. The musical performance – for which the 

system was initially developed - was described, which 

has helped to raise awareness and comfort some people 

who have Palinopsia symptoms. Because the project has 

so far been primarily performative in nature, no formal 

Cue 

Track 

Time 

(sec) State 

Uptime 

(sec) 

Previous 

state 

Downtime 

(sec) 

Dwell 

time (sec)  

0.5 0 Preset    

1 0 Blackout 0 0 30 

2 30 Flute only 8 5 35 

3 73  8 5 15 

4 96  8 5 16 

5 120 

All audience 

at 45% 8 5 7 

6 135 Just flute 5 8 105 

7 248 Just flute 8 5 0 

8 262 

Stage flood-

ed with light 1 0 1.5 

9  Just Flute 0 0 0 

10 284 

Stage flood-

ed with light 1 0 1.5 

11  Just Flute 0 0 0 

12 305 

Stage flood-

ed with light 1 0 1.5 

Etc…      
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results were reported on the usage of the system as a hal-

lucination simulator. However informal commentary 

from the Palinopsia Foundation and a number of sufferers 

of Palinopsia provide initial feedback together with moti-

vation to extend the study into more formal realms. 
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ABSTRACT

This work presents a technique for detuning or applying
phase distortion to specific spectral components of an ar-
bitrary signal using a cascade of parametric second-order
allpass filters. The parametric second-order allpass pro-
vides control over the position and slope of the transition
region of the phase response, and this control can be used
to tune a phase distortion effect to a specific frequency
range. We begin by presenting the phase response of a
cascade of first-order filters, which we relate to that of the
parametric second-order allpass. Time-varying parameters
and the time-varying phase response are derived for the
second-order case, and we provide examples demonstrat-
ing the frequency-selective phase distortion effect in the
context of processing of instrumental sounds.

1. INTRODUCTION

Allpass filters are a fundamental synthesis building-block,
and have many applications in computer music. Allpass
filters have been studied with applications to both synthe-
sis and effects processing, often in cascaded form or with
modulation of the filter coefficients. In [1], the disper-
sive effects of a cascade of first-order allpass filters are
exploited to produce a frequency-dependent delay effect,
called a spectral delay filter. Kleimola et al., in [2], pro-
pose the use of a cascade of filters, with audio-rate modu-
lation of coefficients, to obtain complex AM- and FM-like
spectra, with applications to synthesis, physical modeling,
and effect processing. The dispersive effects of cascaded
allpass filters have been used in physical modeling of pi-
ano strings [3] and spring reverberators [4]. Finally, Laz-
zarini et al. describe the use of a first-order allpass filter in
phase distortion synthesis [5], where the authors modulate
the filter coefficient with a modulation function designed
to create a desired time-varying phase shift.

In this paper, we describe the use of cascaded paramet-
ric second-order allpass filters in detuning and phase dis-
tortion applications. The parametric second-order allpass
used here has some important advantages over the first-
order, as it offers greater control over the phase transition
region - the range of frequencies where the largest amount

Copyright: c©2013 Greg Surges, Tamara Smyth et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

of phase distortion will occur. Instead of directly modulat-
ing coefficients, we focus on modulating the filter parame-
ters which control the placement and size of this transition
region. This makes it possible to apply phase distortion to
specific spectral bands, independently of others.

This work is part of a larger investigation into the use of
cascaded allpass filters in generative self-oscillating feed-
back systems. By making the phase response of the feed-
back system time-varying, it is possible to avoid the static
timbres characteristic of some feedback systems, and in-
troduce more dynamic musical behaviors. Though the ap-
plications discussed in this work do not involve feedback
systems, the techniques introduced here are a first step to-
ward that goal.

In Section 2 of this paper, we derive the first-order allpass
filter, and the phase response of a cascade of first-order fil-
ters. We also relate the first-order filter to the second-order
allpass filter used in this work. In Section 3, we describe
how the filter parameters and phase response can be made
time-varying. A basic example of the detuning/phase dis-
tortion effect is provided. Applications to synthesis and
processing of instrumental sounds are presented in Sec-
tion 4.

2. THE ALLPASS FILTER

It is well known that an allpass filter has unity gain at
all frequencies. It is, therefore, frequently used in situa-
tions where a frequency-dependent phase shift is desirable,
without imparting any gain or attenuation.

2.1 First-Order Allpass Filter

A first-order allpass filter, given by

H1(z) =
c+ z−1

1 + cz−1
, (1)

has a single pole and zero at −c and −1/c, respectively,
where |c| < 1 for stability. Because of the stability con-
straint, the pole at −c lies inside the unit circle, while the
reciprocal zero lies outside the unit circle (making the fil-
ter maximum phase). If the coefficient c is real, both pole
and zero will lie on the real axis, with |c| controlling the
spacing of the pole-zero pair from the unit circle—a mag-
nitude of c close to 1 positions the pole and its reciprocal
zero closer to (as well as more equidistant from) the unit
circle (see Fig. 1 for example of c = 0.9 and c = −0.6).
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Figure 1. The position of the pole-zero pair for the first-
order allpass filter (1). A coefficient of c = 0.9 yields the
pair on the real axis to the left (blue) and c = −0.6 yields
the pair to the right (red).

The magnitude of (1), is given by:

|H1(ω)| =
∣∣∣∣ c+ e−jωT

1 + ce−jωT

∣∣∣∣ = 1, (2)

where fs is the sampling rate and T = 1/fs is the sam-
pling period. A sampling rate of fs = 44100 Hz was used
throughout this paper.

The phase of (1) is given by

6 H1(ω) =
6 (c+ e−jωT )
6 (1 + ce−jωT )

= 6 e−jω + 6 (1 + cejω)− 6 (1 + ce−jω)

= −ω + 2 tan−1
(

c sin(ω)

1 + c cos(ω)

)
,

(3)

where the final result is obtained using the fact that 6 z =
tan−1(=(z)/<(z)). Since the denominator inside the
tan−1(·) is always positive (for |c| < 1), and the numer-
ator can change sign, the contribution due to the tan−1(·)
term has a possible range of ±π/2 rad (and ±π rad for
2 tan−1(·)), and thus contributes an oscillation around the
first linear-phase term [6]. The result, as shown in Figure 2,
is a phase response that is monotonically decreasing, with
an overall decrease of 2π rad as ω increases by 2π rad /
sample.

Rearranging (3) yields the following expression for the
coefficient:

c = −
tan

(
6 H1 + ω

2

)
tan

(
6 H1 + ω

2

)
cos(ω)− sin(ω)

, (4)

which, for 6 H1 = −π/2, conveniently reduces to

c =
tan(ω/2)− 1

tan(ω/2) + 1
. (5)

That is, the behaviour of the phase response can be con-
trolled to some extent using (5), by specifying the angular
frequency

ω = 2π
fπ/2

fs
rad/sample, (6)

where fπ/2 is the frequency in Hz at which 90◦ (π/2)
phase shift is reached.

A general higher-order all-pass filter can be made by cas-
cading several first-order allpass sections

Hk(z) =
K∏
k=0

z−1 − a∗k
1− akz−1

, (7)

where if the allpass filter has real coefficients, for each
complex root ak, there must be a corresponding complex
conjugate root a∗k, making the phase anti-symmetric about
ω = 0 [6]. The phase response for the overall filter is the
sum of the phases for each section, and is given by

6 Hk(ω) = −Kω−2
K∑
k=1

tan−1
(

Rk sin(ω − θk)
1−Rk cos(ω − θk)

)
,

(8)
for ak = Rke

jθk . In the following, we consider a special
second-order case.

2.2 Second-Order Allpass Filter and its Cascade

Though there is some control over the behaviour of the
first-order filter by using (5) to specify the frequency fπ/2
at which the phase response is −90◦, more control is af-
forded using a special case of the second-order allpass fil-
ter, for which there is an additional “bandwidth” parame-
ter [7].

The transfer function of a second-order allpass filter may
be expressed using (7) for k = 2, but a more convenient
formulation is given in [7] by:

H2(z) =
−c+ d(1− c)z−1 + z−2

1 + d(1− c)z−1 − cz−2 , (9)

which allows for specification of coefficients

d = − cos

(
2πfπ
fs

)
(10)
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Figure 2. The phase response (blue), monotonically de-
creasing by 2π with an increase in ω of 2π, is shown with
the linear-phase term - ω from (3).
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Figure 3. The phase response of the second-order allpass
filter with fπ = fs/4 and with varying bandwidths fb.

and

c =
tan (πfb/fs)− 1

tan (πfb/fs) + 1
(11)

according to the frequency fπ (in Hz) at which the phase
response is −180◦ (or −π), and a bandwidth of the phase
transition region fb.

Figure 3 shows an example of the monotonically decreas-
ing phase response where fπ = fs/4 and several values
are used for fb. The curves begin with a gentle change in
phase, followed by an increased downward slope reaching
−180◦ at fπ , before tapering off again to a more gentle
slope toward maximal delay. Adjusting fπ and fb allows
for both placement of the frequency point at which a 180◦

phase shift is reached, and control over the slope of the
phase transition region.
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Figure 4. The position of the poles and zeros for the
second-order allpass filter described by (9). Holding the
parameter fπ constant for each row, and fb constant for
each column, we can see how the former adjusts the angle
of the two pole-zero pairs, while the latter controls their
distance to the unit circle.

The effect of the fπ parameter can also be seen in Fig-
ure 4 by how it adjusts the angle of the two pole-zero pairs
on the unit circle. The bandwidth fb controls the distance
of the pole and zero to the unit circle.

3. PHASE DISTORTION WITH THE
SECOND-ORDER ALLPASS

Through careful tuning of second-order allpass filter (9), it
is possible to apply a time-varying phase distortion effect
to a specific band of the spectrum.

3.1 A time-varying allpass filter

In order to make (9) time varying, it is necessary to redefine
coefficients d and c as functions of time. In this work,
rather than modulating the coefficients directly, it is the
parameter fπ that is made time varying:

f̃π(n) = fπ +M cos

(
2πfmn

fs

)
, (12)

where ·̃ indicates a function made time varying, fπ is as
previously defined, M is the depth of modulation, fm is
the modulation frequency, and n is the discrete time index.
Here, f̃π is modulated sinusoidally (though this is not a
requirement), and can be seen as an FM signal, with fπ
being the carrier frequency (which it will be subsequently
called when referred to in the time-varying case).

The coefficient d from (10) is then replaced with

d̃(n) = − cos

(
2πf̃π(n)

fs

)
, (13)

yielding the filter’s difference equation

y(n) = −cx(n) + d̃(n)(1− c)x(n− 1) + x(n− 2)

−d̃(n)(1− c)y(n− 1) + cy(n− 2).

(14)

Expressing (9) as the difference equation in (14) follows
the example of [2], in which filter output y(n) is a combi-
nation of delayed versions of input x(n) which are ring
modulated with sinusoidally-varying coefficients. Here,
in contrast, coefficient parameters are sinusoidally modu-
lated yielding time-varying coefficients that are effectively
FM signals as shown in (13). Following (8) for the phase
of the general allpass, it can be easily be shown that the
time-varying second-order allpass has a family of phase
responses given by

θA(ω, n) =− 2ω+

2 tan−1

[
d̃(n)(1− c) sin(ω)− c sin(2ω)

1 + d̃(n)(1− c) cos(ω)− c cos(2ω)

]
(15)

To gain some intuition for the effect of this new time-
varying parameter f̃π(n), consider the effect of the param-
eters fπ , fb, and M on this group of phase responses. Fig-
ure 5 illustrates an example for fπ = fs/4 Hz, fb = fs/40
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Figure 5. Effect of modulation depth and transition region
on phase distortion. Vertical shaded region indicates range
of f̃π(n), i.e. fπ −M ≤ f̃π(n) ≤ fπ +M .

Hz, and M = fs/10. Recalling (12), we can imagine
the transition region centered on f̃π(n) being shifted up
and down in frequency - left and right in Figure 5 - at a
rate corresponding to fm. The upper and lower limits of
this shift are provided by M , and indicated by the shaded
box in Figure 5. Spectral components in the shaded re-
gion will experience significant time-varying phase shift
as fπ is modulated, while components outside of that re-
gion will experience relatively less. Components below the
transition region will be delayed by a small and relatively
stable amount, while those above the transition region will
be delayed by a larger, but still relatively stable amount.
By placing fπ at some frequency of interest, and tuning
fb and M to generate the appropriate transition region, we
can apply phase distortion to components which fall into
the transition region, while leaving others (relatively) un-
modified.

Given a desired frequency deviation |f̃π(n)|−fπ , there is
a dependency between M and fm. This can be explained
by the interaction between the modulation frequency fm
and modulation index M in determining the instantaneous
frequency of an FM signal. Following [8], and assuming a
constant modulation indexM , the instantaneous frequency
of f̃π is given by:

f̃π(n) = fπ −Mfm sin(2πfmn+ φm) (16)

By substituting a cosine modulation function (which al-
lows us to disregard time, since the cosine will begin at
maximum deviation), and rearranging (16) to solve for M ,
we obtain:

M =
|f̃π| − fπ
fm

(17)

where |f̃π| is the desired peak frequency deviation, and fπ
and fm are the carrier frequency and modulation frequency
as defined above. Equation (12) then becomes:

f̃π(n) = fπ −Mfm cos

(
2πfmn

fs

)
(18)

As shown in (8), a cascade of identical allpass filters will
produce an overall phase response that is the sum of the
phases of each section. In addition, the composite filter

will have a phase response with a similar curve to one sec-
tion, with the only difference being a greater range between
minimum and maximum delay (the range increasing by a
factor of K, the cascade length). This is an important con-
sideration, as the cascade length corresponds to the maxi-
mum possible amount of phase distortion. It is often nec-
essary to adjust the cascade length to obtain the desired
amount of distortion. In the following discussion, K is the
cascade length in terms of second-order filters.

The bandwidth of a modulated cascade is similar to that
of FM synthesis, but with a different dependency on the
modulation index M . Whereas for classical FM synthesis,
the bandwidth can be approximated by

BWfm = 2(M + 1)fm, (19)

the approximate maximum bandwidth of a modulated second-
order allpass is given by:

BWap = 2(M + 2)fm (20)

Thus, given an input signal with a single component with
frequency f0, the resulting spectrum will consist of

f0 ± kfm, where k = {0, 1, ...M + 2}. (21)

The cascade length K has a small effect on the overall
bandwidth, by introducing additional, smaller amplitude
sidebands. It has been shown that cascades of allpass filters
can become unstable due to numerical error when larger
values of K are used [9], so K generally should not be
used as a bandwidth parameter. Both fb and K affect the
relative amplitudes of f0 and the generated sidebands. In
the case of a single second-order allpass filter, as fb de-
creases, the amplitudes of the sidebands increase while that
of f0 decreases. As K increases, the amplitudes are af-
fected in a more complex manner, due to the recursive pro-
cessing at each stage in the allpass cascade. If each allpass
stage is modulated at the same rate, the output of each stage
will contain sidebands at the same frequencies. The gener-
ated sidebands sum to produce more complex spectra, with
slightly larger bandwidths, as further sidebands are gener-
ated around components from earlier allpass stages. It is
important to note that the above measures only apply when
input components fall into the transition region controlled
by fb. Input components which fall to either side of this
region will be affected to a lesser extent or hardly at all, as
described above.

In summary, the parameters of the modulated second-
order filter cascade are as follows:

• fπ: modulated filter “carrier” frequency - controls
placement of frequency band affected by modula-
tion.

• fb: filter “bandwidth” - affects width of frequency
band affected by modulation, and amplitudes of side-
bands.

• fm: modulation frequency - controls spacing of side-
bands at audio rate / speed of vibrato at sub-audio
rates.
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• M : modulation depth - controls maximum band-
width of spectrum at audio rate / depth of vibrato
at sub-audio rates.

• K: filter cascade length - affects amount of phase
distortion applied to frequencies in phase transition
region, also affects overall bandwidth. Large K can
lead to instability.
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Figure 6. Modulating individual components of clarinet
tone. From top to bottom: spectrograms of the original
signal and processed versions in which frequency modu-
lation was applied to the fundamental, first, and second
harmonics, respectively. In all cases, f̃π(n) = fπ −
Mfm cos(2πfmn/fs), K = 10.

3.2 Simple Application to a Clarinet Sample

To demonstrate the frequency-selective nature of this ef-
fect, consider a clarinet tone, which contains primarily odd
harmonics. Figure 6 shows the effect of a modulated all-
pass cascade on the spectrum. The allpass cascade has
been tuned to affect only specific harmonics of the clarinet
sound. The carrier frequency fπ is set to the frequency of
the ith harmonic and the bandwidth fb is set to 200 Hz.
This creates a narrow transition region with a steep slope
centered around the frequency of the harmonic. The carrier
fπ is modulated by a 25 Hz sinusoid.

4. APPLICATIONS

As a basic signal processing effect, it is possible to use this
technique to animate the spectra of steady-state tones (as
in the clarinet example of above). As shown previously in
Figure 6, specific spectral components can be modulated
independently. This effect could be useful to add interest
to otherwise static timbres, perhaps as a post-processing
stage applied to common “analog” waveforms. Here we
discuss other musical applications.

4.1 Modulation at Sub-Audio Rates

As described above, through careful tuning of the filter pa-
rameters, it is possible to apply a frequency modulation ef-
fect to specific frequency ranges independently of others.
With sub-audio coefficient modulation rates, this produces
a selective vibrato effect. Various partials can be modu-
lated independently of the rest, as illustrated in Figure 7. A
recording of a clarinet improvisation was processed with a
cascade of second-order allpass filters, adding a fm = 2
Hz vibrato to a selected portion of the spectrum. The fil-
ter carrier frequency fπ was set to 3674 Hz (the visual
midpoint of the spectrum), and a wide filter bandwidth
fb = 800 was used in order to affect a range of frequen-
cies. The modulation depth M was set to 300, producing a
600 Hz swing for f̃π(n) (17), and it was necessary to use
a filter cascade of length K = 15 in order to obtain the
amount of phase distortion necessary to produce dramatic
changes in frequency. Referring back to Figures 3 and 5,
we see how fb affects the slope of the phase transition re-
gion. As fb is increased, producing a more shallow slope,
the amount of phase distortion applied to any particular
frequency component will decrease. By increasing K, we
can compensate for this by increasing the maximum phase
delay of the system - and consequently the phase delay ap-
plied to any given input component.
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Figure 7. Clarinet passage with spectral modulation of
selected harmonics for fπ = 3674 Hz, M = 300, fb =
800 Hz, fm = 2 Hz. Length of allpass cascade K = 15.

4.2 Audio-Rate Phase Distortion

In addition to sub-audio modulation, it is possible to mod-
ulate the filter parameters at audio rates. As described
in Section 3, this has the effect of building FM-like side-
bands around component frequencies present in the origi-
nal signal because of the ring-modulation and FM terms in
(14), and therefore can produce very rich spectra. Figure 8
provides a spectrogram of a clarinet performance through
a single cascade of identical second-order allpass filters,
which are driven by a fundamental frequency estimator.
The carrier frequency fπ is set to the estimated fundamen-
tal.

In this case, the upper harmonics of the sound are left
relatively unmodified, while the lower components (those
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nearest to the estimated fundamental frequency) are sig-
nificantly modulated. FM-like sidebands appear around
at 100 Hz intervals around the distorted frequencies. The
amplitude envelopes of new components follow those of
the originals. Temporal aspects are also preserved, but a
smearing effect is added. There is a possible trade-off that
may need to be considered as greater cascade lengths pro-
duce a more pronounced “smearing” effect.
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Figure 8. Clarinet passage with f̃π(n) driven by funda-
mental frequency estimator. Here, fm = 100 Hz, M =
1, fb = 500 Hz, and fπ is the estimated fundamental. Cas-
cade length is K = 5.
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Figure 9. Example of audio-rate modulation of f̃π(n) on
clarinet tone. Parameters used are the same as those in
Figure 8.

Figure 9 provides another view of this effect on a por-
tion of the clarinet passage used above. The excerpt used
is approximately the first sonority of Figure 8 (approxi-
mately the first 4 seconds). Here, we see spectra of both
the distorted and undistorted clarinet tone. The estimated
fundamental frequency and a few of the surrounding com-
ponents exhibit significant sidebands, while the remainder
of the spectrum is left relatively unmodified. The effect of
the interaction between M and fb is to control the range of
affected components (see Figure 5).

The spectrum of the modulated tone is dense, and con-
tains subharmonics not present in the original signal. The
overall spectral envelope follows that of the original tone.

5. CONCLUSION

Cascaded and coefficient-modulated second-order allpass
filters have useful applications in detuning and phase dis-
tortion applications. The second-order allpass provides a
greater amount of control over the transition region of the
phase response than does the first. This property can be
used to apply phase distortion to only specific frequency
ranges. The parametric second-order allpass filter was pre-
sented, along with a means of making the parameters - and
therefore the coefficients - time-varying. This allows for
the use of the filter as a frequency-selective phase distor-
tion effect, and a simple example of this effect applied to
a clarinet tone was provided. Some more realistic example
applications were also provided. The first example demon-
strated a low-frequency detuning effect applied to the up-
per harmonics of a recorded clarinet passage, and the sec-
ond applied a high-frequency phase distortion to the same
passage.

These filters are also being studied as components in self-
oscillating feedback systems, where they provide a method
of avoiding static timbres without introducing unwanted
gain or attenuation into the system. By introducing a time-
varying, frequency-dependent phase shift, the system func-
tion changes over time, thus producing dynamic and evolv-
ing sonic behavior.

This technique could also be extended to modulation of
the filter bandwidth parameter fb, the use of non-sinusoidal
parameter modulation functions, and the use of second-
order allpass cascades as a synthesis technique - whether
driven by a sinusoid or some other signal. Finally, multi-
ple cascades with different time-varying parameters could
be used in series, applying differing amounts of phase dis-
tortion to various spectral bands.
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ABSTRACT 
This paper describes a new sound processing technique 
to control perceived spatial extent in multichannel repro-
duction through artificial decorrelation. The technique 
produces multiple decorrelated copies of a sound signal, 
which when played back over a multichannel system, 
produce a sound image that is spatially enlarged. Decor-
relation is achieved through random modulation of the 
time-varying sinusoidal components of the original sig-
nal’s spectrum extracted using a modified version of the 
Loris sinusoidal modeling technique. Sinusoidal partial 
modulation (SPM) can be applied in varying measure to 
both frequency and amplitude. The amount of decorrela-
tion between channels can be controlled through adjust-
ing the inter-channel coherency of the modulators, thus 
enabling control of spatial extent. The SPM algorithm 
has lent itself to the creation of an application simple 
enough for general users, which also provides complete 
control of all processing parameters when needed.  SPM 
provides a new method for control of spatial extent in 
multichannel sound design and electroacoustic composi-
tion. 

1. INTRODUCTION 

 
Multichannel reproduction poses challenges to sound 
designers and electroacoustic composers that do not exist 
in traditional stereo. In particular, how does one control 
the listener’s perception of spatial imagery across an 
expanded reproduction space, especially attributes like 
spatial extent.  When listening to sounds in the real 
world, it is often easy to judge the size and extent of a 
sonic event. For example, the auditory image of a truck 
is larger, not only louder, than a cell phone, both of 
which appear smaller than the sound of the city in the 
background. If these three sounds were to be recorded 
and played back over a single loudspeaker, they would 
no longer be differentiated by the size of their auditory 
images. Most importantly, the background sound of the 

city would no longer be surrounding the listener. 
The most straightforward idea for controlling spatial 

extent is to spread a signal across multiple loudspeakers, 
but this fails almost completely due to the influence of 
the precedence effect [2].  Controlling the relative distri-
bution of amplitude across loudspeakers, as provided 
variously by VBAP [3], DBAP, and changing the order 
of Ambisonics [4], does nothing to address the influence 
of precedence, which varies with the source material and 
the relative size of the reproduction setting [2]. What can 
have an effect is the interaction of the loudspeaker sig-
nals with the acoustics of the room, but changes in spa-
tial extent are rather like side effects.  Wavefield Synthe-
sis [5] can reconstruct complete acoustic soundfields, but 
provides no methodology for the control of perceived 
spatial extent.   

The work presented here aims to provide a practical 
tool for controlling spatial extent in multichannel set-
tings, from 5.1 and octophonic systems to three-
dimensional loudspeaker arrays. Audio source material is 
manipulated to produce multiple decorrelated copies of a 
sound signal for distribution over a multichannel system. 
Decorrelation is achieved through random modulation of 
the time-varying sinusoidal components of the original 
signal’s spectrum, extracted employing sinusoidal mod-
eling. Additionally, by employing parameters outside 
their normative range, this technique can also be used for 
unusual creative sound processing. 

2. BACKGROUND 

2.1 Auditory Spatial Impression 

Auditory Spatial Impression (ASI) is the characteristic of 
human auditory sensation associated with the acoustics 
of sources in a physical space. It attempts to group to-
gether all the sensations related to the spatial qualities 
and characteristics of the perceived sound. It has been 
described as composed of three distinct components: 
“spaciousness”, “size impression,” and reverberation [6]. 
It is generally accepted that “spaciousness” itself consists 
of at least two separate and distinct components [7,8]: 

1. Apparent Source Width (ASW) is defined as the 
“width of a sound image fused temporally and spa-
tially with the direct sound image 

2. Listener envelopment (LEV) is defined as “the de-
gree of fullness of sound images around the listen-
er”. 

† This paper is based on material presented in [1]. 
Copyright: © 2013 Cabrera and Kendall. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License 
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited. 
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ASW includes the sensations of broadness, blurriness 
and ambiguity of localization, while LEV imparts the 
sensation of fullness and surrounding [9]. ASW has also 
been called by some authors perceived spatial extent [10] 
and individual source width [11] in the context of loud-
speaker reproduction.  

An alternative approach to describing spatial impres-
sion has been proposed by Griesinger, who from the per-
ceptual perspective of a recordist partitioned spatial im-
pression into three components Continuous Spatial Im-
pression (CSI), Early spatial impression (ESI) and Back-
ground spatial impression (BSI)  [12]. These concepts 
and terminology, however, are not as widely used and 
cited as the previous. 

The concept of Apparent Source Width is well accept-
ed within the acoustics community, and it has been 
shown that the phenomenon is related the perception of 
spatial extent that occurs in multi-channel reproduction 
of incoherent or decorrelated signals [13]. However, to 
distinguish it from the acoustic phenomenon, the term 
“spatial extent” will be employed here for the phenome-
non experienced in loudspeaker reproduction.  

2.2 Incoherent Signals in Reproduction 

The similarity of signals played back over multiple loud-
speakers is instrumental in the perceptual fusion of these 
signals into a single auditory image in the phenomenon 
known as the precedence effect. However, if the signals 
are different, they will be perceived as separate sources 
originating from separate spatial locations. A particular 
and important case occurs when signals contain the same 
spectral components and energy distribution, but differ in 
their on-going phase relationships. Their time domain 
representations can be so different that there is no coher-
ent temporal relationship between them. The simplest 
example is two independent noise signals, which will 
have the same spectrum but a wholly different and unre-
lated time-domain waveforms. When incoherent and 
spectrally identical signals are played back over two 
loudspeakers, the spatial image can vary from two iden-
tical sounding sources in two locations to one image with 
a broad spatial extent. There are three parameters that 
have been shown to influence the perception of spatial 
extent of the sound. They are: 

1. The location of loudspeakers with respect to the lis-
tener and each other. 

2. The amount of decorrelation between the signals in 
the speakers and its corresponding effect on the 
decorrelation between the signals at each ear. 

3. The level difference between the loudspeakers. 
As shown by Damaske [14], the broad spatial extent 

produced by incoherent noise is very clear when the 
loudspeakers are separated by a narrow angle. When the 
angle becomes wider, the image tends to dissociate and 
will be split between both loudspeakers, with less sound 
material perceived in between. For example, according 
to Damaske an angle of 90° between two frontal loud-
speakers can result in dissociated and independent imag-
es. Damaske also investigated the effect of varying the 
amount of decorrelation in quadraphonic reproduction, 
and found that when the degree of incoherence for a 

band of noise increased, so did the perception of spatial 
extent. Wagener showed that the degree of envelopment 
could also be controlled with relative signal levels using 
delayed incoherent reflections. As the level of the inco-
herent reflections increased, so did the perceived envel-
opment [14]. 

2.3 Fluctuations of ITD and ILD 

It has also been shown that modulation of interaural 
time difference (ITD) and interaural level difference 
(ILD) can affect the perception of spatial extent in a sim-
ilar way. Aschoff showed that fast moving sources can 
produce wide images when the speed of movement is too 
fast for the auditory system to track [14]. Griesinger 
found that fluctuations of ITD and ILD with frequencies 
lower than 3Hz have the effect of making the perceived 
sound move [15]. However frequencies greater than this 
will result either in a wider image, or the perception of a 
narrow image in the presence of a surrounding ambiance. 
Mason et al has showed that the magnitude of fluctua-
tions in the ITD is related to the perception of ASW [16]. 

 Mason et al. later showed that the relation between 
decorrelation and ASW is mediated by frequency, as 
some frequency areas, like the mid range, require more 
decorrelation to be perceived as wide as lower frequen-
cies with less decorrelation [17]. 

3.  SINUSOIDAL PARTIAL MODULA-
TION (SPM) 

3.1 Rationale 

There is a long history of audio techniques that aim to 
enhance perceived spatial extent. The vast majority of 
these techniques involve manipulations in the time do-
main, though many produce spectral artifacts such as 
coloration and phasiness. Of these, particularly notewor-
thy is that of using random-phase all-pass filters first 
proposed by Kendall [10], because the technique is able 
to produce controlled levels of decorrelation among mul-
tiple audio channels. These decorrelation filters were 
shown to affect the precedence effect as well as per-
ceived source width. Potard and Burnett [18] enhanced 
Kendall’s all-pass filtering technique by decomposing 
the sound into three sub-bands (Low 0-1 kHz, Mid 1-4 
kHz and High 4-20 kHz) that enabled different amounts 
of decorrelation to be applied. Both techniques suffer 
artifacts due to their static filtering, because the localiza-
tion cues for any particular band of frequencies is static. 

Discussed here is an innovative technique especially 
appropriate to multi-channel reproduction called Sinus-
oidal Partial Modeling (SPM). This technique applies 
controllable amounts of dynamic modulation to the par-
tials of a source signal. Through the technique of sinus-
oidal modeling a set of time-varying sinusoidal partials 
together with residual energy information can be extract-
ed from a source signal. Decorrelation can then be intro-
duced at the resynthesis stage through modulation of the 
frequency and amplitude of the partials, which are resyn-
thesized using oscillator banks, one for each output 
channel.  Thereby any number of decorrelated copies of 
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a monophonic source signal can be created. In multi-
channel reproduction, they produce a wide image. This 
approach to decorrelation can offer the following ad-
vantages over previous techniques: 

1. Any number of output channels can be produced.  
2. Since there is no time-domain filtering involved and 

modulation can be kept below perceptual thresholds 
while still achieving decorrelation, only spatial char-
acteristics of the source, i.e. source width, should be 
affected.  

3. Because the decorrelation is dynamic, the typical ar-
tifacts of static decorrelation like phasiness or static 
location cues will not be present. The product of this 
technique can resemble natural spatial widening oc-
curring due to reverberation because of this dynamic 
nature.  

4. SPM can provide control over the source width for 
multichannel playback, as the decorrelation can be 
carefully tailored to different circumstances, by af-
fecting parts of the spectrum in different ways or 
controlling the relation between decorrelation and 
speaker location  

5. The algorithm can also be used as a creative sound 
design tool to modify the sound drastically through 
extreme modulation (beyond the point where it is 
clearly audible as pitch deviation) that will have spa-
tial effect as it is different for every channel.  

There are also some disadvantages to this approach. 
Sinusoidal modeling is applicable to processing a wide 
variety of sources although it tends to be less successful 
at capturing full mixes, which might include frequent 
complex transients and quickly varying noise and sinus-
oidal components.  It will generally perform better with 
individual tracks or submixes which can be mixed to-
gether.  However, in the present implementation, effort 
was made to minimize artifacts through custom im-
provements, so that full mixes are rendered more suc-
cessfully given appropriate settings. 

3.2 The Algorithm 

Sinusoidal Modeling is well suited to allow independ-
ent modulation of each of the components with the 
knowledge that the perceived source identity will be pre-
served if the modulation stays within perceptually de-
tectable thresholds. Additionally, the amount of decorre-
lation among different regions of the spectrum within a 
single channel or between channels can be precisely con-
trolled through controlling the similarity between the 
modulating signals for the bands.  

The algorithm presented here attempts to avoid the ob-
vious drawbacks of sinusoidal modeling by adopting and 
enhancing the Loris model [19]. The Loris technique for 
analysis/resynthesis was chosen because it uses the time-
frequency reassignment method, which produces greater 
precision in time and frequency for a particular window 
size than other frequency estimation techniques. This 
means the analysis can use smaller windows with better 
frequency resolution than regular FFT, while also reduc-
ing time and transient smearing through time reassign-
ment. This allows for a very high precision of sinusoidal 
tracking while giving adequate transient representation. 

Additionally, Loris provides a method for representing 
the residual/stochastic energy of a signal in the form of 
energy “band-width,” which is assigned to partials then 
recreated using “band-width enhanced” oscillators. Con-
sequently, the inter-channel decorrelation level of the 
stochastic energy can be controlled as precisely as the 
deterministic part. These two characteristics make Loris 
a good starting point for the system discussed here, as it 
is best able to represent most types of practical signals. 

 

  
Figure 1. Overview of algorithm for Sinusoidal Partial 
Modulation. 

3.3 Resynthesis and Decorrelation 

A set of oscillator banks, one for each output channel, 
resynthesizes the input signal based on its sinusoidal 
analysis. As specified in Loris, the basis for resynthesis 
is the bandwidth-enhanced oscillator, which has frequen-
cy, amplitude and bandwidth as parameters for each 
breakpoint in the partial tracks. It is at this stage that the 
frequency and amplitude are modulated to produce inter-
channel decorrelation. The modulator curves for partial 
track modulation need to have the following characteris-
tics: 

1. They must be random but low-passed to sub-audio 
frequencies to avoid audible sidebands.  

2. The values must be clamped within +/- max to limit 
the maximum deviation from the original frequency 
and to have no DC offset.  

3. They should be economical in terms of CPU usage, 
as a great number of them need to be calculated.  

4. The signal must not make big sudden jumps that 
could easily stand out. 

The random modulators could be constructed by low-
pass filtering white noise, which would generate band-
limited signals, but having that many filters running con-
tinuously would have a huge impact on CPU load. Addi-
tionally, although the range can be easily limited, there 
would be no way of preventing large jumps in the signal 
other than reducing the range. Because of this, an alter-
native simple method for generating low-passed modula-
tor signals was developed.  The signal is constructed by 
performing quadratic interpolation between random val-
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ue breakpoints that are produced at regular intervals. 
How the random breakpoint generator works is shown in 
Figure 2. The maximum frequency of the modulator sig-
nal can be controlled and will be half the rate at which 
new breakpoints are produced. Each new random break-
point is limited to a range around the previous one, in a 
sort of random walk algorithm. This guarantees that the 
jumps are never too large. Additionally to make sure the 
random values stay within the upper and lower limits, it 
is necessary to clamp the edges of the random range, 
forcing the breakpoint values to tend toward the center 
when they are close to the edges. This can be seen in 
Figure 2 at point 5, where the top of the range from point 
4 has been reduced.  

 

 
Figure 2. Random value generation constraints applied 
to one modulator signal. 

The starting “phase” of the random modulator update 
function are randomized, so that each modulator will 
produce points at a different moments in time. This is 
necessary to avoid having high likelihood of the modula-
tors peaking and having minimums at the same point in 
time, or other parallel motion that could be perceived.  

An example of an actual modulator signal is shown in 
Figure 3, where random points are generated every 512 
points, with a maximum jump of 1. Due to the interpola-
tion, the modulator curves can occasionally and briefly 
cross the limits. This is not a problem as it would only 
mean a minor temporary increase in frequency or ampli-
tude deviation. 

 

 
Figure 3. Resulting random modulation curve. 

The coherency of the modulators and therefore the co-
herency between the output signals can be controlled by 
having a modulator bank which can be mixed together in 
any desired way to produce the final modulators. In this 
way coherency between output signals can be carefully 
controlled. Although not a widely studied subject, it 
seems likely that random modulation occurring within a 
critical band could cancel out or be diminished within 
the ear. To ensure this does not happen, one independent 
modulator is used per critical band (24 in total) so that 
sinusoidal partials falling within the same channel and 

same critical band are modulated by highly correlated 
signals. 

3.4 SPM Implementation 

The SPM algorithm was implemented in C++ to be able 
to reuse as much code from Loris as possible, though 
many parts of Loris still needed to be rewritten or modi-
fied. The resulting program is called Sprokit (SPatial 
PROcessing KIT) is designed for multiple platforms, 
including Linux, OS X and Windows. Any audio pro-
cessing like Sprokit that involves FFT-based processing 
will introduce latency as a window of samples must be 
accumulated before any process can take place. Addi-
tionally, this process must accumulate the output of at 
least two windows in order to do the partial tracking as 
trajectories to the peaks of the second window start al-
ready during the resynthesis time of the first window. 

Because the calculations for the modulators require 
more CPU time than current systems can provide, the 
program currently runs offline, that is, it must load a file 
and write the output files to disk, rather than streaming to 
an audio card. However, it is internally designed to even-
tually meet real-time requirements. It implements 
streaming analysis and resynthesis, which has the benefit 
for offline processing of enabling the processing to stop 
at any moment, while still producing a valid output audio 
file.  

The interface has a main window showing the most 
important parameters that affect the spatial properties of 
the sound like relative level of the output signals and 
amount of decorrelation. The rest of the parameters are 
in a separate “properties” dialog window which is  avail-
able if the user requires more advanced control. Figure 4 
shows the final graphic user interface running on Linux. 
A set of sliders to allow per-channel adjustment of level 
(trim) and wet/dry mix. This was deemed useful as level 
and mix enable an engineer or composer to adjust the 
spatial image, a clearly desirable and practical feature. 
This particular implementation is limited to eight output 
channels, which was considered sufficient for most prac-
tical uses, although the algorithm itself has no such en-
forced limit. 

  

Figure 4. Main graphical user interface for Sprokit. 
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The algorithm parameters not presented in the main 
window of the application are accessible in the properties 
dialog window from the application’s menus. This dialog 
window, has an initial page containing the parameters for 
analysis and resynthesis, and two additional pages with 
the specific parameters for frequency and amplitude 
modulation. 

A simple preset mechanism was developed to be able 
to quickly switch between different configurations for 
consistent testing. Separate presets for the analysis and 
the resynthesis parameters are implemented to allow 
holding one constant while experimenting with the re-
sults of the other. 

3.5 Objective Evaluation of SPM 

A comparative objective study was performed to deter- 
mine the effects of the SPM technique on interaural cross 
correlation (IACC) and other computational measures 
predicting spatial extent. The tests were conducted to 
verify that the algorithm produced interaural effects in a 
similar way to other techniques known to produce an 
enlarged source width, such as incoherent noise or sound 
processed through all-pass random-phase filters. To per-
form the tests, a set of typical audio signals were pre-
pared in addition to coherent and incoherent noise. These 
signals were passed through the Kendall decorrelation 
algorithm [10] and the SPM multichannel decorrelation. 
Then, all the processed and original signals were ren-
dered binaurally using convolution of HRIRs positioning 
them according to five selected loudspeaker configura-
tions and simulating the effect of the cross-talk that 
would occur if the signals were played back over loud-
speakers in the specified locations. These binaural sig-
nals were evaluated using three different metrics (In-
teraural cross-correlation coefficient, Interaural cross-
correlation fluctuation function and Mason’s Perceptual-
ly Motivated Measurement of Spatial Sound Attributes 
(PMMP) ) to verify that the algorithm affects predictors 
of source width. The result confirmed that SPM affected 
predictors of spatial extent as expected and in ways 
comparable to Kendall decorrelation. 

3.6 Strategies for Multichannel Sound Design 

A wide image width is obtained when decorrelated sig-
nals are routed to each separate loudspeaker. The most 
continuous impression of width is likely to be achieved 
when loudspeakers are not too far apart; otherwise, there 
might be an empty space perceived between the speak-
ers. Using a higher density of loudspeakers tends to pro-
duce a better impression of width and of being surround-
ed by the sound. 

For a 5.1 setup, when the source is monophonic, the 
original source can be placed on the center speaker, with 
decorrelated copies on the other four. This creates a 
frontal bias, because transients will be stronger and 
sharper in the original signal, and the decorrelated copies 
will spread the sound around the listener. If a center 
loudspeaker is not available, the original sound can be 
mixed into the front channels. Using pre-delay in this 

case can help the center channel stand out, or blend bet-
ter if desired. 

A useful strategy when processing a stereo sound 
source for an octophonic layout is to place the original 
stereo signal in the front pair of speakers without trans-
formation (dry only), and then on the other three speak-
ers on the left, decorrelated copies of the left channel, 
and similarly for the right. This has the effect of preserv-
ing the original transients of the signal, with strong bias 
towards front localization, while still producing an effec-
tive spread of the sound in all directions. The lateral 
(left-right) separation of the original stereo source is also 
accurately preserved. 

Since the processing works best for individual sources, 
it can be used as part of the compositional process to 
treat individual elements independently. The decorrelat-
ed copies of elements can then be positioned and used as 
desired, allowing for different width parameters, spread 
and spatial locations and for each source. The processed 
and unprocessed signals can be distributed across  space 
by treating them as independent objects using techniques 
like VBAP or ambisonics. This would allow moving 
sources as well as potentially interesting spatial effects 
like adjusting source width dynamically or merging and 
separating sources. 

4. CONCLUSIONS 
This paper has presented a novel method for controlling 
apparent spatial extent in multichannel reproduction. The 
Sinusoidal Partial Modulation (SPM) method produces 
and controls the multichannel decorrelation of audio sig-
nals, through bringing together in an unusual way two 
usually separate areas of audio signal processing: sinus-
oidal modeling and decorrelation. The SPM algorithm is 
suitable for processing as wide a variety of audio materi-
al as sinusoidal modeling is. For the most satisfying re-
sults, the algorithm should be applied to individual tracks 
or submixes. 

Most existing decorrelation techniques are based either 
on static phase shifts (generally using time domain filter-
ing) or on applying modulation across the time domain 
signal as a whole. The SPM decorrelation technique is in 
a way a mixture between the two since the amount of 
phase shift varies through random modulation and is 
different for different areas of the spectrum. Thus, the 
decorrelation produced by this technique is both fre-
quency dependent and dynamic. The SPM technique also 
allows very fine control over the decorrelation in relation 
to frequency. This opens new possibilities for the explo-
ration of the frequency dependence of decorrelation.  
Then too, dynamic decorrelation is less prone to the kind 
of artifacts typical of other techniques.  For example, the 
timbre of the output appears less colored. 

Finally, the algorithm lent itself to the creation of an 
application simple enough for general users, but provid-
ing complete control of all processing parameters when 
needed.  
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ABSTRACT

In the search for low-cost, highly available devices for
real time audio processing for scientific or artistic purposes,
the Arduino platform comes in as a handy alternative for a
chordless, versatile audio processor. Despite the fact that
Arduinos are generally used for controlling and interfacing
with other devices, its built-in ADC/DAC allows for cap-
turing and emitting raw audio signals with very specific
constraints. In this work we dive into the microcontroller’s
structure to understand what can be done and what are the
limits of the platform when working with real time digi-
tal signal processing. We evaluate the behaviour of some
common DSP algorithms and expose limitations and pos-
sibilities of using the platform in this context.

1. INTRODUCTION

Arduino is the name of a hardware and software project
started in 2005 which aims to simplify the interface of
electric-electronic devices with a microcontroller [1]. It
evolved from the Processing software IDE 1 (2001) and
the Wiring software and hardware prototyping platform 2

(2003). Hardware, software and documentation designs
are published under free licenses (Creative Commons BY-
SA 2.5, GPL/LGPL and CC BY-SA 3.0, respectively) and
a large community has grown to provide code and support
for newcomers. Nowadays, many Arduino hardware de-
signs are available and range from more limited 8-bit mi-
crocontrollers to fully featured 32-bit ARM CPUs. Be-
sides, other advantages of Arduino for academic and artis-
tic use are its mobility (because of its low power needs and
possibility of running on batteries for hours, if not days
depending on the use), expandability (because of its stan-
dardized interface for attaching so called hardware shields)
and price (selling for under 20 US dollars online).

Despite all these advantages, the Arduino platform has
a somewhat limited processing power when compared to
standard processors available in the market, as for example
DSP chips such as Analog Device’s Blackfin 32-bit RISC

1 http://www.processing.org/
2 http://wiring.org.co/
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processors 3 and FPGA-based processors such as Xilinx
Virtex-7 family 4 . Research and industry advances have
led to optimized computational performance and power con-
sumption for these platforms [2], but we could not find a
thorough examination of the use of a low-tech device such
as the Arduino.

In this work, we aim to systematically expose the micro-
controller-based Arduino platforms’ possibilities for car-
rying real time digital audio processing tasks so there can
be more accurate elements to be taken into account when
making the choice for a platform. Code examples can be
downloaded from the IME/USP Computer Music Group
webpage 5 .

1.1 Related work

Arduino has been experimentally used as a real time au-
dio processor for sampling audio and control signals with
an effective rate of 15.125 KHz [3], which provided the
base for our investigation. Also, an ALSA audio driver was
implemented to use the Arduino Duemilanove [4] as a full-
duplex, mono, 8-bit 44.1 KHz sound card under GNU/Linux.

2. METHODS

In order to meet the needs for real time audio processing,
the microcontroller has to be tweaked so we can capture,
process and output analog audio. Each of these tasks can
be performed in a variety of ways, and for this examina-
tion we chose to go with the basic functionalities of the
platform.

In this investigation, we used an Arduino Duemilanove
with an ATmega328P microcontroller from Atmel, a very
modest version of the platform. It has an 8-bit RISC central
processor, operates with a base frequency of 16 MHz, and
has memory capacity of 32 KB for program storage and
2 KB for random access [5]. From now on, whenever we
refer to the microcontroller, we are in fact talking about
this specific model from this specific manufacturer.

2.1 Microcontroller’s elements

To be able to know how to configure the platform to suit
our needs, a general understanding of the inner workings of
a microcontroller is needed. The Atmel megaAVR series

3 http://www.analog.com/en/processors-
dsp/blackfin/products/index.html

4 http://www.xilinx.com/products/silicon-devices/fpga/virtex-
7/index.htm

5 http://compmus.ime.usp.br/en/arduino
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microcontroller is comprised of several components, some
of which are fundamental for our investigation and so will
be briefly covered in this section.

2.1.1 Clocks

Many clocks provide the frequencies in which the different
parts of the microcontroller work. They are basically either
emitters or dividers of square wave signals that provide the
frequency of operation of the CPU, the ADC, the memory
access and other components of the microcontroller. Pos-
sible sources of clock frequencies are crystal and RC os-
cillators.

A useful concept associated with clocks is the one of a
prescaler. Prescalers are dividers for clock frequencies
that either actually lower the frequency of a clock or at
least trigger specific interrupts on a (power of two) frac-
tion of a clock’s frequency.

The system clock provides the system’s base frequency
of operation. Other important clocks are the I/O clock and
the ADC clock used for feeding a frequency to most of the
input/output mechanisms. It is possible to choose which
clock will feed a frequency to some parts of the system,
as well as select prescaler values independently. In our
study, we make use of the timer clock prescaler to control
the PWM frequency that drives our DSP mechanism, as we
will see in Section 2.3.

2.1.2 Registers and interrupts

The microcontroller’s CPU is comprised of an arithmetic
logic unit that works with 32 registers – portions of me-
mory that provide data for computation as well as deter-
mine the execution flow of the program. An interrupt is an
attempt of deviation from the current execution flow that
can be triggered by a variety of events in the system, usu-
ally by setting reference values on specific registers.

In our case, interrupts are of extreme value as they are
the low level structures that allow us to execute code with
a somewhat fixed frequency (at least if we assume that the
clock frequencies are indeed constant in relation with real
time).

2.1.3 Timers/counters

A timer, or counter, is a register whose value is automat-
ically incremented according to a specific clock. When
a counter hits its maximum value it is reset to zero and
signals an overflow interrupt, which may cause a certain
function to be called.

Timers are important in the context of DSP because they
provide a natural way to perform many of the DSP chain
tasks, as for example to periodically launch the input signal
sampling function (that fills the input buffer) and to emit a
PWM square wave which, after analog low-pass filtering
(through an integrator), corresponds to a smooth analog
signal. The ATmega328P has two 8 bit counters and one
16 bit counter, each having different sets of features but all
being capable of doing PWM.

2.1.4 Input and output pins

Microcontrollers can receive and emit digital signal through
I/O pins, which in the case of the Arduino board are con-
veniently mounted in such a way that it is easy to plug
other components and boards. These pins are read from
and written to according to frequencies governed by dif-
ferent clocks (I/O, ADC and others).

In principle, the microcontroller pins are designed to work
with binary signals represented by two different voltages
(0 V and 5 V with a threshold value to account for small de-
viations). Despite that, I/O pins come equipped with handy
mechanisms for sampling band limited input signals whose
voltages vary between the reference extremes, and also
for generating waveforms that, after being filtered, output
varying signals of the same nature. These mechanisms are,
respectively, the analog-to-digital converter (ADC) and the
pulse-width modulation (PWM), which will be seen in the
next sections.

2.1.5 Memory

The microcontroller has 3 manageable memory spaces for
storing the program and working data, and the following
table summarizes the different characteristics and purposes
for each type of memory:

Type Size
(KB)

Data per-
sistency

Write time
(clock ticks)

Endurance
(write/erase
cycles)

Flash 32 yes 1 10,000
SRAM 2 no 2 n/a

EEPROM 1 yes 30 100,000

Usually, the Flash memory stores the program, the SRAM
memory stores volatile data used along the computation,
and the EEPROM is used for longer-term storage between
working sessions. Notice that the amount of SRAM me-
mory represents a hard limit for many DSP algorithms. A
512 point lookup table filled with precalculated sinewave
bytes, for example, represents 25% of all available work-
ing space. Thus, it might be interesting to store hardcoded
data in the program memory whenever possible if memory
working space is lacking.

2.2 Audio in: ADC

Data can flow into the microcontroller in a variety of ways,
the most basic being embedded mechanisms for digital se-
rial communication and analog-to-digital conversion using
the input pins. The former mechanism can feed digital data
directly into memory, while the latter can either read 1 bit
from an input pin (as explained in the last section) or sam-
ple an analog value between the reference voltages using 8
or 10 bits resolution.

Rather than providing the microcontroller with digital data,
our setup uses the embedded analog-to-digital conversion
to sample an audio signal using the microcontroller pins’
ADC mechanism. This choice was made so the signal can
be directly connected to the microcontroller (i.e. no exter-
nal device has to be used for sampling) and we can study
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the device’s performance taking into account this crucial
step in the digital audio processing chain.

The ADC uses a Sample and Hold circuit that holds the
input voltage at a constant level until the end of the con-
version. This fixed voltage is then successively compared
with reference voltages to obtain a 10 bit approximation.
If a faster conversion is desired, precision can be sacrificed
and the first 8 bits can be read before the last 2 are com-
puted. Conversion time takes between 13 and 250 µs, de-
pending on several configuration parameters that influence
the precision of the result.

As noted before, the ADC mechanism has a dedicated
clock to ensure conversion can occur independently of other
microcontroller parts. Also, the mechanism can be trig-
gered manually (on demand) or automatically (a new con-
version starts as soon as the last one has finished).

2.3 Audio out: PWM

Once the input signal has been sampled and processed, one
way to convert it back to analog is to use the embedded
pulse-width modulation (PWM) mechanism that is avail-
able in some of the output pins of the microcontroller, fol-
lowed by an analog filtering stage. A PWM wave encodes
a determined value in the width of a square pulse. In or-
der to do this, it defines a duty cycle as the percentage of
time that the square wave has its maximum value in rela-
tion to the total time between square pulses (see Figure 1).
The encoding of a value x ranging from X1 to X2 is just
the enforcement of a duty cycle with a percentage equal to
x−X1

X2−X1
.

Figure 1. Examples of PWM waves with different duty
cycles. The left alignment of the waves corresponds to the
Fast PWM mode.

The final analog filtering stage is needed to remove high
frequency components present in the square wave spec-
trum to reconstruct a band limited signal. In our case, this
filtering is made from a simple RC integrator circuit that
stands between the output pin and a normal speaker.

The PWM mechanism can operate in different modes which
vary according to how the reference value to be encoded

relates with a counter’s signal to generate the output val-
ues of the modulated wave. In Fast PWM mode, the output
signal is set to 1 in the beginning of the cycle and becomes
0 whenever the reference value becomes smaller than the
counter value (see Figure 2). This mode has the disadvan-
tage of outputting the square pulses aligned to the left of
the PWM cycle, and so the Phase correct mode is avail-
able to solve this problem at the expense of cutting the sig-
nal generation frequency in half. It works by making the
counter count back to zero instead of being reset when it
hits its maximum value.

Figure 2. Time evolution of register values in the PWM
mechanism. TCNTn is the value of the counter and OCnx
is the value of the output pin. Note how changes in the
reference value determine the duty cycle on each wave pe-
riod.

The output frequency of the PWM signal is a function
of the clock selected to be used as input for the counter,
the counter prescaler value, the size of the counter (in bits)
and the PWM mode. For a b bits counter with input clock
of fclock Hz and prescaler value of p, an output pin con-
figured to operate in fast PWM mode overflows with a

frequency of
fclock
p× 2b

Hz. This provides us with a way to

output the processed signal while using the same infras-
tructure to schedule periodic actions, such as querying for
ADC values and signaling that blocks of samples are ready
to be processed.

Also notice that the counter size determines the output
signal resolution, as the duty cycles of the square waves
correspond to the ratio between the current counter value
and its maximum possible value. We will see more about
parameters choice for PWM on section 2.5.2.

2.4 Real time processing

The main constraint in real time DSP is, of course, the
amount of time available for the computation of output
samples: they must be ready to be consumed by the play-
back hardware or else glitches and other unwanted arti-
facts will possibly be introduced in the signal. One round
of sample analysis, processing and calculation of a new
sample is called a DSP sample cycle. Many algorithms,
though, operate in blocks of samples, consuming and pro-
ducing a whole block of samples in each round. If the DSP
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block has N samples and the sample rate is R Hz, then the
DSP block cycle period is given by TDSP = N

R seconds.
In order to implement this behaviour in the microcon-

troller, we have to find a way to (1) accumulate input sam-
ples in a buffer, (2) schedule a periodic call to a function
that will process the samples in this buffer, and (3) out-
put modified samples in a timely fashion. Components are
at hand: ADC for reading the input signal, counters and
their interrupts for running periodic tasks, and PWM for
outputting the resulting signal. In addition, the Arduino li-
brary provides a loop() function that is called repeatedly
which we can use to process the block of samples when it
becomes available.

As we saw in section 2.3, the PWM mechanism provides
an overflow interrupt frequency that may be used to sched-
ule a function for periodic execution. In our setup we use
this mechanism to periodically read samples from the ADC
mechanism and accumulate them in an input buffer, while
also writing the computed samples from the last DSP cycle
to the PWM output buffer. In this same function, whenever
the buffer is full and ready to be processed, a flag is set and
the loop() function is released to work on the samples.

Note that for some critical applications, the term “real
time execution” might mean that the application should be
interrupted whenever its time for computation is up. In the
case of real time digital audio, if no output sample could be
computed before the output hardware tries to read it, audi-
ble artifacts may be unavoidable had the computation been
interrupted or not. Thus, our approach concentrates on
measuring the time taken by certain algorithms and com-
paring it with the DSP cycle period, and does not account
for what happens should the time not be sufficient.

2.5 Implementation

Putting all the elements together is a matter of choosing
the right parameters for configuring different parts of the
microcontroller.

2.5.1 ADC parameters

ADC conversion takes about 14.5 ADC clock ticks, includ-
ing sample-and-hold time. If the CPU clock frequency is
16 MHz and the ADC prescaler has a value of p, then the
ADC clock period is p/16 and the conversion period is
then Tconv = (14.5 × p)/16. Below we can see a table
with the theoretical values for the conversion period Tconv
for all prescaler values available and also the results T̃conv
of measured conversion times using each prescaler value.
Also depicted in the table are the measured conversion fre-
quencies f̃conv = 1/T̃conv.

ADC prescaler Tconv (µs) T̃conv (µs) f̃conv (≈KHz)

2 1.8125 12.61 79.302
4 3.625 16.06 62.266
8 7.25 19.76 50.607
16 14.5 20.52 48.732
32 29 34.80 28.735
64 58 67.89 14.729

128 116 114.85 8.707

These measurements were made using the micros()
function of the Arduino library API, which has a resolution
of about 4 µs. This might explain part of the deviation of
measured values from the expected values for lower values
of prescaler. 8 bit approximation was used, and for obtain-
ing a 10 bit approximation we can expect an overhead of
about 25% in conversion time.

It is important to note that the choice for ADC prescaler
value limits the sampling rate of the input signal. As our
setup uses a counter’s overflow interrupt to obtain samples
from the ADC mechanism, the ADC conversion period
must be smaller than the the PWM’s cycle period. Any
prescaler choice that leads to a frequency higher than the
PWM’s overflow interrupt frequency is valid, but the lower
the prescaler value the lower the quality of the conversion.

2.5.2 PWM

From Section 2.3 we can see that in a 16 MHz CPU, an 8
bit counter with prescaler value of p has an overflow inter-
rupt frequency of foverflow = 106/(p × 24) Hz. Below we
can see a table with the overflow interrupt frequency for all
possible values of prescaler:

PWM prescaler fincr (KHz) foverflow (Hz)

1 16.000 62500
8 2.000 7812

32 500 1953
64 250 976

128 125 488
256 62,5 244
1024 15,625 61

The choice of PWM and ADC prescaler values determine
directly the sampling rate of our DSP system. If we set the
ADC prescaler in a way that the ADC conversion period is
smaller than the PWM overflow interrupt period and syn-
chronize reads from the input with writes to the output,
then the PWM overflow interrupt frequency becomes the
DSP system’s sample rate. We will see this with more de-
tails in the next section.

For the PWM mechanism, we chose to use Fast PWM
mode on an 8-bit counter with prescaler value of 1. That
would give us a sample rate of 62500 Hz, which is enough
for representing the audible spectrum. Nevertheless, if we
need more time to compute we may artificially lower the
frequency by only executing the sampling/outputting bit in
a fraction of the interrupts. For our tests, we chose to cut
the sample rate in half using the rationale that the payoff
of having more time to compute is larger than the one of
ensuring we can represent the upper fifth part of the audi-
ble spectrum. Therefore, our final choice of sample rate is
31250 Hz, with a sample period of 32 µs.

2.5.3 Putting it all together

Having chosen a value for the PWM counter size and PWM
prescaler, we are left with the choice for ADC parame-
ters. As noted, it suffices to choose a value that ensures
ADC conversion period is smaller than the desired sam-
ple period. We chose to use 8 bit conversion to match
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the PWM resolution and to provide for a faster conversion
time. Also, we chose an ADC prescaler value of 8, with a
measured conversion time of 19.76 µs which, when com-
pared with the a sample period of 32 µs ensures that con-
version will be finished before the input ADC is queried
for the sample.

Below we can see the code for the interrupt service rou-
tine (ISR) DSP controller function. Variable x is the input
buffer, ADCH maps to the ADC register holding the input
sample, OCR2A maps to the PWM output register and y is
the output buffer. Some of the code is index wizardry and
the rest we comment below.

// Timer2 Interrupt Service at 62.5 KHz
ISR(TIMER2_OVF_vect) {
static boolean div = false;
div = !div; // divide frequency to 31.25 KHz
if (div){

// 1. read from ADC input
x[ind] = ADCH;
// 2. write to PWM output
OCR2A = y[(ind-MIN_DELAY)&(BUFFER_SIZE-1)];
// 3. signal availability of new sample block
if ((ind & (BLOCK_SIZE - 1)) == 0) {
rind = (ind-BLOCK_SIZE) & (BUFFER_SIZE-1);
dsp_block = true;

}
// 4. increment read/write buffer index
ind++;
ind &= BUFFER_SIZE - 1;
// 5. start new ADC conversion
sbi(ADCSRA,ADSC);

}
}

Note that in step 3 we test if the input index is a multiple
of the block size and, if it is, we set a read index rind and
signal that there is a new DSP block available for calcu-
lation. Meanwhile, the loop() function is running con-
currently and will eventually catch that signal and start to
work on samples. Finally, we increment buffer indexes and
perform the call to start a new ADC conversion by calling
the sbi() function.

2.6 Benchmarking

We are interested in evaluating the performance of the Ar-
duino board on some common sound processing tasks, in
order to gain insight on its real time stream processing ca-
pabilities. Note that our interest lies in high-level DSP op-
erations; for instance, we’d prefer to know how many si-
multaneous sinusoids can be synthesized in real time rather
than how many multiplications and additions fit between
successive DSP blocks (even though the former follows
from the latter).

Some questions arise immediately from the real time con-
straint:

• What is the maximum amount of DSP operations
that can be carried in real time?

• Which implementation details make a difference?
We try to answer these questions by running 3 differ-

ent DSP algorithms in the microcontroller environment de-
scribed in the last section. The chosen tasks are additive
synthesis, time-domain convolution and FFT computation,
and are discussed in the following sections.

2.6.1 Additive synthesis

An additive synthesis is the process of constructing a com-
plex waveform by adding together several basic waveforms
(see Figure 3). This technique has been widely used for
synthesizing new sounds as well as resynthesizing signals
after they have been processed (e.g. via spectral methods).

Figure 3. Additive synthesis: many basic oscillators gov-
erned by independent phase (fi) and amplitude (ri) func-
tions are combined to form a complex signal.

The high level code for a simple additive synthesis can be
seen below:
for (n = 0; n < N; n++)
{

angle = 2.0 * M_PI * t;
y[n] = 0.0;
for (k = 0; k < numFreqs; k++)

y[n] += r[k]*sin(f[k] * angle);
t += 1.0 / SR;

}

2.6.2 Time-domain convolution

Frequency-domain multiplication of spectra correspond to
time-domain convolution of signals, and such an operation
allows for some techniques of frequency filtering. The
time-domain implementation of convolution is a widely
used technique in many computer music algorithms, be-
ing particularly efficient when the filter order N is small.
The general scheme can be seen in Figure 4.

Figure 4. Time-domain convolution: the input signal x[n]
is convolved with the filter’s impulse response defined by
the coefficients bi to generate the output signal y[n]. This
is the general scheme for FIR filtering.

The high-level code for a time-domain convolution with
a FIR filter of order N is:
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for (k = 0; k < N; k++)
y[n] += b[k]*x[n-k];

2.6.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a clever implemen-
tation of the traditional Fourier Transform that brings its
complexity down from O(n2) to O(n log(n)), where n
is the number of time-domain digital samples or, equiva-
lently, the number of frequency bins that describe the fre-
quency spectrum of the signal after the Transform compu-
tation [6]. The FFT algorithm takes advantage of redun-
dancy and symmetry on intermediary steps of the calcula-
tion and is used in many signal processing algorithms. The
general scheme of the FFT can be seen in Figure 5.

Figure 5. The FFT uses a divide-and-conquer approach
and saves intermediate results to accelerate the calcula-
tion of a signal spectrum. The figure shows one step of
an 8-point FFT calculation and how the results map to fre-
quency bins.

2.6.4 Benchmarking

Each of the algorithms mentioned in the last sections have
different computational costs in terms of number of integer
and floating-point operations, and quantity/size of memory
reads and writes.

In the context of real time audio processing in Arduino,
these algorithms bring natural questions regarding feasibil-
ity of processing:

• Additive synthesis: what is the maximum number of
oscillators that can be used to compute a new wave-
form in real time?

• Time-domain convolution: what is the maximum length
of a filter that can be applied to an audio signal in
real time?

• FFT: what is the maximum length of an FFT that can
be computed in real time?

3. RESULTS

3.1 Additive synthesis

The first experiment tries to answer the question of how
many oscillators can be used when performing real time

additive synthesis inside the platform. In the beginning of
the DSP cycle, an additive synthesis algorithm is run using
a determined number of oscillators and the mean of the
synth time is taken over ten million measurements. Block
sizes used had 32, 64 and 128 samples (more showed to be
unfeasible in real time) and the number of oscillators was
increased until the DSP cycle period was exceeded.

The first result has to do with the use of loop structures.
Because looping usually requires incrementing and testing
a variable in each iteration, the use of one loop structure
may have strong influence in the amount of oscillators that
can be used in real time for additive synthesis inside the
Arduino.

In any DSP algorithm that works over a block of samples
there is at least one loop structure, that loops over all sam-
ples of the block. This loop could be eliminated at the cost
of having to recompile the code every time the length of
the block is changed, which is highly inconvenient. Usu-
ally more loops will be used, for instance in additive syn-
thesis for summing the result of several oscillators. We
investigate the alternative of removing this inner loop, by
explicitly writing the sum of oscillators. Figure 6 shows
the maximum amount of oscillators feasible in real time
by making use of a loop and by making use of inline code.
By removing the inner loop we were able to increase from
8 oscillators to 13 or 14 depending on the block size.
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Figure 6. Additive synthesis results using loops (above)
and inline code (below).
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While implementing this experiment, a first attempt was
made using the standard API sin() function. As that
proved to be unfeasible in real time, we focused on table
lookup implementations. At this point we noticed that even
the smallest implementation difference can have large im-
pact on the results. Therefore, we decided to test and plot
the results for slightly different implementations.

Two parameters are used to calculate the value of each
oscillator: phase and amplitude. Phase is handled by up-
dating the index for sine table reads, and then the amplitude
has to be multiplied by the value obtained by the lookup.
Floating point operations are also extremely expensive in
the platform we are using, so we implemented 3 differ-
ent ways of multiplying the amplitude: (1) by using one
integer multiplication and one integer division (2 integer
operations), (2) by using only one integer division (1 in-
teger operation), and (3) by using variable bit padding for
performing bitwise power of 2 divisions or multiplications.
Figure 7 shows the time used by the additive synthesis al-
gorithm using these variants. By making use of lower level
operations (that achieve less precise results) and inline cod-
ing we were able to raise the number of oscillators from
3 (when using 2 integer operations and a for loop) to 15
(when using a variable pad and inline code).
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Figure 7. Time taken for additive synthesis algorithm with
block size of 128 samples, using different number and
kinds of operations and variable number of oscillators.

3.2 Time-domain convolution

Our second experiment tries to clarify what is the maxi-
mum size of a FIR filter that can be applied in real time
to an input signal by use of time-domain convolution algo-
rithms. Following lessons learned on the first experiment,
we implemented the filtering loop using different types of
operations for multiplying each coefficient by the sample
values: (1) using one integer multiplication and one integer
division, (2) using variable pad, and (3) using a constant
hardcoded pad. The results for each of these implemen-
tations can be seen in Figure 8. This experiment was run
with a sample rate of 31250 Hz and block sizes of 32, 64,
128 and 256 samples.

Results again show that small implementation differences
make a big difference on computing power. When using
integer division, the maximum order obtained for the filter
was 1, while by using a variable pad the order raised to 7
and with constant padding we could achieve an order of 13
or 14 depending on the block size.
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Figure 8. Time-domain convolution using 2 integer op-
erations (top), variable padding (middle) and constant
padding (bottom).

3.3 FFT

The third experiment is concerned with the maximum length
of an FFT that can be computed in real time inside an Ar-
duino. In this case we chose to evaluate a standard imple-
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mentation of the FFT without further modifications.
It turned out that calculating an FFT using the same sam-

ple rate we used in the other experiments (31250 Hz) was
unfeasible, so we had to tweak the microcontroller’s pa-
rameters to reach a state where we had a longer DSP cy-
cle period for the same amount of samples and the FFT
was indeed feasible. By measuring the amount of time
taken to compute the FFT given the number of samples,
we could determine that the maximum FFT frequency for
a 256 samples block is of about 2335 Hz. So by raising the
PWM prescaler value to 32, we could reach a sample rate
of about 1953 Hz.

Figure 9 shows the FFT analysis time at a sample rate of
1953 Hz for different block sizes. We can see that in this
scenario the maximum block size for which an FFT can
be computed in real time in our DSP setup in the Arduino
is 256 samples. This was expected because we actually
forced a sample rate small enough so that the 256 sam-
ples FFT was feasible. Note that, even though we can ac-
tually perform the FFT for block sizes smaller or equal to
256, there’s not much time left for doing anything else with
these results. An additive synthesis for reconstructing the
signal, for example, is unfeasible as the maximum number
of oscillators we could use was 14 (by restricting the type
and number of operations), while here we would need the
same number of oscillators as the number of samples in the
block size.
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Figure 9. Time taken to compute the Fast Fourier Trans-
form on the Arduino for different block sizes. The red line
depicts the implementation using the sin() library func-
tion and the blue line shows a lookup-table implementation

4. DISCUSSION AND CONCLUSION

From the results of our experiments, it becomes clear that
implementation details, such as choice of data type and
number and type of operations, make a big difference in
the amount and quality of computation, as described in
Sections 3.1 and 3.2. Integer multiplication and division,
for example, take double the time than integer sum. The
amount of loops also proved to make a big difference. In
Section 3.1, we nearly doubled the amount of oscillators

that can be used in additive synthesis by only substituting
one loop with inline code. The mere use of variables also
showed to influence performance.

These experiments may serve as illustrations of the type
of concern that must be kept in mind when implement-
ing sound processing tasks in Arduino, and also serve as
general guidelines for the limitations on the complexity of
those tasks when real time functioning is required.

4.1 Future work

There are many possibilities of investigation in the realm
of microprocessors like Arduino for real time sound pro-
cessing, such as:

• Use of 10-bit ADC input and adapting tests for per-
forming 2 byte operations. We should expect each
operation to cost much more time because of the 8
bit nature of the processor.

• Determine of the amount of noise introduced in the
signal by the ADC sampling/PWM synthesis pro-
cess.
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ABSTRACT

We present a method of audio interpolation suitable for the
restoration of missing and/or corrupted audio samples. Our
method assumes that the missing/corrupted samples can be
easily identified and are subsequently treated as missing
data. We then model the audio signal as a linear combi-
nation of elementary waveforms (referred to as atoms) and
estimate the values of the missing samples by solving a
penalized linear regression problem. A first work in this
direction was recently presented using the moniker ‘audio
inpainting’ (in deference to similar work in the image pro-
cessing community). We extend this avenue of research
by incorporating additional continuity constraints into the
problem, which leads to improved estimates of the miss-
ing data. Furthermore, we show how our method leads to a
natural framework for morphing/transitioning between two
sounds. Finally, we present several examples that illustrate
the effectiveness of our interpolation strategy and the qual-
ity of morphing that can be attained.

1. INTRODUCTION

It is not uncommon for audio signals to suffer some form of
degradation during the various stages of recording, trans-
mission, and playback. For example, a scratched com-
pact disc or dropped network packet can lead to chunks
of missing samples. Likewise, impulsive clicks, clipping,
and noise are common forms of audio degradation. In this
work we focus specifically on localized types of distor-
tion. In other words, we assume that the distorted samples
are surrounded by undistorted ones (which occurs in many
practical situations). Furthermore, we assume that the dis-
torted samples can be easily identified, either manually, or
through some other process (e.g., by detecting regions of
silence, clipping, and so on). The task at hand is then one
of interpolation, i.e., we aim to estimate the missing sam-
ples at known locations using the surrounding data.

There are several works in the literature aimed at audio
interpolation [1–5]. In Janssen et al. the sound was mod-
elled as an autoregressive (AR) process and the unknown
†Centre for Interdisciplinary Research in Music Media and Technology
?School of Interactive Arts + Technology
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parameters are estimated from the known data [1]. The
missing/corrupted samples can then be interpolated using
the AR model.

The work presented in Adler et al. [5] was inspired by re-
lated research in the image processing community on ‘in-
painting’ (a process whereby missing pixels are interpo-
lated from the surrounding ones [6]). We may also view
the inpainting problem as a regression problem when the
signal is modeled as a linear combination of elementary
functions (atoms).

In the following sections we describe an extension of the
audio inpainting work in [5] using recent results in struc-
tured sparse modelling of audio [7]. We compare our ap-
proach to those presented in [5] and [1] and show that in
both cases we achieve superior reconstruction of the miss-
ing samples (in terms of minimizing the estimation error).
We also demonstrate how the proposed method leads to a
natural framework for morphing/transitioning between two
sounds.

The remaining sections are laid out as follows. We first
present our model and then outline a sketch of the interpo-
lation problem. We then propose an estimation algorithm
based on penalized linear regression with continuity con-
straints. Finally, we present several examples illustrative
of our interpolation and morphing results.

2. THE ADDITIVE MODEL

We adopt the following additive sound model

y(t) =
∑
m

∑
n

xm,nφm,n(t) (1)

In other words, the audio signal y(t) is modelled as a linear
combination of elementary waveforms φm,n(t) referred to
as atoms. The double indices (m,n) typically have a time-
frequency interpretation (and their extent depends on the
signal length and bandwidth). For example, we use Gabor
atoms

φm,n(t) = h(t− am) exp(j2πbnt) (2)

which are generated by translating and modulating a smooth
and compact window function h(t). In this model the pa-
rameters a and b are the time and frequency sampling in-
tervals, m and n are integer indices, j =

√
−1 is the

imaginary unit, and t is time. Gabor atoms are a natural
choice for modelling audio since they have a compact time-
frequency footprint (and thus represent distinct elements
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of the time-frequency plane). The synthesis coefficients
xm,n in this model can be calculated using the short-time
Fourier transform (STFT). However, when the set of atoms
is redundant (e.g., when the Gabor atoms are oversam-
pled in time and/or frequency) there is, strictly speaking,
no unique way to determine the synthesis coefficients. In
fact, in recent years considerable effort has been invested
into examining alternative methods for estimating the syn-
thesis coefficients. In particular, sparse representations are
increasingly seen in the literature (see [8] for a review).
There are many advantages to sparse models, chiefly data
reduction and increased salience of the model parameters
(i.e., there is a clearer correspondance between the atoms
and the sound signal). Furthermore, many natural signals
are inherently sparse which has spurred on much of the
growth in this area. For example, in the field of compres-
sive sensing it has been shown that sparse signals can be
reconstructed using a small number of measurements [9].
We show in the following sections how sparsity can be
used in a similar way to regularize the interpolation pro-
cedure.

3. PROBLEM FORMULATION

3.1 Interpolation

In discrete-time the sample values are known at a distinct
set of locations and thus the model in Eq. (1) can be re-
written as

y = Φx (3)

where y is a vector containing the audio samples, the columns
of the dictionary Φ are Gabor atoms, and x is a vector of
synthesis coefficients. When the signal is degraded/distorted
we lose information about y. When interpolating audio
samples we assume that only some of the samples from y
are reliable and that the others should be treated as missing
data (to be re-estimated). We can model this scenario as

z = My (4)

where z is the observed signal and M is a diagonal (bi-
nary) mask matrix that indicates which samples from y are
reliable and which should be treated as missing data. Re-
placing y in Eq. (4) with the model from Eq. (3) leads to

z = (MΦ)x = Ψx (5)

where we use Ψ to represent the degraded dictionary. If we
can accurately estimate x from Ψ and z, then we may re-
construct the missing samples via linear regression, i.e., us-
ing the linear model in Eq. (3). This summarizes the inter-
polation setup, however, we have not yet considered how
to estimate x. We withhold this discussion until Sec. 4.

3.2 Morphing/Transitioning

We can use the same setup described in the previous sec-
tion to morph/transition between different sounds. For ex-
ample, we can generate a new sound by concatenating a
source sound, silence, and a target sound together. We
may then treat the samples between the source and target

as missing data (by generating an appropriate mask ma-
trix). In this case performing the interpolation procedure
will create a morph or transition between the two sounds.

We note that this type of morphing is based on waveform
interpolation as opposed to feature (or descriptor) inter-
polation [10]. Descriptor interpolation (e.g., interpolating
between partials [11]) is more common in the literature,
however, recent examples of waveform interpolation can
be found as well. For example in Olivero et al. [12] the
authors examined how to find a time-frequency multiplier
capable of transforming one sound into another.

Many morphing techniques aim to create several hybrid
sounds lying somewhere between the source and target [13].
Our approach, on the other hand, is a simple technique
for smoothly transitioning between two sounds and, in this
sense, bears more similarity to a cross-fade. However, our
morphing results are quite audibly different from cross-
fading in many cases (as we demonstrate in the results
section). In essence we propose to use (or maybe more
accurately abuse) the interpolation procedure in order to
produce large chunks of new samples based on the sur-
rounding data.

4. ESTIMATION PROCEDURE

4.1 Penalized linear regression

As we noted in Sec. 2, when the Gabor atoms are over-
sampled in time and/or frequency (which is typically the
case), there is no unique way to determine the synthesis
coefficients. Furthermore, even if the Gabor atoms were
critically sampled, the degraded dictionary would still be
rank deficient due to the multiplication by M (which dis-
cards data). This means that the system of equations in
Eq. (5) is underdetermined and there is no unique way to
determine x. In this case, we can regularize the problem
by introducing an objective function that penalizes certain
types of solutions. In other words, we seek a solution that
is consistent with our a priori knowledge of what a “good”
solution should look like by penalizing solutions that devi-
ate from this expectation. For example, we could attempt
to solve

min ‖x‖22 subject to ‖z−Ψx‖22 ≤ ε (6)

where the second term expresses our desire for a solution
that is consistent with the observed data and the first term
penalizes large coefficients (in this case the goal is to find a
minimum energy representation). When ε = 0 the solution
to this set of equations corresponds to the pseudo-inverse.
Unfortunately, the pseudo-inverse tends to result in solu-
tions which contain many small non-zero coefficients (and
this tends to complicate the interpretation and use of the
additive model) [14].

Another approach to counteract the ill-posedness of the
interpolation problem is to penalize non-sparse solutions.
There are many reasons for preferring sparse solutions as
highlighted at the end of Sec. 2. We may leverage the fact
that musical signals tend to be relatively sparse when rep-
resented using Gabor atoms and the additive model. For
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example, it is well-known that sparse signals can be recon-
structed using a limited set of measurements (this is the
basis of compressive sensing) [9].

In Adler et al. [5] sparse approximation was suggested
as a tool to regularize the audio interpolation process. In
particular, the orthogonal matching pursuit (OMP) algo-
rithm was used to estimate the additive model coefficients
in Eq. (5).

An alternative way to find sparse representations is to re-
place the 2-norm in Eq. (6) with the 1-norm which leads
to the basis pursuit denoising (BPDN) optimization prob-
lem [15]:

min ‖x‖1 subject to ‖z−Ψx‖22 ≤ ε (7)

The 1-norm is attractive seeing as it is convex (so conver-
gence to a local minimizer is guaranteed) and because it
often induces sparse solutions [16].

In [7] it was shown that additional structure exists be-
tween the non-zero coefficients in sparse atomic models
of audio. Specifically, it was shown that time-frequency
representations of audio tend to exhibit a high degree of
continuity between temporally adjacent atoms. This result
is due to the fact that musical sounds tend to be somewhat
stable (e.g., the decay time of a resonant mode tends to
be longer than the length of individual atoms, and there-
fore multiple adjacent atoms tend to be activated simulta-
neously). In the following section we describe how recent
results on structured-sparse modelling of audio can be ap-
plied to the interpolation problem. We begin by reviewing
the proposed optimization problem and then discuss algo-
rithms for its solution (a more detailed treatment of this
formulation can be found in [7]).

4.2 Structured-sparse estimation

We would like to modify the BPDN optimization problem
in order to exploit joint relationships between the represen-
tation coefficients. To this end we propose the following
generalization of the BPDN problem (termed G-BPDN)
for structured-sparse estimation:

min ‖f(x)‖1 subject to ‖z−Ψx‖22 ≤ ε (8)

Ideally, the function f should sparsify x. This in turn al-
lows us to use a BPDN-like formulation with coefficient
vectors that are sparse after some transformation. This for-
mulation is similar to the co-sparse analysis formulation
from [17], however, we do not restrict f to be a linear op-
erator. For the task of audio interpolation we propose using
then following G-BPDN objective function:

‖f(x)‖1 = ‖L|x|‖1 (9)

where |x| = [|x1|, |x2|, . . . , |xn|]T is a vector containing
the magnitudes of x and

L =

[
γ̃D
γI

]
(10)

In our case the analysis operator D is a matrix designed
to calculate the amplitude difference between temporally

adjacent pairs of coefficients and γ̃ = 1 − γ. The param-
eter γ ∈ [0, 1] can be used to emphasize either sparsity or
amplitude continuity, however, in this work we simply fix
γ = 0.5 (in which case it drops out of the optimization
problem).

In this form, the G-BPDN optimization problem can be
used to emphasize sparsity of the time-frequency coeffi-
cients as well as the sparsity of their time derivative (which
should produce solutions with greater temporal continu-
ity). It should be noted that the proposed optimization
problem is quite similar to both the fused-lasso [18] and
total-variation denoising [19] which are well-known in the
statistics and image processing literature, respectively.

We propose solving this problem via smoothed projected
gradient descent as outlined in [7]. We note that other tech-
niques, such as the alternating direction method of multi-
pliers (ADMM), could be used as well [20]. Projected gra-
dient descent is a two-step procedure: a gradient descent
step is taken and the result is projected onto the set of fea-
sible solutions [21, 22]. The steps of this algorithm are
outlined in Alg. 1.

Algorithm 1 Projected Gradient G-BPDN

1: init: x(0) = ΦHz, n = 0
2: repeat
3: u(n) = x(n) − µ · diag(S∞(x/e))LTS∞(L|x|/e)
4: λ(n) = max

(
0, ε−1/2‖z−Ψu(n)‖2 − 1

)
5: x(n+1) = u(n) + λ(n)

1+λ(n) Ψ
H(z−Ψu(n))

6: n = n+ 1
7: until stopping condition

In Alg. 1, line 3 corresponds to the gradient descent
step and line 5 corresponds to a projection onto the fea-
sible set 1 . The operator S∞ denotes projection onto the
inf-norm ball and e is a smoothing parameter (as outlined
in [7]). In general we stop this algorithm when the change
in the objective function from one iteration to the next is
small (e.g., less than 10−6), however, a maximum number
of iterations may be enforced as well.

5. RESULTS

5.1 Interpolation results

In this section we provide results that demonstrate the ef-
ficacy of our structured-sparse estimation approach. We
focus specifically on an experiment outlined in Adler et
al. [5] so that we may directly compare our results against
a recent (and similar) approach. The test data consist of
10, five seconds music signals sampled at 16kHz which
are available from [5]. Each of these audio excerpts was
corrupted periodically (every 100ms) by setting an interval
of samples to zero. The size of the missing interval dura-
tion was varied from a fraction of a millisecond up to 10ms
in order to gauge how the performance would change with
respect to the amount of missing data. A mask matrix was
manually created to identify the missing samples. In the

1 Provided Ψ is a Parseval tight frame as outlined in [7].
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following experiments we used a tight frame Gabor dic-
tionary created using Hann windows of length 64ms with
75% time overlap 2 . Furthermore, we set the parameter
ε = 10−10 in order to force our model to represent the
known samples with virtually no error 3 .
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Figure 1. Results of interpolation for missing intervals of
various durations. Results averaged over 10 test signals.

The interpolation performance was evaluated by measur-
ing the signal-to-noise ratio (SNR) between the true signal
and the residual error:

SNR = 10 log10
‖y‖22

‖y −Φx̂‖22
(11)

where x̂ is the vector of estimated model coefficients.
Fig. 1 illustrates the SNR vs. missing interval duration

averaged over all 10 test signals for both sparse and struc-
tured sparse interpolation (e.g., the solutions to Eq. (7) and
Eq. (8), respectively). This graph also shows the results
obtained using code from [5] (labelled as OMP) and the
AR model from [1] (labelled as Janssen). The G-BPDN
interpolation obtains the highest SNR in all cases. The
benefit of G-BPDN (over the purely sparse estimation) is
also more readily apparent as the missing interval duration
grows. This illustrates that solutions with greater temporal
continuity are indeed beneficial for bridging larger gaps of
missing samples. The AR model from Janssen [1] also per-
forms well for large gaps and even outperforms the purely
sparse solution in this case. This is presumably because
the AR model contains a memory of the previous samples
(and therefore better models the temporal structure of the
signal).

Fig. 2 illustrates the interpolated waveforms for a missing
interval of 10ms (for a single test sound). It is evident that
the G-BPDN solution is slightly closer to the true wave-

2 In this work the set of dictionary atoms span the space of the input
signal. Block/frame-based processing was not used.

3 We note that the value of ε we use is smaller than the one used in
[5]. It is difficult to say whether or not this effects the results since the
algorithms used are completely different. The value of ε used in this work
was optimized to obtain the best result for the algorithm we considered
(and we assume the authors in [5] would have done the same as well).

form than the other estimates. However, one can not auto-
matically conclude that an improvement will be perceived
when listening to the interpolated sounds. Indeed, when
listening to sounds interpolated with BPDN and G-BPDN
the results are very similar. This may, however, be a con-
sequence of the fact that the auditory system is capable of
filling in short gaps in missing sounds, which is a well-
known fact (see for example, [23]). We have included
several examples of interpolated sounds on the companion
website [24].
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Figure 2. Waveform plot showing the interpolated results
for a single test signal over a missing interval of 10ms.

From a computational point-of-view BPDN and G-BPDN
have approximately the same complexity (each is domi-
nated by two matrix vector products with the dictionary
at each iteration). The overall complexity will depend on
the number of iterations required for convergence which is
difficult to predict a priori. A possible advantage of our
approach is that after each iteration the coefficients x will
satisfy ‖z−Ψx‖22 ≤ ε. In other words, the representation
error is always bounded. An analysis of the computational
complexity of OMP can be found in [25]. Quite informally
we note that BPDN and G-BPDN both ran much faster (be-
tween 5-10× faster for a full run) than OMP on the same
computer (all algorithms were implemented in Matlab and
run on the same data).

5.2 Morphing results

As mentioned in Sec. 3.2 we can use the interpolation frame-
work in order to transition between a source and target
sound. To recap: we simply include a gap of missing
samples between the two sounds which is subsequently
treated as missing data to be interpolated. In general, the
amount of data we want to estimate is much greater when
transitioning between two sounds (in comparison to typi-
cal restoration tasks). The atoms in the Gabor dictionary
should, at minimum, span the interval we wish to interpo-
late. As a rule of thumb we have found that atoms any-
where from 2 to 4× the gap length produce good results.
As this leads to very long atoms in practice, it is wise to
ensure that the number of known samples is at least this
large as well.
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When estimating the additive model coefficients using
Eq. (8) we have some flexibility with regard to the param-
eter ε, which controls the degree of approximation error
that we are willing to tolerate (with respect to the known
samples). As we increase the value of ε the set of feasible
solutions grows, which in turn means that solutions with
a greater degree of temporal continuity may be found (al-
though these solutions will no longer perfectly match the
known data). This flexibility can be beneficial when transi-
tioning between two sounds since we often want the tran-
sition to be as smooth as possible. We have also found that
novel sounds/timbres can be created with large values of ε
(these can be heard online as discussed below).
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Figure 3. A one second transition between a saxophone
passage and a female vocal excerpt (the sampling rate was
16kHz). Top: known data (light gray), interpolated data
(dark gray). Bottom: spectrogram.

Fig. 3 shows a one second transition between a saxo-
phone passage and a female vocal excerpt. For this ex-
ample a Gabor dictionary with 2s long atoms was used and
ε was set to 10−10. The spectrogram seems to indicate an
extension and averaging of the partials from each sound
in the transition region. The audible impression for this
particular transition is that the start/end of each sound has
been extended into the transition region by adding reverb
and preverb (i.e., reverb that precedes the sound).

We cannot quantitatively assess the morphing results (since
no ground truth data exists for such a task). In order to
qualitatively test the morphing results we have experimented
with a wide variety of sources/targets including relatively

stable sounds (e.g., clarinet, trumpet, tuba) and sound tex-
tures (drums, noise, abstract sounds). We also tested sev-
eral missing interval durations from very short durations
(250 ms) to extremely long durations (3 s). We have posted
several audio examples on the companion website [24].

We make the following qualitative observations regarding
these sounds. Firstly, for stable smooth sounds the morph-
ing is quite similar to a simple cross-fade, although our
transition appears to be slightly smoother. However, for
more complicated sounds the results are quite audibly dif-
ferent from a simple cross-fade (the timbre during the tran-
sition appears to be more of a hybrid than a simple sum of
the two signals). As mentioned above the effect sometimes
sounds as though the source and target have been extended
into the transition region by adding reverb and preverb. In-
deed, since the atoms used are very long, their tails extend
into the transition region, which helps to create this effect.

In our examples the cross-faded sounds are somewhat
shorter than the interpolated sounds. This is because we
must overlap the source and target sounds when we make
a cross-fade. This could certainly be remedied by using
more data for the cross-fade, however it brings to light a
benefit of our interpolation approach: since we generate
entirely new data for the transition, we can create longer
transitions using less source material. This might be valu-
able in certain situations where the amount of available
data is limited (for example, transitioning between tiny
slices of sound which is common in some genres, e.g., ‘mi-
crohouse’).

We also note that tuning the value for ε allows us to create
a wide variety of different sounds (some of which sound
more ‘wet’ and others which sound more ‘dry’). The abil-
ity to tune ε is a major advantage of our technique since it
leads to many interesting transition effects.

6. CONCLUSION

We have presented a method of audio interpolation that can
be used to restore missing or corrupted audio data. We
began by modelling the sound as a linear combination of
time-frequency atoms. Then, based on the observation that
many musical signals are simultaneously sparse and struc-
tured (in terms of temporal continuity between the additive
model coefficients), we proposed a structured-sparse op-
timization problem for estimating the model parameters.
This model was subsequently used to synthesize an esti-
mate of the missing samples. We compared our strategy to
several state-of-the-art interpolation schemes and showed
that, on average, our approach leads to an improvement
in terms of the SNR. We also highlighted how this pro-
cess can be used to morph/transition between sounds and
provided several audio examples representative of the kind
of results which may be achieved. Future work will ex-
amine additional types of structure/constraints that can be
leveraged to improve the interpolation procedure. Finally,
it would be interesting to consider a non-local approach
to interpolation, especially for signals that are highly non-
stationary. For example, one could try to integrating the
ideas in [26] within the sparse approximation framework.
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ABSTRACT

Conventional Time-Frequency and Time-Scale Represen-
tations are often too rigid to capture fine details of sound or
musical signals. Adaptation of ideal time-frequency tilings
is often desirable in order to represent the signal in terms
of components that are meaningful from a physical or per-
ceptual point of view.

Remapping of the time and frequency axes by means of
time and frequency warping can help achieve the desired
flexibility of the representation. However, in the general
case, the conjugate variable is affected as well, so that the
resulting representation plane is distorted. In this paper
we show methods to redress the conjugate distortion in-
troduced by warping, both in the unsampled case of the
integral Short-Time Fourier Transform and in the sampled
case of generalized Gabor frames.

Ultimately, the methods illustrated in this paper allow
for the construction and computation of Gabor-like non-
uniform time frequency representations in which the new
frames are obtained from uniform Gabor frames by fre-
quency warping both the time variable and the time index.
This provides a very general design procedure based on a
prescribed warping map that can be derived, e.g., from a
tonal scale.

1. INTRODUCTION

Time-frequency representations play a central role in the
analysis, synthesis, coding and processing of sound sig-
nals. In this context, the most commonly used represen-
tation is the phase vocoder or Short-Time Fourier Trans-
form (STFT), which has uniform time and frequency res-
olutions. However, non-uniform resolution is desirable in
several applications. For example, the analysis and synthe-
sis frequency bands can be adapted to a perceptual scale,
achieving clear advantages in synthesis and coding due to
the direct psycho-acoustic relevance of each component.
In synthesis-by-analysis schemes, the frequency bands can
be adapted to characteristics of the signal suggested, for
example, by the frequencies of the partials of the tones,
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Figure 1. Frequency warping uniform frequency bands ac-
cording to a1/3 of octave scale (top); resulting frequency
band characteristics (bottom). Hereb is the frequency shift
in Hz of the original uniform bands.

which in many instruments, such as the piano in the low
register or percussions, are not harmonically related.

Non-uniform frequency bands can always be thought of
as obtained from uniform bands through a frequency map,
i.e. a monotonically increasing function remapping the
frequency axis. In certain cases, e.g. critical bands, the
frequency map is given by experimentally fitted curves.
In other cases, such as in the vibration of stiff strings or
bars, the frequency map is derived from a wave dispersion
characteristic. Sometimes the map is only specified at a fi-
nite number of points; a continuous curve can be obtained
by interpolation. The application of a frequency map is
known in filter design as frequency warping, a practice dat-
ing back to Constantinides’s spectral transformations [1].
Frequency warping applied to a uniform system of bands
is shown in Fig.1 for adaptation to an equally tempered
scale.

In a similar way, non-uniform analysis time intervals can
be prescribed by remapping the time axis of the signal
before performing uniform time-frequency analysis. The
uniform analysis of the time warped signal achieves non-
uniform time resolution and can be employed, e.g., to in-
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crease the time resolution close to signal transients and to
reduce the time resolution in stationary portions of the sig-
nal.

However, frequency warping is not a time-shift invariant
operation: it actually disrupts the time organization of sig-
nals. Uniform time-frequency analysis of the frequency
warped signal results in a frequency dependent distortion
of the time axis in the warped time-frequency representa-
tion. Similarly, the time warped time-frequency represen-
tation shows time dependent distortion of the frequency
axis. Thus, warping one variable prior to uniform time-
frequency analysis affects the conjugate variable in the rep-
resentation plane.

In this paper, we address the problem of eliminating
or mitigating the distortion of the conjugate variable in
warped representations. We focus on the integral Short-
Time Fourier Transform (STFT) and on its sampled ver-
sion of Gabor frames. The method is quite general and can
be applied to other representations such as time-scale.

Based on recently developed results [2–4], we address
the problem of building perfect reconstruction structures
for the time-frequency representation of signals that allow
for arbitrary selection of bands specified according to a fre-
quency map. Mathematically this amounts to constructing
flexible frames that allow for parametric selection of the
frequency bands of their atoms.

Just as Gabor frames can be obtained by uniformly sam-
pling the integral STFT, the warped frames can be obtained
as a result of nonuniform sampling in time-frequency.
Nonuniform sampling theorems based on a time warping
map were introduced in [5] and their adaptation to fre-
quency sampling is immediate. Applications of frequency
warping to time-frequency analysis date back to [6]. How-
ever, work previous to our paper did not take dispersion
into account, which blurs the results of the analysis.

Orthogonal wavelets and wavelet frames [7], especially
in their complex form [8], can be thought of as an example
of nonuniform sampling of the time-frequency plane where
the sampling grid is the time-scale grid{man}n∈N,m∈Z.
Further adaptation leading to more flexible time-frequency
resolution settings were introduced in [9,10] for frequency
and in [11] for time. The methods found in this paper do
not make any assumption on the sampling grid. Rather,
the grid is derived from the warping map, which can be as-
signed arbitrarily within smooth and one-to-one functions.

The paper is organized as follows. In Section2 we re-
view the concept of applying time and frequency warping
to time-frequency representations derived from the contin-
uous time Short-Time Fourier Transform, pointing out the
problems introduced by dispersion. In Section3 we illus-
trate how dispersion can be counteracted by means of fur-
ther warping operations in the time-frequency domain. In
Section4 we attempt to apply the same redressing methods
to frames, which allow for sampled time-frequency analy-
sis and synthesis, and we provide the conditions by which
the redressing of dispersion is exact. In Section5 we illus-
trate the redressing method for frames, providing design
examples and applications to audio signals. In Section6
we draw our conclusions.

2. WARPED TIME-FREQUENCY

A uniform time-frequency representation is obtained by
applying the Short-Time Fourier Transform (STFT) opera-
tor S to the signals:

[Ss] (τ, ν) = 〈s, hτ,ν〉 = 〈s,TτMνh0,0〉 =
∫ +∞

−∞

s(t)h0,0(t− τ)e−j2πν(t−τ)
dt,

(1)

where Tτs(t) = s(t − τ) is the time-shift operator,
Mνs(t) = e

j2πνt
s(t) is the modulation operator and the

overbar denotes complex conjugation. The operatorS acts
over time signals and the angular frequencyν is considered
as a parameter. In (1), the analysis windows

hτ,ν(t) = [TτMνh0,0] (t) = h0,0(t− τ)ej2πν(t−τ) (2)

are modulated and shifted versions of a unique time win-
dow h0,0. Their Fourier transforms are related to the
Fourier transform of the original windoŵh0,0 as follows:

ĥτ,ν(f) = ĥ0,0(f − ν)e−j2πfτ
. (3)

Since[Ss] (τ, ν) = s(τ) ∗ h0,ν(−τ), where the symbol∗
denotes convolution, one can rewrite (1) in the frequency
domain w.r.t.τ as follows:

[

̂

Ss

]

(f, ν) = ĥ0,ν(f)ŝ(f) = ĥ0,0(f − ν)ŝ(f). (4)

Non-uniform time-frequency representations can be ob-
tained from uniform ones via time and / or frequency warp-
ing, as discussed in Section2.2, after we formally intro-
duce warping operators in the next section.

2.1 Warping Operators

A 1D warping operator performs a remapping of the ab-
scissae, as obtained through function composition. A time
warping operatorWγ is completely characterized by a
function composition operator in the time domain:

stw = Wγs = s ◦ γ, (5)

whereγ is the time warping map andstw is the time-
warped signal. Similarly, a frequency warping operator
Wθ̃ is completely characterized by a function composition
operatorWθ in the frequency domain:

ŝfw = Ŵθ̃s = Ŵθ̃ŝ = Wθŝ = ŝ ◦ θ, (6)

whereθ is the frequency warping map, which transforms
the Fourier transform̂s = Fs of a signals into the Fourier
transformŝfw = Fsfw of another signalsfw, whereF is
the Fourier transform operator and the hat over a symbol
denotes the Fourier transformed quantity (signal or opera-
tor). We affix thẽ symbol over the mapθ as a reminder
that the map operates in the frequency domain. Accord-
ingly, we haveWθ̃ = F

−1
Ŵθ̃F = F

−1
WθF .

If the warping map is one-to-one and almost everywhere
differentiable then a unitary form of the warping opera-
tor can be defined by amplitude scaling, as given by the
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square root of the derivative of the map (dilation function).
For example, a unitary frequency warping operatorUθ̃ has
frequency domain action

ŝfw(ν) =
[

̂Uθ̃s

]

(ν) =
√

∣

∣

dθ
dν

∣

∣ŝ(θ(ν)), (7)

whereν is angular frequency. We assume henceforth that
all warping maps are almost everywhere increasing so that
the magnitude sign can be dropped from the derivative un-
der the square root.

Unitary frequency warping ensures that the original sig-
nal energy is preserved. While bands are stretched or
shrunk, the amplitudes are correspondingly reduced or
increased so that the areas under the magnitude square
Fourier transform in the warped bands are the same as the
areas under the magnitude square Fourier transform of the
original signal in the original bands.

Frequency warping generally disrupts the time organiza-
tion of signals. Indeed, the time-shift operatorTτ does not
commute with the frequency warping operator:

[

Ŵθ̃Tτs

]

(ν) =
[

Wθ
̂Tτs

]

(ν) = e
−j2πθ(ν)τ

ŝ(θ(ν)),

(8)

which is different from
[

T̂τWθ̃s

]

(ν) = e
−j2πντ

ŝ(θ(ν)),

unless the mapθ is the identity map. Thus, an event that
starts at timeT in the original signal, is dispersed into
events starting at timesφd(ν)T , whereφd(ν) = θ(ν)/ν
is the phase delay of the warping map, which depends
on frequency unless the map is linear. This time disper-
sion results in audible de-synchronizationof the signal and,
as we will see, also in a distorted warped time-frequency
representation. Similarly, time warping disrupts the fre-
quency organization of signals resulting in time dependent
frequency dispersion.

2.2 Warped Time-Frequency Representations

Remapping signals prior to STFT allows for a reinterpre-
tation of the representation elements: while the organiza-
tion of the representation (tiling) remains the same, the el-
ements capture different components of the signal. Time
warping dilates / shrinks and displaces the characteristic
analysis time intervals (resolution and centers) w.r.t. sig-
nals. Frequency warping remaps the characteristic analysis
frequency bands w.r.t. signals (bandwidths and centers).

Given a (time or frequency) warping operatorWγ , the
warped STFT is defined through the operatorSγ as follows

[Sγs] (τ, ν) = [SWγs] (τ, ν) =

〈Wγs, hτ,ν〉 =
〈

s,W
†
γhτ,ν

〉

,
(9)

which is indeed a warped version of (1), whereW†
γ is the

adjoint of the warping operator. If the warping operator is
unitary then we haveW†

γ = W
−1
γ = Wγ−1 . In that case,

warping the signal prior to STFT is perfectly equivalent
to perform STFT analysis with inversely warped windows.
The warped STFT is unitarily equivalent to the STFT so
that a number of properties concerning conditioning and
reconstruction hold [12].

If Wγ is a unitary time warping operator, the warped
STFT analysis elements are

h̃τ,ν(t) =
[

Wγ−1hτ,ν

]

(t) =
√

dγ−1

dt
h0,0(γ

−1(t)− τ)ej2πν(γ
−1(t)−τ)

.

(10)

These elements are formed by time warped windows cen-
tered at timest = γ(τ), as desired. However, the analysis
frequencies are time-dependent. In fact, the instantaneous
frequencies of the elements in (10), which are given by the
time derivative of the phase of the complex exponential,

areν dγ−1

dt
.

Similarly, if Wθ̃ is a unitary frequency warping opera-
tor, the Fourier transforms of the warped STFT analysis
elements are

ˆ̃
hτ,ν(f) =

[

Ŵθ̃−1hτ,ν

]

(f) =
√

dθ−1

df
ĥ0,0(θ

−1(f)− ν)e−j2πθ−1(f)τ
,

(11)

which shows how the analysis elements are obtained from
frequency warped modulated windows centered at fre-
quenciesf = θ(ν). The windows are time-shifted with
dispersive delay, where the group delay isτ

dθ−1

df
.

In the applications we would like to produce spectro-
grams with non-uniform time or frequency resolution but
the dispersion introduced by warping results in misalign-
ment and spreading of the time-frequency components in
the conjugate variable of the warped one. In the next
section we will show how further warping in the time-
frequency plane can redress the warped representations.

3. REDRESSING THE WARPED STFT

To address the problem of realigning the frequency warped
STFT

[

Sθ̃s
]

(τ, ν), consider its Fourier transform w.r.t. the
time variableτ . This can be written in the form (4) by
replacing the Fourier transform of the signal with that of
the frequency warped signal:

[

ŜWθ̃s

]

(f, ν) = ĥ0,0(f − ν)
√

dθ
df
ŝ(θ(f)). (12)

Recall thatf is the angular frequency variable conjugate
to timeτ in the time-frequency plane. Performing unitary
frequency warping on this variable by means of the inverse
frequency mapθ−1 one obtains:

[

̂Wθ̃−1SWθ̃s

]

(f, ν) = ĥ0,0(θ−1(f)− ν)ŝ(f), (13)

where we have used the fact that

1 =
d[θ(θ−1(f))]

df
= dθ

dα

∣

∣

α=θ−1(f)
dθ−1

df
. (14)

The redressed frequency warped STFT (13) is again in the
form of a time-invariant filtering operation (convolution in
time domain) where the filters are frequency warped ver-
sions of the modulated windows in (4). As a result, the
dispersive delays in the analysis elements (11) are brought
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back to non-dispersive delays, the Fourier transform of the
redressed analysis elements being

ˆ̃̃
hτ,ν(f) =

[

̂TτWθ̃h0,ν

]

(f) = ĥ0,0(θ
−1(f)−ν)e−j2πfτ

.

(15)
It is possible to interpret (13) as the similarity transforma-
tion W

†

θ̃
SW

θ̃
on the STFT operator, which is time-shift

covariant.
A similar procedure for realigning the time-warped STFT

can be derived by considering the inverse Fourier trans-
form w.r.t. angular frequency in the time-frequency plane
(second argument of the STFT) and by applying inverse
time warping to the time variable conjugated to frequency
in time-frequency. To simplify the result, the inverse
Fourier transform can be taken with respect to time ori-
gin τ . This leads to a conjugate time covariant version of
the time warped STFT in which frequency dispersion is
eliminated.

4. WARPED GABOR FRAMES

4.1 Gabor frames

Given a window functionh and two sampling parameters
a, b > 0, the set of functions

G(h, a, b) = {TnaMmbh : q, n ∈ Z} (16)

is called a Gabor system. A signal s can be pro-
jected over a Gabor system by taking the scalar products
〈s,TnaMmbh〉. These are exactly evaluations of the STFT
of a signal with windowh at the time-frequency grid of
points(na, qb). Here we have defined the Gabor system
using the same convention as in the definition (1) of the
STFT. Usually, Gabor systems are defined with a reverse
order of time-shift and frequency modulation operators,
i.e. {MmbTnah : q, n ∈ Z}. However, the extra phase
factors that are introduced to convert from one definition to
the other are perfectly irrelevant when establishing proper-
ties of the system. Even in the computation the extra phase
factors cancel out in the analysis-synthesis algorithm, so
they can be ignored.

A sequence of functions{ψl}l∈I in the Hilbert spaceH
is called a frame if there exist both positive constant lower
and upper boundsA andB, respectively, such that

A‖s‖
2
≤

∑

l∈I

|〈s, ψl〉|
2
≤ B‖s‖

2
∀s ∈ H, (17)

where‖s‖2 = 〈s, s〉 is the norm square or total energy
of the signal. Frames generate signal expansions, i.e., the
signal can be perfectly reconstructed from its projections
over the frame.

A Gabor system that is a frame is called aGabor frame.
In this case, the signal can be reconstructed from the cor-
responding samples of the STFT. While not unique, recon-
struction can be achieved with the help of a dual frame,
which in turn is a Gabor frame generated by a dual win-
dow h̃. Perfect reconstruction depends on the choice of the
window and the sampling grid. One can show that there
exist no Gabor frames whenab > 1.

4.2 Warping Gabor frames

From (17) it is easy to see that any unitary operation on a
frame results in a new frame with the same frame bounds
A andB [12]. In particular, unitary operators can be ap-
plied to Gabor frames to obtain new frames. Depending on
the operator, the resulting frames are not necessarily of the
Gabor type, as the atoms are not generated by shifting and
modulating a single window function.

Conceptually, starting from a Gabor frame (analysis)
{ϕn,q}q,n∈Z

and dual frame (synthesis){γn,q}n,q∈Z
:

ϕn,q = TnaMqbh

γn,q = TnaMqbg,
(18)

whereh andg are dual windows, warped frames can be
generated by unitarily warping the signals prior to analysis
and unitarily unwarping it after the synthesis:

s = U
†

θ̃

∑

n,q∈Z

〈

Uθ̃s, ϕn,q

〉

γn,q =

∑

n,q∈Z

〈

s,U
†

θ̃
ϕn,q

〉

U
†

θ̃
γn,q,

(19)

whereUθ̃ is a unitary frequency warping operator. Defin-
ing the frequency warped frame (analysis){ϕ̃n,q}q,n∈Z

and dual frame (synthesis){γ̃n,q}n,q∈Z
as follows:

ϕ̃n,q = U
†

θ̃
ϕn,q = Uθ̃−1TnaMqbh

γ̃n,q = U
†

θ̃
γn,q = Uθ̃−1TnaMqbg,

(20)

one obtains the signal expansion

s =
∑

n,q∈Z

〈s, ϕ̃n,q〉γ̃n,q. (21)

However, warped Gabor frames suffer from the same prob-
lem as the warped STFT: as a result of frequency warping,
the time organization of the analysis and synthesis sys-
tems is disrupted; the windows are time-shifted with fre-
quency dependent shifts. Indeed the Fourier transforms of
the warped Gabor frame elements are

ˆ̃ϕn,q(f) =
√

dθ−1

df
ĥ(θ−1(f)− qb)e−j2πθ−1(f)na

, (22)

which bear frequency dispersive delays. In other words
dispersive time samples are produced by the direct appli-
cation of the warped frame analysis. Similar problems are
encountered when time-warping Gabor frames.

The magnitude Fourier transformsĥ(θ−1(f) − qb) of a
set of frequency warped modulated windows correspond-
ing to 1/3 octave frequency resolution is shown in Fig.1,
together with a scaled version1

b
θ
−1 of the warping map,

which maps warped frequency to fractional band number,
i.e., the integer values of1

b
θ
−1 correspond to the center

frequencies of the bands.
In the next section we are applying a similar procedure

to the one we introduced in the warped STFT in order to
realign the time-frequency samples.
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4.3 Redressing Warped Gabor Frames

The evaluation of the warped Gabor expansion coefficients

c̃n,q = 〈s, ϕ̃n,q〉 (23)

is identical to that of a time-frequency sampled warped
STFT. In order to redress the frequency warped STFT into
a time covariant representation we have introduced addi-
tional inverse frequency warping with respect to the time
variableτ in the time-frequency plane. However, in the
warped Gabor frames (20) this variable is sampled at in-
stantsna. Therefore, in order to parallel our warped STFT
redressing procedure in the warped Gabor frames, one can
only apply a discrete-time form of frequency warping to
the time indexn.

It is possible to show [13,14] that if the discrete-time fre-
quency warping mapϑ is one-to-one and onto[− 1

2 ,+
1
2 [,

and almost everywhere differentiable there, then the set of
sequences

ηm(n) =

∫ +
1
2

−
1
2

√

dϑ
dν
e
j2π(nν−mϑ(ν))

dν, (24)

wheren,m ∈ Z, forms an orthonormal basis of`2(Z).
These are recognized as generalized Laguerre sequences
[9, 10, 15], which are the inverse discrete-time Fourier
transforms of warped harmonic complex sinusoids in the
frequency domain interval[− 1

2 ,+
1
2 [. The mapϑ can be

extended over the entire real axis as congruent modulo1 to
a1-periodic function.

Given a sequence{x(n)} in `2(Z), the scalar products

x̃(m) = 〈x, ηm〉`2(Z) (25)

generate another sequence{x̃(m)} in `2(Z), which satis-
fies

ˆ̃x(ν) =

√

dϑ−1

dν
x̂(ϑ−1(ν)), (26)

where thê symbol, when applied to sequences, denotes
discrete-time Fourier transform. Thus,ηm(n) defines the
nucleus of an inverse unitary frequency warping`2(Z) op-
eratorD

ϑ̃−1
= D

†

ϑ̃
. Clearly, the transposed conjugate se-

quencesµm(n) = ηn(m) form the nucleus of a unitary
frequency warping̀2(Z) operatorDϑ̃.

In order to limit or eliminate time dispersion in the
frequency warped Gabor expansion, one can apply the
discrete-time frequency warping operatorDϑ̃−1 to the time
sequence of expansion coefficients over the warped Gabor
frame (23), i.e., with respect to indexn. Since the operator
is applied only on the time index, for generality, one can
include dependency of the map and of the sequencesηn on
the frequency indexq, which will be useful in the sequel.
The new coefficients are obtained as follows:

˜̃cn,q =
[

Dϑ̃
−1

q

c̃•,q

]

(n) =
∑

m∈Z

ηn,q(m) 〈s, ϕ̃m,q〉 =

〈

s,

∑

m∈Z

ηn,q(m)ϕ̃m,q

〉

.

(27)

In order to reconstruct the signal from the coefficients
˜̃cn,q one can first recover the coefficients̃cn,q, which
stems from the completeness and orthogonality of the set
{ηn,q}n∈Z, and then combine them with the dual warped
frame elements:

s =
∑

n,q∈Z

c̃n,q γ̃n,q =
∑

n,q∈Z

∑

m∈Z

˜̃cm,qηm,q(n)γ̃n,q. (28)

Hence, defining the redressed frequency warped Gabor
analysis and synthesis frames as follows:

˜̃ϕn,q = Dϑ̃
−1

q

ϕ̃•,q =
∑

m

ηn,q(m)ϕ̃m,q

˜̃γn,q = Dϑ̃
−1

q

γ̃•,q =
∑

m

ηn,q(m)γ̃m,q,

(29)

from (27) and (28) we have:

s =
∑

n,q∈Z

˜̃cn,q ˜̃γn,q =
∑

n,q∈(Z)

〈

s, ˜̃ϕn,q

〉

˜̃γn,q. (30)

Indeed, the redressing discrete-time warping transforma-
tion is based on an orthonormal and complete expansion
in `2(Z), which leads to the unitary equivalence of the re-
dressed warped frames with the warped frames.

In order to verify the extent of our redressing method,
we compute the Fourier transforms of the redressed frame.
Exploiting the periodicity of the discrete-time redressing
frequency warping map one can show that:

ˆ̃̃
ϕn,q(f) = A(f)ĥ(θ−1(f)− qb)e−j2πnϑq(aθ

−1(f))
, (31)

where

A(f) =
√

dθ−1

df

√

dϑq

dν

∣

∣

∣

∣

ν=aθ−1(f)

. (32)

Hence, the effect of the dispersive delays would be coun-
teracted if

ϑq(aθ
−1(f)) = dqf (33)

for anyf ∈ R, wheredq are positive constants controlling
the time scale in each frequency band. In this case, the
Fourier transforms of the redressed frame elements simply
become:

ˆ̃̃
ϕn,q(f) =

√

dq

a
ĥ(θ−1(f)− qb)e−j2πndqf . (34)

Furthermore, if alldq are identical, all the time samples
would be aligned to a uniform time scale throughout fre-
quencies.

However, each mapϑq is constrained to be congruent
modulo1 to a1-periodic function, while the global warp-
ing mapθ can be arbitrarily selected. Furthermore, having
to be one-to-one in each unit interval, the functionsϑq can
at most experience an increment of1 there.

In the general case, a perfect time realignment of the
components is not guaranteed. However, locally, within
the essential bandwidths of the warped modulated win-
dows it is possible to linearize the phase of the complex
exponentials in (31).

We remark that, by construction, the redressed warped
Gabor systems are guaranteed to be frames for any choice
of the mapsϑq satisfying the stated periodicity conditions,
even when the phase is not completely linearized.
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5. EXAMPLES AND APPLICATIONS

The redressing method is a powerful technique to gener-
ate exact time-frequency representations adapted to non-
uniform grids using arbitrary warping maps. In this sec-
tion we illustrate two examples based on non-uniform fre-
quency resolution adapted to a tempered scale. In the first
case, the chosen windows have compact support in the fre-
quency domain. In the second case, the windows are com-
pactly supported in the time domain. The methods applies,
however, also to windows that are not compactly supported
in either domain.

In both our examples we define the redressed analysis and
synthesis frames as in (29) and try to enforce condition
(33). Actually, since we start with tight Gabor frames [16],
analysis and synthesis frames coincide.

5.1 The Painless Case

In the so called “painless” case, where the windowh is
chosen to have compact support in the frequency domain,
one can exactly eliminate the dispersive delays with the
help of (29). In fact, to fix our ideas, suppose that the
bandwidth of the windowh is Kb, with K a positive in-
teger, i.e.,̂h(f) = 0 for |f | ≥ Kb/2. This corresponds
to an overlap-add scheme in the frequency domain [4] –
for example, the choiceK = 2 corresponds to the case of
half window length overlap in the frequency domain (see
Fig. 1) – which allows one to satisfy the frame condition
(17) even tightly (A = B = 1) with a simple choice of
the window [4]. In particular, one could use the frequency
domain cosine window:

ĥ(ν) =

{
√

2a
K

cos πν
β

if −
β
2 6 ν < +β

2

0 otherwise
(35)

whereβ > 0 is the total bandwidth of the window and
K > 1 is an integer,a is the time sampling interval and we
let b = β/K. In that case the warped modulated windows
ĥ(θ−1(f)− qb) will be nonzero only forθ((q−K/2)b) <
f < θ((q +K/2)b).

In the painless case, condition (33) only needs to be satis-
fied by the mapϑq in this interval. Equivalently, we require

ϑq(aν) = dqθ(ν), (q − K
2 )b < ν < (q + K

2 )b, (36)

which is possible if on one hand the variation of the argu-
ment of the mapϑq in (36) satisfies

a[(q + K
2 )b− (q − K

2 )b] = Kab ≤ 1 (37)

and, on the other hand, if also the variation of the mapϑq

over the warped modulated window bandwidth satisfies

dq[θ((q +
K
2 )b)− θ((q − K

2 )b)] = dqBq ≤ 1, (38)

whereBq = θ((q + K
2 )b)− θ((q − K

2 )b) is the full band-
width of the warped modulated window. The first of these
conditions only requiresab ≤ 1/K, which does not de-
pend onq and can be satisfied assigning sufficient redun-
dancy (oversampling) of the initial Gabor frame. Inciden-
tally, this is the same condition for the original Gabor sys-
tem to form a frame. A valid choice isK = 2, which

ν  =(q −   )b

ϑ (a ν)q

d θ(ν)q

q

ν=θ    ( f )−1

d  θ(ν )
1

1
a

K
2

ν− ν+

−

ν  =(q +   )bK
2

+

qd  θ(ν )
+

−

Figure 2. Locally eliminating dispersion by means of
discrete-time frequency warping. Black line: curve de-
rived from the original mapθ by amplitude scaling. Gray
line: discrete-time frequency warping characteristics for
local delay linearization.

requiresab ≤ 1/2. For the second condition, one needs to
selectdq ≤ 1/Bq, as intuitively clear from the sampling
theorem. If there is an upper boundB to the bandwidths
Bq then one can choose identicaldq = 1/B, q ∈ Z, to
satisfy the sampling condition with uniform rates.

An example of local linearization of the phase is shown
in Fig. 2, plotted in the abscissaν = θ

−1(f), where the
black curve is the amplitude scaled warping mapdqθ(ν)
and the gray curve represents the mapϑq(aν), which is
1/a-periodic. Amplitude scaling the warping mapθ allows
the values of the map to lie in the range of the discrete-time
warping mapϑq. The amplitude scaling factors are the new
time sampling intervalsdq of the redressed warped Gabor
expansion.

The choice of the initial sampling intervala allows all the
maps{ϑq}q∈Z to be arbitrarily specifiable to matchdqθ(ν)
in the intervals where the Fourier transforms of the warped
modulated windows (warped frame elements) are nonzero.
Therefore, the warping map design method to eliminate
dispersive sampling in the frequency warped Gabor ele-
ments is consistent when the elements are compactly sup-
ported in the frequency domain.

The score and the analysis of a singing phrase using a
redressed warped Gabor frame adapted to the 12-tone scale
are reported in Fig.3. It is easy to see that the score of the
singing part can be easily extracted from the non-uniform
spectrogram.

5.2 Redressing in the Painful Case

In the painless case, the obtained redressed warped Gabor
frame elements are identical in form to the ones generated
in [4] by means of an ad-hoc procedure, where aliasing is
canceled in the frequency domain. However, the redressing
method by means of (29) for the warped frames presented
in this paper can be applied to any frame.

For example, one can start from windows that are com-
pactly supported in the time domain, where aliasing is can-
celed in the time-domain through overlap-add, such as the
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Figure 3. Nonuniform 12-tone scale spectrogram of the
singing phrase represented in the score line [fromTom’s
Diner, Suzanne Vega], in which it is possible to track in
tempered time-frequency scale the score and even the glis-
sando introduced by the singer.

time-domain cosine window. This window is given by

h(t) =

{
√

2b
R
cos πt

T
if −

T
2 6 t < +T

2

0 otherwise
(39)

whereT is the total duration of the window,R > 1 is an
integer,b is the frequency sampling interval and we let the
time shift parametera = T/R.

The Fourier transform of the cosine window, given by

ĥ(ν) =
√

b
2R (sinc(νT −

1
2 ) + sinc(νT + 1

2 )), (40)

is plotted in Fig.4, from which one can see that the main
lobe has bandwidth3/T = 3/Ra. Assuming this as the
essential bandwidth in which to linearize the phase, in or-
der to satisfy (33) here, one needs to selectR ≥ 3, which is
the analogon of (37), anddqBq ≤ 1, which is the analogon
of (38), where nowBq = θ(qb+ 3

2T )− θ(qb − 3
2T ).

Concurrently, the parameterT can be selected according
to the smallest required essential bandwidth. For example,
in the case of a tempered scale warping map, in order to
have sufficient frequency resolution one can select3

2T =
f0, wheref0 is the frequency of the smallest tone to be
represented, so that adjacent tones fall away from the main
frequency lobe of the window, which givesa = 3

2Rf0
.

The frequency shift parameterb must be chosen so that
ab ≤ 1/R for the original Gabor system to be a frame. For
R = 3 and the chosen value ofa, this givesb ≤ 2f0/3.
However, in practice one would like the tones of the scale
to be adequately represented by the warped bands; in our
examples we choseb = f0/3.

A zoom of the analysis of the same phrase as in Fig.3 by
means of a redressed warped Gabor frame generated by a

2T
−3

0

Frequency
2T
−5

2T
+3

2T
+5

Figure 4. Magnitude Fourier transform of the cosine win-
dow.

cosine shaped time domain window is shown in Fig.5. In
spite of the fact that the phase is linearized only in the sup-
port of the main lobes of the warped widows, the quality of
the result is not appreciably different form that obtained in
the painless case. Moreover, perfect reconstruction is still
guaranteed.

6. CONCLUSIONS

In this paper, we have introduced a new method to design
time-frequency representations with arbitrary non-uniform
time or frequency resolutions, based on frequency and time
warping. The problems arising from the dispersive sam-
pling introduced by warping are solved by introducing a
further warping operation in time-frequency.

The procedure was first applied to the unsampled Short-
Time Fourier Transform and, with further constraints, to
Gabor frames. In the latter, perfect elimination of disper-
sion is only possible in particular cases, e.g., when the Ga-
bor frame elements have compact support in the frequency
domain (for frequency warping) or in the time domain (for
time warping).

The design extends the methods presented in [4] by mak-
ing use of warping maps to generate a full class of suitable
frames with assignable non-uniform time and frequency
resolutions and with non-dispersive sampling. It also paves
the way to approximations in which the effect of dispersion
is minimized within the essential bandwidths of the frame
elements when these are not selected, possibly for real time
computational needs, to have compact support in the fre-
quency domain.
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ABSTRACT

One of the building blocks of virtual analog synthesizers is
the oscillator algorithm producing simple geometric wave-
forms, such as saw or triangle. An important requirement
for such a digital oscillator is that its spectrum is similar to
that of the analog waveform, that is, the heavy aliasing that
would result from a trivial modulo-counter based imple-
mentation is reduced. Until now, the computationally most
efficient oscillator algorithm with reduced aliasing was the
Polynomial Transition Regions (PTR) method. This paper
shows that the efficiency can be increased even further by
eliminating the phase offset of the PTR method. The new
Efficient PTR (EPTR) algorithm produces the same output
as the PTR method, while requiring roughly 30% fewer op-
erations, making it the most efficient alias-reduced oscilla-
tor algorithm to date. In addition to presenting an EPTR
sawtooth algorithm, the paper extends the differentiated
parabolic wave (DPW) triangle algorithm to the case of
asymmetric triangle waves, followed by an EPTR imple-
mentation. The new algorithm provides continuous transi-
tion between triangle and sawtooth signals, while still re-
maining computationally efficient.

1. INTRODUCTION

Analog synthesizers produced in the 60s and 70s are still
very popular among musicians for their characteristic tim-
bre, and the sound of these classic synthesizers has become
an inherent part of many modern musical genres. However,
the original synthesizers are hard to find, expensive, and
usually do not provide sufficient control (e.g., via MIDI)
as required by today’s musicians. Therefore, some compa-
nies provide modern analog synthesizers with digital con-
trol, but an even more cost-effective solution is to simu-
late the analog signal chain via digital signal processing.
The first such synthesizer was the Clavia NordLead, which
paved the way for virtual analog synthesis. For an excel-
lent overview on related research, see [1].

In an analog synthesizer the signal flow starts with an os-
cillator generating geometric waveforms, such as square,
sawtooth, triangle, sine, and sometimes a noise generator

Copyright: c©2013 Dániel Ambrits et al. This is an open-access article distributed
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Figure 1. Spectrum of (a) the ideal, (b) the trivial and (c)
the DPW sawtooth signals. The dashed line is the envelope
of the ideal spectrum.

is also provided. Then this signal is fed to a filter that is
controlled by envelope generators, low frequency oscilla-
tors (LFO), etc., and finally its gain is adjusted by an ampli-
fier, again controlled by an envelope and LFO. This paper
concentrates on the first part, that is, the digital modeling
of the oscillator.

The trivial option for creating a digital replica of a ge-
ometric signal is to generate samples that correspond to
the sampling of the analog waveform. In the case of the
sawtooth signal, this results in a simple modulo counter,
which can be implemented very effectively. However, as
expected, this results in a heavy aliasing due to the non-
bandlimited nature of the analog signal from which it orig-
inates [2]. This is displayed in Fig. 1 (b), together with the
spectrum of the ideal (analog) sawtooth in Fig. 1 (a). A
general remedy to the problem of aliasing is oversampling,
that is, running the modulo counter at a significantly higher
sampling rate, and then decimating. However, this leads to
a considerable increase of computational complexity.

Therefore, special algorithms have been developed that
reduce the aliased components while still keeping the com-
putational requirements low. Note that it is not required to
eliminate aliasing completely, since aliased components
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below a certain level are not audible due to masking ef-
fects [3].

The approaches include waveform generation based on
a band-limited impulse train [4, 5] and band-limited step
function [2, 6, 7], and the distortion and filtering of sine
waves [8]. The simplest, yet still practically usable method
is the differentiated parabolic wave (DPW) algorithm [9],
that is based on the spectral tilt modification of the contin-
uous-time signal before sampling. Later the higher-order
extension of the method has also been presented [10], pro-
viding better alias suppression at the expense of greater
complexity.

By noting that the DPW algorithm modifies only the sam-
ples around the discontinuity of the analog signal, a more
efficient implementation is possible [11]. This algorithm is
called Polynomial Transition Regions (PTR), and is based
on precomputing correction polynomials for the samples
in the transition, while the linear regions of the signal are
offset by a constant value [11].

This paper presents an even more efficient version of the
PTR algorithm, which will be called EPTR throughout the
paper. The method is based on the fact that the offset of
DPW and PTR waveforms compared to the trivial (modulo-
counter generated) waveform is due to a phase shift of the
DPW and PTR signals. When this phase shift is removed,
the linear regions of the waveform can be taken simply as
the trivial waveform values, eliminating the need for an
extra addition. For the sawtooth signal this leads to the
reduction of the number of operations by around 30%.

By modulating the pulse width of a square wave, very
interesting sonic variations can be created. Accordingly,
many classic and virtual analog synthesizers offer this kind
of pulse-width modulation (PWM) signal. A similarly in-
teresting effect can be achieved by modulating the symme-
try of triangle waves. This way the triangle signal can be
continuously transformed into a sawtooth waveform. Two
of the rare examples generating triangle waves with vari-
able symmmetry are the Moog Little Phatty and Sub Phatty
analog synthesizers [12]. This paper first extends the DPW
algorithm for the case of asymmetric triangle waves, then
provides a highly efficient implementation by the use of
the new EPTR algorithm.

The rest of this paper is organized as follows. Section 2
reviews the DPW algorithm for the case of the sawtooth
signal and provides an extension to the case of the asym-
metric triangle wave. This is followed by the basic idea
of the PTR method in Sec. 3, while Sec. 4 proposes the
new EPTR algorithm for the saw and asymmetric triangle
waves. Finally, Sec. 5 compares the computational com-
plexity of the DPW, PTR and the EPTR algorithms.

2. DIFFERENTIATED POLYNOMIAL
WAVEFORM ALGORITHM

First, let us consider the steps of generating an alias-sup-
pressed signal with the Differentiated Polynomial Wave-
form (DPW) algorithm. In the N th-order method the con-
tinuous signal is integrated N −1 times. This is equivalent
to processing the sampled signal with an N th-order poly-
nomial waveshaper [10]. As a result, the spectrum of the
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Figure 2. Generation of the triangle signal with variable
symmetry by the DPW algorithm. The trivial signal (a) is
first processed with the x2 − 1 function. The result (b) is
then multiplied with (c) a scaled rectangular wave to get (d)
the parabolic waveform. Finally differentiating and scaling
produce (e) the desired alias-suppressed waveform.

integrated sawtooth signal decreases by 6N dB per octave
instead of 6 dB. This way the aliasing is significantly re-
duced when the signal is sampled. Then the signal is differ-
entiated N −1 times in the discrete-time domain to restore
its spectral tilt, which means filtering by the (1− z−1)N−1

transfer function. Finally it is scaled to the desired ampli-
tude [10].

For N = 2 the integral of a piecewise linear signal is a
piecewise parabolic (x2/2) function. The trivial sawtooth
signal corresponds to a periodic counter ranging from −1
to 1. The alias-suppressed sawtooth signal can be gener-
ated by squaring the signal, then differentiating the resulted
piecewise polynomial waveform and finally scaling by a
sufficient value [9].

While only symmetrical triangle wave is considered in
the literature [10], it can be easily extended to asymmet-
ric case. The method is explained by using Fig. 2. The
gradient of the ascending region is A > 0, then the gra-
dient of the descending region is B = −A/(A − 1) < 0.
Following the generation of the symmetric triangle signal
for N = 2 [10], the trivial waveform Fig. 2(a) is first pro-
cessed with the x2 − 1 function, giving Fig. 2(b). (In the
general case, when the value of the peak Ppeak is not 1, the
waveshaper would be x2 − P 2

peak.) Then it is multiplied
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with a rectangular waveform with 1/A duty cycle so that
the parabolic regions of the signal are alternately positive
and negative. This rectangular wave is generated accord-
ing to the counting direction of the trivial signal which, for
the symmetric triangle holds the value 1 when the trivial
waveform is ascending and−1 when it is descending. Note
that by using this ±1 rectangular wave the absolute values
of the peaks are 1 in both regions but the width of these
parabolic regions are not the same. Thus at the transition of
two successive regions the gradients are different and this
would cause jumps in the differentiated signal. This prob-
lem can be solved by scaling the regions with 1/|A| and
1/|B| factors so that the transition is smooth (see Fig. 2(c)
and (d)). This step is the only difference between the sym-
metric and asymmetric case. Therefore the waveshapers
are (x2 − 1)/A for the ascending region and (x2 − 1)/B
for the descending region. Then the polynomial waveform
is differentiated and multiplied by a scaling factor.

3. POLYNOMIAL TRANSITION REGIONS
ALGORITHM

The signal generated with the N th-order DPW algorithm
differs from the trivial waveform by only N−1 samples per
period. The differing samples are in the transition region,
the linear sections only have an offset. This means un-
necessary additional computation, since the integration and
differentiation is computed even for the linear regions. The
Polynomial Transition Regions algorithm was introduced
to decrease the computation cost based on this observa-
tion. In the PTR method the sample values are derived in a
closed form for each section, and the final signal is gener-
ated from the trivial signal using these general forms [11].
To show that the computational cost can be reduced even
further, the linear section is discussed for N = 2.

Two successive samples in the linear section are p[n] =
pn and p[n− 1] = pn−1 = pn−2AT , where pn is the cur-
rent value of the trivial signal generator, and A is the gradi-
ent of the section. (A = 1, when the signal increases from
−1 to 1 during one period. If A < 0, the signal decreases.)
T = f0/fs, where f0 is the fundamental frequency of the
signal and fs is the sampling frequency. For N = 2 the
waveshaper is x2 according to the DPW algorithm, then
the differentiation and scaling leads to:

y[n] =
p2n − p2n−1

4AT
= pn −AT. (1)

For the linear section an addition operation is required for
each sample. The value of the offset can be both positive
and negative depending on whether the signal is ascending
or descending. The −AT offset represents a half sample
delay compared to the trivial generator as seen in Fig. 3(a).
This delay comes from the behavior of the discrete-time
differentiation. We will see in the next section that a more
efficient algorithm can be derived by eliminating this half
sample delay, and so the need for the addition operation.

-AT
p[n]

y[n]

p[n-1]

p[n+0.5]

p[n-0.5]

p[n]=y[n]p[n-0.5]

(a) (b)

Figure 3. Discrete-time differentiation using (a) the trivial
signal (dark dots) and (b) the waveform shifted with half
sample (ligth dots).

4. EFFICIENT POLYNOMIAL TRANSITION
REGION ALGORITHM

4.1 Eliminating the Half Sample Delay in the Linear
Region

The simplest way to avoid the unnecessary computation in
the linear region is using the trivial generator as the out-
put. This is equivalent to using the differentiation on the
adjacent samples which are at half sample distance from
the origin as seen in Fig. 3(b). The pn−0.5 and pn+0.5 are
the values of the continuous signal halfway between the
samples.

y[n] =
p2n+0.5 − p2n−0.5

4AT
=

=
(pn +AT )2 − (pn −AT )2

4AT
= pn. (2)

In other words, the PTR algorithm is applied on a trivial
signal which is with half sample in advance to the de-
sired signal. Therefore also the samples in the transition
region should be calculated from this shifted trivial wave-
form. However, this does not require that these samples
are known during the wave generation, an explicit form of
the correction can be calculated in advance.

For N = 2, the transition region is a one sampling time
wide section. The shifted trivial signal causes that the sam-
ples to be corrected can be found before or after the break.
So unlike in the PTR algorithm where this section was the
[0,1] sample interval after the discontinuity, here it can be
found in the [-0.5,0.5] interval with the transition in the
centre. When we detect that the trivial signal generator is
in this region, the position of the sample must be inspected
and the correction must be applied according to the result.
In the next section the transitions are derived for N = 2.

4.2 Sawtooth

4.2.1 Derivation of the sawtooth wave generation

The continuous signal with gradient A jumps from the val-
ue Pmax to Pmin as can be seen in Fig. 4. When the sam-
ple of the discrete trivial waveform is p[n] = pn before the
discontinuity, the next sample is p[n + 1] = pn + 2AT −
(Pmax − Pmin). These samples are processed by the x2

waveshaper. The correction depends on whether the sam-
ple to be corrected is before or after the discontinuity of
the continuous waveform.
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AT p[n]=p

min
P

transition region

n

Pmax

p
n-0.5

p
n-1

p
n+1

p
n+0.5

AT

Figure 4. Correction of the sawtooth signal. During the
derivation the half-sample delayed signal (light dots) is
used instead of the trivial signal (dark dots). pn is cor-
rected to the desired value.

a) The sample is before the discontinuity (pn > Pmax −
AT ), as in Fig. 4.

According to Section 4.1 the calculation must be applied
using the adjacent samples at half sample distance from the
output sample. The trivial sample has a value of p[n] = pn,
as seen in Fig. 4. The previous sample pn−0.5 = pn−AT ,
the next sample would be pn+AT but it is higher than the
maximum value, so pn+0.5 = pn +AT − (Pmax − Pmin).
Applying the DPW algorithm leads to the desired output:

yA[n] =
p2n+0.5 − p2n−0.5

4AT
=

=
(pn +AT + Pmin − Pmax)

2 − (pn −AT )2

4AT
.

(3)

For a sawtooth ranging from −1 to 1, we have A = 1,
Pmax = 1, and Pmin = −1. In this special case the calcu-
lations lead to

y[n] = pn −
pn
T

+
1

T
− 1. (4)

b) The sample is after the discontinuity (pn < Pmin +
AT ).

The next sample is pn+0.5 = pn + AT . The previous
sample can be found before the discontinuity (since pn −
AT < Pmin), so it has a value of pn−0.5 = pn − AT +
(Pmax − Pmin).

yB [n] =
p2n+0.5 − p2n−0.5

4AT

=
(pn +AT )2 − (pn −AT + Pmax − Pmin)

2

4AT
.

(5)

For the usual sawtooth signal A = 1, Pmax = 1 and
Pmin = −1. In this special case the calculations lead to

y[n] = pn −
pn
T
− 1

T
+ 1. (6)

AT
Pmax

min
P

transition region

AT

y[n]

p
n

p
n-0.5

p
n-1

p
n+0.5

Figure 5. EPTR algorithm of the sawtooth signal. When
the counter (dark dots) goes over Pmax − AT , the sample
is in the transition region. First the correction is applied
using the values of the half-sample delayed signal (ligth
dots), then the counter jumps.

4.2.2 The EPTR sawtooth wave algorithm

The PTR algorithm assumes that the trivial sawtooth signal
is given, that is, the trivial signal generation and correct-
ing the samples in the transition region are handled sepa-
rately [11]. If we were doing the same, then two branch op-
erations would be required: one for detecting the jump of
the trivial signal and one for finding the transition region.
However, a computationally simpler algorithm can be re-
alized by merging the trivial signal generation and sample
correction.

A further advantage of this choice is that since the triv-
ial signal is generated by us, we are able to run the trivial
counter even over Pmax without forcing it to jump and ap-
ply the correction using that value. Indeed, substituting
pn − 2 into (6) leads to (4). Therefore, there is no need
to check whether the sample to be corrected is before or
after the discontinuity and the two cases can be handled
in the same way. When the transition region is detected,
the corrected output sample is computed, and then the triv-
ial signal jumps, while the relative position of the sample
compared to the transition is irrelevant. This is shown in
Fig. 5.

The next source code shows how the algorithm can be
programmed to generate a sawtooth signal ranging from -1
to 1.

p = p + 2∗T ;
i f p > 1 − T

y = c o r r e c t ( p ) ;
p = p − 2 ;

e l s e
y = p ;

The function correct(p) is responsible for correcting the
sample in the transition region. For the usual ±1 sawtooth
waveform we simply use (4):

correct(p) = p− p

T
+

1

T
− 1. (7)
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region A, Pmax, Pmin (general case) A = 1, Pmax = 1, Pmin = −1
linear region p p

correct(p) p+ Pmin−Pmax

2AT p+ Pmin−Pmax

2 + (Pmin−Pmax)
2

4AT p− p
T + 1

T − 1

Table 1. Correction functions for the EPTR sawtooth algorithm.
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Figure 6. The DPW (crosses) and EPTR (dots) sawtooth
waveforms (a), and the spectrum of the signal generated
with the DPW (b) and EPTR (c) algorithms.

For the general case, see Table 1.
Note that the result would be the same if the trivial sig-

nal first jumped, then (6) was applied for correction. The
resulting waveform is equivalent to the signal generated
by the DPW and PTR algorithms as seen in Fig. 6. (The
starting phase of the counter p was offset by a half sam-
ple for the EPTR algorithm so that the two curves match
perfectly).

4.3 Triangle

4.3.1 Derivation of the asymmetric triangle wave
generation

First let us consider computing the maximum peak of the
triangle signal. Due to symmetry, the minimum peak can
be calculated similarly. Around the maximum peak the
trivial signal ascends to the value Pmax with gradient A,
then it descends with gradient B. When the trivial signal
has a value of p[n] = pn before the peak, after its value
is pn+1 = Pmax + 2BT − (Pmax − pn + 2AT ) · B/A.
The waveshapers are (x2−P 2

max)/A for the ascending and
(x2 − P 2

max)/B for the descending regions, as discussed
in Section 2. Similarly to generating the sawtooth signal,
the two adjacent values of the continuous signal are used
which are at half sample distance from the output sample.

When the sample to be corrected is before the maximum
peak (pn > Pmax −AT ), the two adjacent values used are
pn−0.5 = pn −AT and pn+0.5 = Pmax +BT − (Pmax −

AT
Pmax

transition region

AT

p
n-0.5

p
n

p
n-1

p
n+0.5

p
n+1

y[n]

Figure 7. EPTR algorithm of the triangle signal. When
the counter (dark dots) goes over Pmax − AT , the sample
is in the transition region. The sample gets corrected by
using the values of the half-sample delayed signal (ligth
dots), then the counter jumps to the descending region. The
method is the same for the correction around the minimum
peak.

pn) ·B/A. The differentiation and scaling gives

y[n] =
(p2n+0.5 − P 2

max)/B − (p2n−0.5 − P 2
max)/A

4T

= a2p
2
n + a1pn + a0 (8)

which is included as the correctMax function in Table 2.
Similarly, when the sample is after the peak (pn > Pmax+
BT ), the used value to the right is pn+0.5 = pn + BT
and point to the left is still before the peak, so its value
is pn−0.5 = Pmax + AT − (Pmax − pn + 2BT ) · A/B.
However, if we apply the same trick as in Sec. 4.2.2, that
is, we are merging the trivial signal generation and sample
correction, we are able to run the trivial counter p above
Pmax (see Fig. 7), and one function (8) can handle both
cases.

The derivation is similar for the minimum peak. After de-
termining the adjacent values, the differentiation and scal-
ing gives

y[n] =
(p2n+0.5 − P 2

min)/A− (p2n−0.5 − P 2
min)/B

4T

= b2p
2
n + b1pn + b0 (9)

which is included as the correctMin function in Table 2.
It is possible that a high gradient section fits between

two samples. The condition for this case is that |A| ≤
1/T = fs/f0. This is not equivalent to the sawtooth signal
in which the gradient is infinite, thus this case should be
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Linear region p
correctMax(p) a2p

2 + a1p+ a0
correctMin(p) b2p

2 + b1p+ b0

Coefficient General Special
a2

B−A
4A2T

−1
4(A−1)T

a1
AT (A+B)+Pmax(A−B)

2A2T
2AT−4T+2
4(A−1)T

a0
(B−A)(AT−Pmax)

2

4A2T
−(AT−1)2

4T (A−1)

b2
A−B
4B2T

−1
4(B+1)T

b1
BT (B+A)+Pmin(B−A)

2B2T
2BT+4T−2
4(B+1)T

b0
(A−B)(BT−Pmin)

2

4B2T
−(BT+1)2

4T (B+1)

Table 2. The polynomial correcting functions for the
EPTR asymmetric traingle algorithm. In the special case
B = −A/(A− 1), Pmax = 1, Pmin = −1.

10 20 30 40 50
−1

0

1

Sample Number

Figure 8. The PTR (crosses) and the EPTR (dots) asym-
metric triangle waveforms. The starting phase of the
counter p was offset by a half sample for the EPTR al-
gorithm so that the two waves match perfectly.

handled separately. When the trivial signal has a value of
p[n] = pn before the maximum peak, after it the value is
p[n+1] = pn+Pmin(1−A/B)−Pmax(1−A/B). Since
both of the adjacent samples are on linear sections with the
same gradient, the calculation can be performed similarly
to the sawtooth waveform.

4.3.2 The EPTR asymmetric triangle wave algorithm

Figure 7 explains the algorithm for generating an asym-
metric triangle signal. Similarly to the sawtooth signal, the
trivial waveform generation and the corrections are merged,
thus checking whether the trivial generator is in the transi-
tion region is sufficient. The next code segment shows the
implementation of the algorithm for a triangle waveform
ranging from -1 to 1, with variable symmetry.

i f d i r == 1 / / c o u n t i n g up ?
p = p + 2∗A∗T ;
i f p > 1 − A∗T
/ / t r a n s i t i o n r e g i o n ?

y = c o r r e c t M a x ( p ) ;
p = 1 + ( p − 1)∗B /A;
d i r = −1;

e l s e / / l i n e a r r e g i o n
y = p ;

e l s e / / c o u n t i n g down
p = p + 2∗B∗T ;
i f p < −1 − B∗T
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Figure 9. The spectrum of (a) the trivial, (b) the DPW and
(c) the EPTR asymmetric triangle signal with 25% sym-
metry.

/ / t r a n s i t i o n r e g i o n ?
y = c o r r e c t M i n ( p ) ;
p = −1 + ( p + 1)∗A/ B ;
d i r = 1 ;

e l s e / / l i n e a r r e g i o n
y = p ;

The correcting functions can be found in Table 2. First
the counting direction must be determined, then the value
of p is checked. When p is in the transition region, the
corrected output sample is computed, the trivial counter is
updated, and finally the counting direction is changed. If it
is not in the transition region, the output simply equals the
trivial counter y = pn. The generated signal is equivalent
to the DPW and PTR versions (see Fig. 8 and 9).

The previous code assumed that the values of |A| and |B|
are not higher than fs/f0, so there is no region that fits be-
tween two samples. Although it is also possible to imple-
ment triangle waveforms with high gradient as discussed at
the end of Sec. 4.3.1, it would result in a significantly more
complicated algorithm. The allowed highest gradient case
is close enough to the sawtooth waveform, therefore imple-
menting the extra operations is not rewarding. Figure 10
shows the spectrum of a sawtooth with an infinitely sharp
transition (a) and with a transition that lasts one sampling
instant (b). The only drawback of limiting the gradient is
a slight attenuation at high frequencies, on the other hand,
the aliasing is reduced, since now we are correcting two
samples around the transition. So the asymmetric triangle
with a one sample-time transition can be safely used in-
stead of the sawtooth signal. However, if there is still a
need for the special case, the algorithm can be developed
according to Sec. 4.3.1.
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Figure 10. Spectrum of (a) the triangle signal with the
highest allowed asymmetry and (b) the sawtooth signal.
The dashed line is the envelope of the ideal spectrum.

Sawtooth Add Mul Branch Total
DPW 2 2 0 4
PTR 2 T 1 3 + T

EPTR 1 + T T 1 2 + 2T
Triangle Add Mul Branch Total

DPW 3 3 0 6
PTR 2 + 2T 6T 2 4 + 8T

EPTR 1 + 2T 6T 2 3 + 8T

Table 3. Computational load of DPW, PTR and EPTR for
sawtooth and triangle signals (T = f0/fs).

5. COMPARISON

The advantage of the EPTR method over PTR is the re-
duced computational load. For providing a fair comparison
we merged the trivial signal generation and the correction
also for the PTR algorithm, although [11] and the adherent
source codes [13] were handling them separately, leading
to even higher load for the PTR algorithm. Table 3 com-
pares the two algorithms in operations per sample while
generating sawtooth and asymmetric triangle waveforms.

The PTR algorithm uses an addition operation to incre-
ment the trivial counter. Then with a branch operation it
decides whether the current sample is in the linear or the
transition region. Finally, in the linear region an addition
for the offset is applied and in the transition region a mul-
tiplication and an addition is necessary. When producing
a sawtooth waveform with the EPTR algorithm, using the
shifted trivial signal eliminates the addition operation in
the linear region. Similarly, only the addition operation
of the trivial counter is needed in the linear region during
the asymmetric triangle signal generation. Note that this
advantage of the EPTR algorithm vanishes for generating
square waves.

The resulting waveforms generated with the two algo-
rithms have are practically identical, as we have seen in
Sec. 4.

6. CONCLUSIONS

This paper has proposed a new version of the PTR algo-
rithm. The Efficient Polynomial Transition Regions Al-

gorithm requires around 30% lower number of operations
compared to the PTR algorithm, while results in exactly
the same waveform as that of the DPW and PTR algo-
rithms. Thus, it is the most efficient alias-reduced algo-
rithm up to date, making it an ideal choice for systems with
low computational power requirements. In addition, the
paper has extended the DPW algorithm for generating tri-
angle waves with variable symmetry, and its EPTR imple-
mentation was also presented, allowing continuous tran-
sition between symmetric triangle and sawtooth signals.
Future research includes the extension of the algorithm to
higher orders, and to arbitrary waveforms composed of line
segments (e.g., trapezoidal waves).
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ABSTRACT

In analogy with strings and acoustic pipes as musical har-
monic oscillators, a novice electronic oscillator is consid-
ered. The equivalent circuit of a discrete representation
of strings and pipes, which takes the form of a discrete
transmission line, is constructed with real electronic com-
ponents. The proposed model includes the “equivalent se-
ries resistances”, which seems to be the only relevant de-
fault for both capacitors and inductors for this application.
In an analytical approach, the complex wave number is de-
rived, allowing the study of both the wave’s dispersion and
attenuation in function of frequency and resulting in rec-
ommended and critical component values. Next, compo-
nents are selected for a first eight-node prototype, which
is numerically evaluated and then practically constructed
and measured. The results prove a good match between
theory and practice, with five distinguishable modes in the
entrance impedance. A new prototype design is planned,
which is expected to have much improved quality factors.

1. INTRODUCTION

The analogue dynamic theories between acoustics and elec-
tronics, allow an “equivalent electronic circuit” represen-
tation of linear oscillating mechanisms. A well-known ex-
ample is the simple spring-mass system that can be rep-
resented by an equivalent capacitor-inductor or “LC” os-
cillator. While this concept is usually applied to facilitate
calculations it also can serve as a source of inspiration to
design new musical electronic circuits. The discrete ideal
string or acoustic pipe representation consists of concate-
nated spring-mass systems. This leads to the idea to con-
struct an equivalent circuit of this so called “discrete trans-
mission line” model, with real components that could op-
erate as a string or pipe. Such a circuit allows electronic
charges to propagate and reflect at open or shorted endings
as boundary conditions, which results in an electronic har-
monic oscillator.

While the proposed electronic resonator is a first order
approach of both a string and pipe, it is just the differ-
ence between these acoustic examples that illustrates the
great variety in timbre and musical expression. There-

Copyright: c©2013 Kurijn Buys et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution 3.0 Unported License, which
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fore, the proposed electronic sound propagative medium
is expected to offer new potentials in this regard. The
more detailed model of the electronic resonator such as
electric losses and nonlinearities and the musician’s ac-
cess to control the instrument, will bring along its proper
(unheard) character. Also, the electric medium allows its
own transform possibilities (we can think of interaction
with magnets, adding external circuits, easily switching
between boundary conditions, designing a broad variety of
mouthpiece models,...).

Historically, it is custom to use equivalent electrical cir-
cuits to study sound transmission through ducts under low
frequency assumptions. For instance, every acoustic publi-
cation usually presents the Helmholtz resonator along with
its equivalent electrical circuit [1]. A panel of “duct acci-
dents”, such as constrictions or tone holes, can also be de-
scribed using equivalent electrical circuits if the different
elements are assumed to interact by simple in- and outputs
only. This is the lumped description that is opposed to an
integral approach.

Passive [2, 3], as well as active [4], studies of musical
instruments also benefited from their equivalent electrical
description. Following the classical description of sound
production as a coupling between an exciter, eventually
non-linear, and a resonator [5,6], attempts have been made
to model sound production with electrical circuits only [7].
Despite the theoretical studies that have been performed,
no experimental, and academical, work seems, to the au-
thors’ knowledge, to be done on this issue, which could
be explained by the only recently available low resistive
capacitors.

As for the design objectives, as usual for musical instru-
ments, a very resonant and harmonic system is desired.
This allows for large dynamics and a long sustained sound
with a wide timber variety. The low inharmonicity ob-
jective is also motivated by the fact that for self-sustained
operation (like winds), the pitch of second register notes,
mainly determined by the second harmonic, will be in bet-
ter accordance with the first register note.

While several plucked and self-sustained excitation mech-
anisms can be imagined, this part of the complete elec-
tronic instrument is not treated in this article.
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2. THEORETICAL STUDY

2.1 Deducing an appropriate model

Considering existing harmonic resonators such as strings
and pipes, we can apply a discretization on a ideal model to
become a finite element approximated representation con-
sisting ofN concatenated equal valued springs and masses
leading toN normal modes. This can be interpreted as a
two-terminal circuit which has both a Thévenin and Norton
equivalent circuit form [8]. In the case of a string, the for-
mer translates force and velocity respectively as the voltage
and current, while the springs and masses respectively re-
late to capacitors and inductors. The Norton equivalent has
opposite relations but is further not concerned in our study.
Using real components for this discrete transmission line,
their own non-ideal characteristics will come into play, so
that an adapted model is needed that takes in these relevant
artefacts.

A first thing to note is that the discretization at the bound-
aries, using a first order approach, causes the inductor at a
shorted boundary to be of half the inductance of the “in-
line” inductors, and similarly, a half-valued capacitor is
used at an open boundary. We will concentrate the study on
a situation with an open entrance and shorted end boundary
conditions, but similar results apply for all other situations
as the electrical open and shorted conditions preserve the
electrical charge and thus are acceptable approximations of
the Dirichlet and Neumann conditions, respectively. While
in mechanics and acoustics a considerable energy loss is
typical at the boundaries, partly to make the instrument au-
dible, in this electrical case, a high impedance connection
can be used to pick up the signal and amplify the sound.

In order to analytically and numerically study the model,
we look for an equivalent circuit that includes relevant com-
ponent artefacts.

Most of the real capacitor defaults are not of importance
for our application. The systems linearity allows a study
and use at low voltages, under the maximum operation or
“breakdown” voltage, and avoiding ripple currents. The
inherent inductance and parallel conductance are negligi-
ble at audio frequencies [9]. It is only the “Equivalent Se-
ries Resistance” (ESR) that is of relevance. This factor is
usually specified at100 kHz and, according to datasheet
observations, increases about5 to 100 times at100 Hz,
which depends on the capacitor type.

The real inductor’s magnetic saturation, parasitic capac-
itance and core hysteresis can be neglected for the same
reasons. Besides inductance, it is also only the ESR (or
“DCR” in datasheets), that plays a role in our applica-
tion [10].

For the same type of capacitor (materials, voltage rat-
ing,...) and inductor (wire type, core material and dimen-
sion,...), the ESR,RC andRL, are related to their capaci-

N N

N

N

Figure 1. Outline of the discrete transmission line with the
appropriate component models

tance and inductance [9,10], respectively, by:
{

RC = ESR = γC/C

RL = DCR = γL

√

L
. (1)

For different inductors, the remaining resistive factorγL

stays around the order of1 Ω/
√

H, while the resistive ca-
pacitor factorγC takes the unit of seconds and varies in the
orders of[10−7

− 10−3] s depending on the capacitor type
and design.

Everything together, the appropriate model is presented
in figure1. It should be noted that all inductancesLi are
equal except forLN = Li6=N/2. The same applies for re-
sistorRLi, capacitorCi and resistorRCi while RLN =
Ri6=N/

√

2, C1 = Ci6=N/2, and RN = 2Ri6=N . This
model is close to the classical electrical transmission line
model based on the Telegrapher’s equations [11]. How-
ever, here the capacitor’s ESR is of importance, rather than
its parallel conductanceG.

2.2 Analytical approach

We develop a mathematical approach to study the proposed
transmission line that partly corresponds to the typical trans-
mission line derivation [11,12].
First we describe the wave propagation in an infinite “dis-
crete” transmission line. Referring to figure1 and apply-
ing elementary circuit analysis to each node we obtain a
set of basic circuit equations that after a Fourier transform
directly are expressed in the frequency domain as follows

{

Vn+1(ω) = Vn(ω)− Zs(ω) In+1(ω)

In+1(ω) = In(ω)− Yp(ω) Vn(ω)
, (2)

with Vi andIi the voltage and current in the corresponding
nodes, and

{

Zs(ω) = RL + jωL series impedance

Yp(ω) =
1(ω)

RC+ 1
jωC

shunt (parallel) admittance
.

(3)
To solve equations (2), we first can cast this array of cou-
pled inhomogeneous equations in the form of a set of cou-
pled, homogeneous algebraic equations that evidence a sim-
ple set of solutions, which may be written in the form:

{

Vn+1(ω) = Vne
−Γ(ω)

In+1(ω) = Ine
−Γ(ω)

, (4)
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Figure 2. Frequency evolution of the losses contribution
roots and its coefficients, for the typical component values:
γL√
L
= 213 s−1, 1

γC

= 105 s−1.

whereΓ is the complex wave number. If these “constant
phase solutions” are to be valid solutions, the nodal phase
constantΓ(ω) must satisfy the equation:

Zs(ω)Yp(ω) = e
−Γ(ω) + e

Γ(ω)
− 2. (5)

This results in the dispersion relationship for a discrete,
uniform transmission line:

Γ(ω) = 2 arcsinh

(

√

Zs(ω) Yp(ω)

2

)

. (6)

For a lossless case, we can writeZs(ω) Yp(ω) = −ω
2
LC.

Γ(ω) is purely imaginary so that no evanescent waves ap-
pear and the nodal phase velocityvϕ(ω) = ω

Im(Γ(ω)) re-
mains constant at low frequencies.vϕ only decreases by
5% at ω = ω0ll =

1√
LC

, the resonant frequency of a sin-
gle losslessLC oscillator, which explains that a finer dis-
cretization reduces this “numerical dispersion”.

Considering the losses, the wave number is complex and
also comprises evanescent waves, described by a nodal at-
tenuation coefficientα(ω) = Re(Γ(ω)). Using eqs. (6)
and (3), we obtain:


















vϕ(ω) =
ω

arcsinh

(

ω
√
LC

√

a+

√
a2+b2

2D

)

α(ω) = arcsinh

(

ω

√

LC

√

−a+
√
a2+b2

2D

)

, (7)

where (using the “equal type” formulations (1))










a = 1−RLRC
C
L
= 1− γLγC√

L

b = RL

ωL
+ ωRCC = γL

ω
√
L
+ ωγC

D = (ωRCC)2 + 1 = (ωγC)
2 + 1

. (8)

Considering a constant nodal velocity and maintaining the
same type of components, it is clear thatL/C should be
chosen as high as possible to reduce the influence of losses.
The order ofγL is about1

√

Ω/s, γC lies between[10−7
−

10−3] s andL will have an order of[10−6
− 10−2] H , so

that a number of frequency values can be derived that will
indicate critical lossy zones.
The frequency evolution of the roots and their coefficients
is presented in figure2. While a remains constant over
frequency and near to1, the coefficientsb andD vary over
frequency.

Forω <
γL√
L
= [3− 300] s−1, b increases rapidly so that

both the roots forvϕ andα increase.

Whenω approaches1
γC

= [103 − 107] s−1, b also in-

creases , butD raises byω2.
In the case ofvϕ, the nominator increment is slower than
D, so that the root reduces, and thus the phase velocity in-
creases (counteracting on the numerical dispersion).
For α(ω), the nominator first increases faster thanD, in-
creasing the root to a maximum close toω = 1/γC, where
D will prevail and decrease the root again. However, theω

factor in the expression ofα increases the attenuation fac-
tor with frequency.

When we now consider a finite number ofN nodes with
an open entrance and a shorted end condition, standing
waves will appear. The near to ideal boundary conditions
guarantee a simple reflection coefficient that only holds
the medium losses, contained in the complex wave num-
ber: R(ω) = −e

−2ΓN . Also in analogy with an acous-
tic cylinder (neglecting radiation) [13], the nondimensional
entrance impedance can be derived as follows:

Ze/Zc =
1 +R(ω)

1−R(ω)
= tanh (ΓN) , (9)

with Zc =
√

Zs/Yp, the characteristic impedance for a
transmission line, which is close to the real constant

√

L/C

for RL

L
≪ ω ≪

1
RCC

, where losses are small [14].

The entrance impedanceZe is characterized by a num-
ber of modes who’s coefficients can be related to the wave
number components (see Eq. (7)). The (anti-)resonant fre-
quenciesωn = 2πnvϕ/2N andωn = 2π(2n− 1)vϕ/4N
illustrate the direct relation of the inharmonicity to the change
in phase velocityvϕω0ll (which is constant when perfectly
harmonic). These frequencies indicate the extrema of the
impedance modulus, that depend on the attenuation coeffi-
cientα:

a(M,m)n ≈ tanh (α(ωn)N)
∓1

≈ (α(ωn)N)
∓1

, (10)

where the negative exponent applies to the maximaM and
the positive one to the minimam.
The modal quality factor is proportional to the maxima but
increases with the frequency, and is independent ofN for
low frequencies:

Qn ≈ a(M)nωn

N

2vϕ(ω)
, (11)

For equal components, apart from theα(ω)’s root devi-
ation, the number of nodes does not affect both amplitude
and quality factors of the harmonic series.

It is interesting to study the case where a fundamental fre-
quency is maintained while increasing the number of nodes
by choosing the same inductors and smaller capacitors of
the same type. When doubling the number of nodes for
example, we chooseC/4 for the new capacitors, the co-
efficients in Eq. (8) remain equal so that the only change
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in numerical dispersion decreases the inharmonicity. As
the attenuation coefficient is halved, both thean andQn

remain equal. This means that a fine discretization can be
applied with only the advantage of enhanced harmonicity.

To resume, apart from a preferable highL/C factor; con-
cerning the inductor,γL√

L
should be chosen low enough un-

der the fundamental frequency of the resonator, especially
for (first register) self-sustained oscillation where the first
resonant peak should be relatively high. As for the capac-
itor, 1

γC

should be chosen as high as possible to promote a
soft spectral decay of the impedance peaks.

To obtain sounds, an exciter will be needed. A simple ini-
tial voltage condition is sufficient to model a simple pluck-
type excitation. However, for self-sustained control (which
would be preferable if the resonator is very lossy), a conve-
nient exciter model would need components that supply a
voltage to current ratio in the same order as the character-
istic impedance, just as for acoustic self-sustained mech-
anisms [5]. For now, we disregard the exciter part and
concentrate on the independent validation of the electronic
resonator.

3. STUDY OF A FIRST PROTOTYPE

In this section we will discuss the conception and measure-
ment of a concrete transmission line. The aim is to com-
pare the theory to a first practical prototype to allow more
specific designs later on. We arbitrary choose an eight node
line withω0ll around2π1200 to become a fundamental fre-
quency of about230Hz.

3.1 Selecting appropriate components

3.1.1 Inductors

The ESR of inductors depends on to the wire length and
thickness [14]. Therefore, the variation onγL for a same
cable thickness depends on the core design and permeabil-
ity to the extent of space for windings. A classical inductor
may haveγL as low as1.5. Special core materials, such
as those used in “common mode chokes”, can lower this
value down to0.5, but the core becomes easily magneti-
cally saturated so that a linear use allows a very limited
coil current. We could neglect this amplitude related as-
pect, which even might evoke a desirable saturation effect
on the sound when experimenting with higher amplitudes
later on. However, These coils have close windings so that
the increased inherent capacitance can slightly decrease the
coil reactance at high frequencies. For these reasons we opt
for a standard coil type for our first prototype.
We choose a22 µH Bourns2305 − RC inductor with
RL = 7mΩ andγL = 1.5.

3.1.2 Capacitors

Many industrial applications have promoted the design of
low ESR capacitors, but none of them are specifically de-
signed for the audio domain, which explains the poor con-
cerning information in datasheets. We consider three suit-
able types [15]:

Figure 3. Evolution of the phase velocity relative toω0ll

for the lossy and the corresponding lossless case.

• Polymers (dry electrolyte), with typical capacities of
[10−3000]µF andγC = [10−6

−10−4] s at100Hz.

• Ceramics, where the “MLCC” ceramic chips have
the lowest ESR, about1/3 of Polymers. However,
it seems that ESR rapidly increases towards the au-
dio domain and little information is available. Their
capacities range between[1 pF − 100 µF ] but for
the very low ESRNP0 typeC is maximum0.1 µF .
It should be noted that these components are sus-
ceptible to contact noises due to their piezo-electric
side-effect.

• Film capacitors, especially the Polypropylene type
have very low ESR. But as the ceramics, no audio
frequency information is provided. The capacity ranges
between[10 pF − 1mF ].

To obtain meaningful conclusions between theory and
practice, we prefer a fully quantified Polymer capacitor.
We choose a NichiconE5 series820 µF , 6.3 V capacitor
with RC = 18 mΩ at 100 Hz (descending to5 mΩ at
100 kHz) andγC = 1.5× 10−5.

3.1.3 Conclusion

The resulting lossless singleLC frequency isω0ll = 2π 1185.
While these components are far from the most optimal
choice, the results will allow a clear comparison to the the-
ory. The characteristic impedance is relatively low:

√

L/C =
0.16 Ω. γL√

L
= 2π 51 is below the fundamental frequency

of about230Hz and 1
γC

= 2π 104 lies far aboveω0ll.
Using equations (7), the frequency evolution of the phase

velocity and attenuation coefficient is calculated for this
case.
Figure3 represents the evolution of the phase velocity rel-
ative to the constant lossless velocity, so that a constant
value of1 would indicate an absence of inharmonicity. A
corresponding lossless case is added to illustrate the effect
of the numerical dispersion. As predicted, belowω = γL√

L

the velocity drops and at high frequencies, the dispersion
due to losses counteracts on the numerical dispersion.

Figure4 showsα(ω) represented by the real part ofΓ.
The globally increasing progression is explained by theω

factor in its expression.

The resulting entrance impedance, as calculated by equa-
tion (11) is shown in figure8, together with the numerical
and measured curves.
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Figure 4. Evolution of the attenuation coefficientα(ω)
over frequency.
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Figure 5. Temporal input voltage and current signals dur-
ing a self-sustained operation with a nondimensional input
voltage or “mouthpiece pressure” of0.65.

3.2 Numerical simulation

Before the final construction, we used Matlab and Simulink
to perform a numerical simulation on the proposed model
with the chosen components. This allows to observe the
eventual influence of aspects neglected in the analytical
study, such as the approximated discretization at the bor-
ders, the inductor’s inherent capacitanceCL and the ca-
pacitor’s parallel conductanceG. The entrance impedance
curves are presented in figure8.

We also added a single reed exciter model [16–18] and
we empirically confirmed a self-sustained operation. The
resulting input current and voltage signals are shown in fig-
ure5 and the spectrum of the latter is represented in figure
6.

The nondimensional oscillation threshold is found to be
minimum0.6, which is above the usual clarinet thresholds
[13], what can be explained by the relatively low modal
amplitudes and quality factors and the prominent inhar-
monicity of our resonator. However, the spectrum, wave-
form and sound are similar to a simulated clarinet in the
“beating reed” regime [16]. The fundamental frequency is
found atf0 = 225.2Hz, which is slightly below230.7Hz,
the frequency of the first resonant peak. This may be clar-
ified by the numerical dispersion that turns down the fre-
quency of the higher resonant peaks.

3.3 Concrete realization and measurement

An actual realization of the proposed transmission line is
constructed and is depicted in figure7. Two equally valued
capacitors are put in series to obtain the needed half-valued
capacitance at the open entrance boundary. By measuring
the voltages surrounding an additional appropriate resis-
tance put in series with the transmission line entrance and
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Figure 6. Spectrum of the input voltage signal with a
nondimensional input voltage of0.65.

Figure 7. First prototype of the discrete harmonic trans-
mission line.

applying a voltage sweep, both the input voltage and cur-
rent can be measured, so that the entrance impedance can
be derived. The result is added to figure8 and discussed in
the next paragraph.

3.4 Theoretical and measured Ze comparison

Figure8 shows the spectral modulus and argument of the
analytical, numerical and measured entrance impedances
of the first discrete transmission line prototype with a shorted
end condition. An open end condition is also verified and
results in similar characteristics, but for even harmonics.

The analytical approach results in an entrance impedance
with four clearly visible modes. The fundamental frequency
is found atf0 = 230.7Hz. The plotted lossless harmonics
confirms the earlier shown inharmonicity curve: the sec-
ond impedance peak is still very close to3 × f0, and later
peaks diverge more and more downwards.

The first four nondimensional amplitude peaks are foud
ata0 = 5.3, a1 = 3.1, a2 = 1.8, a3 = 1.3. And the corre-
sponding modal quality factors areQ0 = 5, Q1 = 7.2,
Q2 = 7.0, Q3 = 6.6. The quality factor is inversely
related to the damping ratioζ = 1

2Q , which should be
smaller than1 to obtain an underdamped system. While
that condition is satisfied, this order of damping ratios only
allows very short free oscillations, so that a self-sustained
use is advised to obtain sounds. To compare with musi-
cal acoustic examples, the quality factor of clarinets lies
between10 − 50 and wooden soundboards have theirQ

between10 − 150, while those of strings vary between
100− 104 [19].

Comparing the numerical with the analytic curves, we see
that a very good match is obtained. This is found to be in-
dependent of the additional properties,CL andG, of the
concerned components.
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Figure 8. Input impedances of analytical, simulated and measured transmission lines.

Also the measured impedance is close to both predic-
tions. At first sight, we observe an upwards inharmonic-
ity. However, it is likely an actual higherRL value that
brings down thef0 to 196.7 Hz. The amplitudes at the
resonant frequencies and the quality factors closely cor-
respond, while the anti-resonant peaks at low frequencies
seem to descend more. Also, unlike the analytical and nu-
merical approach a fifth harmonic is visible.

4. CONCLUSION AND PERSPECTIVES

The conception of a new electronic harmonic resonator
with musical potentials is proved to be realizable. The
measured entrance impedance of such a discrete transmis-
sion line with eight nodes is found to be very similar to
the analytical and numerical approaches that use the cor-
responding datasheet values. This means that apart from
capacitance and inductance, only the equivalent series re-
sistance of both capacitors and inductors is to be consid-
ered for the design.

The lack of relevant ESR information in the audio fre-
quency domain made us choose components with rather
low characteristic impedance. However, more experimen-
tal models can be constructed that will likely feature much
higher relative amplitudes and quality factors. Such an op-
timized model is already under construction, using eight
20mH inductors and1 µF film capacitors to obtain about
the same fundamental frequency, a more convenient char-
acteristic impedance ofZc = 140 Ω and roughly estimated
quality factors of around300! However, as it concerns
“common mode” inductors, the current ratings are very
low, especially for an additional direct current flux, so that
a wind instrument design might be out of the question.

To cope with the numerical dispersion, we could add an
adapted circuit at one of the boundaries that will intro-
duce an opposite dispersion. However, as theoretically
shown, increasing the node density, an equal relative losses

and less dispersive model can be obtained by choosing the
same inductors and smaller capacitors of the same type.
This also is of interest when considering the perspective to
play higher notes by moving the end boundary condition
to a reduced number of nodes, just as releasing a key on a
wind instrument...

Another perspective is the addition of electric circuits act-
ing as convenient nonlinear exciters. These can be based
on models of (single, double, free, lip or “flute”) reeds, a
bowing exciter [5, 19] or any other nonlinear relation that
will result in a self-sustained oscillation. It would be desir-
able to use circuits with the same simplicity as the trans-
mission line. However, equivalent circuits are not guaran-
teed for any nonlinear system. We think about FET’s that
might provide a single-reed mechanism equivalent, and also
valves are considered, as they are reputed for their pleasing
effect on sound.
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ABSTRACT

In the context of musical acoustics, physical models of mu-

sical instruments have to be more and more sophisticated.

For string models, realism is obtained by taking into ac-

count tension, flexion, shear, rotation and coupling phe-

nomena but also nonlinear effects due to large displace-

ments. The sound synthesis modal method is extended to

the nonlinear case using Volterra series. The inverse prob-

lem of interaction between two acoustical objects is solved

by finding the roots of a polynomial at each time step.

1. INTRODUCTION

Modalys, a sound synthesis software developed at Ircam

for research and musical applications, makes it possible to

build virtual instruments based on physical models in or-

der to obtain the broadest range of expressive variations

in the instrument in response to intuitive controls. An in-

strument, as a complex structure, is described by the me-

chanical/acoustical interactions of its components (strings,

tubes, soundboard, 3D FEM objects...). Propagation equa-

tions of each substructure are projected on the basis of

its modes of vibration, which allows to obtain an infinite

dimensional system of differential equations (time depen-

dent). Limiting development in the first predominant modes

(in practice, tens or hundreds modes), the system of equa-

tions becomes finite and provides a mathematical repre-

sentation of the behaviour of a substructure irrespective of

its nature: mechanical or acoustic. As a result, knowing

the nonlinear coupling terms between each substructure,

it is possible to characterise the dynamic behaviour of the

overall system by assembling these elementary systems of

equations. The use of this model requires therefore to have

• a solution for wave propagation (direct problem) in

each substructure (depending on initial conditions

and external actions),

• interaction models (which depend on the physical

situation: contact, friction, reed model, lips, turbu-

lent jet, ...) characterising the connection between

substructures

Although, historically, the first stage of this sound synthe-

sis process was done in the linear framework, the purpose

Copyright: c©2013 Joël Bensoam, David Roze et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

of this article is to show that non-linear models can also be

used in that context.

So, the linear framework for propagation is recalled in

section 2 in order to be extended to the non-linear case

(section 3). The mechanism of interaction will not be changed

and used to produce an example in the last section.

2. SUBSTRUCTURE SOUND SYNTHESIS

2.1 Green formalism

Since each sub-structure is described by a linear model, a

Green operator exists and allows to express the velocity

vector field (or displacement field) as a function of applied

forces. Formally [1], the wave propagation is obtained by

u(x, t) =

∫

G(x,y, t) ∗ f(y, t) dy (1)

which gives, in the numerical point of view, discrete in-

stantaneous linear equations

ui(ti) = ũi(ti)→0 +
∑

j

Gijfj(ti) (2)

The term ũi(ti)→0 determines the state of the system, at

time ti and at point i, in the absence of applied force at the

same moment ti. It characterises the effects of inertia and

elasticity due to previous external actions. With this for-

mulation, it is not necessary to obtain the dynamic evolu-

tion of all points i ∈ [1, . . . , N ] of the system. When there

are m ≤ N interactions (i.e., at most m interaction forces)

the system is reduced to m linear equations of type (2).

To solve the 2m unknowns, k types of interaction mod-

els (k ≤ m) must be given in order to obtain well-posed

problem. Finally, the system of equations (propagation &

interaction)
{

ui(ti) = ũi(ti)→0 +
∑m

j=1 Gijfj(ti), i = 1, . . . ,m

fi = C(k)(ui), i = 1, . . . ,m

(3)

is in principle resolvable since, as pointed out by the tilde

symbol, the historical term ũi(n)→0 is computable. In the

case where the interaction models C(k) are all linear, solv-

ing this problem is trivial. If some models are nonlinear,

the problem is more complex and the iterative Uzawa’s al-

gorithm for saddle point problem is used [2].

Since the interaction models, C(k), depend on the phys-

ical problem, they are supposed to be given. The prob-

lem is to formulate the wave propagation in the form given

by (2). This can be done by using, for each sub-structure, a

modal decomposition, and a numerical simulation for the

dynamic of each mode.
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f(x, t)

〈., e1〉

〈., ek〉

〈., eK〉

Q
[1]

Q
[k]

Q
[K]

Q

Q

X
[k](ti+1) =

e−c
k
T

Ωk

(

ck sinΩkT +Ωk cosΩkT sinΩkT

−ω
2
k sinΩkT −ck sinΩkT +Ωk cosΩkT

)

X
[k](ti) + f

[k](ti+1)

(

1
ω2

k

[1− e−c
k
T

Ωk

(ck sinΩkT +Ωk cosΩkT )]

e−c
k
T

Ωk

sinΩkT

)

Modes
u
[1]
1 (t)

u
[k]
1 (t)

u
[K]
1 (t)

e1(x)

ek(x)

eK(x)

u(x, t)

Figure 1. Linear sound synthesis: the propagation equation of each substructure are projected on its modal basis. Limiting

the development in the first predominant modes (in practice, tens or hundreds modes), it allows to obtain a finite dimensional

system of recursive filters and provides a numerical representation of the behaviour of a substructure irrespective of its

nature: mechanical or acoustic.The set Q of filters performs the simulation for K modes. Each filter Q[k] computes a modal

output as defined in equation (7) where X[k](ti+1) is a function of X[k](ti) and input f [k](ti+1) with Ωk = ωk

√

1−
c2
k

ω2
k

.

2.2 Modal synthesis

Given a modal decomposition, u =
∑K

k=1 u
[k]
ek, a second

order boundary value problem

∂
2
u

∂t2
(x, t) + 2c(x)

∂u

∂t
(x, t)− ω

2 ∂
2
u

∂x2
(x, t) = f(x, t)

used to describe a wave propagation, can be written as a

set 1 of first order differential equations























X
[k](t) =

[

u
[k]

u̇
[k]
]T

Ẋ
[k](t) = A

[k]
X

[k](t) +Bf
[k](t)

A
[k] =

[

0 1

−ω
2
k −2ck

]

, B =

[

0

1

]

(4)

where the matrix A
[k] captures the modal datas (eigen pul-

sation ωk, damping ck), f [k] are the modal forces. This

is the state space representation of the filter defined by the

transfer function

Q
[k](s) =

1

s2 + 2cks+ ω
2
k

. (5)

1 a modal truncation is performed in order to obtain a finite dimen-
sional set.

Using the exponential map, a solution can be formulated

as

X
[k](t) =

∫ t

0

e
A

[k](t−τ)
Bf

[k](τ)dτ + e
A

[k]t
X(0), (6)

which gives, after a time discretization: ti = iT and a

zeroth order approximation of the input force, a recursive

filter formula

X
[k](ti+1) = e

A
[k]T

X
[k](ti) +B0

[k]
f
[k](ti+1) (7)

with B0
[k] = −A

[k]−1 [

B− e
AT

B
]

. A modal reconstruc-

tion
∑

k X
[k]
ek leads to a formalism in accordance with

equation (2). Technically, the computation of the expo-

nential gives rise to a sound synthesis process described in

Fig. 1.

3. NONLINEAR WAVE PROPAGATION

Nonlinear wave propagation cannot be computed using the

above mentioned tools (modal decomposition and the Green

operator) as is. Then, in order to compute interactions be-

tween nonlinear resonators a system equivalent to (3) has

to be found for the nonlinear case.

This section will introduce the Volterra series used to sim-

ulate the dynamics of weakly nonlinear models: a nonlin-

ear equation is turned into an infinity of linear ones for
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which the simulation of the dynamics can be handled by

the algorithm defined in section 2. The Volterra series can

be used for all polynomial nonlinearities around an equilib-

rium point. This method is not also limited to scalar non-

linearities: fully coupled (transverse/longitudinal) string

vibration can also be considered. A Reissner beam model

with coupling between the degrees of freedom has been

investigated using Volterra series in [6].

To be more pedagogical, only the Kirchhoff-Carrier string

model will be used here to illustrate this method.

3.1 Kirchhoff-Carrier string model (KCM)

The equation, defined for (x, t) ∈ [0, L]× R
⋆
+,

∂2u(x, t)

∂t2
+ δ

∂u(x, t)

∂t
− κ

∂3u(x, t)

∂t∂x2

=

[

c
2 + b

∫

L

0

(

∂u(x, t)

∂x

)2

dx

]

∂2u

∂x2
+ ftot(x, t) (8)

describes the Kirchhoff-Carrier string model [3] [4]. Volterra

kernels of this model have been computed in a previous

work [5] and simulations were performed. The damping

are specified by δ and κ (fluid and structural resp.). The

sound speed is c and b is a coefficient of nonlinearity. Bound-

ary conditions are homogeneous Dirichlet conditions (the

string motion is null at the edges) and the string is at rest

for t ≤ 0.

3.2 Volterra series

For control engineers, a dynamical system, such as (8), is

considered as a causal system with input f and output u

(cf. Fig. 2). Using Volterra’s series, the solution is defined

{hn}
f(t) u(t)

Figure 2. System with input f and output u described by

a Volterra series {hn}n∈N∗ .

as the infinite sum of multi-convolutions between the input

and the Volterra kernels {hn}n∈N∗ of the model

u(t) =

∞
∑

n=1

∫

(R+)n
hn(τ1:n)f(t− τ1) . . . f(t− τn)dτ1:n

(9)

with for each (non)linear order n: (τ1:n) = (τ1, . . . , τn)
and dτ1:n = dτ1 . . .dτn.

More precisely, Volterra’s series were historically used to

solve ordinary differential equations. Since equation (8) is

a partial differential equation, the output of the system is

a function of time and space. To respect formulation (9)

Volterra kernels will be paremeterized in space and de-

noted h
(x)
n (t1:n) in time domain (H

(x)
n (s1:n) in the Laplace

domain) and the input will be split as ftot(x, t) = φ(x)f(t).
In practice, the simulation will not be performed using

this definition of Volterra series, since multi-convolution

would be too costly in computation time: First, the explicit

expression of Volterra kernels which are a characteristic

of the physical system, will be given. Then, a structure

of numerical simulation will be made by identifying the

Volterra kernels in order to compute the output (transverse

displacement) as a function of the input (excitation force).

3.3 Solving the Volterra kernels

One method to find the Volterra kernels is to establish a re-

cursive formula. This procedure is described in [5]§4.1 for

the Kirchhoff-Carrier model giving the recurrence relation

(ŝ1:n
2
+ δŝ1:n)H

(x)
n (s1:n)− (c2 + κŝ1:n)

∂
2
H

(x)
n (s1:n)

∂x2

= E
(x)
n (s1:n) (10)

where (ŝ1:n) = (s1+ · · ·+sn). The source E
(x)
n is a func-

tion of lower order kernels (cf. (12)) and E
(x)
1 = φ(x) is

the spatial distribution of the input force. Modal decompo-

sition on the modal basis, ek(x) =
√

2
L
sin(kπx

L
), is one

option to solve the problem (10) by transforming the differ-

ential equations into algebraic ones. The modal projection

of Volterra kernels then verifies ∀(n, k) ∈ (N⋆)2

H
[k]
n (s1:n) = Q

[k](ŝ1:n)E
[k]
n (s1:n) (11)

where Q
[k](s) =

[

s
2 + (δ + κ

k2π2

L2 )s+ k2π2c2

L2

]−1

is the

transfer function describing the linear part of the model.

According to equation (5) each Volterra kernel is a filter

where nonlinear effects are contained in the source terms

E
[k]
n . For the particular case of KCM, this yields














E
[k]
1 = 〈φ, ek〉 = φk

E
[k]
n (s1:n) = γk

∑

p,q,r≥1
p+q+r=n

[

∑K
ℓ=1 ℓ

2
H

[ℓ]
p (s1:p)H

[ℓ]
q (sp+1:p+q)

]

H
[k]
r (sp+q+1:n),

(12)

with γk = −b
k2π4

L4 . Thus it can be seen that En depends

only on the lower order kernels Hp, Hq , Hr since the prin-

cipal sum is over p+ q + r = n.

3.4 Structure of simulation based on Volterra kernels

The Volterra kernels are not explicitly computed. In prac-

tice, equation (11) is used in the multi-convolution (9) to

identify a structure of simulation. This structure is com-

posed of linear filters sets (each one representing a non-

linear order) connected with sums and products according

to the combinatorics revealed in (12). To illustrate this,

the general structure of this kind of simulation is presented

in Fig. 3. To give a concrete realisation Fig. 4 represents

this structure for the Kirchhoff-Carrier model limited to the

third order: the output approximation has two components,

u(x, t) = u1(x, t) + u3(x, t) (since there is no quadratic

nonlinearity).

The first part (well-known order 1 contribution) is U
[k]
1 (s) =

H
[k]
1 (s)F (s) = Q

[k](s)φkF (s) where F (s) is the Laplace

transform of excitation force f(t). For the second part,

knowing from (11) and (12) that

H
[k]
3 (s1:3) = Q

[k](ŝ1:3)E
[k]
3 (s1:3)

= Q
[k](ŝ1:3)γk

K
∑

ℓ=1

ℓ
2
H

[ℓ]
1 (s1)H

[ℓ]
1 (s2)H

[k]
1 (s3)
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γ

γ

γ
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Figure 3. Recursive structure of simulation based on Volterra kernels. Each line represents the K modal projections of ui.

According to equation (11) and Fig. 1, Ei represents the combinatorics of lower order kernels on all K modes in order to

compute Hi with the set of filters Q. The triangle γ contains all the nonlinear coefficients γk, as φ is the set of φk .

N=1 N=3

N
f

K(9 + 2Nx)−Nx K(2× 9 + 2Nx + 5)−Nx

Table 1. Number Nf of floating point operations to com-

pute one sample of u(x, t) with K modes for linear approx-

imation (N = 1) and third-order approximation (N = 3)
at Nx observation points.

and according to (9), u3 is computed by

U
[k]
3 (s1:3) = H

[k]
3 (s1:3)F (s1)F (s2)F (s3)

= Q
[k](ŝ1:3)γk

K
∑

ℓ=1

ℓ
2
H

[ℓ]
1 (s1)H

[ℓ]
1 (s2)H

[k]
1 (s3)

F (s1)F (s2)F (s3)

= Q
[k](ŝ1:3)γk

K
∑

ℓ=1

ℓ
2
U

[ℓ]
1 (s1)U

[ℓ]
1 (s2)U

[k]
1 (s3)

This last relation gives the structure of simulation presented

in Fig. 4 with K modes.

At this point, sound synthesis can then be performed for

reasonable computation time: adding one nonlinear com-

ponent to linear synthesis approximatively doubled the sim-

ulation time. Actually, the number of required floating

point operations (flops) is evaluated in Table 1 using Fig. 4

and knowing that each filter q
[k] requires 4 sums and 5

products (9 flops) for each time sample.

3.5 Green operator based on Volterra kernels

In order to perform sound synthesis and compute interac-

tions with nonlinear resonators represented by Volterra se-

ries the algorithm presented in section 2 has to be extended.

The relation (2) between force and displacement/velocity

which was an affine function will become a polynomial of

same order as the truncation of the Volterra series.

To see this, let be the vector X
[k]
n (ti) =

[

u
[k]
n (ti)

u̇
[k]
n (ti)

]

the

state-space representation used in section 2.2 where n is

the nonlinear order and k the considerated mode. Since

the final desired result is a modal reconstruction of all non-

linear contributions X
[k]
n

X(x, ti) =
N
∑

n=1

K
∑

k=1

X
[k]
n (ti)ek(x), (13)

and since according to formula (7) each nonlinear contri-

bution (dotted rectangles in Fig. 3) can be written as

X
[k]
n (ti) = X̃

[k]
n (ti) +B

[k]
0 f

[k]
n (ti), (14)

it follows that the relation between force and displacement

is a polynomial

X(x, ti) = X̃(x, ti) + Π(f(ti)). (15)

The modal excitation force f
[k]
1 (ti) is the input of the sys-

tem. For higher orders (n ≥ 2) the source term f
[k]
n (ti) is

a combination of variables X
[k]
p which are already known

since the order p < n.

This yields for the Kirchhoff-Carrier model studied be-

fore (still limited to order N = 3), the functions f
[k]
1 (ti) =

φkf(ti) that handle the modal decomposition of the spa-

tial distribution φ(x) of the external force. For n = 3, the

terms f
[k]
3 (ti) = γk

∑K
ℓ=1(ℓu

[ℓ]
1 (ti))

2
u
[k]
1 (ti) (cf. equa-

tion (12)) capture the non linear effects due to the defor-

mation of the string. Evaluating equation (14) for n = 1
and n = 3 turns equation (13) into an order 3 polynomial

X(x, ti) = X̃(x, ti) +Θ3(x)f
3(ti)

+Θ2(x, ti)f
2(ti) +Θ1(x, ti)f(ti) (16)

where the coefficient are described in appendix A.

Finally, in the general case (N can be higher than 3),

the system propagation and interaction for a nonlinear res-

onator can still be represented by
{

X(x, ti) = X̃(x, ti) + Π(f(ti))

f(ti) = C(k)(X(ti))
(17)

where Π is a polynomial of same order as the nonlinear

truncation. This is an extension of the substructure cou-

pling method defined in equation (3) to the nonlinear case.

579

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



2. 2. 2.

f(t)

φ1

φk

φK

q
[1]

q
[1]

q
[k]

q
[k]

q
[K]

q
[K]

u
[1]
1 (t)

u
[k]
1 (t)

u
[K]
1 (t)

k K

w2(t) =
K
∑

ℓ=1

ℓ
2
(

u
[ℓ]
1 (t)
)2

γ1

γk

γK

u
[1]
3 (t)

u
[k]
3 (t)

u
[K]
3 (t)

e1(x)

e1(x)

ek(x)

ek(x)

eK(x)

eK(x)
E3

u(x, t)

Figure 4. Structure of simulation of the Kirchhoff-Carrier model limited to the third order. Filters in the left column

compute the linear response for each mode whereas the second column compute the order 3 response. Triangles are simple

gains corresponding to spatial distribution of force for order 1, and nonlinear coefficient for order 3.

4. SIMULATION ON AN INTERACTION

EXAMPLE: ”ADHERE COUPLING”

In this section, the formalism (17) for propagation and in-

teraction between nonlinear resonators is investigated with

two strings glued together for a moment then released for

free oscillation. In this example, the choice of the coupling

C is shown in figure (9).

4.1 The ”Adhere coupling”

When two substructures (here, two nonlinear strings) are

glued together, the relative velocity at the interface point

vanishes: the model of interaction is then represented by

the vertical line in the force/velocity plane (Fig. 9).

Solving the interaction consists in finding the intersection

point between this line and the polynomial of relative ve-

locity defined by vr(ti) = u̇r(ti) = u̇a(xa, ti)−u̇b(xb, ti).
For this type of contact where vr = 0, this will gives the

equation

ṽr(ti) + Πa(fa(ti))−Πb(fb(ti)) = 0 (18)

that permits to compute the interaction force f for each

time step. Note the sign reversal in the normal force fa =
−fb = f according to Newton’s third law, where fa (resp.

fb) is the interaction force applied to object A (resp. B).

Those resulting forces are then used as inputs to the prop-

agation simulation for the next time step.

String A String B

Length 1.8m 1.5m

Frequency 55Hz 68Hz

Interaction point
√
2
2 LA

√
2
2 LB

Nonlinear coefficient bA = E
2ρLA

bB = E
2ρLB

Damping δ = 3s−1, κ = 0.01m2s−1

Young modulus E = 2.0× 1011Pa

Material density ρ = 7800kg m−3

Table 2. Physical parameters of the two strings used in the

simulation.

4.2 Simulation

A simulation has been performed with two strings defined

by Kirchhoff-Carrier model, one of them being excited by

the force described in Fig. 5.

The strings physical parameters are described in Table 2.

The simulation is performed with K = 20 modes at a sam-

pling frequency fs = 44100Hz. The interaction duration

has been set to 5000 samples. Both strings are observed by

a modal reconstruction at interaction points.

Simulation results are presented in Figs. 6 and 7. We can

see that the first string (in blue) vibrates freely before the

“Adhere interaction” is imposed, then the two strings ve-

locities are equals, the relative error on displacement and

velocity can be seen in Fig. 8: the error is lower for veloc-

ity than for displacement since, the interaction definition is

based only on relative velocity.
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(c) String A spectrum after interaction: nonlinear effects are
still present in the dynamics
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(d) String B spectrum after interaction, the contact force
makes string B vibrate.

Figure 7. Interaction between two nonlinear strings: The first string A vibrates freely. An “Adhere coupling”interaction is

then applied between the two strings during 5000 samples. The interaction force between the strings A and B, is computed

from nonlinear dynamics of the two strings using the two first Volterra kernels. The nonlinear effects are still present in the

string A after the interaction. A spectral enhancement can be observed on the spectra before and after the coupling. String

B vibrates after the interaction using energy provided by the interaction force.

f(t)

t

40 N

10 ms x

φ(x)

0 Lx0

Figure 5. Functions f(t) and φ(x) used to define the initial

excitation force ftot(x, t) = f(t)φ(x) for the simulation.

After 5000 samples the interaction is removed and the

two strings vibrates freely at their own dynamics as shown

in Figs. 7(c) and 7(d). This figure shows that for a suffi-

cient excitation force, nonlinear effects appears: the linear

and nonlinear part have the same magnitude for the first

modes, but for higher frequencies the nonlinear part has

an higher magnitude which can be heard in simulations

sounds which are more brilliant when the nonlinear contri-

bution is activated. This is noticeable for string A, but not

for string B. It can be deduced that the interaction force to

string B was not high enough to trigger nonlinear effects.

5. CONCLUSION

This paper introduced an extension of the Green formalism

and problem inversion to the case of weakly nonlinear res-

onators. Using a Volterra series until order N to simulate

the dynamics of a string, interactions can be computed the

same way the sound synthesis software Modalys does, by

solving an orderN polynomial instead of a affine function.

The work presented here is based on a particular case

where f(x, t) = φ(x)f(t). The polynomial roots and

the convergence of the Volterra series will be studied in

a future work before using a more general force f(x, t).
Furthermore, it will be possible to consider more realis-

tic string or beam models with polarisation and coupling

between transverse and longitudinal displacements and ro-

tations.
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namics of the nonlinear resonators representing by a poly-
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ries truncation order. In case of linear propagation it would
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A. COEFFICIENTS OF THE POLYNOMIAL

The coefficients of the polynomial (16) are

Θ
[k]
3 (x) =

K
∑

k=1

γkB
[k]
0

K
∑

ℓ=1

(ℓCB
[ℓ]
0 φℓ)

2
CB

[k]
0 φkek(x)

Θ
[k]
2 (x, ti) =

K
∑

k=1

γkB
[k]
0

[ K
∑

ℓ=1

(ℓCB
[ℓ]
0 φℓ)

2
ũ
[k]
1 (ti)

+

K
∑

ℓ=1

2ℓ2ũ
[ℓ]
1 (ti)CB

[ℓ]
0 φℓCB

[k]
0 φk

]

ek(x)

Θ
[k]
1 (x, ti) =

K
∑

k=1

[

γkB
[k]
0

[ K
∑

ℓ=1

(ℓũ
[ℓ]
1 (ti))

2
CB

[k]
0 φk

+2ℓ2ũ
[ℓ]
1 (ti)CB

[ℓ]
0 φℓũ

[k]
1 (ti)

]

+B
[k]
0 φk

]

ek(x)

X̃(x, ti) =

K
∑

k=1

[

X̃
[k]
3 (ti) + X̃

[k]
1 (ti)

+γkB
[k]
0

K
∑

ℓ=1

(ℓũ
[ℓ]
1 (ti))

2
ũ
[k]
1 (ti)

]

ek(x)

with C =
[

1 0
]

.
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ABSTRACT

Nonlinear phenomena play an essential role in the sound
production process of many musical instruments. A com-
mon source of these effects is object collision, the numer-
ical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numer-
ical schemes that conserve the total energy in simulations
of one-mass systems involving collisions, with no condi-
tions imposed on any of the physical or numerical param-
eters. This facilitates the adaptation of numerical models
to experimental data, and allows a more free parameter ad-
justment in sound synthesis explorations. The energy pre-
servedness of the proposed method is tested and demon-
strated though several examples, including a bouncing ball
and a non-linear oscillator, and implications regarding the
wider applicability are discussed.

1. INTRODUCTION

Impact modelling is required in many engineering prob-
lems, for example during the simulation of colliding or
bouncing objects [1]. Taking Hertz’s contact law as a start-
ing point [2] and denoting the compression along the dis-
placement axisy with ∆y, collision forces can generally
be modelled using a one-sided power law

f(∆y) =

{

kc∆y
α if ∆y > 0

0 if ∆y ≤ 0
, (1)

where the forcef is active only for positive compression
values, and wherekc andα are power law constants.

In the context of musical acoustics, collisions have often
been studied in relation to hammer and mallet impacts. For
example, experimental studies of hammer-string interac-
tion in a piano have reported exponent values in the range
of α ∈ [2, 5] [3], though, in principle,α may take on any
value larger than 1 for impact modelling [4]. Collisions
may also occur in a more spatially distributed manner, such
as the string-bridge interaction in a sitar. In all cases, the
impactive interaction represents an important nonlinear el-
ement in the system that is closely linked to the expressive
control and characteristics of the instrument.

Copyright: c©2013 Vasileios Chatziioannou et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

The musical acoustics and sound computing literature of-
fers a variety of time-stepping methods for simulating col-
lisions, most of which are based on finite differences (e.g.
[2, 5]) or closely related methods such as the trapezoidal
rule [6] or Verlet integration (e.g. [1,7]). While many suc-
cessful simulation results have been obtained, and stabil-
ity can even be shown for some specific cases or under
specific assumptions (see, e.g. [8]), the formulation of a
more general class of provably stable algorithms for impact
modelling is still considered as an open and difficult prob-
lem [1, 5]. This sets collision modelling problems some-
what apart from most other challenges naturally appear-
ing in simulation of musical instruments. That is, the past
decade has seen a significant development of energy meth-
ods in finite difference simulation of musical instruments
and parts thereof, notably in [5] and further publications
by the same author. As such, provably stable schemes
have been derived for a wide range of systems, includ-
ing nonlinearly vibrating drums [9] and shells [10]. The
general approach taken herein is that difference operators
are applied to the Newtonian description of the system, the
stability bounds of which are established through defining
an invariant representing the numerical counterpart of the
Hamiltonian of the underlying system. However this way
of deriving schemes has limitations in application to sys-
tems in which the force is a non-smooth function of the
phase space variables, in which case the invariant can only
be defined for specific model parameters [5].

The present authors propose to address this by first re-
formulating the system in its Hamiltonian form [11], and
discretise this rather than Newton’s equations of motion.
Drawing from a wider research field, it can be said that
Hamilton’s equations can generally be discretised using
two different approaches [12]. The first approach leads
to numerical schemes that preserve the symplectic struc-
ture of the system and allow only canonical transforma-
tions in each integration step, while the second approach
aims to preserve the Hamiltonian of the system; it has been
shown that only one of these properties can generally be
preserved [13]. A fundamental observation is that sym-
plectic schemes impose a stronger constraint on the be-
haviour of the numerical solution while preserving a slightly
perturbed Hamiltonian. Since symplecticness is more suited
to the study of families of trajectories and long-term be-
haviour of dynamical systems, this approach has domi-
nated much of the physics and engineering oriented re-
search. There are however indications in the literature that

584

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

mailto:chatziioannou@mdw.ac.at
mailto:m.vanwalstijn@qub.ac.uk
http://creativecommons.org/licenses/by/3.0/


energy-conserving schemes possess better stability prop-
erties than symplectic methods (see, e.g. [14]). This is
particularly relevant for real-time sound synthesis applica-
tions, in which stability has to be guaranteed with minimal
constraints on any of the model parameters. An energy-
conserving approach is therefore adopted in this paper, fo-
cusing on a small set of simplified test problems involving
a point mass colliding with a rigid barrier.

2. NUMERICAL MODELLING OF IMPACTS

The most basic model employing (1) is that of a point-mass
colliding with a rigid barrier positioned aty = 0, where
the mass approaches the barrier from below (y < 0). The
motion of the mass is then governed by

m
d
2
y

dt2
+ kc⌊y⌋

α = 0, (2)

wherem is the object mass and

⌊y⌋ =

{

y if y > 0
0 otherwise.

(3)

Since we are aiming at the construction of energy preserv-
ing schemes, no dissipative components are included at
this point, but as explained in Section3, these can be added
once the stability properties have been established. It has
been shown in [5] that while simply applying a centered
difference operator to the acceleration term in (2) leads to
an unstable scheme, partially conservative behaviour can
be ensured for the specific casesα = 1 andα = 3 with the
use of an average operator. For instance ifyn denotes the
value of variabley at timen∆t, with ∆t being the sam-
pling interval, then the following numerical scheme for a
cubic power law

m
yn+1 − 2yn + yn−1

∆t2
+ kc⌊yn⌋

2 yn+1 + yn−1

2
= 0 (4)

preserves the energy-like function

Hn =
1

2
m

(

yn − yn−1

∆t

)2

+
1

4
kc⌊yn⌋

2
⌊yn−1⌋

2 (5)

in the two main phases of the simulation (y ≤ 0 andy >

0). The main downside of directly discretising the New-
tonian equation of motion (2) is that nothing firm can be
stated about stability of simulations with values ofα other
than 1 or 3, since an expression analogous to (5) is then not
forthcoming [5].

2.1 Hamiltonian formulation

Aiming at a more general treatment of power-law non-
linearities, we attempt to construct an energy preserving
scheme for an impact force of type (1) with arbitrary ex-
ponentα ≥ 1, starting from Hamilton’s equations. The
equivalent Hamiltonian formulation of (2) is

dy

dt
=

∂H

∂p
, (6a)

dp

dt
= −

∂H

∂y
, (6b)

where

H(y, p) =
p
2

2m
+

kc

α+ 1
⌊y⌋

α+1
, (7)

is the Hamiltonian of the system andp is the momentum
of the mass. Employing mid-point derivative approxima-
tions, system (6) can be discretised to yield the numerical
scheme:

yn+1 − yn

∆t
=

1

2m

p
2
n+1 − p

2
n

pn+1 − pn

, (8a)

pn+1 − pn

∆t
= −

kc

α+ 1

⌊yn+1⌋
α+1

− ⌊yn⌋
α+1

yn+1 − yn

. (8b)

Now setting
{

qn = pn ∆t/m

β = ∆t
2
kc/m

}

, (9)

yields a scheme with just two parameters:

yn+1 − yn =
1

2
(qn+1 + qn), (10a)

qn+1 − qn = −

β

α+ 1

⌊yn+1⌋
α+1

− ⌊yn⌋
α+1

yn+1 − yn

. (10b)

Solving (10) is facilliated by defining the auxiliary variable

x =
1

2
(qn+1 + qn), (11)

which, from equation (10a), gives

qn+1 = 2x− qn,

yn+1 = yn + x.
(12)

Substituting into equation (10b) we have:

β

2(α+ 1)

(

⌊yn + x⌋
α+1

− ⌊yn⌋
α+1

x

)

+ x− qn = 0

⇒ F (x) = 0. (13)

Note that

lim
x→0

F (x) =
β

2
⌊yn⌋

α
− qn, (14)

so there is no singularity inF (x). To sum up, the Hamil-
tonian system is discretised in (8) and subsequently trans-
formed in (10), whereas for the computation (13) is solved
numerically to yield a physically correct root ofF (x) (see
Section2.1.2), which is used to updatey and q using (12).

2.1.1 Conservation of Energy

The presented scheme can be shown to conserve the total
system energy at each time step as follows. Rewriting (8)
as

1

∆t
(yn+1 − yn)(pn+1 − pn) =

1

2m
(p2n+1 − p

2
n) (15a)

1

∆t
(yn+1 − yn)(pn+1 − pn) =

−

kc

α+ 1
(⌊yn+1⌋

α+1
− ⌊yn⌋

α+1) (15b)
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and substituting by parts yields

(

p
2
n+1

2m
+

kc

α+ 1
⌊yn+1⌋

α+1

)

=

(

p
2
n

2m
+

kc

α+ 1
⌊yn⌋

α+1

)

⇒ H(yn+1, pn+1) = H(yn, pn). (16)

2.1.2 Existence and Uniqueness

The scheme relies on finding a solution to equation (13),
which can be achieved numerically provided that a solution
exists. From the definition ofF (x) it follows that

dF

dx
= 1+A

(α+ 1)⌊yn + x⌋
α
x− ⌊yn + x⌋

α+1 + ⌊yn⌋
α+1

x2
,

(17)

with A =
β

2(α+ 1)
and lim

x→0

dF

dx
= 1 +

αβ

4
⌊yn⌋

α−1.

It can be shown thatdF/dx ≥ 1, meaning thatF (x) al-
ways has a single root. This is equivalent to showing that

G(yn + x) ≤ G(yn) + xG
′(yn + x), (18)

where

G(y) = ⌊y⌋
α+1

G
′(y) = dG/dy = (α+ 1)⌊y⌋α.

(19)

Given thatG(y) is a convex function, the inequality (18)
holds∀ yn ∈ R, and this result is independent of the value
of qn. Hence under the conditionα ≥ 1, a unique so-
lution of (13) exists, regardless of the value ofβ. Since
F (x) is near-linear in the neighbourhood of its root, the
solution can be found with excellent convergence using
the Newton-Raphson method; the number of iterations re-
quired can be kept low (typically below 6) by using the
previous value ofx as the initial guess.

2.2 Energy preservedness under finite precision

Due to quantisation in finite-precision arithmetic, the Hamil-
tonian can be preserved only to machine precision in im-
plementations on digital processors. The resulting energy
error can be expressed in terms of the deviation ofHn =
H(yn, pn) from the initial energyH0, which in normalised
form reads

en =

∣

∣

∣

∣

Hn −H0

H0

∣

∣

∣

∣

. (20)

It is worth noting that quantisation generally results into a
random-like signalen that is zero mean and as such will
not cause an energy shift over time. Figures1 and2 show
examples of the mass trajectory and the associateden ob-
tained with the proposed scheme (8) (labeled FDH for dis-
cretising Hamilton’s equations using finite differences). For
comparison, the corresponding results forα = 1 andα =
3 calculated with the partially stable finite difference schemes
presented in [5] are also shown (labeled FDN for discretis-
ing Newton’s second law).

In order to get a more complete view of the energy preser-
vation properties of the proposed scheme, its performance
is analysed across a range ofα andβ values. The varia-
tions in these parameters correspond to different levels of

time [s]
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Figure 1. Simulation of a unit mass (m = 1kg) collid-
ing with a rigid barrier with initial positiony0 = -0.1 m
and momentump0 = 2 kg m/s. The stiffness is chosen as

kc =
√

5000
α+1

. Top: mass displacement. Bottom: en-
ergy error by (20). All simulations were run at a 44.1 kHz
sampling rate.
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Figure 2. Simulation of a unit point-mass approaching a
rigid barrier with initial positiony0 = -0.1 m and momen-
tump0 = 2 kg m/s withkc = 2.5e3 and a sampling rate of
44.1 kHz Top: mass displacement. Bottom: energy error.
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Figure 3. Simulation results of the energy preservation
metric (21) as a function ofα and β.
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interaction between the mass and the barrier. To ensure
a meaningful comparison, the calculations are made inde-
pendent of the collision duration and the initial energy of
the system, using the following energy preservation metric:

P =

n2
∑

n=n1

|Hn+1 −Hn|

(n2 − n1 + 1)H0
, (21)

where the collision occurs in the interval[n1, n2]. P can be
thought of as the mean energy deviation per sample during
the contact period, thus excluding periods during which en-
ergy deviations are expected to be negligible. As depicted
in Figure3 the preservedness is only mildly dependent on
the model parameters, and structurally retains very low val-
ues. This result supports a strong confidence in the stability
of practical implementations.

2.3 Effective repelling force

Having established the stability properties, the immediate
next question to explore is how well the scheme approxi-
mates the original continuous-time model. While standard
finite difference procedures may be used to show that the
scheme is of second order accuracy, additional insight can
be obtained by determining the extent to which Newton’s
second lawf = m∂

2
y/∂t

2 = ∂p/∂t is adhered to. This
can be done by defining theeffective repelling force of the
scheme as

fn+ 1
2
=

pn+1 − pn

∆t

=
kc

α+ 1

(

⌊yn + x⌋
α+1

− ⌊yn⌋
α+1

x

)

, (22)

where we made use of (8b) and (12). Note thatx = (qn+1+
qn)/2 can be thought of as the mid-point valueqn+ 1

2
, thus

representing a measure of momentum. In other words, the
accuracy of equation (22) in approximating the underlying
power-law depends directly on the impact momentum, and
the scheme converges to (1) in the limit:

lim
x→0

fn+ 1
2
= kc⌊y⌋

α
. (23)

Given thatx → 0 when∆t → 0, this also demonstrates
that the numerical model is consistent with theory.

Figure 4 shows two examples of plotting the absolute
value of effective repelling force, as directly evaluated from
simulation data, against the mid-point displacement(yn+1+
yn)/2, and comparing to the corresponding theoretical term
kc⌊(yn+1 + yn)/2⌋

α. For visual clarity, the values forβ
and q0 have deliberately been chosen high; the discrep-
ancy between the effective repelling force and its theoret-
ical counterpart is considerably smaller fow lower values.
The more important notion that can be derived from these
plots is that the scheme effectively smoothes the curve around
y = 0, leading to a continuously differentiable force func-
tion, which can be shown to be of classCα.

2.4 Generalisation

The conservation of energy can be shown to hold for a
more general class of nonlinear one-mass oscillators, rep-
resented by a generic Hamiltonian. For an arbitraryH(y, p),
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Figure 4. Examples of the effective repelling force for a
power law of linear form (left) and cubic form (right). In
both cases, a unit mass and a sampling rate of 44.1 kHz was
used to evaluate the force curves. The model parameters
used are shown above the plots.

applying the following mid-point derivative approximations

yn+1 − yn

∆t
=

H(yn, pn+1)−H(yn, pn)

pn+1 − pn

(24a)

pn+1 − pn

∆t
= −

H(yn+1, pn+1)−H(yn, pn+1)

yn+1 − yn

, (24b)

yields a general numerical scheme for which, as previ-
ously, energy conservation follows from

1

∆t
(yn+1 − yn)(pn+1 − pn) = H(yn, pn+1)−H(yn, pn)

1

∆t
(yn+1 − yn)(pn+1 − pn) =

−(H(yn+1, pn+1)−H(yn, pn+1)),

hence
H(yn+1, pn+1) = H(yn, pn). (25)

A beneficial feature of the method is that - unlike equa-
tion (5) - the total energy at each time stepn is calculated
from the state space variables in exactly the same way as
for the continuous system, and is evaluated using the val-
ues of a single time step. In other words, the operatorH

renders the energy invariant in both domains.

3. FURTHER EXAMPLES

With no specific constraints on the Hamiltonian, provably
stable algorithms can be derived for a wider class of one-
mass systems involving collisions. In order to demonstrate
this, three further cases are discussed here, simulated using
a sampling rate of 44.1 kHz. For each case, it can be shown
that the nonlinear equation analogous to equation (13) al-
ways has a unique solution, but the proofs are omitted here
for brevity.

3.1 Bouncing Ball

Consider a ball falling under gravity and bouncing on a
floor (at y = 0), neglecting any frictional effects. The
Hamiltonian of the system is [15]

H =
p
2

2m
+

kc

α+ 1
⌊−y⌋

α+1 +mg0 y, (26)
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whereg0 is the gravitational acceleration. The Hamilto-
nian formulation (6) is discretised in the same way as ex-
plained in section2.1, yielding the nonlinear function

F (x) =
β

2(α+ 1)

⌊−yn − x⌋
α+1

− ⌊−yn⌋
α+1

x

+ x− qn +∆t
2
g/2 = 0,

(27)

where forx → 0 the first term is defined in a way similar
to (14). Figure5 shows the results of such a simulation
withα = 4; due to the lack of losses the ball bounces back
to its initial height and the energy is conserved.

3.2 Oscillating mass with repelling force

So far, only a mass colliding with a barrier has been consid-
ered. The system begins to bear a little more resemblance
to a musical instrument if the oscillating element can store
potential energy in a spring of stiffnessk. The repelling
force is now set to become active above a specified dis-
placementy0. The Hamiltonian of this system is

H =
p
2

2m
+

k

2
y
2 +

kc

α+ 1
⌊y − y0⌋

α+1
. (28)

The corresponding nonlinear function is now

F (x) =
β

2(α+ 1)

⌊yn − y0 + x⌋
α+1

− ⌊yn − y0⌋
α+1

x

+ x− qn +
∆t

2
k

4m
(x+ 2yn) = 0. (29)

Figure6 shows the result of an example simulation using
α = 2. As can be seen, the repetitive collisions do not
cause an accumulative energy shift, and the energy is con-
served to machine precision. This was observed for a large
number of simulations with different parameters and long
simulation times.

3.3 Non-conservative systems

In more realistic scenarios, the total energy of the system
is not conserved. This can occur due to damping effects
or the application of non-conservative external forces. For
instance, the Newtonian equation of motion

m
d
2
y

dt2
+mγ

dy

dt
− kc⌊−y⌋

α +mg0 = f, (30)

describes the displacement of a bouncing ball subject to an
external forcef as well as to a resistive term that represents
frictional losses, whereγ is a damping constant. The corre-
sponding Hamiltonian, which is now time-dependent, can
be found using the so-called Caldirola–Kanai Lagrangian
[16,17]:

H = e
−γt p

2

2m
+ e

γt

(

kc

α+ 1
⌊−y⌋

α+1 +mg0 y

)

(31)

and Hamilton’s equations for this system, including the ap-
plication of the external force, are

dy

dt
=

∂H

∂p
, (32a)

dp

dt
= −

∂H

∂y
+ e

γt
f, (32b)
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Figure 5. (a) Displacement of a lossless bouncing ball un-
der a gravitational force withkc = 1e11 andα = 4. (b)
The energy components. (c) The energy error.
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Figure 6. (a) Displacement of a lossless oscillating unit
mass attached to a spring with stiffnessk = (2π440)2 N/m
and initial positiony0 = -2 mm. A repelling force becomes
active wheny > -0.93 mm following a quadratic power
law with kc = 2.5e10. (b) The corresponding energy com-
ponents. (c) The energy error.
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Note that in this casep represents the generalised momen-
tum and equals∂L/∂ẏ = e

γt
mẏ, whereL is the La-

grangian anḋy = dy/dt. Hence the total (internal) energy
of the system is given bye−γt

H . The partial derivatives of
the Hamiltonian are now defined at mid-point as:

∂H

∂p
|t=t+∆t/2 ≈ e

−γ(n+ 1
2
)∆t 1

m

pn+1 + pn

2
, (33a)

∂H

∂y
|t=t+∆t/2 ≈ e

γ(n+ 1
2
)∆t kc

α+ 1

⌊yn+1⌋
α+1

− ⌊yn⌋
α+1

yn+1 − yn

,

(33b)

and mid-point evaluation of the external force term yields

e
γt
f |t=t+∆t/2 ≈ e

γ(n+ 1
2
)∆t fn+1 + fn

2
. (34)

Appling these to (32) and defining











qn =
∆t

m
e
−γn∆t

pn

wn =
∆t

2

m
fn











, (35)

allows to write the resulting scheme as

yn+1 − yn =
rqn+1 + r

−1
qn

2
, (36a)

rqn+1 − r
−1

qn =
wn+1 + wn

2

−

β

2(α+ 1)

⌊yn+1⌋
α+1

− ⌊yn⌋
α+1

yn+1 − yn

,

(36b)

wherer = e
γ∆t/2 andβ is defined again as in (13). So-

lution is now facilitated by defining the auxiliary variable
as

x =
1

2
(rqn+1 + r

−1
qn), (37)

which again yields a nonlinear equation to be solved:

F (x) =
β

2(α+ 1)

⌊−yn − x⌋
α+1

− ⌊−yn⌋
α+1

x

+ x− qn/r −
wn+1 + wn

4
= 0.

(38)

Figure7 shows the simulation results for a mass, initially
driven by an external force, with its motion being damped
by frictional forces. An energy preservation check does not
apply now, but stability may still be observed in that

∂ (e−γt
H)

∂t
≤ 0 (39)

for any period during whichf = 0. Regarding finite preci-
sion effects, checking the simulation after 20 seconds run
time verified that the oscillations decay to zero, i.e. no limit
cycles appear.
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Figure 7. (a) Displacement of a unit mass driven by an ex-
ternal force, with initial conditionsy0, p0 = 0 and internal
dampingγ = 2. (b) The profile of the external force. (c)
The variation of the energy components.

4. CONCLUSIONS AND PERSPECTIVES

A method has been presented to formulate energy preserv-
ing schemes for the simulation of a point mass under the
influence of a nonlinear force term. This has been achieved
by discretising the Hamiltonian formulation instead of the
Newtonian equation of motion. A proof of existence and
uniqueness of the solution has been given for the case of
an impactive interaction governed by a power law. The
accuracy of the scheme has been investigated through the
effective repelling force, which is dependent on the power-
law constants and the impact velocity. Simulation results
with several lossless example systems have confirmed that
the system energy is conserved to machine precision, re-
gardless of the model parameters.

For lossless one-mass systems, the proposed method is
similar to that presented by Greenspan [18]. That is, for
problems of the form

m
d
2
y

dt2
= f(y), (40)

where the forcef is a nonlinear function ofy, scheme (24)
is equivalent to Greenspan’s method, which uses the po-
tential function rather than the Hamiltonian as its starting
point. A common feature between the proposed method
and [18] is that finite difference operators are directly ap-
plied to an energy variable, as distinct from arriving at a
scheme by applying difference operators to the variables
of a Newtonian description, which has been the prevalent
approach to derive numerical schemes for musical acous-
tics and sound computing applications. It is worth noting
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that for many musically relevant systems, including any of
its linear components, such direct discretisation of energy
variables holds no particular advantages; the specific merit
of applying difference operators to the Hamiltonian itself
only emerges in application to systems in which the force is
a non-smooth function of the phase space variables, mak-
ing it particularly suitable for simulation of collisions. In
comparison to [18], the advantage of approximating par-
tial derivatives of the Hamiltonian rather than the potential
function is that it allows direct extension to problems of
the form

m
d
2
y

dt2
= f(y, p), (41)

such as collision models with nonlinear damping [19].
Given that all dynamic systems can be formulated in Hamil-
tonian form, one could go one step further here and conjec-
ture that the approach can be applied to more complex sys-
tems, which would open up new possibilities for the simu-
lation of musical instrument sounds. This would invariably
involve impacting of spatially distributed elements (e.g.
strings, membranes, plates). In order to gain some initial
perspective of how the proposed method would apply to
such systems, consider a problem of the form of (40) where
f(y) = ky is a simple linear spring restoring force. The
generalised scheme (24) then reduces to

yn+1 − yn

∆t
=

1

m

(

pn+1 + pn

2

)

(42a)

pn+1 − pn

∆t
= −k

(

yn+1 + yn

2

)

, (42b)

which is equivalent to applying the trapezoidal integration
rule to ∂y/∂t = p/m, ∂p/∂t = −ky, thus shifting the
system resonance frequency

√

k/m in the same way as the
bilinear transform. This signifies that the proposed manner
of discretisation results into rather heavy numerical disper-
sion for any linear subsystem. While it is straightforward
to pre-compensate for such errors in the case of a one-mass
system, the implications for a mass interacting with a spa-
tially distributed object are more complex, and worthy of
further investigation. Other key questions to be addressed
in future research are whether any uniqueness issues would
arise and how these may be resolved, and how the resulting
conservative schemes compare to alternatives, in particular
symplectic schemes.
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ABSTRACT

In this paper, we investigate finite difference schemes for
the 3-D wave equation using 27-point stencils on the cubic
lattice, a 13-point stencil on the face-centered cubic (FCC)
lattice, and a 9-point stencil on the body-centered cubic
(BCC) lattice. The tiling of the wavenumber space for non-
Cartesian grids is considered in order to analyse numerical
dispersion. Schemes are compared for computational effi-
ciency in terms of minimising numerical wave speed error.
It is shown that the 13-point scheme on the FCC lattice is
more computationally efficient than 27-point schemes on
the cubic lattice when less than 8% error in the wave speed
is desired.

1. INTRODUCTION

Finite difference (FD) schemes have long been used to ap-
proximate solutions to the wave equation [1, 2]. The wave
equation can be used to model 3-D sound propagation in
terms of pressure or velocity potential [3] and FD schemes
provide an approximation to such acoustic fields. This has
been used for 3-D room acoustics modelling [4], for the
cavities of percussion instruments [5–7], and for artificial
reverberation purposes [8,9]. Certain FD schemes are also
known by an equivalent wave-scattering formulation called
the digital waveguide mesh (DWM) [10], which has seen
much use in the acoustics and audio signal processing com-
munity [8] due to its simplicity and passive construction.

Such FD approximations are carried out on temporal and
spatial grids. The spatial grid is usually the Cartesian grid
(the integer or cubic lattice [11]), but non-Cartesian grids
(lattices) can also be used in 3-D [11], such as the body-
centered cubic (BCC) grid [12], the face-centered cubic
(FCC) grid [6, 7], and the “diamond lattice” (not a lattice
in the strict sense [11, 13]), which is used in the “tetrahe-
dral DWM” [14] . Furthermore, there are many approxi-
mations to the 3-D Laplacian operator that pertain to each
grid [12, 15]. Numerical dispersion in a FD scheme can
give rise to audible artifacts [16, 17] and this largely de-
pends on the choice of the spatial grid and approximation
to the Laplacian. Mitigating these effects in an efficient
manner is critical for large-scale 3-D room acoustics sim-

Copyright: c©2013 Brian Hamilton et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ulations since these simulations can be prohibitively ex-
pensive in terms of memory and computation time, even
with the use of graphical processing units (GPUs) [18,19].
Making sense of all these choices has been the subject of
many studies [12, 20–23], however, the treatment of non-
Cartesian grids has been lacking important details, as will
be seen in this paper.

It has recently been shown that one must consider the cell
that tiles the wavenumber space, also known as the Bril-
louin zone of the lattice in crystallography [13], to properly
analyse numerical dispersion and computational efficiency
of FD schemes on the 2-D hexagonal grid [24]. While the
Brillouin zone has long been considered in multidimen-
sional sampling on non-Cartesian grids [25], it has yet to
be considered in the context of FD schemes for the 3-D
wave equation. The computational efficiencies of special
cases of a 27-point stencil (approximation to the Lapla-
cian) on a cubic lattice have been studied previously [23],
and while this encompassed 13-point and 9-point special
cases related to the FCC and BCC lattices respectively, it
will be seen that it is necessary to consider both the stencil
and the lattice on which it operates.

The main contributions of this paper are to consider the
wavenumber cells on non-Cartesian grids to show how it
relates to stability conditions and the analysis of numerical
dispersion, and to compare computational efficiencies of
FD schemes in terms minimising numerical dispersion for
audio and acoustics applications.

The paper is organised as follows. In Section 2, we in-
troduce the finite difference schemes and in Section 3, we
discuss the discretisation of time and space. In Section 4,
we consider the tiling of the wavenumber space for non-
Cartesian grids and in Section 5, stability conditions are
discussed with respect to the wavenumber tilings. Numer-
ical dispersion and computational efficiency are analysed
in Sections 6 and 7 respectively. Conclusions are given in
Section 8.

1.1 3-D Wave Equation

Modelling 3-D room acoustics usually begins with the 3-D
wave equation:(

∂2

∂t2
− c2∆

)
u = 0 , ∆ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1)

where c is the wave speed, ∆ is the 3-D Laplacian opera-
tor, t is time, and u = u(t,x) is the solution to be approx-
imated for x ∈ R3 (x = (x, y, z)). The variable u can
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represent pressure or a velocity potential [3,20]. A room is
not complete without walls but this study is only concerned
with the interior (the bulk of the computation) so boundary
conditions will not be considered here. At this point it is
worth mentioning that the FD schemes considered in this
paper are those that can be coupled to existing boundary
conditions that model frequency-dependent walls [23, 26].

2. FINITE DIFFERENCE SCHEMES

2.1 Time Difference Operator

In FD schemes, the variable u is replaced by an approxi-
mation to u, û = û(t,x), and partial differential operators
are replaced by finite difference operators. A standard FD
approximation to ∂2

∂t2 is the following:

δtt,kû =
1

k2
(û(t+ k,x)− 2û(t,x) + û(t− k,x)) , (2)

where k is the time-step, which could be chosen to be k =
1/Fs where Fs is an audio sampling rate like 44.1 kHz.

2.2 Finite Difference Approximations to the Laplacian

Approximations to the 3-D Laplacian can be built using the
following FD operator:

δ∆,Ω,hû =
κ

h2

|Ω|∑
i=1

(û(t,x+vih)−2û(t,x)+û(t,x−vih)) ,

(3)
where Ω ⊂ R3 is a set of equal-norm vectors vi ∈ Ω, and
|Ω| denotes the cardinality of that set. The constant h is
the spatial step, which will be chosen based on the time-
step and stability constraints of the FD scheme. The FD
operator in (3) becomes a (2|Ω| + 1)-point second-order
accurate approximation to the Laplacian (we also call this
a discrete Laplacian or a stencil) for particular choices of
Ω and κ. The standard 7-point stencil uses the standard
unit vectors ΩC = {êx, êy, êz}. We also consider a 13-
point stencil that uses the following six vectors from the
FCC lattice: ΩF = {êx ± êy, êx ± êz, êy ± êz}/

√
2, and

a 9-point stencil that uses the following four vectors from
the BCC lattice: ΩB = {êx ± êy ± êz, êx ∓ êy ± êz}/

√
3.

These stencils are shown in Fig. 1. For these choices of Ω
we get the following condition for consistency:

κ =
3

|Ω|‖v‖2
, (4)

where ‖v‖ denotes the Euclidean norm of any v ∈ Ω.
We can also build a consistent approximation to the Lapla-

cian as a weighted combination of these stencils:

δ∆,α,Υ,hû =

|Υ|∑
j=1

αjδ∆,Ωj ,hû ,

|Υ|∑
j=1

αj = 1 , (5)

where Υ is a set of sets and α = (α1, . . . , α|Υ|). In
this study, we consider ΥF = {ΩF }, ΥB = {ΩB}, and
a 27-point stencil with ΥC = {ΩC ,

√
2ΩF ,

√
3ΩB}.

(a) Cubic (b) FCC (c) BCC

Figure 1: Some spatial points in the cubic lattice and
scaled FCC and BCC lattices. Lines from center point de-
note vectors of associated stencils. The 27-point stencil
δ∆,α,ΥC ,h uses all the points in (a), whereas the 7-point
stencil δ∆,ΩC ,h uses the black points and the center point.

2.3 Finite Difference Scheme for Wave Equation

Combining these operators we have a FD scheme for the
3-D wave equation:(

δtt − c2δ∆,α,Υ,h

)
û = 0 , (6)

which is updated in time with the explicit recursion:

û(t+ k,x) = (c2k2δ∆,α,Υ,h + 2)û(t,x)− û(t− k,x) ,
(7)

given some initial conditions.

3. DISCRETISING TIME AND SPACE

In practice, the FD approximation is calculated at a count-
able set of points in space and time, denoted by a lattice
(a grid of points). The temporal grid is simply the integer
lattice Z scaled by the time-step k:

T k = {tn = nk, n ∈ Z} . (8)

A spatial lattice in 3-D is defined by:

Gh = {xm,h = mTV h ∈ R3 ,m ∈ Z3} , (9)

where V is a generator matrix [11] made up of any three
column vectors chosen from ΩC , ΩF , and ΩB for the cu-
bic, FCC, and BCC lattices respectively. The approxi-
mated solution will have a certain bandwidth (spatial and
temporal) given some time-step k, grid spacing h (spatial
step), and discrete Laplacian δ∆,α,Υ,h. Given the band-
width in the approximation, there will be a temporal and
spatial lattice on which values of û(t,x) will have to be
calculated so that the continuous approximation û(t,x)
can be completely reconstructed [25]. For this reason, we
only need to compute û(t,x) on a spatial and temporal
grid, i.e., we calculate the set: {û(t,x) : t ∈ T k,x ∈ Gh},
where T k and Gh are the appropriate grids for our FD
scheme.

Choosing the appropriate grid for a given stencil is not
always obvious and one must be careful so that only neces-
sary values of û(t,x) are computed. For example, consider
the FD scheme (6) with the 27-point stencil (Υ = Υc).
Two special cases, among others, were analysed in a study
on the computational efficiency of this scheme when em-
ployed on the cubic lattice: the close-cubic packed (CCP)
scheme (α = (0, 1, 0)), and the octahedral scheme (α =
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(a) FCC (b) BCC

Figure 2: Wavenumber cells, wavenumber tilings, and dual lattices (black dots) of FCC and BCC lattices.

(0, 0, 1)) [23]. As can be deduced from Fig. 1, the cubic
lattice can be constructed with two scaled 1 and interleaved
FCC lattices [11]. Note that the red points in Fig. 1(a) are
part of one FCC lattice, and the blue and black points are
part of another, shifted FCC lattice. As a consequence, the
FD scheme withα = (0, 1, 0) operates on two disjoint sets
of points, each pertaining to one FCC lattice; this results in
two decoupled schemes on FCC subgrids. 2 When such a
scheme is employed on the cubic lattice, the FD approxi-
mation on half of the spatial points provides no additional
information (bandwidth) that cannot be reconstructed from
the values of û(t,x) on one FCC lattice. As such, the ap-
propriate lattice for the CCP scheme is the FCC lattice.
Similarly, the cubic lattice can be constructed from four
scaled and interleaved BCC lattices [11], so, for the same
reasons, the appropriate lattice for the octahedral scheme is
a single BCC lattice. These features were not considered
in [23], so we can improve on the reported computational
efficiency, which depends on density of the spatial lattice,
if we choose the appropriate lattices, as will be seen later.

4. TILING THE WAVENUMBER SPACE

It is well known that the Fourier transform of a discrete sig-
nal is periodic with period 2π/k, where k is the sampling
period, or time-step. The same applies to discrete multidi-
mensional signals on spatial lattices, but the periodicity of
the spatial frequencies, or wavenumbers ξ = (ξx, ξy, ξz) ∈
R3, is more subtle. In general, the periodicity represents a
regular tiling of the continuous frequency space which is
given by the Voronoi tessellation of the dual lattice. The
dual lattice has the generator matrix (V −1)T when V is
the generator matrix of the direct lattice and consists of
unit-norm vectors [11]. The dual lattice is further scaled
by 2π and the inverse of the time or spatial period [13].
This leads to the well-known sampling theorem in 1-D and
this was extended to sampling in multiple dimensions [25].
The cell that makes up the tiling of the wavenumber space
is known as the Brillouin zone of the direct lattice in crys-
tallography [13] and the wavenumber cell of the lattice in
the context of multidimensional sampling [25]. The cu-
bic lattice is self-dual [11], so the wavenumber tiling is
composed of cubic wavenumber cells with sides of length
2π/h. Previous studies have assumed a cubic wavenumber
cell for FD schemes for the 3-D wave equation on the FCC

1 We use the term “scaled” when a lattice generated with unit-norm
vectors is multiplied by something other than the grid spacing h.

2 The same observation has been made in the context of lattice Boltz-
mann simulations [27].

and BCC lattices, but this is not the case. The FCC and
BCC lattices form a dual pair [11] and their wavenumber
cells are the truncated octahedron and the rhombic dodec-
ahedron respectively [11, 13]. These cells and their tilings
are shown in Fig. 2.

We can determine how well a set of values on a spatial lat-
tice can reconstruct an isotropic spatial signal (bandwidth
cuts off at the same |ξ| in all directions) from the dual
lattice and its associated wavenumber tiling [25]; this is
called the sampling efficiency of the lattice. Some studies
have chosen specific lattices for FD schemes solely based
on sampling efficiency [28–30], but this can be mislead-
ing. Sampling efficiency is not a suitable metric in choos-
ing a grid for a FD scheme because, aside from at the initial
conditions, sampling is not part of the FD approximation.
The solution u(t,x) is unknown so it cannot be sampled
(aside from the special case in 1-D [16]); it must be ap-
proximated by û(t,x) at points on a grid and the rest of
û(t,x) can be reconstructed using multidimensional sinc
interpolation. The efficiency in computing an accurate FD
approximation depends on other factors besides the lattice
on which it is employed, such as the stencil used, the com-
bined density of the spatial and temporal grid set according
to stability constraints, the number of arithmetic operations
at each update, and most importantly, the particular metric
used to measure efficiency, which could be in terms of or-
der of accuracy given by a Taylor expansion or accuracy in
the numerical wave speed.

We argue that the key to choosing a lattice is its rota-
tional symmetry, which is related to the kissing number
problem (how many non-overlapping spheres can touch or
kiss a central sphere of the same size) [11]. We are essen-
tially using points on the spatial lattice to approximate an
isotropic (directionally-independent) operator, the Lapla-
cian, so symmetry in the lattice plays a large role in emu-
lating this isotropy. For example, two shells of points are
required for an isotropic stencil (to the fourth-order error
term) on the 2-D square lattice [31], but the lattice with
the highest kissing number in 2-D, the hexagonal lattice,
provides an isotropic stencil using only the first shell of
points [31].

The lattice in 3-D with the highest kissing number and
the most symmetry is the FCC lattice [11]. The 13-point
stencil from the FCC lattice is not quite isotropic, but it
has been observed that it is nearly isotropic [22, 23]. This
can be seen in Fig. 3, where isosurfaces (surface of equal
error, as a function of ξ) of the second-order error terms
in approximations to the Laplacian are shown. Among the
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(a) 7-point stencil (b) 13-point stencil (c) 9-point stencil

Figure 3: Equal isosurfaces of first error-term in Taylor
expansions of Fourier symbols of approximations to Lapla-
cian. Isotropic error gives a sphere.

three isosurfaces displayed in Fig. 3 the isosurface pertain-
ing to the 13-point FCC stencil is the closest to a sphere
(isotropic). We also observe that they loosely conform
to the wavenumber cells of their associated lattices. A
rounder wavenumber cell is more amenable to an isotropic
error since the full error must ultimately conform to the
tiling of the wavenumber space.

Considering that the Fourier symbol of the Laplacian de-
scribes concentric spherical shells (isosurfaces of scalar
values), we can take another point of view: in essence, we
are trying to fit a sphere into the wavenumber cell. Thus,
we require the roundest wavenumber cell. This problem
could be formulated as finding the lattice whose wavenum-
ber cell has a ratio of inradius (largest radius for a sphere
contained by the cell) to circumradius (the smallest radius
for a sphere that contains the cell) closest to unity (this ra-
tio for a sphere). This is a combination of the kissing prob-
lem (maximise inradius) and the covering problem (what
is the least dense arrangement of overlapping spheres that
covers space; minimise circumradius) [11]. These ratios
are approximately 1.29, 1.41, and 1.73 for the FCC, BCC,
and cubic lattices respectively. This is similar, but different
from finding the optimal sampling lattice for an isotropic
signal, which is essentially the sphere packing problem in
the wavenumber space [25], and for lattices, the kissing
number problem [11]. The 2-D hexagonal lattice is self-
dual, and solves both the kissing number problem and the
covering problem, so sampling arguments [28], while un-
founded, arrive at the same conclusion. This line of reason-
ing has also been used in 3-D to select the BCC lattice [29],
which is optimal for sampling because its dual, the FCC
lattice, is the lattice with the highest kissing number and
sphere packing density [25]. However, it will be seen that
the BCC lattice is not ideal in the context of FD schemes
for the 3-D wave equation. It is interesting to note that a
recent study also followed sampling arguments [30], but
arrived at the FCC lattice by conflating the optimal sam-
pling lattice with its dual.

5. STABILITY

Using von Neumann’s method for determining stability con-
ditions in FD schemes [32], it is sufficient to consider a
plane wave of the form: û(t,x) = ej(ωt+ξ·x), where ω is
the temporal frequency and (ω, ξ) ∈ R4. It helps to de-
fine a normalised wavenumber ξh = ξh and normalised
frequency ωk = ωk. Inserting the plane wave into the FD

(a) FCC (b) BCC

Figure 4: Scaled FCC and BCC wavenumber cells in-
scribed in cubic wavenumber cell. Arguments of the max-
ima in |D∆,

√
2ΩF ,h| and |D∆,

√
3ΩB ,h| denoted by black

spheres.

scheme then gives a dispersion relation of the form:

Dtt(ωk) = λ2D∆,α,Υ(ξh) , (10)

where λ = ck/h is the Courant number and

Dtt(ωk) = −4 sin2(ωk/2) , (11)

D∆,α,Υ(ξh) = −4

|Υ|∑
j=1

αjκj

|Ωj |∑
i=1

sin2(ξh · vj,i/2) (12)

for vj,i ∈ Ωj . The scheme is stable if we can ensure that
no real wavenumbers produce growing solutions in time.
This requires finding a maximum for |D∆,α,Υ(ξh)| and
we get the following stability condition:

λ ≤ λmax,α =

√
4

maxξh |D∆,α,Υ(ξh)|
(13)

In deriving this condition we have not specified a grid,
but D∆,α,Υ(ξh) is periodic according to the wavenum-
ber tiling of the appropriate grid for the stencil. It is then
sufficient to consider just one wavenumber cell of the ap-
propriate lattice. So in the CCP and octahedral schemes
on cubic lattices, the stability condition is found within
the wavenumber cell of scaled FCC and BCC lattices re-
spectively, but an exhaustive search over a larger domain
will also locate the maximum. For the schemes considered
here, |D∆,α,Υ,h(ξ)| is multilinear in cos(ξxh), cos(ξyh),
and cos(ξzh) variables, and it can be shown that the max-
imum occurs at either the faces, center of edges, or ver-
tices of a cubic wavenumber cell [12]. As we can see
in Fig. 4, the wavenumber cells of the scaled FCC and
BCC lattices are neatly inscribed in a cube with sides of
2π/h. The points where the maximum of |D∆,

√
2ΩF ,h|

occurs line up with the square faces of the truncated oc-
tahedron wavenumber cell for the CCP scheme. Similarly,
the points where the maximum of |D∆,

√
3ΩB ,h| occurs line

up with vertices of the rhombic dodecahedron wavenum-
ber cell for the octahedral scheme (the corners of the cube
pertain to vertices of replicated dodecahedral cells).

It has been shown that the stability conditions for the 27-
point stencil scheme are [12]:

− 2α1 ≤ α2 ≤ 2α1 + 1 , (14)
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λ ≤ λmax,α = min

(
1,

1√
2α1 + α2

,
1√

2α1 − α2 + 1

)
,

(15)
and from (15) we can get the stability conditions for the
13-point and 9-point FD schemes after we rescale the grid
spacings. For the 13-point (Υ = ΥF ) and 9-point (Υ =
ΥB) schemes we have the respective stability conditions:

λ ≤
√

1/2 , λ ≤
√

1/3 . (16)

Note that the condition for the 13-point scheme is differ-
ent from the Courant number used in the “dodecahedral
DWM” [6], which means this case was not covered in a
study comparing DWM topologies [22]. It was observed
that the dodecahedral DWM had good numerical disper-
sion properties [22] and since numerical dispersion is min-
imised when the Courant number is set to λmax,α [16] the
FD scheme on the FCC lattice will provide less disper-
sion. 3

6. NUMERICAL DISPERSION

Inserting the plane wave u(t,x) = ej(ωt+ξ·x) into the
wave equation we get the dispersion relation ω2 = c2|ξ|2,
which tells us that the phase velocity (ω(ξ)/|ξ|) of each
plane wave is the wave speed c. However, in the FD scheme
the relationship is not linear and we get a frequency- and
direction-dependent wave speed in the approximation û(t,x).
The relative phase velocity (we will just call this the nu-
merical wave speed) is:

ν̂(ξh) =
ωk(ξh)

λ|ξh|
, ωk(ξh) = D−1

tt (λ2D∆,α,Υ(ξh))

(17)
for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenum-
ber cell of the grid. The wave speed error, defined as
|1 − ν̂(ξh)|, is the main concern in audio and acoustics
applications of FD schemes. Higher frequencies tend to
travel slower and this causes transients to be smeared over
space and time. It is therefore of interest to analyse numer-
ical dispersion in such schemes, but a proper analysis of
the wave speed error requires the correct wavenumber cell
on non-Cartesian grids.

With 2-D schemes one can plot the wave speed error over
the entire domain using a single contour plot [12, 24], but
this is not possible for 3-D. Some possibilities to visualise
the wave speed error include fixing two angles and plot-
ting the error as a function of |ξh| [23]; fixing |ξh| and
plotting the error as a function of two angles as a map-
ping of colours on a spherical shell [12, 22] or where the
error denotes a polar radius [33]; plotting contours of two-
dimensional slices of B [12, 23]; or fixing some error and
plotting this as a three-dimensional isosurface of wavenum-
bers. In each of these representations one can encounter
aliased wavenumbers if one does not consider the correct
domain B. If one assumes a cubic wavenumber cell for the
13- and 9-point schemes, as has been done in the past, the
cell will contain aliased wavenumbers, as can be deduced

3 The dodecahedral DWM is left out for brevity, but a similar compar-
ison can be found for 7-point FD scheme on the 2-D hexagonal grid and
the “triangular DWM” [24].

from Fig. 4, or missing wavenumbers. 4 This can result in
an incorrect numerical wave speed if the denominator in
(17) is not adjusted accordingly to reflect the tiling of the
wavenumber space.

Table 1 lists the parameters of the schemes analysed here,
along with some acronyms sometimes employed in the lit-
erature [22, 23]. These acronyms stand for the standard
leapfrog (SLF), interpolated wideband (IWB), interpolated
isotropic (IISO2), 5 close-cubic packed (CCP), and octa-
hedral (OCTA) schemes. The 27-point IWB and IISO2
schemes are analysed because they were identified as be-
ing the most effective 27-point schemes at reducing wave
speed error [23]. Note that the CCP and OCTA schemes
are analysed here on their native lattices for the reasons
stated in Section 2.3, so we will refer to these as the “FCC
scheme” and the “BCC scheme”.

The density of a spatial grid is µ/h3, where µ is the den-
sity of the unscaled lattice (unit grid spacing). The com-
putational density (updates per unit time and space) of a
scheme is then µ(h3k)−1. Fixing the Courant number at
the stability limit, we can write the computational density
as (cµ/λ)h−4. Thus, to put schemes on an equal footing
we use the spatial step h = 4

√
µ/λh′ so that each scheme

has the density ch′−4. Similarly, we can write the com-
putational density as (µλ3/c2)k−4, so we can equalise the
schemes by choosing the time-step as k = 4

√
µλ3k′. The

parameter µ and the values µ/λ and µλ3 for each scheme
are listed in Table 1. We can now compare schemes on dif-
ferent grids and with different Courant numbers in terms
of normalised wavenumbers ξh′ = ξh′ or normalised fre-
quencies ωk′ = ωk′ by keeping h′ or k′ constant across all
schemes.

The computational density is a metric for efficiency that
has been used in previous comparisons [23] and is mostly a
starting point to compare computational costs. It does not
take into account specific operations like multiplications,
additions, and memory reads, although these are simply an
extra scaling factor. Ideally, such comparisons should be
conducted in practice on specific computational hardware
(see [34]).

In Fig. 5, we show isosurfaces of the 10% wave speed
error, as a function of ξh′ . The surface displayed repre-
sents wavenumbers with 10% wave speed error, and since
the wave speed error is monotonic in these schemes, any
wavenumber inside the surface results in less than 10% er-
ror. These plots are normalised for computational density,
but it is difficult to compare them since the wavenumber
cells differ. However, it can be observed that the FCC
scheme’s isosurface (Fig. 5(d)) fills its wavenumber cell
better than the other schemes fill their respective cells.

In Fig. 6, we show error surfaces where |ξh′ | is fixed at
π/10. We note that the relative comparison of Fig. 5(a) to
Fig. 5(d) is more favourable to the FCC scheme than what
is found in [30]. This is because we have also normalised
for computations per unit time, but also because there is
a mistake in the spatial density of the FCC lattice in [30].

4 The wavenumber cells extend beyond the cube in Fig. 4 when the
FCC and BCC lattices are not scaled.

5 The second of three isotropic schemes that were examined in [23].
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Table 1: Parameters for various schemes

Subfigure lattice # of points Υ α µ λ µ/λ µλ3 Acronyms from [23]

(a) cubic 7 ΥC (1, 0, 0) 1
√

1/3 1.73 0.19 SLF
(b) cubic 27 ΥC (1/4, 1/2, 1/4) 1 1 1.00 1.00 IWB
(c) cubic 27 ΥC (5/12, 1/2, 1/12) 1

√
3/4 1.15 0.65 IISO2

(d) FCC 13 ΥF 1
√

2
√

1/2 2.00 0.50 CCP∗

(e) BCC 9 ΥB 1 3
√

3/4
√

1/3 2.25 0.25 OCTA∗

∗These schemes are employed on the cubic lattice in [23] so µ and λ would change to µ = 1 and λ = 1.

ξxh
′

π
ξyh

′
π

ξzh
′

π

(a) SLF

ξxh
′

π
ξyh

′
π

(b) IWB

ξxh
′

π
ξyh

′
π

(c) IISO2

ξxh
′

π
ξyh

′
π

(d) FCC

ξxh
′

π
ξyh

′
π

(e) BCC

Figure 5: 10% wave speed error isosurfaces.

From these plots we see that the FCC scheme has the low-
est amount of error (for |ξh′ | = π/10).

In Fig. 7, we display volumetric slices of the wave speed
error for specific planes. In these plots we can see that most
of the error in the FCC scheme is less than 15%. The cubic
schemes have large error near the face centers or corners
of the cubic wavenumber cell. On the other hand, these
wavenumbers are not represented on the scaled FCC lat-
tice. The BCC scheme also has pronounced error near the
diagonal vertices (those with a vertex figure consisting of
three rhombi). The FCC scheme exhibits no numerical dis-
persion along the x,y, and z directions, similar to the IWB
scheme; this is a useful feature for simulating axial room
modes [23].

In Fig. 8, we have taken the same slices and reassigned
the wave speed error to temporal frequencies ωk and a
fixed angle of propagation (polar angle) using the function
ωk(ξh) in (10) [35]. We only show quadrants since these
plots have four-fold symmetry. We have not normalised
densities in Fig. 8 to show directionally dependent cutoff
frequencies, of interest for audio applications. To generate
Figs. 8(d) and 8(e) it is necessary to consider the correct
wavenumber cell.

Finally in Fig. 9, we plot the wave speed error along
the worst-case direction for each scheme as a function of
normalised wavenumber |ξh′ | and as a function of nor-
malised frequency ωk′ . Notice that the FCC scheme has
slightly less dispersion than the IISO2 and IWB schemes
until about 8% error. This gap will become more pro-
nounced once we compare computational efficiencies.

7. COMPUTATIONAL EFFICIENCY

We use the relative efficiency measure introduced in [35]
and employed in [23] to compare 3-D schemes for their
computational efficiency in terms of minimising numeri-

cal dispersion. The basic idea is to determine how much
one must increase the computational density (by reducing
h or k; density scales to the fourth power) in a reference
scheme (in this case, the SLF scheme) to maintain the wave
speed error below some threshold in every direction. This
is completely determined by the parameters in Table 1 and
(17) if we increase the computational density by reducing
h. 6 We plot these relative efficiencies in Fig. 10. It can
be seen that if less than 8% wave speed error is desired up
to some critical frequency, the FCC scheme has the best
computational efficiency (using this particular metric), fol-
lowed by the IISO2 and IWB schemes. If greater than 8%
wave speed error is acceptable, the IWB scheme will have
a smaller computational density. The data in Fig. 10 agree
with the numbers reported in [23] after adjusting for the
grid densities of the CCP and OCTA schemes. As such,
the reported efficiencies for the CCP and OCTA schemes
have been improved by a factors of two and four respec-
tively. Nonetheless, the efficiency of the FD scheme on the
BCC lattice is poor, which confirms our discussion about
choosing a lattice based on sampling efficiency.

We have not taken into account the number of specific
operations for each scheme and, as mentioned previously,
we have left this out for brevity. However, we should point
out that the FCC scheme employs less than half the neigh-
bouring points of the 27-point stencil, so if one considers
additions and memory bandwidth the FCC scheme is the
most efficient scheme in a wider range of errors. Further-
more, the gap in Fig. 10 between the FCC scheme and 27-
point schemes for less than 8% wave speed error increases
by a factor of two. These implementation-specific details
are further investigated in another study [34].

6 This has previously been done by solving for ξh(ωk) using (10)
and increasing the computational density by reducing k [23, 35], but the
choice is immaterial because the measure is ultimately independent of h
and k, which is apparent from the axes in Fig. 10.
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(a) SLF (b) IWB (c) IISO2 (d) FCC (e) BCC

Figure 6: Wave speed error surface for |ξh′ | = π/10. Colour mapping is relative to each plot to show detail.

ξxh
′

π
ξyh

′
π

ξzh
′

π

(a) SLF

ξxh
′

π
ξyh

′
π

(b) IWB

ξxh
′

π
ξyh

′
π

(c) IISO2

ξxh
′

π
ξyh

′
π

(d) FCC

ξxh
′

π
ξyh

′
π

(e) BCC

Figure 7: Volumetric slices of wave speed error along three planes. 2% error contours.

8. CONCLUSIONS

In this paper, we have considered the wavenumber cell
of non-Cartesian grids in order to compare 27-point FD
schemes on the cubic lattice with a 13-point scheme on
the FCC lattice and a 9-point scheme on the BCC lattice.
These FD schemes have been compared in terms of numer-
ical dispersion and using a metric of computational effi-
ciency for minimising wave speed error. It has been shown
that the 13-point scheme on the FCC lattice is the most
computationally efficient scheme when less than 8% wave
speed error in the approximated solution is desired up to
some critical frequency. The demonstrated inefficiency of
the BCC scheme confirms that sampling-based arguments
are not suitable for FD schemes.

In future work, perceptual tests will be conducted to de-
termine critical thresholds of wave speed error for the pur-
poses of large-scale 3-D room acoustics simulations and
artificial reverberation (some preliminary work can be found
in [17]). The tetrahedral DWM was not considered in this
paper, but it will be treated as a special case in a future
study.
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ABSTRACT

Calibrating a sound synthesizer to replicate or approximate
a given target sound is a complex and time consuming task
for musicians and sound designers. In the case of the OP1,
a commercial synthesizer developed by Teenage Engineer-
ing, the difficulty is multiple. The OP-1 contains several
synthesis engines, effects and low frequency oscillators,
which make the parameters search space very large and
discontinuous. Furthermore, interactions between param-
eters are common and the OP-1 is not fully determinis-
tic. We address the problem of automatically calibrating
the parameters of the OP-1 to approximate a given target
sound. We propose and evaluate a solution to this problem
using a multi-objective Non-dominated-Sorting-Genetic-
Algorithm-II. We show that our approach makes it possible
to handle the problem complexity, and returns a small set
of presets that best approximate the target sound while cov-
ering the Pareto front of this multi-objective optimization
problem.

1. INTRODUCTION

Sound re-synthesis is the process of replicating a sound us-
ing electronics or software. Tuning a synthesizer for this
purpose can be a very unintuitive task, since changes in
input parameters can give rise, via nonlinearities and in-
teractions among parameters, to unexpected changes in the
output sound. Optimization techniques such as GAs have
been successfully used to perform this tuning in the past
for a variety of synthesis techniques [1–3] and synthesiz-
ers of increasing complexity [4–7]. It is now common for
synthesizers to include several synthesis engines, FX and
LFOs with large parameter complexity. A research part-
nership has been started by the authors in collaboration
with Teenage Engineering (TE), with the goal of develop-
ing a system able to tune their synthesizer, the OP-1, to ap-
proximate any given target sound. Tuning this synthesizer
presents all the characteristics of a real world problem. In
comparison to previously studied synthesizers, the search
space is larger, discontinuous and more difficult because
of a large number of possible local minima. To the best of
our knowledge, there is no system capable of successfully
tuning sound synthesizers with the same complexity as the
OP-1.

Copyright: c©2013 Matthieu Macret et al. This is an

open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

In collaboration with TE, we have developed a new sys-
tem to select suitable parameters for the OP-1 to approxi-
mate a given target sound. In contrast with previously de-
veloped systems, we consider that the problem requires a
multi-objective approach to be solved. We use a custom
Non-dominated Sorting Genetic Algorithm (NSGA-II) to
address this problem. An evaluation of the system with
contrived and non-contrived target sounds is presented in
Section 5. Sound examples are available for public audi-
tion [8].

2. RELATED WORKS

The complexity of a re-synthesis problem can vary tremen-
dously according to the number and the nature of the syn-
thesis parameters to search. First efforts focused on opti-
mizing a limited number of synthesis parameters.

Horner et al. [2] used additive synthesis to replicate in-
strument sounds. A GA was used to better approximate the
envelopes to apply to the oscillators. The number of oscil-
lators to use and their frequencies were not determined by
the GA but through spectral analysis.

Chan et al. [1] implemented and evaluated a hybrid sam-
pling wavetable model. A GA adjusted some of the
wavetable parameters in order to minimize phase cancella-
tions during the crossfade between sampling and wavetable
synthesis.

Wakefield and Mrozek [9] used subtractive synthesis to
create artificial reverberation. A GA was used to search
for low-order filter parameters so that the generated im-
pulse response best matched that of a target room transfer
function.

Horner et al. also used GA to optimize several FM pa-
rameters: the modulation indices, carrier and modulator
frequencies for a variety of carriers [3]. The relative spec-
tral error between the original and matched spectra served
as a fitness function in guiding the GA’s search for the best
FM parameters to mimic instrumental sounds. The FM
synthesis model was constrained to limit the complexity of
the problem. In a previous work, we used a similar tech-
nique to optimize modulation indices, carrier and modula-
tor frequencies for ModFM synthesizers [5].

Automatic optimization schemes were also used to solve
another class of more complex re-synthesis problems.
These problems involved searching every synthesis param-
eter. For example, Vuori et al. [6] built a GA system for
estimating each parameter of a non-linear physical flute
model. Each chromosome of this system represented 8 dif-
ferent parameters of the physical model. The relative spec-
tral error between the original and matched spectra served
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as the fitness function. They showed that their algorithm
converged smoothly and effectively with the desired sound.

Bozkurt and Yuksel [7] presented automatic parameter
tuning experiments with genetic algorithms in application
to multiple-modulator FM synthesis. Contrary to the FM
synthesis systems previously presented [3,5], their synthe-
sis model was not constrained and every FM parameter was
estimated. Mitchell [10] applied an Evolutionary Strategy
to tune the parameters of a FM synthesis model of similar
complexity.

GAs were also used to determine the parameters of more
complex synthesizers. Yee-King and Roth [4] used a GA
to find the parameters of Virtual Studio Technology instru-
ments (VSTi) synthesizers to match a given target sound.
They evaluated their system on 2 VSTi synthesizers: the
mdaDX10, a single modulator FM synthesizer with 16 pa-
rameters, and the mdaJX10, a substrative synthesizer with
one noise oscillator and 40 parameters.

In this work, we apply an automatic optimization scheme
to tune the parameters of a current commercial synthesizer:
the OP-1. This synthesizer differs from the synthesizers
previously presented in the number and the complexity of
its parameters and in the number of available synthesis
modules.

3. AN ALL-IN-ONE SYNTHESIZER: THE OP-1

The OP-1 is the all-in-one portable synthesizer, sam-
pler and controller developed by Teenage Engineering
(TE) [11]. TE provided us with a C++ library that em-
beds most of the functionalities of the OP-1. We had ac-
cess to seven different synthesizer engines (FM, Digital,
DrWave, String, Cluster, Pulse and Phase), four different
FXs (Delay, Grid, Punch, Spring) and three different LFOs
(Tremolo, Value, Element). In the following sections, the
parameters selecting the engine, FX and LFO will be re-
ferred to as type parameters. Only one engine, one effect
and one LFO can be used at a given time to produce a
sound. An ADSR envelope is also always applied to the
sound. Once chosen, the synthesizer engine, FX, LFO and
ADSR are each controlled by 4 knobs. In the following
sections, the parameters controlling the knobs will be re-
ferred to as knob parameters. The knob parameters are
mapped to integers ranging from a minimum of 0 to a max-
imum of 32767, corresponding to the fine-tuning mode of
the OP-1. The OP-1 has 24 physical keys and it is possible
to change the octave from -4 to 4. Therefore, 120 different
keys (8× 12 + 24) are available when using the OP-1. We
refers as OP-1 presets a set of knob parameters and type
parameters. More details about the functionalities can be
found on the Teenage Engineering website [11].

Equation 1 gives the number of possible different combi-
nations.

Neng ×NLFO ×NFX ×NNknobs×Nt

k ×Nkey (1)

whereNeng is the number of engines type, NLFO the num-
ber of LFO types, NFX the number of FX type, Nt the
number of modules that can be controlled by knobs (en-
gine, LFO, FX and ADSR), Nk the number of possible
integer values for each knob and Nkey the number of keys.
Their numerical values are given in Table 1. An estimate
of the total number of possible combinations for the OP-1
synthesizer is then 1076.

4. AUTOMATIC CALIBRATION WITH A
MULTI-OBJECTIVE GENETIC ALGORITHM

Searching the synthesizer parameters space to approximate
a given target sound has all the characteristics of a real
world problem. First, the search is very large (1076 pos-
sible different combinations). By comparison, the number
of atoms in the observable universe is estimated at about
1080. Second, the synthesizer is not fully determinist. The
output sound can be slightly different for the same set of in-
put parameters, which induces noise in the evaluation and
can then slow down or even mislead the search. Third,
there are discontinuities in the search space. For exam-
ple, for a given individual, switching from an engine to an-
other completely changes the nature of the output sound.
As a result, its fitness objectives values also substantially
changes causing a discontinuity in the fitness landscape.
It also completely modifies the mapping of the knob pa-
rameters. For example, the knob parameters for a FM en-
gine do not map to the same synthesis parameters than the
knobs parameters for a Digital engine. Finally, our experi-
ments showed that there is a large number of local minima
(see Section 4.3). For instance, it is often possible to get
a similar level of sound approximation using two differ-
ent engines. Given these problem characteristics, it is not
conceivable to use a random search or a simple optimiza-
tion technique such as hill climbing or greedy algorithms to
find a good set of parameters to match a given target sound.
These techniques are highly dependant on the initial con-
ditions and doesn’t scale very well to large and difficult
search spaces [12].

GAs are search algorithms that mimic the process of nat-
ural evolution. In a GA, a population of strings called
chromosomes (which encode candidate solutions to an op-
timization problem) are evolved toward better solutions.
GAs are especially well adapted to the characteristics of
our problem. First, GAs scales very well to complex fit-
ness landscapes [13]. Contrary to gradient search methods,
they are less susceptible to converge prematurely to a local
minima.

Second, GAs perform well in search space where the
evaluation is approximative or noisy [14]. Adjustable se-
lection pressure makes it possible to keep diversity in the
population. A large number of individuals are evaluated
for each generation. Because mutation and crossover are
stochastic operators, it is common for an individual to be
rediscovered several times during the evolution. The fact
that the individual is re-evaluated each time it is rediscov-
ered makes it possible to reduce the effect of the noise in
the evaluation.

GAs are complex algorithms with a large set of parame-
ters to tune (population size, stopping criteria, choice of the
genetic operators...). In order to find the best configuration
for the GA, we explored several options. In the following
sections, we adopt the vocabulary developed by Mitchell et
al. [15] and refer to the target sounds generated using the
OP-1 as Contrived sounds. Contrived sounds were used as
target sounds when exploring different GA configurations.

Neng NLFO NFX Nk Nknobs Nt Nkey

7 3 4 32767 4 4 120

Table 1. Synthesizer parameters complexity
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Using these sounds as target sounds has two advantages.
First, it ensures that a solution exists. Second, it is possible
to easily track the performance of the algorithm because
the target synthesis parameters are known.

We adopted an iterative design process and considered
problems of increasing complexity. Table 2 describes these
problems ordered by increasing complexity. From problem
1 to 4, we progressively added the knob parameters. In this
first set of problems, we fixed the type parameters to limit
the search space discontinuities. Finally, in problem 5, ev-
ery type and knobs parameters were searched. At first, we
limited the search to the 4 knobs controlling the engine
parameters (Problem 1). We experimented with different
GA configurations until we found one configuration able
to either, in the best-case scenario, reverse engineer the tar-
get set of OP-1 parameters or, in the worst-case scenario,
gave a perceptually satisfying approximation of the target
sound. Once a satisfying GA configuration was found, the
4 knobs controlling the ADSR were added (Problem 2).
The previous satisfying GA configuration was tested on the
new problem. If this configuration was not satisfying any-
more, we adjusted the GA parameters again until a satis-
fying one was found. This process was reiterated with the
other problems until we obtained good performance when
searching every parameter (Problem 5).

In the following subsections, we describe the final sys-
tem implementation for searching all the parameters. We
explain our design choices given the observations gathered
during the different steps of our iterative design process.

4.1 Representation

The parameters in our synthesizer are integers. At first we
decided to encode these parameters using a binary repre-
sentation (which is a common choice in practice). How-
ever, our experiments using this representation on Prob-
lem 1 (see Table 2) seemed to indicate that the GA was
always converging to the same local minima. Investigat-
ing further, we realized that, in order to improve the best
individual fitness, 12 bits would have to be changed to go
from 4095 to 4096 and improve the objective fitness val-
ues, which is very unlikely to happen. We then switched
from a binary encoding to a Gray code encoding for both
type parameters and knob parameters. The Gray code is
based on the idea that two successive values differ by only
one bit. Our experiments with this new encoding showed
that the GA now converged toward the target set of pa-
rameters, thus we chose to keep this representation for our
system. Our chromosome is made up of blocks represent-
ing the type and knobs parameters. The two first lines of
Table 2 in bold letters show the final chromosome design.

4.2 Genetic operators

4.2.1 Crossover

Losing diversity during the evolution is a normal phe-
nomenon given that we apply a selection pressure on the
population. However, a lack of diversity can lead to prema-
ture convergence because there is not enough genetic ma-
terial to explore the fitness landscape. One reason for the
loss of diversity is the recombination of identical chromo-
somes. Indeed, when the same individual is selected twice
for cross-over, two offsprings identical to this individual
are produced. This phenomenon causes the diversity to go

down. In order to avoid this situation, we apply a crossover
operator that tests the parent chromosomes before recom-
bining them. If they are identical, the first offspring will
be a copy of the parents and the second offspring will be a
new randomly generated chromosome. This simple tech-
nique is shown to be efficient in slowing down the diversity
loss and prevent premature convergence [13]. Our system
uses a 2-point crossover and a crossover rate of 60 %.

4.2.2 Mutation

The mutation operator participates in both exploration and
exploitation (local search). Flipping one bit in a Gray code
can either lead to a small change in the coded parameter
(local search) or a relatively large change in the coded pa-
rameter (exploration: by jumping to another area of the fit-
ness landscape). This flip-bit mutation operator is applied
to every individual in the population whether recombined
or not. In our system, the probability of flipping k bits
in a Nbits long chromosome follows a binomial law with
p = 1

Nbits
and n = Nbits.

4.3 Fitness function

In our attempt to solve Problem 1, we used the Euclid-
ian distance between the Short-Time Fourier Transform
(STFT). The sampling rate was 44100 Hz and we set a
window size of 1024 samples (23 ms) and an overlapping
of 512 samples (11.5 ms). Our experiments showed that
this fitness function worked well when we restricted the
optimization to include only the 4 knobs which controlled
the engine parameters (Problem 1).

However, when we added the 4 knobs controlling the
ADSR parameters (Problem 2), the GA appeared to con-
verge prematurely. A further investigation of this phe-
nomenon showed that the weight of the temporal envelope
in the Euclidian distance between the STFTs is significant.
For example, consider a target sound T and two candidate
sounds A and B. A has a similar spectrum to the spectrum
of T for the first short-time windows but not for the last
ones because the temporal envelope for A has a shorter re-
lease time than the one for T. Globally, the spectrum for B
is not as similar to the spectrum for T but their temporal
envelope is the same. The weight of these last short-time
windows in the STFT distance can make B appear closer
to T than A.

In this context, a right set of engine knobs parameters (A)
can be discarded because the associated ADSR knobs pa-
rameters are not right. It slows down the evolution because
some good genetic material is lost. It can even lead to a
premature convergence if this set of engine knobs parame-
ters is never recovered again later in the evolution.

It is not surprising that, in previous work [3, 5], the enve-
lope was determined analytically for each individual in the
population, however it is not possible to do this in our case
because we do not know the mapping between the ADSR
knob parameters and the resulting temporal envelope. In-
deed, performing a local search to set the ADSR knobs pa-
rameters for each individual in the population would be too
computationally expensive. Furthermore, given the non
deterministic nature of our synthesizer, any classic local
search algorithm such as greedy algorithm or hill climbing
would likely fail because the noise in the evaluation would
mislead the search.
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Pb. Id Engine FX Key / Octave LFO ADSR Nbits

Type Knobs Type Knobs Type Knobs Knobs
1 X 60
2 X X 120
3 X X X 180
4 X X X X 240
5 X X X X X X X X 257

Table 2. Problem descriptions

In order to avoid the premature convergence observed
with Problem 2, we decided to uncouple the temporal en-
velope from the spectral components as much as possible.
Thus, we chose to extract two separate sound features: 1)
the FFT computed on the entire sound; and 2) the temporal
envelope. Computing the FFT on the entire sound miti-
gates, to some extent, the effect of the temporal envelope
on the spectrum. We extracted the temporal envelope using
the Hilbert transform followed by a low-pass filter.

Our first idea was to put these two sound features in an
aggregate fitness function (see Eq. (2)). However, it is dif-
ficult to choose the appropriate weights for the temporal
envelope aenv and the FFT aFFT to make the system con-
verge.

f =
aenvfenv + aFFTfFFT

aenv + aFFT
(2)

Therefore, we chose to consider two objectives: FFT
and temporal envelope instead of only one: the STFT.
We implemented this new 2-objectives fitness function in
a multi-objective framework, the Non-dominated-Sorting-
Genetic-Algorithm-II. The experiments showed that this
new system converged to the target set of parameters for
Problem 2.

However, when we added the 4 knobs controlling the
LFO or FX (Problem 3-4), our system was converging
prematurely again. The explanation was that the addi-
tion of a LFO or FX made the spectrum of the target
sound non-stationary. The FFT on the entire length of the
sound was not able to capture the variation of the spec-
trum over time. In order to deal with this limitation, we
added back the STFT as a third objective. Contrary to sim-
ple GA, the NSGA-II uses a selection operator based on
non-domination sorting. Therefore, contrary to the simple
GA using STFT as fitness function, an individual with a
good set of engine knobs parameters would be more likely
kept in the population even if it has wrong ADSR knobs
parameters. Indeed, this individual would have a high fit-
ness value for the FFT and a low fitness value for the en-
velope. It would be then kept in the population because
it is dominating the population according to the FFT ob-
jective. In the simple GA, this individual would likely be
discarded because its fitness value would be affected by a
wrong temporal envelope.

4.4 Selection

Our system is based on a Non-dominated Sorting Genetic
Algorithm II (NSGA-II). Details about this algorithm can
be found in Deb’s work [16]. The principal features of this
algorithm are the following:

• Elitism: This property prevents the loss of good so-
lutions once they are found by insuring that the fittest

members of the population are kept in future gener-
ations.

• Non-dominated sorting: An individual is said to be
non-dominated if there is no other individual that
performs better for at least one of the objectives
without performing worse for the remaining objec-
tives. This principle is used to sort the population
into non-dominated sets that are then used to form
the next generation.

• Diversity preservation: The crowding distance is a
measure of how close an individual is to its neigh-
bours. A crowded-comparison operator guides the
selection process at the various stages of the algo-
rithm toward a uniformly spread-out Pareto front.

Our system uses a population of 500 individuals for each
generation. This number of individuals was empirically
determined as a good trade-off between performance and
computational cost.

4.5 Stopping criteria

The optimization process terminates if the weighted
change in the 3 objective fitness, given by Eq. (3), is
less than 10−30 over 200 generations. δn is the weighted
change at generation n, fk is the best objective fitness score
at generation k, N = 200 if n ≥ 200 otherwise N = n. If
this condition is never verified, the optimization process
stops after 3000 generations.

δn =
N∑
i=1

(1
2

)i−1

(fn+1−i − fn−i), (3)

4.6 Pareto front

The Pareto front is the set of non dominated individuals for
the 3 objectives.

4.6.1 Similarity rule

In our first experiments, the Pareto front was very large
at the end of the evolution (more than 2000 individuals).
Upon closer examination, we realized that strictly identical
individuals were present in the Pareto front. This was due
to the fact that the synthesizer is not fully deterministic
and the non-domination, crowding selection is only made
on objective fitnesses. We then added a similarity rule that
tests whether the chromosome of an individual is already
present before adding it to the Pareto front. This simple
rule made it possible to cut the size of the final Pareto front
by a factor of more than 2.

However, the size was still too large (around 1000 indi-
viduals) to be easily analyzed by a user. Further inves-
tigating the Pareto front, we realized that a large number
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of individuals sounded perceptually identical even if they
were produced using different sets of parameters. In or-
der to limit this kind of duplicate individuals in the Pareto
front, we refined the similarity rule. We stated that 2 indi-
viduals are considered identical if they have the same en-
gine/LFO/FX types, identical key/octave and the Euclid-
ian distance between the knob parameters is less than 1000
(3 % of the knob parameter range). This value was defined
by making tests on a large numbers of Pareto fronts. De-
pending on the target sound, this last change made it possi-
ble to reduce the size of the Pareto front to between 10 and
150 individuals while conserving its quality and diversity.

4.6.2 Post processing

A number of 150 individuals in the Pareto front is still very
large to be handled by a user. We applied a technique de-
veloped by Chaudhari et al. [17] to select the most signifi-
cant individuals in the Pareto front when its size is superior
to 10 individuals. This approach consists of the following
steps:

1. Apply a k-means clustering algorithm to cluster on
the solutions enclosed in the Pareto set. The cluster-
ing is done on the OP-1 parameters because our goal
is to help the user to identify different good OP-1
presets in the Pareto front, for example using differ-
ent sound engines.

2. Determine the optimal number of clusters, k. The
silhouette of an individual is a measure of how
closely it is matched to other individuals within its
cluster and how loosely it is matched to individuals
of the neighbouring cluster. A silhouette s(i) close
to 1 implies that the individual i is in an appropri-
ate cluster, while s(i) close to -1 implies that i is in
the wrong cluster. Thus the average s(i) of the en-
tire Pareto Front is a measure of how appropriately
the Pareto Front has been clustered. A value of the
average silhouette is obtained for several values of k
with k < 10. The k that gives the highest average
silhouette width is selected.

3. For each cluster, select a representative solution. For
each cluster, the individual, within the cluster, that
encodes the OP-1 presets that is the closest to the
cluster centroid presets is selected as the representa-
tive solution.

4. Analyze the results. At this point, the user can ana-
lyze the k representative solutions of the clusters and
then explore the individuals of the cluster that seems
the most promising.

4.7 Full problem complexity

In Problem 5, we add the type parameters. These extra
parameters to search induces discontinuities in the fitness
landscape (see Section 4). However, our experiments show
that adding the type parameters to the search (Problem 5)
do not diminish the final solution quality when we com-
pare them to final solutions found for Problem 4. The right
type parameters are determined in early generations and
become prominent in later generations. The evolution con-
tinues then as if it would be Problem 4 being solved. This
phenomenon is induced by the selection pressure and mim-
ics very well the behaviour of a human asked to perform

the same task. One would broadly explore the possibil-
ities of the synthesizer and quickly select an engine and
key, after which one would fine tune the knob parameters.
Another explanation to this phenomenon is that the chro-
mosome size is not very different between problems 4 and
5 (240 bits against 257 bits) because every type parameters
has a small range compared to the knobs (see Section 3).

4.8 Implementation

The implementation of the GA is done using the DEAP
Python framework [18]. Sound features are extracted using
the Python wrapper for Yaafe [19]. Yaafe is coded in C++
and has the advantage of being fast and memory-efficient.
In our current implementation, the time to evaluate the
3 objectives for a 1 second-long mono sound sampled at
44100Hz is in average 314 milliseconds (SD= 1ms).

The bottlenecks of our algorithm are the fitness evalua-
tion and the NSGA-II selection operator. The fitness evalu-
ation is distributed between 100 processors on a supercom-
puter [20] to speed up the computation. It also make it pos-
sible to use larger populations than would have been fea-
sible using only one processor for the same running time.
We use the DEAP C++ version of the NSGA-II selection
operator to further speed up our algorithm. In our current
implementation, applying the genetic operator (crossover,
mutation, selection) for a population of 500 individuals
takes in average 243 milliseconds (SD=4 ms). The total
computing time for a run is in average 34 min (SD=4min).

5. EVALUATION

We based our evaluation design on Johnson’s recommen-
dation about experimental analysis of algorithms [21]. We
especially focused on ensuring reproducibility and compa-
rability.

5.1 Sound collection

5.1.1 Contrived sounds

Using contrived sounds as target sounds allows us to val-
idate our system design. It makes possible to show that
our system is able to reverse engineer a given target sound
generated by the OP-1.

Given the complexity of the algorithm and its running
time, we chose to limit our evaluation to 12 contrived
sounds. We selected these sounds in order to have a sam-
ple of spectrums that was diverse and representative of the
the OP-1 possible outputs. We especially focused on hav-
ing diversity in spectral variation, noisiness and spectral
spread. The first half of the sounds has a stationary spec-
trum and the other half has a non-stationary spectrum, as
measured by their respective spectral flux.

We made sure that we used each engine, LFO and FX at
least once to generate this set of sounds. These contrived
sounds are available to listen online [8].

5.1.2 Other sounds

A second evaluation was performed on 12 non-contrived
sounds including synthetic sounds (DX-7 synthesizer,
Moog synthesizer, lightsaber sound), instrument sounds
(Violin, flute, bassoon, snare), a male voice sound and a
natural sound (Cat meow). These sounds were carefully
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chosen to have a good diversity in spectral variation, nois-
iness and spectral spread.

5.2 Measurement

In these evaluations, we evaluated the solution quality and
the running time.

The solution quality was measured differently for the
contrived sounds and for the non-contrived sounds. For the
contrived sounds, we already know what are the target OP-
1 presets. In addition to the target sound, we generate ten
other sounds using the target presets and compare them to
the target sound. With a determinist synthesizer, their ob-
jective fitness values (FFT, envelope and STFT) would be
equals to zero but it is not the case with the OP-1. We de-
fine the best possible objectives values as the minima of the
3 objectives fitness values over these 10 sounds. We cal-
culate the relative error for each run subtracting these best
possible objective values to the best objectives fitness val-
ues obtained in the particular run. For the non-contrived
sounds, we are only able to measure the final fitness val-
ues for the 3 objectives at the end of the evolution. The
running times are measured by the number of generations
before the GA reaches the stopping criteria (nbGen).

5.3 Analysis

We ran the algorithm at least 10 times for each target
sound. We used Bootstrapping to obtain estimates of sum-
mary statistics [21]. This method involves taking the orig-
inal data set of size N , and sampling from it with replace-
ment to form a new sample, called a bootstrap sample, that
is also of size N and that is not identical to the original
sample. This process is repeated a large number of times
(1000 in our case) and for each of these bootstrap samples
we compute the desired statistic. This provides an estimate
of the distribution of the desired statistic. Questions about
how this statistic varies or the standard error for this statis-
tic can now be answered. This technique makes possible
the extraction of more useful information when the sam-
pling size is small, as is the case in our experiments due to
the time complexity of the problem.

For each of the measures described above, we used Boot-
strapping to get an estimate of its minimum, maximum,
mean and standard deviation. We also used the bootstrap
shift method test [21] to assess the significance of every
comparison we performed. This test has the advantage of
being distribution-free and of scaling well with small sam-
ple size.

6. RESULTS

Our experimental results for contrived sounds and non-
contrived sounds are available online [8].

6.1 Contrived sounds

6.1.1 Module types selection

Table 3 describes some statistics about the proportion of
module types in the population over the various genera-
tions. Prop. choice is the proportion of runs where one
type was totally taking over in the population. Accuracy is
the proportion of runs choosing the correct type when one
type was taking over in the population. The Take over gen

is the generation as from one type was taking over. Our re-
sults suggested that our system performed well at finding
the right engine type (90 % prop. choice; 80 % accurate)
and the right key/octave (77 % and 91 % prop. choice;
52% and 62% accurate). However, it was not the case for
the LFO (43 % prop. choice; 22 % accurate) and FX type
(42 % prop. choice; 18 % accurate). A possible interpreta-
tion of these results is that the engine type and key/octave
have a greater influence on the output sound than the LFO
or FX type. The LFO and FX type do not change the nature
of the output sound but only alter it. It is then more chal-
lenging to determine the right type for the FX and LFO.

6.1.2 Pareto front

The number of different module combinations was very
low in the Pareto front (µ = 3.0, SD = 0.2 over 10 080
possible combinations). These findings suggested that the
GA successfully identified a limited number of promising
locations in the parameter space that dominate all others.
When listening to the sounds in the Pareto front, one can
distinguish several clusters of perceptually similar sounds.
Each of these clusters sounds perceptually similar to the
target sound but the OP-1 presets it represents are sensi-
bly different between clusters. A Pareto front affords more
flexibility to the user who receives a set of similar sounds
rather than a single sound with a simple GA. The user can
then make the final choice.

Our system approximates very well the temporal enve-
lope of the target sound as shown by the very low rel-
ative errors for the envelope objective (µ = 0.20, SD =
0.02). Figure 1 shows the relative error over the best pos-
sible FFT and STFT objectives values. As measured by
their respective spectral flux, conf0, conf2, conf3, conf5,
conf7 and conf10 are the configurations generating non-
stationary spectra. The other configurations are generat-
ing stationary spectra. We see that the performances of
the GA are not significantly better for the target sounds
with stationary spectra than for the target sounds with non-
stationary spectra; p = 0.07, p = 0.08. However, we
can still observe differences in the GA performances for
different groups of target sounds. A first group with nega-
tive relative errors (conf2, conf7, conf9) contains the OP-1
target configurations that are the most non-deterministic.
Indeed, in this non-determinist context, the best possible
objective fitness values are very difficult to determine pre-
cisely. Then, it is possible that the GA finds an OP-1 pre-
sets outperforming the best possible objective fitness val-
ues, resulting in a negative relative error. These negative
relative errors induces a bias when comparing the perfor-
mances of our system for target sound with stationary spec-
trum and with non-stationary spectrum. A second group
(conf4, conf6, conf8, conf10 and conf11) contains mostly

Prop. choice Take over gen Accu.
C NC C NC C

Engine 0.90 0.74 139 129 0.80
FX 0.42 0.44 322 270 0.18

LFO 0.43 0.45 240 317 0.22
Key 0.77 0.38 122 265 0.52

Octave 0.91 0.57 109 174 0.62

Table 3. Statistics about modules types. C: Contrived
sounds, NC: Non-contrived sounds, Accu.: Accuracy
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Figure 1. Objectives’ relative error

target sounds with stationary spectrum at the exception of
conf10. Our system is performing the best for this group
as indicated by a very small relative error compared to the
other groups. Conf10 presents a STFT under the form of
a sawtooth wave over time. This common shape doesn’t
seem to be difficult to approximate for our system even
if the spectrum is non-stationary. The last group (conf0,
conf1, conf3, conf5) contains mostly target sounds with
non-stationary spectra at the exception of conf1. The rel-
ative error for this group is the highest. The spectral en-
ergy of conf1 is mainly concentrated in a narrow frequency
band. Our system seems to fall into a local minima for this
particular kind of spectrum.

6.2 Non-contrived sounds

It is more challenging to evaluate the results of the non-
contrived sounds experiments because we do not have any
target parameters or parameter distances to refer to. Even if
our system has shown good average performances for con-
trived sounds, it does not automatically mean that it would
be good for non-contrived sounds. Indeed, the structure
and complexity of the fitness landscape depends largely on
the chosen target sound.

6.2.1 Number of generations to converge

The mean of nbGen was significantly superior for the
contrived sounds (µ = 1431, SD = 86) than for the non-
contrived sounds (µ = 1070, SD = 50); p < 0.001. This re-
sults may seem surprising as the resynthesis problem for a
non-contrived sound is more complex than for a contrived
sound.

FFT Env. STFT
µ SD µ SD µ SD

C 130.3 17.2 0.20 0.02 249.0 31.2
NC 3163.5 242.7 8.7 0.78 4299.5 262.6

Table 4. Objective best fitness values. C: Contrived
sounds, NC: Non-contrived sounds

6.2.2 Module types selection

Table 3 describes some statistics about the proportion of
module types in the population through the generations.
As with contrived sounds, an engine was quickly taking
over. However, contrary to the experiments with contrived
sounds, no key was clearly taking over (Prop choice 38 %
against 77 % for contrived sounds). It could be explained
by the fact that most of the non-contrived sounds do not
have a clearly identified pitch (cat meow, DX-7 and Moog
synthesizer sounds with pitch modulation). FX and LFO
types were, as with contrived sounds, still challenging to
set for the GA (FX prop. choice 44 %, LFO prop choice
45 %).

6.2.3 Pareto front

First, we could hear that the Pareto front sounds were per-
ceptually similar to the targets, which is of importance for
real world applications. The Pareto fronts were also sig-
nificantly more diverse (µ = 4.3, SD = 0.3) than the ones
we got using contrived target sounds (µ = 3.0, SD = 0.2);
p < 0.001. They were also significantly more populated (µ
= 306, SD = 11; µ = 83, SD = 21); p < 0.001. These differ-
ences can be explained by a larger problem complexity and
also by the fact that, at the difference with contrived target
sounds, the existence of a OP-1 presets that would per-
fectly approximate the target sound is not insured anymore.
In other words, there is no guaranteed global optimum, and
likely many more local optima. With the concept of Pareto
front, the user receive a set of OP-1 presets that produces
sounds perceptually similar to the target sound. These OP-
1 presets do not involve automatically the use of the same
engine, LFO or FX, which gives the users several alter-
natives of variable quality to approximate a given target
sound.

The objective best values for the 3 objectives, shown in
Table 4, were, as expected, significantly worse for the non-
contrived sounds than for the contrived sounds (p < 0.001,
p < 0.001, p < 0.001).

7. CONCLUSIONS AND FUTURE WORKS

We developed an algorithm to automatically tune the pa-
rameters of a multi-engine synthesizer in order to repro-
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duce a given target sound. We described the iterative de-
sign process that lead us to consider a multi-objective ap-
proach and to use a custom Non-dominated Sorting Ge-
netic Algorithm-II to tackle this problem. This new ap-
proach gives more flexibility to the user who receives a
set of presets rather than only one preset as with previ-
ous systems. An experimental study has been conducted
to assess the performances and limitations of our system.
Contrived and non-contrived sounds have been considered
in this study. We showed that our system is able to explore
a complex parameter space in order to find configurations
producing sounds perceptually similar to the target. Dis-
parities in performances have been highlighted with the
system performing better for target sounds with station-
ary spectrum than for sounds with non-stationary spec-
trum. The comparisons between the system performances
for non-contrived sounds and contrived sounds confirmed
even more that the complexity of the re-synthesis problem
are highly variable given the nature of the target sound.
Future works will entail taking into account the charac-
teristic of the target sound to adapt the parameters of our
GA system using, for example, some sound pre-processing
analysis and machine learning.
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ABSTRACT

In scientific research simulation of new or existing acousti-
cal models is typically implemented using commercial nu-
merical programming environments like Simulink/Matlab
or expensive simulation packages like COMSOL or FLU-
ENT. In this paper a new version of the open-source sim-
ulation library ART (Acoustic Research Tool) is presented
where time-domain simulation capabilities have now been
added to existing frequency domain models. The concept
allows mixing of modeling elements belonging to differ-
ent levels of abstraction and it relieves the user from tricky
implementation details like scheduling, data dependencies
and memory allocation. Starting with an equation in the
z-Domain, signals can be described recursively as a func-
tion of other current or previous signal samples and local
or global simulation parameters. Alternatively signals can
also be generated by specifying a certain topology of pre-
defined elements with certain input and output ports. The
library can be called from any programming environment
running on Microsoft Windows or on Linux which allows
it to be integrated in any application software project. The
examples shown here have been written in the open-source
high-level programming language Python. They can be
downloaded together with the library and documentation
from the project site http://artool.sourceforge.
net.

1. INTRODUCTION

The simulation and verification of acoustical models is usu-
ally done in commercial environments like Simulink/Mat-
lab or implemented in a high-level programming language
such as Java or Python. However, none of these tools
perfectly fulfill the requirements of acoustical simulations,
namely easy usage and extensibility. The Acoustic Re-
search Tool, abbreviated ART was originally developed as
an open-source library for frequency-domain simulations
of acoustical models, see [1]. In 2012, ART was extended
in order to allow users the possibility to do any kind of
time-domain simulation. Although the focus of course lies
on acoustical models, the implemented architecture pro-
vides the functionality of implementing any kind of signal

Copyright: c©2013 Clemens Bernhard Geyer et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-
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processing in the time-domain.
The structure of this paper is the following: Section 2

presents a short overview of the history of ART and the
previously existing features which could be reused for time-
domain simulations. In Section 3, the overall architecture
of the new simulator as well as some internal data struc-
tures are explained. Moreover, it gives an overview of the
implemented acoustical models which are available in the
simulation library. Two examples are presented in Sec-
tion 4, one using modules from the previously mentioned
library, the other showing the flexibility of ART to simulate
acoustical models which are not available in the current li-
brary by the usage of generic time modules.

2. OVERVIEW OF ART

2.1 History of ART

ART is a platform-independent open-source library
which provides users the ability to simulate existing mod-
els in the frequency-domain and to implement custom el-
ements which can be added to the simulation. It was ini-
tiated by Wilfried Kausel in 2005 and has been under de-
velopment since then. Over the last years, several contribu-
tors have added new simulation methods and optimized the
simulation process. However, ART only covered frequency-
domain simulations and thus only allowed to calculate im-
pedances of musical instruments, but no sound synthesis.

During 2012, ART was extended in order to enable time-
domain simulations for sound-synthesis and acoustical mo-
del simulation. Generally speaking, models in the time-
domain can be based on any discrete signal or function
and are thus not restricted to specific building blocks such
as finite impulse response (FIR) filters. Consequently, an
open approach had to be chosen giving users a means to
make simulations on existing models and functions, but
also implement their own time models without the need
of recompiling any source code. ART is implemented in
ANSI C++ and can be compiled with either commercial
(e.g., MS Visual Studio) or open-source (e.g., GNU Com-
piler Collection) compilers on any platform. The output is
either an executable or a dynamic library which allows the
integration of ART into nearly all common high-level pro-
gramming languages (current examples on the homepage
make use of Delphi and Python).

2.2 Comparison to other Simulation Environments

Simulations of acoustical circuits are usually done in high
level programming languages or simulation environments
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such as Matlab/Simulink, Python or C++. Moreover, there
also exist several other scientific open-source projects like
FAUST (Functional Audio Stream, [2]) or EIN as presented
by Lansky and Steiglitz in [3]. In [4], Rabenstein et al.
present a simulation approach, which is very similar to the
one implemented by ART. They also use generic physical
blocks with input and output ports and present a solution
for the automatic dependency calculation.

ART is currently in an early development stage and not
using any optimizations when compiled. Therefore, any
comparison between the performance of ART with pro-
fessional simulation environments like Matlab cannot se-
riously be conducted. It provides a library of well-known
acoustical models in the frequency as well as in the time
domain and can easily be integrated in every other high-
level programming language. Thus, ART should not be
seen as an alternative but rather an addition to traditional
simulation environments because the user can focus on the
physical model without the need of learning a new pro-
gramming language or low-level programming.

2.3 Existing Simulation Framework

The previous version of ART already provided a set of
functionality which could be reused for the implementation
of time-domain simulations. First of all, muParserX [5],
an open-source parsing library which provides a subset of
Matlab or GNU Octave, was integrated into ART to set
values of several simulation variables. Although not all of
the features of the parser were extensively used, it made
value assignments for variables much more flexible. For
example, assignment expressions could contain complex
mathematical formulas and even reference values of other
variables.

The second important feature implemented in the frequency
domain simulation was the creation of a dependency graph
which is responsible for the following two points:

(1) Checking for circular variable or expression refer-
ences

(2) Intelligent evaluation of expressions

Both functionalities may be easily demonstrated with an
example: Assuming we want to calculate the wavelength
of a given frequency, but also take the current temperature
into account. Wavelength λ is based on the speed of sound
c and frequency f :

λ =
c

f
(1)

The speed of sound c depends on temperature T (in Cel-
sius) as described in the following equation (see Equa-
tion(16) in [6]):

c ∼= 20.06 ·
√
T + 273.15 (2)

If temperature T changes, the speed of sound and there-
fore also the wavelength have to be recalculated. ART
therefore builds the previously mentioned dependency graph
as shown in Figure 1 in order to efficiently evaluate expres-
sions: If any of the variables gets assigned a new value or
a new calculation expression, all dependent variables will

be set invalid and reevaluated the next time the value is
needed. This graph also detects cyclic dependencies, e.g.,
when c was defined by

c =
λ

f
(3)

instead of Equation (1). When ART is triggered to evalu-
ate λ, it will first try to calculate c. However, in order to
get the value of c, λ has to be evaluated, thus resulting in
an indefinite loop. ART automatically throws an exception
any time such a cyclic dependency occurs during an eval-
uation. This is implemented by a simple flag which is set
before the beginning of the evaluation and cleared after the
value assignment has completed. Whenever ART tries to
evaluate a variable with this flag set, a circular dependency
has occurred.

ART also implements basic error handling, e.g., when
there is a syntax error for an expression. The exception
thrown by muParserX will be handled by ART and the er-
ror message passed to the calling function. The same is
true for some exceptions specific to ART, e.g., the pre-
viously mentioned circular dependency. It is expected to
improve the error-handling in future releases in order to
simplify the debugging process for the user.

c

c = 20.06 ·
√
T + 273.15

λ

λ = c
f

T

T =?

f

f =?

Figure 1. Dependency graph of wavelength variable λ.

3. IMPLEMENTATION OF TIME-DOMAIN
SIMULATIONS

The previous section described the provided features by
ART for frequency-domain simulations. Although these
functions are quite useful for all kinds of simulations, time-
domain simulations require additional data types and adap-
tions of existing interfaces and methods. This section first
gives an overview of the newly implemented architecture
in the time domain. After that, the two main functions to
enable efficient simulations are discussed, namely resiz-
able ring buffers and an easy-to-use convolution function.
At the end of the section, the current state of implemented
time-domain modules is shortly presented.

3.1 Architectural Overview of Time-domain Modules

A time-domain simulation consists of global parameters
such as the sampling period T and several modules. These
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are added to the simulator and can be connected to each
other. Figure 2 shows the template of such a time-domain
module: It has a unique name, has the ability to save local
parameters and consists of a number of input and output
ports. Output ports save the prescribed calculation expres-
sion and may reference any global or local parameters as
well as input and output ports of the current time module.
Input ports only reference to output ports of other time-
domain modules, but do not implement any calculations.
Note that each output port cannot only access past time
values from other input and output ports of the same mod-
ule, but also past time values of itself (i.e., a difference
equation) like it is the case for infinite impulse response
(IIR) filters.

TimeModule

in0 = “A”
. . .

inn−1 = “X”

out0 = “B”
. . .

outm−1 = “Z”

Figure 2. Basic idea of the time module concept: Each
time module has a unique name, n input and m output
ports. The time module may be seen as a black box – the
calculation details of the ports are hidden from the user.

The generic black box is a template for any time-domain
module and is implemented as an interface. It provides
access to read out the current value of the output ports, as-
sociate input ports with output ports of other time modules
and set local parameters. All modules can access global
simulation parameters which opens the door to change usu-
ally fixed input values like the sound velocity during a sim-
ulation without much effort.

3.2 Resizable Ring Buffers and Convolution

As already mentioned, output ports may access a time step
of any other port of its own module as long as this time
step is not in the future. The naive way of implement-
ing this functionality is to provide an array consisting of
enough elements to save all values for the complete sim-
ulation. When simulating only 10 seconds for a sampling
rate of 44.1 kHz including several modules with multiple
input and output ports may thus quickly result in shortage
of memory. A common solution to solve this problem is to
use ring buffers as shown in Figure 3. As most acoustical
models in the time-domain do not require filters of high or-
der, a ring buffer with 10 to 20 elements will fit for usual
applications and thus highly reduce memory usage.

However, some applications even require an automatic
resizing of the ring-buffer. This is the case, e.g., for the dis-
crete convolution which is commonly used in digital signal
processing and defined by

y[t] =
∞∑

k=−∞

u[k] · g[t− k] =
∞∑

k=−∞

u[t− k] · g[t] . (4)
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Figure 3. Accessing an element of a ring buffer of size
12: The inner circle shows the elements from index 0 to
11, whereas the outer circle starts from 12 and ends with
23. When accessing the 14th element, the ring buffer in
fact returns element number 14mod 12 = 2.

Assuming that g[t] is a finite transfer function with a fixed
number of elements, the user usually has to make sure that
the input function u[t] consists of at least the same number
of elements as g[t]. In case u[t] will be convoluted with
multiple transfer functions, the number of needed buffer
elements is not easily determined and a common source of
mistakes. In ART, this problem was solved with a resiz-
able ring buffer which automatically increments the buffer
size of an input function if the number of unused elements
gets near a defined threshold. Consequently, the user only
needs to define the correct mathematical model and does
not need to deal with any implementation details. The de-
scription of the resize function of the ring buffer and the
internal implementation of the convolution function can be
found in [7].

3.3 Time-domain Module Library

One target of the time-domain simulator in ART was to
provide a generic simulation library for any kind of dis-
crete signal processing, not only limited to acoustical ap-
plications. 1 This is the reason why in the current version
three types of modules have been implemented:

(1) General-purpose signal processing modules
(2) Digital Waveguide (DWG) modules of common

acoustical elements
(3) Generic time module

The first type of modules covers simple mathematical
functions like adding two input signals or a signal gener-
ating module for a single impulse or sine wave. The ad-
vantage of this kind of modules is that the user does not
need to implement this modules on his or her own and they
automatically generate proper signals for the globally de-
fined sampling rate. For example, the sine wave module
has three local parameters which can be set by the user:

1 Note that there is no general rule about how acoustical models look
like. In contrary, they are based on mathematical models of other disci-
plines like electrical engineering or mechanics.
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amplitude, frequency (in Hz) and a phase delay given in
seconds.

The second type of modules covers DWGs for cylindri-
cal and conical bores as well as cylindrical and conical
junctions as first presented in [8] and later evaluated, e.g.,
in [9]. However, ART currently does not provide any mod-
els which take viscothermal losses into account. The cylin-
drical bore module is based on a fractional delay filter – the
user just has to specify the length the cylinder and the type
of interpolation filter, namely Thiran or Lagrange. ART
automatically calculates the correct filter parameters based
on the selected type, the current sampling rate and the spec-
ified sound velocity. 2 Both types of fractional delay fil-
ters including stability considerations are presented in [10].
The cylindrical junction module is used to simulate wave
scattering effects between any two cylindrical bores with
different radii.

r1

r2

length

Figure 4. Parameter overview of the DWG cone module.
The user has to provide both cone apex radii r1 and r2
whereas the length parameter will be automatically calcu-
lated by ART.

The conical modules are more complex as they usually
include the calculation of the cone apex radii as can be
seen in Figure 4. Therefore, ART provides an alternative
way of specifying the parameters of the cone as bore profile
(radius on the left end, radius on the right end and length
of the cone), see Figure 5. Like the cylindrical junction
module, the conical junction module calculates the wave
scattering between two cones or a cone and a cylinder with
different radii. 3 Again, the user has two different ways
of specifying the parameters, one with the cone apex radii
and the spherical area of both cones at the junction, the
other with the left and right radius as well as the length of
the conical bores at the left and right side of the junction.
Section 4.3 will present a small simulation with nearly all
of the described DWG modules.

So far, the user could only refer to pre-implemented mod-
ules and only had little possibility to individualize them.
This is the reason why the third type of modules has been
introduced: The generic time module allows the user to
create new input and output ports and define calculation

2 Fractional delay filters are used to interpolate values between any
two time samples. As the spatial resolution of the simulation depends on
the sampling rate and sound velocity, you can also use them to interpolate
values between two spatial samples. Thus, the length of a cylindrical bore
can be set to any value and does not need to be a multiple of the spatial
resolution.

3 The term radius in this context refers to the apex radius and not the
radius at the junction between both elements.

r1

r2

length

Figure 5. Alternative parameter specification of the cone
module based on the left radius r1, the right radius r2 and
the length of the cone length.

expression for them. They fully integrate with all other
modules, but are more flexible and can even be used to
solve difference equations or discretized differential equa-
tions.

All presented modules can be created by using the inter-
face of ART without the need of re-compiling the library
or implementing C++ code. However, the architecture of
ART also allows other programmers to easily integrate new
modules to the existing ones, giving them the full power
of object oriented programming concepts. It is a future
goal to engage other scientists to implement other acous-
tical models (e.g., Wave Digital Filters) and make them
available to the users of ART.

4. EXAMPLES

This section gives an overview of the flexibility of ART
and demonstrates how it eases the simulation in case of
pre-implemented modules. Note that the focus lies on the
implementation of the simulation in ART and not the math-
ematical theory which is presented in detail in the given
literature.

4.1 Fibonacci Numbers

Although the Fibonacci numbers are no physical model,
they are a good means of demonstrating the power and
flexibility of ART. The standard definition of the Fibonacci
numbers is given by

fn = fn−1 + fn−2 (5)

meaning that the current element is the sum of the previous
two elements. Moreover, the most common definition sets
the first element to zero and the second to one:

f1 = 0, f2 = 1 (6)

For linear recursion equations like the Fibonacci num-
bers, there is an explicit formula to calculate an element
without the need of knowing all previous elements. How-
ever, like for some types of non-linear differential equa-
tions, it is not always possible to find an explicit solution
for a general (non-linear) difference equation. Thus, it is
necessary to calculate each element separately in order to
get the solution of the nth element.
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# init simulation
pSim = ARTRootObject()

# create simulator
mySim = ARTCreateSimulator("MySimulator", "TimeDomain", "")

# create time module
timeModule = ARTCreateTModule(mySim, "FibonacciModule", "TimeModule")

# add output ports to time modules
ARTAddOPortToTModule(timeModule, "fib", "fib[t] = fib[t-1] + fib[t-2]")

# initialize fibonacci ports
ARTSetParameter(mySim, "FibonacciModule.fib[-1] = 1; FibonacciModule.fib[-2] = 0")

fibPort = ARTGetPortFromTModule(FibonacciModule, "fib")

# print fibonacci numbers
for i in range(0, 47):
# get data structure
fibonacci = ARTGetComplexFromPort(fibPort, i + 3)
print "fib[{0:2d}] = {1:.0f}".format(i,fibonacci.re)

# destroy all previously allocated elements
ARTRootDestroy()

Figure 6. Calculation of the first 50 elements of the Fibonacci numbers in ART by using the generic time module.

Figure 6 shows a complete implementation of calculating
the Fibonacci numbers in ART using the open-source pro-
gramming language Python. In the first line, a so called
ARTRootObject is created. This element is responsible
for the complete memory administration of the simulation
and contains all used simulators, modules and internal data
structures. The user does not need to track any allocated
objects as they will all be freed in the last line by calling
the ARTRootDestroy function. After the creation of the
root object, a time-domain simulator is added – note that
you have to explicitly define the simulation domain as ART
is also capable of creating a simulator in the frequency do-
main. The next steps are straight forward: a generic time-
domain module with one output port is added to the simu-
lator. The output port fib just contains the definition of the
Fibonacci numbers and is initialized by the ARTSetParam-
eter function. Note that the simulation starts at time t = 0
such that the first two elements are treated like past time
values for t = −1 and t = −2. The last part of the exam-
ple code retrieves the current value from the port using the
ARTGetComplexFromPort function and prints the result on
the standard output in a for-loop.

Although the calculation of the Fibonacci numbers could
have been done much easier, this example shall demon-
strate the usage and flexibility of ART: First, the user does
not need to know anything about the calculation itself; if
an output port depends on other values, these are deter-
mined automatically. Secondly, the user does not need to
allocate any memory – ART automatically allocates the
amount of memory needed. Even when calculating 1000
or more elements of the Fibonacci numbers, only the last
20 elements are kept in memory. Finally, the user could
introduce several local parameters and other time modules
to simulate much more complex acoustical models. Con-
sequently, users do not need profound knowledge of pro-
gramming in order to implement and simulate new models.

4.2 Numerical Solution of Differential Equations

This section only shows how ART can be used to even
solve differential equations, but will not go into details on
the mathematical background which can be found in [7].

The differential equation which will be numerically solved
is given by

y′′(t) + 2y′(t) + 5y(t) = t (7)

with the known values

y(0) = 1, y′(0) = 0 . (8)

Using the method of finite differences, Equation 7 can be
solved numerically with the following difference equation
where T represents the sampling period:

y[t] =
2y[t− 1](1 + T )− y[t− 2] + T 3 · t

1 + 2T + 5T 2
. (9)

Figure 7 shows the solution in ART including the ini-
tialization of y[−1] and y[−2] which is done using the
ARTSetParameter function. At a sampling rate of 1 KHz,
the numerical error to the exact solution is below 10−3 and
converges towards 0.

4.3 Conical Bore Simulation

In [9, p 102-109], Walstijn sets up a simulation of conical
bores based on DWG modules. The simulated part consists
of a cone in the center and a cylinder on each the left and
right side of the cone as shown in Figure 8.

The implemented setup of the simulation is slightly dif-
ferent to the original one of Walstijn: Instead of fractional
delay modules, the DWG modules presented in Section 3.3
were used, 4 namely two cylindrical bores, one conical
bore and two conical junctions. As previously described,

4 Note that the fractional delay filters are implemented as part of the
cylindrical and conical bore modules, but don’t need to be added sepa-
rately to the simulation.
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# create time modules
numericModule = ARTCreateTModule(mySim, "numericSolution", "TimeModule")

# add output ports to time modules
ARTAddOPortToTModule(numericModule, "out",
"out[t] = (2*out[t-1]*(1+T) - out[t-2] + Tˆ3*t)/(1 + 2*T + 5*Tˆ2)")

# fetch output port from the numeric module
outPort = ARTGetPortFromTModule(numericModule, "out")

# set the global sampling rate to 1kHz
ARTSetParameter(mySim, "T = 1/1000")

# initialize past values of y[t]
ARTSetParameter(mySim, "numericSolution.out[-1] = 1")
ARTSetParameter(mySim, "numericSolution.out[-2] = 1")

for i in range(0, 10000):
# get data structure
outVal = ARTGetComplexFromPort(outPort, i)
# print value to standard output
print "out[{0:2d}] = {1:.10f}".format(i,outVal.re)

Figure 7. Python code for simulating a differential equation with ART. Note that some steps like initialization and deallo-
cation of all objects have been omitted for simplicity.

12 mm 8 mm

171mm 190mm 202mm

Figure 8. Measurements of the conical bore simulation.
The original simulation can be found in [9, p 102-109].

it was not necessary to calculate any cone apex radii – pro-
viding the measurements of the bore profile was sufficient.
Figure 10 shows the plotted output of the impulse response
of the defined system. The results show high similarity
with the plots in [9].

# create cone module
cone = ARTCreateTModule(sim, "Cone",

"DWGConeModule")

# connect output ports of modules
ARTConnectPorts(sim, "LeftConeJunction.

p2m = Cone.p1m; Cone.p1p =
LeftConeJunction.p2p")

ARTConnectPorts(sim, "Cone.p2m =
RightConeJunction.p1m;
RightConeJunction.p1p = Cone.p2p")

# set local parameters of cone module
ARTSetParameter(sim, "Cone.r1 = 0.006;

Cone.r2 = 0.004; Cone.length = 0.19;
Cone.mode = ’boreprofile’; Cone.type
= ’lagrange’")

Figure 9. Extract from the conical bore simulation imple-
mented in Python accessing the ART library. The complete
code is available in the example section on SourceForge,
see [1].
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Figure 10. Impulse response of the anechoic (open loop)
conical bore system with bilinear transformation used at
the conical junction modules and Lagrange filters for the
delay lines. The sampling frequency was 44.1 kHz, the
speed of sound set to 331 m/s.

4.4 Simulation of Brassiness

Another simulation example shall demonstrate the flexibil-
ity of ART when using models which are currently not part
of the library and covers brassiness in a cylindrical tube.

Brassiness is a phenomenon occurring in brass instru-
ments when the volume is above a certain level. The re-
sulting pressure wave includes periodic impulses causing
the spectrum to contain high frequencies. This change in
the high harmonics can be sensed, e.g., when listening to a
recording of a trumpet played at different sound levels.

Brassiness has been studied for a long time and there are
several existing models in the frequency domain based on
general Burger’s equations. In [11], the implementation
of brassiness in a complete simulation of a trumpet is pre-
sented. Other approaches rely on models in the time do-
main and take the change of the sound velocity into ac-
count. The implemented approach for the simulation of
this section is based on [12] where time-dependent delay
modules are used to generate the effect, but also takes the
fluid velocity into account.
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Figure 11. A delay module for the brassiness simulation:
The delay value D is calculated based on the sound speed
c and velocity difference v.

Figure 11 shows a block diagram of this delay module.
When comparing this module with the generic time mod-
ule in Figure 2, you can easily see the similarities: c and
v are local parameters, pL+ and pR− are input ports, pL−
and pR+ are output ports. All output ports and local param-
eters need explicit calculation expressions and can access
past time values. Moreover, ART even allows the user to
define simple if-then-else expressions which were used in
this simulation to minimize interpolation errors by check-
ing the sign of the current pressure values and use different
expressions for each case. The details of this simulation
including a description of the physical model and the im-
plementation in ART can be found in [13].

Several other examples of time-domain simulations can
be found in [7], including the non-linear simulation of lip
movement in brass wind instruments as explained by Adachi
and Sato in [14] and the reed movement of a clarinet mouth-
piece presented by Chatziioannou and Walstijn in [15, 16].

5. CONCLUSION

In the previous section, several example simulations were
presented, demonstrating the implemented features of ART.
Although the provided functionality is good enough for
small to medium simulation setups, future work will in-
clude the implementation of other well-known models in
the time domain, increase the usability and performance
and provide a proper documentation such that users with
only fundamental knowledge in programming will be able
to create their own simulations, too. Moreover, support
from the open-source community to implement wrapper
interfaces to other programming languages and improve
the current integration of existing interfaces would be high-
ly appreciated.

The usability of ART can be improved by providing a
graphical user interface (GUI) which allows the user to
easily set global and local parameters and create new tem-
plates for time-domain modules. Apart from the described
restrictions, ART could become an interesting supplement
to commercial applications like Simulink for time-domain
simulations. Moreover, it could also be used for educa-
tional and experimental purposes due to its flexibility and

the provided collection of implemented existing acoustical
models.
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ABSTRACT

Auralization of room acoustics consists in audio rendering
based on the sound characteristics of a virtual space. It is
defined by Vorländer [1] as “the creation of audible
acoustic sceneries from computer-generated data”, as the
auditory equivalent of visualization techniques.
Auralization is obtained by convolving a room impulse
response with an anechoic recording, adding room
presence to the reverberation-free excitation signal,
providing subjective immersion in the considered space.
Since acoustically coupled spaces are encountered in
various venues such as large stairways distributing
corridors or rooms, naves and side galleries in churches,
even crossing streets in dense cities, it becomes
interesting to produce accurate auralization in these types
of venues. Such coupled room impulse responses can be
synthesized using a recently proposed sound energy decay
model based on a diffusion equation and adapted to
coupled spaces. This paper presents the parametric model
of sound energy decay and describes the impulse response
synthesis process leading to auralization of coupled
spaces.

1. INTRODUCTION

The term auralization has been used since the early twenti-
eth century in the musical community in the sense of “pre-
hearing” according to Summers [2]. It was later defined for
the room acoustics community by Kleiner et al. [3] as “the
process of rendering audible, by physical or mathematical
modeling, the sound field of a source in a space”. Thus
the process of auralization is artificial and different than
real reverberation experienced by a listener in an acousti-
cal space. However it is interesting to create new acoustical
environments or even to recreate lost ones, e.g. based on
maps and descriptions of buildings which do not exist any-
more. According to Lokki et al. [4], auralization process,

Copyright: c©2013 Paul Luizard et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Figure 1. Example of coupled volume concert hall: KKL
Lucerne, Switzerland (Top & bottom of the map: 4th and
3rd floors). Blue room: main room with stage and audi-
ence; yellow surrounding room: reverberation chamber;
red doors: coupling surface. Picture from Beranek [5].

to be indistinguishable from the real auditory environment,
requires simulation or reproduction of three issues: direc-
tivity of sound sources, sound propagation in a 3-D space,
and reproduction of spatial sound. The present study fo-
cuses on sound propagation to obtain monaural impulse
responses, possibly further adapted for spatialized render-
ing.

Pioneer studies used sound recording in scale models,
played back at lower speeds with respect to the scale fac-
tor, as performed by Spandöck [6]. Nowadays computer
modeling is often used to generate room impulse responses
to be further convolved with anechoic recordings. These
operations can be either pre-calculated for a given space
or real-time convolution can be performed [7, 8], e.g. us-
ing the “waveguide” method [9]. A number of different
means to generate impulse responses are available with
various advantages and drawbacks in terms of sound qual-
ity and computation time. Those methods are either based
on wave approach (e.g. BEM or FDTD) for small vol-
umes whose acoustics have modal behavior, geometrical
acoustics (e.g. ray-tracing, radiosity), or statistical acous-
tics for larger volumes. However, results can present im-
portant variations from one method to another when ap-
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plied to coupled spaces, as shown by Luizard et al. [10].
Therefore, the choice of the employed simulation method
is determinant and depends on characteristics of the venue.

Coupled spaces have particular acoustical characteristics
due to the energy exchange between several architectural
volumes (Fig. 1). A signature of this sort of system is the
curved sound energy decay which can present several
decay rates as opposed to most single volume rooms. The
early decay, presenting a steeper slope than the late part,
contributes to give an important sense of sound clarity
while the lower late decay rate induces an impression of
reverberation, although these concepts are usually
antagonistic in single volume rooms. Therefore, coupled
volume acoustics is worth being exploited, particularly for
theater and music purpose, and auralization is a relevant
means to virtually explore acoustically coupled spaces
with various goals, e.g. design or entertainment.

This study first presents the proposed analytical model of
sound energy decay and its application to coupled spaces,
then the auralization process is described from room im-
pulse response synthesis to final audible rendering. Fur-
thermore, suggestions are proposed to improve auraliza-
tion quality and listener engagement in the virtual room.

2. PARAMETRIC MODEL OF SOUND ENERGY
DECAY

Previous research [11, 12] has been conducted in room
acoustics to develop analytical models of sound energy
decay in order to predict sound field behavior in various
spaces. The present model is based on a diffusion
equation under the hypothesis that sound behaves as
moving particles in a uniformly scattering medium, as
proposed by Ollendorff [13] who introduced the use of
diffusion equation to model acoustic phenomena. The
diffusion equation (eq. (1)) is expressed in terms of sound
energy density w(r, t) and is composed of four terms: a
temporal derivative, a spatial derivative (Laplace term), an
absorption term, and a source term with acoustical power
F . Considering source-receiver distance r allows for
estimating energy variation throughout the reverberant
space.

∂

∂t
w(r, t)−D∇2w(r, t) + σw(r, t) = F (r, t) (1)

Introducing the mean free path between two successive
collisions λ = 4V

S makes it possible to express statistical
quantities which influence the behavior of sound field, de-
pending on architectural parameters such as the room vol-
ume and surface. Coefficients D (eq. (2)) and σ (eq. (3))
are related to sound diffusion and absorption, respectively:

D =
λc

3
=

4V c

3S
, (2)

σ =
cα

λ
=
cαS

4V
, (3)

where c is the speed of sound, α is the mean absorption co-
efficient, V and S are the volume and surface of the room.

The proposed solution to eq. (1) is a heuristic
approximation which accounts for two different regions

defined within the considered space, namely the near and
far fields, with a continuous transition from one another.
In the neighborhood of the source, the sound energy
decays with source-receiver distance (first term of the
sum) until being less spatially dependent and becoming
homogeneous enough to be associated to the concept of
diffuse sound field as defined by Sabine [14] in the
classical statistical theory (constant term of the sum).
Coefficients defined in eqs (2 & 3) are part of this
statistical model. Nevertheless, this expression is exact in
steady state condition and for homogeneous energy decay
as described by Sabine, asymptotically far from the sound
source.

w(r, t) =
(a
r
e−
√

σ
D r + b

)
e−σtH (t) , t >

r

c
. (4)

Function H is the Heaviside step function representing the
fact that sound decay is described from the instant the di-
rect sound reaches the receiver position at distance r from
the source.

This model (eq. (4)) can be calibrated with respect to
room characteristics by adapting its parameters a and b.
The latter express the relative importance of spatially de-
caying sound energy as compared to homogeneous energy
through space, governed by a and b respectively.

3. APPLICATION TO COUPLED SPACES

This sound energy decay model can be adapted to cou-
pled spaces in combination with classical statistical the-
ory [15, 16], allowing for simulation of various source-
receiver configurations and coupling surface settings, whe-
reas the classical theory does not consider sound level vari-
ations within a given subspace. Hence using this model
provides finer estimation of sound fields in coupled spaces.
First, initial uniform sound levels are estimated in each
room for steady state conditions, governed by parameter
b. The concept of coupling factor ki is used to estimate the
initial sound level in the reverberation chamber such that{

w10 = 4P
cα1(S1+Sc)

w20 = k2w10

, (5)

with k2 =
Sc

α2(S2 + Sc)
, (6)

where P is the sound power, Sc is the coupling surface
area, and subscripts 1 & 2 refer to the main room and
chamber respectively. Then the spatially dependent en-
ergy is added, governed by parameter a. Finally, the sound
energy emitted from the chamber is introduced with re-
spect to the distance between the coupling surface and the
receiver, considering the coupling surface as a secondary
sound source. This process allows for estimating sound
energy density and creating curved energy decays at any
receiver position in the main room, according to the char-
acteristics of the rooms.

An example, whose geometry is shown in Fig. 2 and
specifics are detailed in Table 1, is performed in
quasi-rectangular coupled spaces, the main room being
larger but more damped than the reverberation chamber
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Figure 2. (a) View of the coupled room simple geometry
used as example. The large blue room on the left is the
main room and the orange room behind it is the reverbera-
tion chamber. (b) Floor plan of the same geometry.

such that reverberation time (RT) at mid-frequencies is
larger in the latter. Opposite walls are slightly angled in
order to avoid flutter echoes. Fig. 3 represents the sound
energy density estimated on the ground floor in the main
room of coupled volumes. Spatial variations are in the
range of 15 dB between the source peak and the lowest
energy in the room. The second peak next to a wall
corresponds to the energy emitted from the chamber back
in the main room.

Considering receivers along a line through the room
length, on the axis such that Y = 12 m on Fig. 3 with
1 m-step from one another, Fig. 4 shows the temporal
energy decays with increasing source-receiver distance.
Darker decays stand for receivers nearer the sound source

Main room Reverberation chamber
Length (m) 44 14
Width (m) 24 24
Height (m) 18 18
Surface (m2) 4560 2040
Volume (m3) 19000 6050
α 0.55 0.1
RT (s) 1.2 5.0

Table 1. Architectural and acoustical specifics of the ge-
ometry shown in Fig. 2 for each separate room, i.e. without
the coupling surface.

Figure 3. Illustration of the output of the model in the case
of 2 coupled rooms shown in Fig. 2: sound energy density
in the main room. The highest peak corresponds to the
sound source on stage, the other one is due to the sound
emitted back from the reverberation chamber. Lines on the
horizontal plane represent equal energy levels as vertical
projections.

while lighter ones represent distant receivers. The
curvature point appears at different levels under the initial
level for various receiver positions, such that the further
the receiver, the higher the decay curve. This means that
the second slope, or late reverberation, appearing earlier
and louder, has stronger effects on distant receivers than
on ones nearer the sound source. The energy decay given
by classical statistical theory, which is the same at every
receiver position since no spatial variation is considered,
appears as the blue dotted line. Fig. 4 represents
normalized decays and distant receivers can provide decay
curves with late decay levels above the reference one.

A line of receivers different than the one considered
above would lead to different results both in terms of total
energy variation, as can be imagined from Fig. 3, and in
terms of temporal decays because the room configuration
is not symmetrical, with the coupling surface on one
lateral side. This observation underlines the fact that
sound energy decays, and thus impulse responses,
generally vary throughout a given space, making it
interesting to be able to generate auralization accounting
for those differences. Hence using this proposed statistical
model which is distance dependent leads to more precise
results than the classical statistical model.

4. FROM SOUND ENERGY DECAYS TO
IMPULSE RESPONSES

Auralization is based on an anechoic sound convolved with
an impulse response. The present study deals more specif-
ically with room impulse responses which add reverbera-
tion to the dry signal to give it a certain room presence.
A room impulse response is the temporal equivalent of a
transfer function of the room. It is composed of sound
reflected on the walls and received at a specific position.
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Figure 4. Normalized sound energy decays along the
line such that Y = 12 m in Fig. 3, i.e. the center line
of the main room, for various source-receiver distances
5 < r < 25 m. Darker decays (below) correspond
to small r while lighter decays (above) correspond to more
distant receivers. The dotted line represents the classical
model by Cremer et al. [16].

Figure 5. Schematic representation of a room impulse re-
sponse in single volume.

An illustration of such a signal is shown in Fig. 5. The
previously proposed model of sound energy decay can be
used to synthesize room impulse responses using various
processes. The idea is to apply the given energy decay to
pre-filtered noise in order to obtain the reverberation part
of impulse response (top of Fig. 6). An inverse Fourier
transform of this decaying noise produces the temporal im-
pulse response (bottom of Fig. 6). This sort of process has
been used in previous research for perceptual experiments
whose purpose was to estimate Just Noticeable Differences
(JND) of single and double-slope reverberation from single
and coupled spaces, allowing to change decay rates easily
while keeping temporal distribution and frequency content
unchanged. Frissen et al. [17] applied energy decays to a
normally distributed random number sequence and Picard
et al. [18] applied energy decays to pink noise.

Refinements can be performed along two different di-
mensions: the temporal or spectral distribution of energy.
Measured room impulse responses show different trends
along temporal segments. As can be seen in Fig. 5, the
first part of received energy is the direct sound, then the
first reflections from the walls and ceiling reach the lis-
tener before the density of reflection becomes too high

Figure 6. Impulse response synthesis process. Top: De-
cay curve applied to pre-filtered noise. Bottom: Resulting
impulse response in linear amplitude scale.

to be considered as discrete, which is called reverbera-
tion. Hence simulated room impulse responses should in-
clude direct sound and possibly early reflections, which
have been proved by Barron [19] to be perceptually in-
fluential, in order to sound more realistic. Fig. 7 shows
the steps to construct impulse responses with reverberation
only, added early reflections, and direct sound. While the
room geometry is responsible for intensity and time of ar-
rival of early reflections, intensity of direct sound relative
to the rest of impulse response corresponds to the source-
receiver distance. Therefore, adding the described steps
can be seen as accounting for a type of room and a specific
receiver position. Furthermore, the three decay curves pre-
sented in Fig. 7, which are backward integrations of the im-
pulse responses as defined by Schroeder [20], are different
in the sense that the early decay is steeper with the direct
sound and early reflections. Depending on the proportion
of change as compared to the case with reverberation only,
the modification will be audible, possibly adding clarity to
the sound.

Another refinement can be performed, in the frequency
domain, consisting in setting different decay rates in the
available octave bands. The proposed model of energy de-
cay can be used with various absorption coefficient settings
in order to obtain a collection of decay curves, as illus-
trated in Fig. 8. RT values in uncoupled rooms shown in
Table 2 are set depending on the desired absorption in the
main room and in the reverberation chamber. These de-
cay curves can be applied successively to noise filtered in
frequency bands. The obtained impulse response is closer
to reality than before this process because measurements
in actual concert halls always present a variation of de-
cay rates, leading to total energy variations in the order
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Figure 7. Possible refinements of room impulse response synthesis in temporal domain: addition of early reflections
(center) and direct sound (right) to reverberation only (left).

Main room Reverberation chamber
Center frequency (Hz) 125 250 500 1000 2000 4000 125 250 500 1000 2000 4000
RT (s) 3.12 2.82 2.11 1.74 1.34 0.96 13.67 10.87 8.46 4.8 3.31 2.63
α 0.19 0.24 0.32 0.39 0.50 0.61 0.03 0.04 0.06 0.10 0.14 0.16

Table 2. Reverberation times (RT) and mean absorption coefficients (α) per octave bands in uncoupled configuration, from
measurements in a scale model of coupled spaces. Energy decay curves presented in Fig. 8 are generated with these values.
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Figure 8. Example of double-slope decay curves per oc-
tave bands from a coupled volume system, at r = 20 m from
the source.

of dozens of decibels over frequency bands.

5. CONCLUSION

A model of sound energy decay based on the diffusion
equation in coupled spaces is proposed to perform aura-
lization. The process which has been used in previous re-
search consists in applying these sound decays to filtered
noise with various possible refinements to produce realistic
room impulse responses. Convolving the latter with ane-
choic sounds allows for hearing sound sources within vir-
tual spaces. This process can be useful in several domains,
e.g. virtual reality or architectural acoustic design, where
acoustical immersion might be required to experience par-
ticular sound environments, among which coupled spaces

are often encountered. Further research includes listening
tests to estimate the level of sound quality which can be ob-
tained with the proposed energy decay model, as compared
to other auralization methods.
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“Virtual instruments in virtual rooms - a real-time bin-
aural room simulation environment for physical mod-
els of musical instruments,” in Proc. of International
Computer Music Conference, Aarhus, Denmark, 12-17
Sept., 1994.

[9] M. Karjalainen, “Digital waveguide networks for room
modeling and auralization,” in Proc. of Forum Acus-
ticum, Aug. 29 - Sept. 2, 2005.

[10] P. Luizard, M. Otani, J. Botts, L. Savioja, and B. Katz,
“Comparison of sound field measurements and pre-
dictions in coupled volumes between numerical meth-
ods and scale model measurements,” in Proc. of the
21st International Congress on Acoustics, Montreal,
Canada, 2-7 June, 2013.

[11] J. Picaut, L. Simon, and J. Polack, “A mathematical
model of diffuse sound field based on a diffusion equa-
tion,” Acta Acustica United with Acustica, vol. 83, pp.
614–621, 1997.

[12] V. Valeau, J. Picaut, and M. Hogdson, “On the use of a
diffusion equation for room-acoustic prediction,” Jour-
nal of the Acoustical Society of America, vol. 119, pp.
1504–1513, 2006.

[13] F. Ollendorff, “Statistical room-acoustics as a problem
of diffusion: A proposal,” Acustica, vol. 21, p. 236245,
1969.

[14] W. Sabine, Collected papers on acoustics. Harvard
University Press, 1922.

[15] H. Kuttruff, Room Acoustics. Elsevier Science Ltd,
London, 452 p., 1973.

[16] L. Cremer, H. Müller, and T. Schultz, Die Wis-
senschaftlichen Grundlagen der Raumakustik / Princi-
ple and Applications of Room Acoustics. Hirzel Verlag
/ Applied Science, New York, 651 p., 1978 / 1982.

[17] I. Frissen, B. Katz, and C. Guastavino, Auditory Dis-
play. Springer, New York, 493 p., 2010, ch. Effect of
sound source stimuli on the perception of reverberation
in large volumes.

[18] D. Picard, “Audibility of non-exponential reverberation
decays,” Master’s thesis, Rensselaer Polytechnic Insti-
tute, 2003.

[19] M. Barron, “The subjective effects of first reflections in
concert halls - the need for lateral reflections,” J. Sound
Vib., vol. 15(4), pp. 475–494, 1971.

[20] M. Schroeder, “New method of measuring reverbera-
tion time,” Journal of the Acoustical Society of Amer-
ica, vol. 37, pp. 409–412, 1965.

621

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



Warped low-order modeling of musical tones
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ABSTRACT

Source-filter modeling of musical tones requires a filter
model for the spectral envelope of the signal. Since the
perceptual frequency resolution is best at low frequencies,
frequency warping has been previously shown to improve
spectral envelope estimation of audio signals. In this paper,
considering low-order modeling for harmonic tones, we in-
vestigate the perceptual performance of three warped mod-
els which extend the filter models: Linear Prediction Cod-
ing (LPC), True-Envelope based Linear Prediction (TE-
LPC), and Discrete All-Pole method (DAP). The respec-
tive warped methods allow a continuous control of the warp-
ing factor, and here we are interested in the perceptual
quality of the envelope estimation according to the warp-
ing factor for all methods. Results of our listening tests
show that the frequency warping which best approximates
the Bark scale, does not always give the best results.

1. INTRODUCTION

Thesource filterprinciple, which is popular in speech cod-
ing and synthesis, can also be applied to the harmonic tones
of musical instruments (cf. e.g. [1,2]). In its basic version,
a periodic excitation, the source, is processed by a filter,
which aims to reproduce the spectral envelope of the orig-
inal tone (cf. e.g. [3]). One benefit of the source-filter
model is the possibility to independently vary the funda-
mental frequency and the spectral shape of the synthetic
signal. Furthermore, the parametric representation of the
source-filter model allows to reduce the number of param-
eters, which facilitates the synthesis control.

Here, the aim is to obtain very low-cost real-time simula-
tions. Then, we investigate low-order filters which imitate
the shape of the original spectrum of musical instrument
tones closely in a perceptual sense. One possible method
is the well known Linear Prediction Coding (LPC). Unfor-
tunately, as pointed in [4], this method is suitable for con-
tinuous spectra but not for the discrete spectra of harmonic
tones. To deal with the problem, the Discrete All-Pole
(DAP) modeling method [5] and the TE-LPC method [6]
have been proposed, both of which identify the coefficients
of an autoregressive filter for a discrete spectrum.

Copyright: c©2013 Rémi Mignot et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

In audio processing, one problem is that these prior meth-
ods use a linear frequency scale, which is suboptimal in
terms of human perception. The frequency scale can be
warped to better match the resolution of the human hear-
ing. It has been proposed in [7–10] to apply the filter iden-
tification in a warped scale similar to the Mel scale or the
Bark scale. Thanks to this modification, the spectral en-
velope approximation focuses on the low frequencies, and
the details at higher frequencies, which are irrelevant in the
perceptual sense, are naturally smoothed.

However, these warped methods increase the real-time
simulation complexity and our informal perceptual tests
have revealed that frequency warping which fits the Bark
scale does not give the best results in all cases. The aim of
this paper is the study of the influence of the warping for
low-order filter estimations, according to awarping factor
λ which continuously controls the frequency warping. The
quality of the filter models as a function ofλ is perceptu-
ally evaluated using listening tests.

As a general conclusion, we will observe that for low-
order modeling, warping brings only a small perceptual ad-
vantage compared to the use of the linear frequency scale,
which can even be a better choice in some cases.

This paper is organized as follows: section2 presents the
spectral envelope estimation techniques and their warped
versions: WLPC (Warped LPC), WTLP (Warped TE-LPC),
and WDAP (Warped DAP). Section3 discusses the synthe-
sis of test sounds which is based on a harmonic sine model
of the periodic part, where the harmonic magnitudes and
phases are modified according to the filter approximation.
Then, the listening tests and results are presented in sec-
tion 4, and finally, section5 concludes this paper. Note that
the new methods WLTP and WDAP are proposed in this
paper by adapting previous methods to our problem. Ad-
ditional materials are given in the companion web page1 .

2. LOW-ORDER ENVELOPE MODELING

2.1 Linear Prediction Coding (LPC)

2.1.1 Standard LPC

The LPC of orderP consists of the prediction of a signal
by a combination of theP past values:̃xn=

∑P

i=1
aixn−i.

The coefficients{ai}minimize the expectation of the squa-
re of the residualen = xn − x̃n, and they are also the co-
efficients of the AR filterH(z) = G/A(z) whereA(z) =
1−

∑P
k=1

aiz
−1 andG is the prediction gain.

1 http://www.acoustics.hut.fi/go/smac2013-warping
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This standard method usually uses the autocorrelation se-
quencern of the weighted signal. In [4] it is shown that
the optimalai’s also maximise the spectral flatness of the
residual. Then, the frequency response of the filterH(z),
gives an estimation of the spectral envelope of|X(ω)|.

2.1.2 Warped LPC

In [7,10], it is proposed to realise a frequency mapping re-
placingz−1 by an all-pass filterD(z). Then the Warped
LP coefficients can be computed in a similar way by re-
placing the autocorrelationrn by a warped correlationcn.

For practical reasons, first-order all-pass filters are usu-
ally used:D(z) = (1−λz)/(z−λ)where the poleλ is the
warping factor. For example, at a sampling rateFs = 44.1
kHz,λ = 0.756 leads to a warping close to the Bark scale
mapping, cf. [8,9]. Note that ifλ = 0, thencn = rn.

2.1.3 LPC and Warped LPC of a discrete spectrum

Unfortunately, one well-known problem persits for discrete
spectra, such as periodic signals. In [5] it is proved that the
autocorrelation of a discrete spectrum is an aliased version
of the original continuous case. Therefore, in the case of
a high-order LPC, the estimated spectral envelope fits the
whole magnitude spectrum, peaks and valleys, and in the
case of low-order LPC, the estimated spectral envelope is
attracted by the valleys between the peaks. Some meth-
ods deal with this problem, such as the TE-LPC and DAP
methods presented below.

2.2 True Envelope based LPC

2.2.1 Standard TE-LPC

Most of cepstrum methods for spectral envelope estima-
tion roughly consist of the filtering of a magnitude spec-
trum |X(ω)| by windowing its cepstrum with a mask in
low quefrencies (cf. e.g. [11]). Since this operation does
not solve the problem of discrete spectra, the True Enve-
lope (TE, cf. [12,13]) iteratively computes the cepstral fil-
tering Hn(ω) on Gn(ω) = max(|X(ω)|, Hn−1(ω)). In
other words, at every iteration, the valleys of|X(ω)| are
filled by the previously estimated envelope, then the enve-
lope goes towards a smooth envelope passing close to the
peaks.

To convert the TE estimationHe(ω) to an AR filterH(z),
in [6] it is proposed to apply a standard LPC using the cor-
relation ρn given by the inverse DFT of the power spec-
trumHe(ω)

2 instead ofrn (cf. sec.2.1.1).
Note that the TE order is defined by the size of the cep-

stral mask. In the case of a periodic signal of frequency
F0, the optimal order iŝo = 0.5Fs/F0 whereFs is the
sampling rate, cf. [14]. Concerning the LPC order of the
TE-LPC, for high quality applications, it is shown in [15]
that the same order̂o gives the best results. In the follow-
ing, we always use this optimal TE order but in order to
have low-order AR filters, the LPC order is chosen to be
lower.

2.2.2 Warped TE-LPC

In [16], the Mel-based TE-LPC (also called MTELPC) is
proposed to decrease the order using a warping. The es-

timate of the Mel-scaled True Envelope (MTE), with a re-
duced optimal order0.15Fs/F0, is used to compute the co-
efficients of a warping filter. However, firstly this method
uses a fixed frequency mapping adapted to the Mel scale
only, and we want to study different warping scales, sec-
ondly its quality cannot outperform the MTE quality which
is itself below the TE quality.

In this paper we propose two changes. On the one hand,
we use a warping defined by the all-pass filterD(z) with
the parameterλ, and on the other hand, this warping is
done after the estimation of the TE (normally scaled), done
with the optimal order0.5Fs/F0. So, the warped LP coef-
ficients are computed starting from the warped correlation
γn obtained by an inverse DFT of the power of the warped
True EnvelopeH2

e. With ν the adimensional warped fre-
quency, uniformly spaced in[0, 2π[, He(ν) is given by an
interpolation ofHe(ω), using the relation:ω(ν) = ν −

2 atan(λ sin ν/(1+λ cos ν)). In the following, this method
is called Warped TE-LPC (WTLP).

2.3 Discrete All-Pole methods

2.3.1 Standard Discrete All-Pole (DAP)

As pointed out in section2.1.3, for a periodic signal an
original spectral envelope is sampled by the harmonics,
and its autocorrelation sequence is an aliased version of the
original one. In [5] the DAP method is proposed to solve
this bias by exploiting the frequency positions and the val-
ues of the spectral peaks only. For periodic signals these
peaks are the harmonics, but the method is not restricted
to harmonic spectra. This method is based on the mini-
mization of the discrete version of the Itakura-Saito dis-
tance between the squared spectral envelope measured and
estimated at the frequenciesωm of theM spectral peaks.
Then, an iterative minimization ofEIS leads to aP -order
AR filter H(z), which gives an estimate of the spectral en-
velope passing through the peaks inωm.

2.3.2 Warped DAP

In order to adapt this method to a warped frequency scale,
we propose the WDAP method. This new version of the
DAP method consists simply of computing the algorithm
but replacing the linear frequency positionsωn of the peaks,
by their new frequency positionsνm in the warped fre-
quency scale, defined by:νm = −∠D(ejωm). Note that it
is possible because the DAP method does not assume the
harmonic structure of the input peaks.

Nervertheless, in some cases the WDAP method can be
ill-conditioned, which implies some variations, or “ripples”,
of the spectral envelope between the peaks. Even if the
presented WDAP should not be used for spectral modifica-
tions, this paper shows its benefit at least for sound coding.

3. REFERENCE AND TEST SOUND
COMPUTATION

The reference and test sounds have been computed from
original recordings using a frame-by-frame additive syn-
thesis (cf. [17, 18]). Using a harmonic sine modeling of
the signal, the attack and the noisy parts have been isolated
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Figure 1. Block diagram of the sound computation.

from the harmonic part. The spectral envelope identifica-
tion is realised for the harmonic part only. Figure1 sums
up the computation.

Reference sound: Because of the poor tuning of the used
files, which come from the IOWA database [19], the fun-
damental frequency has been shifted in order to have a me-
dian value at261 Hz (C4) for all sounds. Note that the
natural vibrato is conserved. Then, the overlap-add syn-
thesis of the harmonic part produces the reference sound
by adding the original residual (a static sine synthesis is
used for every frame, cf. [20]).

Test sounds: The AR filtersHn(z) have been estimated
using the three methods for all frames. Then the estimated
spectral envelopes are applied to the test sounds by re-
placing the peak magnitudes by|Hn(e

jωn,m)| whereωn,m

is the (unchanged) frequency of the harmonicm of the
framen. For the peak phases, first the reference phases
are changed toπ/2 and the phases are unwrapped using a
shape-invariant method, cf. e.g. [21]. Actually, this quar-
ter cycle dephasing guarantees the centering of the signal
avoiding clippings. Finally,∠Hn(e

jωn,m) is added to the
unwrapped phase.

Figure2 shows some examples of spectral estimations for
a frame of the clarinet signal. The spectra and the sound
examples of all tones are given in the companion web page.

Simulation of a Warped filter The warped method re-
turns the coefficients of the Warped AR filterHw(z) =
G/Aw(z). To simulate the filter using the linear frequency
scale, we can algebraically solve the standard ARMA fil-
terH(z)=B(z)/A(z)=Hw(D

−1(z))=G/Aw(D
−1(z)).

Since the orders of the polynomialsA andB are alsoP ,
the computation of the warped AR filter is as time com-
suming as a2P -order standard AR filter. That is why, in
the following tests, we also study the quality of the stan-
dard methods with an order twice (2P andλ = 0).

Note that because the (W)LPC methods are highly biased
for discrete spectra, we automatically adjusted its level to
the reference level using their dBA measure. Without this
procedure, the WLPC method is always the worst method.

4. LISTENING TEST

The performances of the WDAP, WLPC, and WTLP meth-
ods and their non-warped versions were evaluated with a
listening test. The task of the subjects was to compare each
test tone against the reference tone.
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Figure 2. Spectral envelope estimations for a frame of the clar-
inet signal. Top fig.: comparison between the 3 methods and the
True Envelope estimate,λ = 0.72 andP = 8. Note that the
level of the WLPC is increased by equalizing the dBA measure.
Bottom fig.: comparison of estimations with different values ofλ
for the WTLP method (P = 8).

Four warping factors were used:0.27, 0.52, 0.72, and
0.8. Here we fixed the higher warping factor at0.8, which
is higher than0.756, and we selected 3 other factors rela-
tively uniformly spaced. Figure4 presents these warpings,
and a comparison with: the warping given byλ = 0.756,
the Bark scale of [22] and the Mel scale of [23]. Remark
that λ = 0.756 (for Fs = 44.1kHz) gives the warping
closest to the Bark scale in the least-square sense, but as
figure4 shows, it is far from the Mel scale which is com-
monly used in speech recognition.
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Figure 4. Frequency warpings used for the listening test and
comparison with the “optimal warping”λ = 0.756, the Bark
scale of [22] and the Mel scale of [23].
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The results for the WDAP, WLPC, and WTLP methods are presented with circles, rectangles, and crosses, respectively. The horizontal
dashed lines present the performance of the best method without warping. The filter order is 8 unless indicated otherwise.

The filter order for the warped versions was 8, and for the
non-warped versions two filter orders, 8 and 16 were used,
resulting in six filter order/warping factor combinations.
Tones from four musical instruments were included in the
test: a clarinet tone, a flute tone, a saxophone tone, and a
trombone tone. The fundamental frequency of each tone
was 261 Hz (corresponds to the note C4).

4.1 Listening test environment, subjects, and the
method

The listening tests were carried out in a sound-insulated
listening booth at the Aalto University Department of Sig-
nal Processing and Acoustics. The tones were played back
with Sennheiser HD 650 circum-aural reference headphones
at 64 dBC SPL. The user interface was coded with Matlab.
Ten volunteer subjects between 25 and 39 years of age par-
ticipated in the test. They were personnel of the university,
and all had previous experiences in participating in listen-
ing tests. None of them reported any hearing defects.

Before the actual test took place the subjects went through
a practice test, which provided the subjects a possibility to
familiarize themselves with the user interface and a pre-
selected set of 20 test sounds representing extremes of the
test tones in terms of quality. The actual test consisted
of three rounds of 76 trials (three methods, six filter or-
der/warping factor combinations, and four instruments re-
sults in3 × 4 × 6 = 72 trials, and additional 4 reference-
reference comparisons as acid tests), and the order of the
trials was randomized for each round and each subject.
Each trial consisted of a tone pair, the first and second tone
being always the reference and the test tone, respectively,
separated with 500 ms of silence. The subjects were al-
lowed to listen to the tone pairs twice and then asked to
rate the quality of the test tone on a continuous five-step

scale with resolution of 1 decimal place. The anchor points
were as specified in the ITU-T BS.1284 standard [24]: Im-
perceptible (5), Perceptible, but not annoying (4), Slightly
annoying (3), Annoying (2), and Very annoying (1).

4.2 Results

The performance of each subject was verified by the acid
tests. It was required that the grade resulting from the
reference-reference pair comparison should be at least 4
(perceptible, but not annoying) in each case. Based on this
analysis 3 subjects were discarded from further analysis.

The results of the listening test were analyzed with a four-
way analysis of variance (ANOVA). The method, the fil-
ter order/warping factor combination, and the instrument
were modeled as fixed effects, while the subject was mod-
eled as a random effect. The assumptions for validity of
ANOVA were checked before the analysis. The Shapiro-
Wilk test confirmed that the variances were equal (p >

0.05), but the normality of residuals could not be con-
firmed (p < 0.05). However, since the linear-mixed effects
models have been found to be robust against violations of
the assumptions [25], and the distribution was very close
to normal, ANOVA test was performed.

ANOVA returned significant effects for the method [F (2,
1434) = 145.91,p ≪ 0.001], the filter order/warping fac-
tor combination[F (5, 1434) = 144.29, p ≪ 0.001], the
instrument[F (3, 1434) = 164.75, p ≪ 0.001], as well
as for the interactions between the method and filter or-
der/warping factor combination [F (10,1434) = 21.61,p ≪

0.001], between the method and the instrument [F(6,1434)
= 38.77,p ≪ 0.001], between the filter order/warping fac-
tor combination and instrument[F (15, 1434) = 45.18, p ≪

0.001], and the interaction between all three fixed effects
[F (30, 1434) = 10.10,p ≪ 0.001].
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Figure 3 shows the marginal means and the 95% con-
fidence intervals for the interaction between the method,
the filter order/warping factor combination, and the instru-
ment. Additionally, the Dunnett’s post hoc test [26] with
the significance level of 5% was performed. The figures
show the grades as a function of the filter order/warping
coefficient combination. The horizontal dashed line shows
the best result obtained without warping and with an or-
der 16, and it serves as a reference point showing whether
warping brings any advantage (effectively, a non-warped
filter of order 16 has the same amount of coefficients as a
warped filter of order 8).

In the case of the clarinet, Fig.3(a) reveals that the WDAP
method clearly outperforms all other methods, when the
warping factor is 0.8, thus producing the best result. For
the flute (Fig.3(b)), the WDAP method seems to achieve
the highest scores, but as the confidence intervals over-
lap with the WTLP method, no conclusion can be drawn
which one of these two methods is the best. In the case of
the saxophone in Fig.3(c) the non-warped versions of the
three methods seem to produce the best results, although
again the confidence intervals overlap with the results of
WDAP and WTLP methods with the warping factors 0.27
and 0.52. For the trombone, warping does not bring any
advantage, as can be seen in Fig.3(d), although the con-
fidence intervals of the caseP = 16 of the non-warped
versions overlap with the WLPC and WTLP methods with
warping factor 0.52. All these findings were confirmed
with the results of the post hoc test.

4.3 Listeners’ thoughts about the test

All subjects reported that the test was fairly easy, the dif-
ferences in the test tones were clearly audible, and it was
easy to make decisions about the quality. Some subjects
noted, however, that in some cases it was hard to apply the
given scale, since the differences between the test tones
varied. Indeed, some subjects judged artefacts as more
severe degradation than changes in timbre, for example,
and the others rated these degradations quite the contrary.
Many subjects reported also that they used more the bot-
tom of the scale than the top, which is also visible in the
results (see Fig.3).

4.4 Discussion

The results show that the WDAP method is the best or
among the best methods in the case of the clarinet, the flute,
and the saxophone. For the trombone the results show that
warping does not bring any significant advantage. Also in
the case of the saxophone this is somewhat questionable,
since the non-warped methods with filter order 16 obtain
the highest grades. The reason for this is the smooth overall
shape of the spectrum. The clarinet has prominent odd har-
monics resulting in valleys between adjacent harmonics,
which implies that warping brings advantage since more
effort is put to low frequencies. The situation is different
especially for the trombone that has no prominent formant
in the spectrum, as can be seen in Fig.5.

Usually two major problems occur for highλ values: first,
because of the ill-conditioning, especially with the WDAP
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Figure 5. Spectral envelope estimations for a frame of the trom-
bone signal. Comparison of estimations with different values of
λ for the WDAP method (P = 8). The spectra of the other tones
are presented in the companion web page.

method, the estimation spectrum can have artificial peaks
at low frequencies (cf. Fig.5). Second, the envelope usu-
ally decreases at high frequencies, then the spectral tilt in-
creases withλ because of the frequency “compression” at
high frequencies. In this case, as shown in fig.5, the low-
order estimation cannot follow the spectrum and the real
envelope is over-estimated. Note that a pre-whitening fil-
ter can solve this problem but it usually produces unfitting
side effects at low frequencies.

5. CONCLUSION

This article presents a new warped method called the WDAP
for modeling the spectral envelope of musical instrument
tones. In contrast to the standard DAP method [5], the al-
gorithm is computed by placing the linear frequency points
by their warped equivalents. Additionally, we introduced
a modified version of the TE-LPC method [6], called the
WTLP method, in which warping is realized with an all-
pass filter with warping coefficientλ and performed after
estimating the TE.

As partial conclusions of the results of the listening tests
(cf. fig. 3): first, for low-order filters, it is obvious that it
is sometimes preferable to use non-warped methods with a
order twice,P = 16, rather than warped filters withP = 8
which has an equal CPU usage in time simulation. Sec-
ond, we see that the WLPC, or the LPC, has no benefit
compared to the two other tested methods. This observa-
tion is not surprising because this method is not adapted to
discrete spectra, such as periodic signals. Third, the warp-
ing closest to the “optimal warping” in the sense of [8]
(λ = 0.756 with Fs = 44.1 kHz) is not always the best
one in a perceptual sense, and it is preferable in some cases
to use a lower warping factor (cf. e.g. the saxophone in
Fig. 4(c)).

For practical reasons, we could not do a detailed study
with a high number of different instruments, with a higher
number of warping factors, and with some different pitches.
With 4 instruments and 6 order/warping factor combina-
tions, we got 76 trials and the individual tests lasted almost
45 minutes. Hence, it is difficult to have a general conclu-
sion, nevertheless these tests show that the perceptual op-
timal warping factorλ depends of the original timbre, or
spectral envelope, and is not linked to the Bark scale. Note
that the valueλ = 0.756 gives the warping closest to the
Bark scale (forFs = 44.1 kHz), and is relatively far from
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the Mel scale which is commonly used in speech recogni-
tion (cf. Fig.4). Then, it seems impossible to choose a
uniqueλ, perceptually good for all instruments, in the case
of low-order filters.

In next works, it would be interested to derive a objec-
tive criterion which allows to choose the best perceptualλ

according to the considered instrument.
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[12] A. Röbel and X. Rodet, “Efficient spectral envelope es-
timation and its application to pitch shifting and enve-
lope preservation,” inDAFx, 2005, pp. 30–35.

[13] S. Imai and Y. Abe, “Spectral envelope extraction by
improved cepstral method,”Electron. and Commun.,
vol. 62-A, no. 4, pp. 10–17, 1979, in Japanese.
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ABSTRACT

In this paper, we explore machine learning models that
generate four-part harmonies according to the melody of
a soprano voice. Although researchers have already tried
to produce four-part harmonization through machine learn-
ing, the computational models that most studies have pro-
posed already contain nodes or states that represent chords
or harmonic functions. Explicitly introducing such nodes
or states is suitable from the viewpoint of practically achiev-
ing musically acceptable harmonization, but it is unsuit-
able from the scientific viewpoint of acquiring the fun-
damental concepts of harmonies from actual music data.
Therefore, we developed two kinds of computational mod-
els, one that contains chord nodes and another does not,
and investigate to what extent the model without chord
nodes acquires the fundamental concept of harmonies com-
pared to the model with chord nodes. For our models, we
describe musical simultaneity (i.e., the appropriateness of
combinations of simultaneously played notes) and musi-
cal sequentiality (i.e., the smoothness of the melodic line
within each voice) are described as dependencies between
random variables in Bayesian networks. Both models learned
254 pieces taken from a Hymn corpus, and the results of
this experiment show that the Bayesian network without
chord nodes acquired some of the basic rules of harmony.

1. INTRODUCTION

Automatic music harmonization is an important subtask
in automatic music arrangement. In general, this task is
divide into two types of harmonization. The first type is
a sequence of chord symbols, such as C-F-G7-C, a given
melody [1–3]. The second type comprises concrete notes
to voices other than the melody voice. The typical form
in the latter type of harmonization is a four-part harmony,
that consists of soprano, alto, tenor, and bass voices. The
four-part harmonization is a traditional part of the theoreti-
cal education of Western classical musicians, so numerous
researchers have attempted to generate automatically the
four-part harmonization [4–10].

One of the most commonly used approach is to develop
an expert system (rule-based system) [4]. Ebcioǧlu, for ex-
ample, implemented the knowledge of harmonization by

Copyright: c©2013 Syunpei Suzuki et al. This is an open-access article distributed
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using a logic programming language called BSL [4]. A
rule-based harmonization system is difficult to develop, be-
cause this systems rules are various and hence often diffi-
cult to integrate without contradiction. For example, two
note allocation rules include one rule that, considers con-
sonance between the voices and another rule that considers
the natural temporal connection within the voice. Given
that these rules make different considerations, they might
recommend different notes, in which case meta rules for
resolving such contradictions are necessary. However, de-
veloping such rules is not easy. Some studies have at-
tempted to achieve harmonization as a constraint satisfac-
tion problem or with the genetic algorithm, instead of di-
rectly implementing note allocation rules. Researchers de-
signed these constraints or fitness functions, according to
basic some rules of harmonization [6, 7].

In recent years, the number of studies on four-part harmo-
nization that use machine learning technologies has been
increasing [5,8,9], thus increasing the difficulty of design-
ing meta-rules. The scientific interest in these studies is to
discover the principle of harmony from actual music data
so that humans do not necessarily need to implement it on
a computer. For example, Hild et al. developed a J. S.
Bach-style choral harmonization system using several neu-
ral networks [5], Allan and Williams proposed a four-part
harmonization method based on a hidden Markov model
(HMM) [8], and Yi and Goldsmith proposed a four-part
harmonization method based on a Markov decision pro-
cess [9].

Researchers strive to address two issues while developing
a computational model for four-part harmonization. The
first issue is to take into account the simultaneity and se-
quentiality of harmonization. The simultaneity is the ap-
propriate (e.g., non-dissonant) allocation of notes that are
simultaneously sounding, while sequentiality is the smooth
connection in a melodic line within each voice. The second
issue is to take a limited number of training data into ac-
count. Because four-part harmonization has very complex
dependencies both within and between voices, the model
should describe all of the dependencies. As the complex-
ity of the model increases, however, the number of train-
ing data required will exponentially increase. The quantity
of available training data should therefore be considered
while designing the model.

In Yi and Goldsmith’s model [9], a state is defined as
a 10-tuple (S1, A1, T1, B1, S2, A2, T2, B2 , S3, P ), where
Si, Ai, Ti, Bi are respectively the soprano, alto, tenor, and
bass notes at time i, and P is a temporal position. The
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temporal sequence of such states is treated as a Markov
decision process. This model has the potential of gener-
ating four-part harmony, because it considers both simul-
taneity and sequentiality. Unfortunately, it usually requires
a tremendous amount of training data precisely because it
has many states. Not surprisingly, Yi and Goldsmith do not
report the results of learning with an actual corpus.

Hild et al. attempted four-part harmonization by inte-
grating three kinds of neural networks [5], one that gen-
erates a sequence of harmonic functions called harmonic
skeletons from a soprano melody, a second one that allo-
cates concrete notes from the harmonic skeletons, and a
third one that inserts eighth notes for ornamentation. They
trained their neural networks separately on one set of Bach
chorales in major key and another set in minor key, each
set containing 20 chorales.

Allan and Williams used a hidden Markov model (HMM)
[8]. This model’s has hidden states represent chords that
are designed to emit an observable melody line. The states
are coded as a list of pitch intervals of the alto, tenor, and
bass notes from the soprano note, such as 0:4:9:16 / T (T
stands for tonic). This model takes into account simultane-
ity and sequentiality, but this model also requires a lot of
training data due to its large number of states. In fact, Al-
lan and Williams model distinguishes each unique voicing
of the same chord.

Buys and Merwe adopted a weighted finite-state trans-
ducer (WFST) for four-part harmonization [10]. Their WFST
consists of three graphical models for estimating chords,
bass notes, and inner-voice(i.e., alto and tenor) notes. The
alto, tenor, and bass notes are coded in separate nodes un-
like the above-mentioned models.

Most of the above-mentioned studies introduced nodes or
states that represent chords (e.g., C, G) or harmonic func-
tions (e.g., tonic). In contrast, the present study introduces
a computational model that does not explicitly contain the
concept of harmony so that the researchers could inves-
tigate whether this model is able to acquire the concepts
of harmony from actual music data. Specifically, we de-
veloped a computational model of four-part harmonization
with and without chord nodes to investigate to what extent
the model without chord nodes learns the harmony that the
model with chord nodes was already programmed to know.
For our computational model, we adopt a Bayesian net-
work, because most of the existing methods can be gener-
alized to Bayesian networks.

2. PROPOSED METHOD

In this section, we present our method of four-part harmo-
nization that uses a Bayesian network.

2.1 Problem Statement

The problem that we aim to solve is how to generate melodic
lines for the alto, tenor, and bass voices, according to the
existing melody of the soprano voice. Based on the typical
form of Chant Donné used in the theoretical education of
harmony, we assume that the rhythm of all of the voices
is the same, in other words, the number of notes and the

onset and offset times for each note are the same for all of
the voices.

2.2 Overview of the Procedure

The user provides the system with a melody in the MIDI
format. Let S1, · · · , SN be the note numbers of the notes in
the given melody. Then, the system determines the notes
of the remaining voices (alto, tenor, and bass). Let Ai, Ti,
Bi be the i-th notes of the alto, tenor, and bass voices, re-
spectively. The i-th notes Ai, Ti, Bi are inferred after the
previous notes Ai−1, Ti−1, Bi−1 are determined, and this
process is repeatedly performed until the last notes are in-
ferred. Finally, the result is output in the MIDI format.

2.3 Design of Bayesian Networks

Figure 1. Chord model
Figure 2. Non-chord model

The Bayesian networks that we designed for this experi-
ment appear in Figures 1 and 2. Figure 2 shows a model
that does not include chord nodes (called a non-chord model),
while Figure 1 shows a model that includes chord nodes
(called a chord model). Si, Ai, Ti, Bi, Ci represent the
note numbers of the i-th note in the soprano, alto, tenor,
and bass part, and their ranges are [60, 81], [55, 76], [48,
69], and [41, 62], respectively. Ci represents the chord
name for i-th note and takes an element of {C,C], · · · ,B}×
{maj,min}. To all nodes, we introduced a special sym-
bol ”0”, which means no notes or chords. When the first
note and chord is inferred, there are no notes or chords for
time i− 1. The symbol ”0” is set to the nodes Si−1, Ai−1,
Ti−1, Bi−1, Ci−1. Similarly, this symbol is set to the nodes
Si+1, Ai+1, Ti+1, Bi+1, Ci+1 when the last note and chord
is inferred.

The common feature of these Bayesian networks is that
they include nodes for the (i+ 1)-th note as well as nodes
for the i-th note. While the i-th note is being inferred, the
(i+1)-th note is also inferred at the same time. Because the
likelihoods of all nodes are taken into account, we avoided
the values for the i-th note that would decrease the likeli-
hood of the (i + 1)-th note. Thus, we have taken into ac-
count the sequentiality from the previous note to the next
note.

There is a difference in the network design towards si-
multaneity between our two Bayesian networks. For the
non-chord model, we assumed that the note for each voice
depends on the note in the soprano voice. Ideally, all pairs
of the nodes Si, Ai, Ti, Bi should have arcs because all
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voices are mutually dependent. However, taking depen-
dencies into account is difficult in practice, because a large
amount of training data is required. We therefore simpli-
fied the dependencies between the voices. In the chord
model, the note for each voice is assumed to depend on the
chord. Ideally, the dependencies between the voices should
be taken into account. It is also practically difficult to take
dependencies into account in the non-chord model, due to
a limited amount of training data.

The conditional probability tables (CPTs) were trained
with a corpus. The details of the training are described in
Section 3.1.

3. EXPERIMENTS

We conducted experiments on the generation of four-part
harmonies using the two above-mentioned Bayesian net-
works and compared the results.

3.1 Learning CPTs

For the learning CPTs of the Bayesian networks, we con-
structed a melody corpus consisting of 254 four-part melodies
that we took from a book of hymns [11]. We limited the
hymns to major-key pieces in which the shortest notes are
eighth notes. We then manually input the scores of the
selected pieces, and Band-in-a-Box [13] automatically la-
beled the chord for each note.

Because we wanted to assume that the rhythms of the
four voices are completely the same (i.e., the onset and
offset times of four voices are the same), we had to mod-
ify the training data so that the data satisfied this condi-
tion. We therefore divided all notes that were longer than
eighth notes into a sequence of eighth notes with the same
pitch. The CPTs were trained with the data modified in
this manner. By introducing this modification, however,
the probability that each note is the same as the previous
note artificially high, so we assigned a penalty coefficient
(currently 0.2) to these probabilities.

3.2 Experimental condition

We used 32 soprano melodies [12] in the C-major key for
the inputs of the four-part harmonization. After generat-
ing four-part harmonies for these 32 soprano melodies with
the chord and non-chord models, we compared the results
through the following criteria:

C1 The number of notes containing dissonance intervals.

The dissonance intervals are defined as minor 2nd, major
2nd, diminished 5th, minor 7th, and major 7th. The notes
forming the G7 chord (e.g., Soprano: D, Alto: F, Tenor: B,
Bass: G) were excluded even if they contained dissonance
intervals. Because the relations of chords and notes are
explicitly trained in the chord model, the number of notes
containing dissonance intervals in the chord model would
be less than that in the non-chord model.

C2 The number of non-diatonic notes.

The melodies used here are actually used for excises of
harmonics at music colleges, so the melodies are orthodox

and hence the results of harmonization should not contain
non-diatonic notes. This number ended up being close to
zero, so this result fit the criterion better than did the other
results for their respective criteria.

C3 Whether the last chord is C.

All of the melodies used here should end with the C chord.
If the results of the non-chord model meet this criterion,
then we can conclude that this model appropriately ac-
quired one of the important rules in harmonics: ending
with the tonic chord. The results of the chord model, on
the other hand, would easily meet this criterion because it
was directly trained in the sequentiality of chord symbols.

C4 The number of notes containing the same note name
in more than three voices.

Allocating the same note name to simultaneous notes in
different voices (e.g., soprano: C, alto: C, tenor: E, bass:
C) does not cause dissonance but rather does make the mu-
sic monotonous. Such note allocation should therefore be
avoided.

C5 The number of successive large (more than perfect 4th)
note motions in the bass voice.

Successive, large note motions will decrease the smooth-
ness in a sequence of notes within a voice. In particular,
successive large note motions in the bass part should be
avoided, because the conventional job of the bass voice
is to keep the piece grounded. To avoid successive large
note motions in the chord model, the model should train
in chord inversions and infer appropriate inversions given
the previous and/or next notes. If the model does not learn
chord inversions sufficiently, then it would output the root
note of each chord for the bass part, decreasing the sequen-
tial smoothness.

C6 The number of note names appearing in each voice.

When only two or three note names appear in a certain
voice, the music is monotonous. This number should there-
fore not be low (e.g., less than three).

3.3 Experimental results

Table 1 lists the results of evaluation based on the above-
mentioned criteria.

Concerning the dissonance of the output harmonies, 3%
of all chords for the chord model and 18% of all chords for
the non-chord model were dissonant. Because the chord
model was directly trained in the relations between chords
and notes, it successfully selected chord tones as long as
it inferred an appropriate chord. Accordingly, this model
generated harmonies with almost no dissonance. On the
other hand, the results for the non-chord model feature
more dissonant chords than do the results of the chord
model, because the latter model was trained only in the re-
lationship between the soprano voice and the other voices.
However, we can conclude that the non-chord model ac-
quired a basis of harmony to some extent, even though it
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Table 1. Evaluation results (C: the chord model, N: the non-chord model; ◦: satisfactory, ×: unsatisfactory). “Total” for
C6 is averages, not summations.

Total C1 C2 C3 C4 C5 C6
# of C N C N C N C N C N C N
Note 2 3 4 5+ 2 3 4 5+ AltoTenorBass AltoTenorBass

Sample 1 15 1 1 0 0 ◦ ◦ 8 3 2 1 0 0 0 1 1 0 2 2 3 4 3 6
Sample 2 14 0 4 0 0 ◦ ◦ 5 4 0 0 0 1 0 1 1 0 2 3 4 5 5 4
Sample 3 14 0 1 0 0 ◦ ◦ 7 4 1 1 0 0 0 1 0 0 2 2 3 4 6 6
Sample 4 15 1 0 0 0 ◦ ◦ 5 3 1 0 0 1 1 0 0 0 2 4 3 4 3 4
Sample 5 14 1 3 0 0 ◦ ◦ 6 3 0 1 0 1 1 0 0 1 2 2 3 4 5 6
Sample 6 14 2 2 0 0 ◦ ◦ 6 5 2 0 0 1 1 1 0 0 2 2 3 5 3 5
Sample 7 14 1 0 0 0 ◦ ◦ 4 5 2 1 0 0 0 1 1 0 2 2 2 4 3 5
Sample 8 13 0 2 0 0 ◦ ◦ 6 2 2 0 1 0 1 0 0 0 2 3 3 4 4 5
Sample 9 13 1 2 0 0 ◦ ◦ 7 2 1 1 0 1 2 0 0 0 2 1 2 3 5 4
Sample 10 15 0 2 0 0 ◦ ◦ 7 5 0 0 0 1 1 0 1 0 2 4 3 5 3 5
Sample 11 15 1 3 0 0 ◦ ◦ 6 2 1 0 0 1 1 1 0 0 2 3 3 5 5 5
Sample 12 13 0 1 0 0 ◦ ◦ 5 7 0 1 1 1 2 0 0 0 2 2 3 5 3 4
Sample 13 14 0 3 0 1 ◦ ◦ 4 2 0 1 0 2 0 1 0 0 2 4 3 5 6 4
Sample 14 14 0 5 0 0 ◦ × 7 3 1 0 2 0 0 2 0 0 2 2 3 4 6 6
Sample 15 14 0 1 0 0 ◦ × 7 4 1 0 2 0 1 0 1 0 2 2 3 4 5 7
Sample 16 14 2 4 0 0 ◦ ◦ 2 4 3 0 0 0 2 0 0 0 2 4 3 4 4 5
Sample 17 14 0 6 0 1 ◦ ◦ 5 2 0 0 0 0 0 1 0 0 2 2 4 4 6 4
Sample 18 13 2 2 0 1 ◦ ◦ 5 5 1 0 1 0 1 1 0 0 2 2 3 6 6 4
Sample 19 14 0 1 0 0 ◦ ◦ 3 3 2 1 0 0 0 0 1 0 2 2 4 4 3 4
Sample 20 14 0 1 0 0 ◦ ◦ 6 6 0 1 1 1 1 0 1 0 2 4 3 5 3 5
Sample 21 14 0 5 0 0 ◦ ◦ 3 1 0 1 0 1 1 1 0 0 2 4 3 4 4 5
Sample 22 14 0 3 0 0 ◦ ◦ 4 3 0 0 0 2 2 1 0 0 2 3 3 3 3 4
Sample 23 14 0 5 0 0 ◦ ◦ 4 5 0 1 0 1 0 1 0 0 2 2 3 4 7 7
Sample 24 14 1 1 0 0 ◦ ◦ 6 2 2 0 0 1 0 0 0 0 2 3 4 5 4 4
Sample 25 14 1 0 0 0 ◦ ◦ 3 3 1 1 0 1 0 1 0 0 2 4 3 5 4 5
Sample 26 14 2 1 0 0 ◦ ◦ 3 4 1 0 0 1 0 1 0 0 2 4 3 6 6 6
Sample 27 14 0 5 0 1 ◦ ◦ 5 3 0 0 0 1 1 0 0 0 2 4 4 4 7 5
Sample 28 14 0 5 0 1 ◦ ◦ 5 4 0 0 0 1 0 1 0 0 2 3 4 4 7 4
Sample 29 14 1 1 0 0 ◦ ◦ 5 4 4 1 0 0 1 1 0 0 2 1 3 3 3 4
Sample 30 14 0 3 0 0 ◦ ◦ 4 3 1 0 0 1 3 0 0 0 2 4 3 3 3 5
Sample 31 11 0 3 0 1 ◦ ◦ 4 3 0 0 0 1 1 0 0 0 2 2 4 2 5 4
Sample 32 14 0 3 0 1 ◦ ◦ 7 2 1 0 0 1 0 0 1 0 2 2 4 3 3 4
Total 445 17 79 0 7 32 30 164 111 30 12 8 21 24 18 8 1 2 2.7 3.1 4.1 4.4 4.8

was not directly told the chord symbols, because less than
20% of its chords were dissonant. Most dissonant intervals
appeared between voices in which the arcs are omitted (e.g,
alto and tenor, alto and bass) due to a computational cost.
Ideally, these arcs should be added but adding arcs expo-
nentially increase the computational cost (in fact, a conven-
tional PC needs more than 40 minutes to harmonize four-
measure melodies, even though the present model takes
only a few seconds). Given that the voices connecting to
each other with arcs did not cause dissonant intervals in
the non-chord model, we expect that the model’s dissonant
intervals would decrease if we were to add arcs to it.

The results of the chord model include no non-diatonic
notes, and the non-chord model employed only a few non-
diatonic notes. These results mean that both models were
trained in the typical usage of notes in the C-major key.
Out of the seven non-diatonic notes that the non-chord model
selected, two were F] notes forming a sequence of E–F]–

G and one was an F] note forming a sequence of G–F]–G
together with the previous and next notes. The former F]
note can be interpreted as a passing note and the later F]
note can be interpreted as an auxiliary note.

All pieces written by the chord model and 97% of the
pieces by the non-chord model ends with the chord of C
major, meaning that both models knew a basic rule of har-
mony, which is to end with the tonic chord. In all three
pieces that did not end with C major from the non-chord
model, the bass part ended with A, which technically made
the last chord Am. Ending with Am instead of C after G7
in the C-major key is known as a deceptive cadence and is
often used in realistic music. Therefore these results are
not necessarily inappropriate.

In the chord model, 37% of all chords contained the same
note name in more than three voices (e.g, C-G-C-C), while
only 24% did in the non-chord model. These results arose
because the chord model does not consider the relation
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between voices. It may be improved by adding arcs be-
tween voices, but the network would become more com-
plex, making it difficult to train with a limited amount of
data.

The results for the chord model contained many succes-
sive, large (perfect 4th or more) note motions compared to
the non-chord model, because the chord models simultane-
ous nodes for the chord (Ci) and bass (Bi) have a greater
dependency than do its successive bass nodes (Bi+1, Bi,
Bi+1).

The number of different note names appearing in each
voice is between 2 and 4 for the chord model and higher
than 4 on average for the non-chord model. In fact, some of
the chord models outputs for the alto and tenor voices were
monotonous repetitions of only a few notes, while the non-
chord model smoothly connected notes within each voice.

3.4 Discussion

Figure 3. Sample 25 with the chord model

Figure 4. Sample 25 with the non-chord model

Figure 4 shows the result of Sample 25 for the non-chord
model. This result has the following chord progression:

|C F F Em |Dm C G7 |C F C/E F |C/E G7 C/E |

From the fact that no voices have non-chord tones in this
progression, we can deduce that this model successfully
learned the chord tones of frequently used chords even
though it was not given chord symbols during the train-
ing phase. In addition, the chord progression was based on
functional harmony such as:

C (tonic) → F (subdominant) → Em (tonic counter parallel),

Dm (subdominant parallel) → C (tonic) → G7 (dominant).

In particular, the chord progression ends with a typical ca-
dence, C → F → C → G7 → C. Using G7 instead of G
as a previous chord of C was suitable because the tritone
pushes towards a resolution. The bass line basically con-
sists of conjunct motions and motions of 5th and therefore
is a musically orthodox bass line; however, the bass note
for the last C chord was E when it should have been C.

Table 2. Typical cadences generated with the non-chord
model

Samples Cadences
Sample 1, 6, 9 F Bm(-5)/D C
Sample 2, 7, 10, 18, 28 C Bm(-5)/D C
Sample 3 Am G C
Sample 4, 16, 19, 29, 31 G7 G7 C
Sample 5, 8, 11, 13, 22 C G7 C
Sample 20 C F C
Sample 23, 27 C G/D C
Sample 26 C/G G7 C

Many other pieces also generated typical cadences. Exam-
ples are listed in Table 2. All of these cadences are com-
monly used in realistic music, so we consider our model to
have learned most of the commonly used cadences.

The result of Sample 25 for the chord model is shown
in Figure 3. The inferred chord progression consists of
only three chords, C, F, and G, and this makes the harmony
monotonous; however the actual chords are slightly differ-
ent because the third note for the tenor voice is G instead
of A and the fifth note for the alto voice is B instead of C.
Every bass note is the root of the chord, and this makes the
harmony more monotonous.

Figure 5. Sample 29 with the chord model

Figure 6. Sample 29 with the non-chord model

Figure 6 shows the result of Sample 29 for the non-chord
model, which has an orthodox chord progression of end-
ing the former half with G7 and the latter half with C. In
successive G7 chords, the tenor note was D whether the
soprano note was B, and vice versa. Taking different notes
for the soprano and tenor voices avoided a monotonous
harmony. The principal difference from the result for the
chord model (Figure 7) was the chord progression in the
third measure: | C F Bm(-5)/D C |. The result for the chord
model includes only two chords, C and G, making the har-
mony very monotonous. Every note in the alto voice was
C or B, and every note in the tenor voice was G. These are
also reasons why the harmony is monotonous.
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Next, we present an example of the non-chord model not
generating a typical cadence (Figure 8). This piece ends
with a deceptive cadence: | C G/B Am7 |. In addition,
some chords sounded dissonant due to major 2nd or minor
2nd intervals between the tenor and bass voices. The chord
model (Figure 7) produced no dissonant chords, but the
harmony was monotonous similar to Sample 25 (Figure
4), because every chord was C, F, or G and because almost
every bass note was the root of the chord.

To summarize, the non-chord model successfully achieved
smooth harmonies by using various diatonic chords and in
created a smooth bass line consisting mainly of conjunct
motions and motions of 5th. In addition, the non-chord
model generated typical and appropriate cadences in most
pieces. The chord model generated monotonous harmonies
in most pieces due to a combination of only C, F, and G and
a bass line of almost all root notes.

Figure 7. Sample 14 with the chord model

Figure 8. Sample 14 with the non-chord model

4. CONCLUSIONS

In this paper, we report on our experiments with gener-
ating four-part harmonies for given soprano melodies by
using Bayesian networks. Although related works have
explicitly introduced to their machines the nodes or states
that represent chords or harmonic functions, researchers
should not explicitly introduce chords and nodes to the ma-
chine if they wish to determine whether the machine can
acquire the principles of harmony from actual music data.
Based on this idea, we attempted four-part harmonization
with a Bayesian network that did not include chord nodes.
The experimental results show that the non-chord model
learned some basic rules in harmonics.

We suspect that machines take three steps while learning
harmony: (1) avoiding dissonant notes, (2) avoiding pro-
hibition in harmonics, and (3) exploring more musically
aesthetic solutions. By reviewing the experimental results,
we can see that our model without chord nodes attained the
first step. To attain the second step (e.g., to avoid the prohi-
bition of parallel 5th), our non-chord model will consider
new dependencies, such as that between Si−1 and Bi. In

the future, we will advance our computational model by
constructing a larger-scale corpus and by adding new de-
pendencies.
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ABSTRACT 

Dynamic stochastic synthesis is one of the non-standard 

sound synthesis techniques used mostly in experimental 

computer music. It is capable of producing various rich 

and organic sonorities, but its drawback is the lack of a 

convenient approach to controlling the synthesis parame-

ters. Several authors previously addressed this problem 

and suggested direct parameter control facilitated with 

additional features such as parameter automation. In this 

paper we present a comprehensive toolkit which, besides 

direct control, offers several new approaches. First, it 

enables controlling the synthesizer with an audio signal. 

Relevant audio features of an input signal are mapped to 

the synthesis parameters making the control immediate 

and intuitive. Second, the toolkit supports MIDI control 

so that musicians can use standard MIDI interfaces to 

play the synthesizer. Based on this approach we imple-

mented a polyphonic MIDI-controlled synthesizer and 

included it in the toolkit along with other examples of 

controlling the dynamic stochastic synthesizer. The 

toolkit was developed in the widely used visual pro-

gramming environment Pure Data. 

1. INTRODUCTION 

The usefulness of a sound synthesizer in practical tasks 

concerning musical composition depends not only on its 

capability to produce desired sonorities, but also on dif-

ferent aspects of its technical implementation [1]. Such 

aspects are, for example, suitability for a given hardware 

and software environment, intuitiveness of the user inter-

face, flexibility in controlling the synthesis process, and 

many others. Nowadays composers have a wide range of 

possibilities when choosing sound synthesizers for their 

compositions.  

Most well-known synthesis techniques have been im-

plemented in various forms: as hardware synthesizers, 

software plugins, patches for music-specific program-

ming languages, and applications for mobile devices. 

Interfaces for musical expression and parameter automa-

tion ensure convenient control over the synthesis parame-

ters. Modern tools for sound synthesis generally open 

numerous opportunities in creating novel sonorities and 

successfully follow the growing ambitions of computer 

musicians. 

However, there are still some insufficiently explored, 

yet interesting sound synthesis techniques which could 

widen the possibilities of musical expression, but have 

not yet been adapted for practical usage. One such exam-

ple is dynamic stochastic synthesis devised by Iannis 

Xenakis in the early 1970s.  This synthesis technique is 

characterized by distinctive and rich timbral qualities. 

Nevertheless, a convenient solution for controlling the 

synthesis parameters is still missing. We believe that the 

lack of an intuitive control is one of the reasons why this 

technique has not been employed in a larger number of 

compositions or further explored. 

Dynamic stochastic synthesis (DSS) produces a wave-

form by interpolating a set of constantly varying break-

points [2]. The waveform evolves over time in a nonde-

terministic manner which results in organic and complex 

sonorities. Composers can control the DSS process by 

restraining ranges, within which the waveform can 

change, and by specifying amounts and probability distri-

butions of those changes. The problem is that manipulat-

ing the aforementioned ranges, amounts, and parameters 

of probability distributions is usually inconvenient for 

most practical tasks. Such synthesis parameters are not 

intuitive and do not allow the use of typical musical inter-

faces for playing. Moreover, the original implementation 

of the dynamic stochastic synthesizer did not even pro-

vide any kind of support for changing parameters during 

the synthesis process. 

Several authors have already addressed the same prob-

lem and proposed various interface designs for direct 

parameter control [3-5]. They suggested graphical user 

interfaces, keyboard shortcuts, and MIDI controllers. One 

standout solution was a mobile application which ob-

tained parameters from multi-touch gestures and accel-

erometers [6]. Even though these interfaces were straight-

forward and helpful, musicians still needed to cope with 

values of the synthesis parameters. To avoid numerical 

parameters and keep ideas in the musical domain, in our 

previous research we proposed an approach that uses an 

input audio signal for controlling the DSS process [7]. 

The algorithm was based on mapping selected audio 

features into the synthesis parameters, so that the control 

was as intuitive as possible.  

The research described in this paper takes a few steps 

further in making DSS more suitable for the practical 

needs of computer musicians. Several approaches to 

controlling synthesis parameters were developed and 

Copyright: © 2013 Gordan Kreković, Davor Petrinović. This is an open-
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packaged together in a comprehensive toolkit for the 

visual programming language Pure Data [8]. Besides 

direct parameter control and control using an audio sig-

nal, we introduced a new approach based on MIDI notes 

and controllers. This novel approach allows musicians to 

play a dynamic stochastic synthesizer using regular MIDI 

interfaces. The toolkit was designed so that it can be 

easily modified, extended, and integrated in composi-

tions. 

2. DYNAMIC STOCHASTIC SYNTHESIS 

Before presenting the toolkit for controlling dynamic 

stochastic synthesis, here is a short overview of this syn-

thesis technique. Dynamic stochastic synthesis was de-

vised by Iannis Xenakis as a result of his ambition to 

achieve unified and simultaneous engagement on differ-

ent time-scales within the composition, from the overall 

structure of the composition to its microstructure and tone 

quality. Before this breakthrough, he employed stochastic 

processes for choosing note attributes and forming musi-

cal structures. To expand the same principle on the mi-

crostructure level, Xenakis suggested applying stochastic 

processes to the sample level. 

Dynamic stochastic synthesis generates samples by in-

terpolating a set of breakpoints which change their ampli-

tudes and positions in time stochastically. A breakpoint 

position is represented relatively to the preceding break-

point in number of samples, so it is commonly called 

breakpoint duration. Initial amplitudes and durations are 

usually chosen randomly or taken from a trigonometric 

function. At every repetition of the waveform, these val-

ues are varied independently of each other using random 

walk. That means that both the amplitude and the dura-

tion of a certain breakpoint are changed by adding ran-

dom steps to the values in the previous cycle as shown in 

Figure 1. A succession of random steps applied on all 

breakpoints causes the continuous variation of the wave-

form. The amount and character of the variation depend 

on a selected probability distribution and its parameters. 

Both amplitude and duration random walks are limited 

each with two reflecting barriers which bounce excessive 

values back into the predefined range. These barriers 

prevent breakpoints from going too far from their initial 

positions and therefore enable control over amplitude and 

frequency ranges of the overall waveform. 

 

Figure 1. Breakpoints change their positions from one 

repetition to another. Light blue circles in the second 

represent positions from the first cycle, whilst darker 

circles represent new positions. 

Parameterization of the algorithm is achieved through: 

(1) the number of breakpoints in a waveform, (2) barriers 

of the amplitude random walk, (3) probability distribution 

of the amplitude random walk and its parameters, (4) 

barriers of the duration random walk, and (5) probability 

distribution of the duration random walk and its parame-

ters. The amplitude barriers provide control over the 

amplitude range of the generated waveform, whilst the 

duration barriers define minimal and maximal number of 

samples between two breakpoints. If changes in ampli-

tude and duration in successive repetitions are small, the 

synthesized sound is relatively simple, but it can have 

interesting modulation effects. On the other hand, as the 

changes become larger, the sound becomes more com-

plex and noisier. Detailed explanations of the original 

algorithm can be found in [9] and [10]. Several computer 

musicians later implemented this algorithm extending the 

basic concept with new ideas [3, 5, 11, 12]. 

3. TOOLKIT FOR PURE DATA 

The motivation while developing this toolkit was to make 

DSS available to a wider community of computer musi-

cians. Also, by providing several interfaces for control-

ling the DSS process, we wanted to bring this non-

standard synthesis technique closer to the practical needs 

of composers and live performers. For implementation 

we chose Pure Data, a visual programming language 

which is freely available for different operating systems 

and which is popular among musicians and multimedia 

artists [8]. All parts of this library were developed as 

abstract patches, so that everyone familiar with Pure Data 

can easily modify and extend them. 

3.1 gendyn~ 

The central patch in the toolkit is a straightforward im-

plementation of the basic DSS algorithm. It was named 

gendyn~ after the original program by Xenakis. The pur-

pose of this patch is to synthesize audio signal according-

ly to input parameters. Through the inlets it receives the 

number of breakpoints in a waveform n, frequency limits 

fmin and fmax, amplitude range a, and statistical parameters 

for the both random walks p1 and p2. 

Frequency limits fmin and fmax are used to calculate bar-

riers of the duration random walk. Frequency limits ex-

pressed in Hertz are more meaningful then duration limits 

expressed in number of samples. They are also more 

convenient for direct integration with patches that pro-

vide DSS process control using audio or MIDI signals. 

For that reason, gendyn~ receives frequency limits 

through the inlets and converts them to the duration limits 

using these simple formulae: 

( ) nffd S ⋅= maxmin ,  
(1) 

  

( ) nffd S ⋅= minmax ,  (2) 

where dmin and dmax are the maximal and the minimal 

duration expressed in number of samples, fS is the sam-

pling frequency, fmax and fmin represent the frequency 
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limits, whilst n stands for the number of breakpoints in a 

waveform. 

The amplitude range of the waveform is controlled with 

the parameter a so that the amplitude random walk has 

reflecting barriers at –a and +a. Therefore, this parameter 

defines the maximal absolute amplitude of the break-

points. 

The only probability distribution available in our cur-

rent implementation is the normal distribution. Its mean 

value for both random walks is zero, because symmet-

rical probability densities generally prevent breakpoints 

from gravitating towards one of the barriers. The standard 

deviation of the distribution for the amplitude random 

walk is calculated by scaling the parameter p1 proportion-

ally to the amplitude range a. Similarly, for the duration 

random walk, its input parameter p2 is scaled accordingly 

to the range contained between minimal and maximal 

duration. Extending the patch with more probability dis-

tributions is simple, but requires adding a new parameter 

for selecting among available distributions. 

3.2 audio2gendyn~ 

An approach to controlling the dynamic stochastic syn-

thesis with an audio signal was proposed in our previous 

work [7]. The purpose of that research was to reduce the 

need for manipulating numerical parameters and to allow 

musicians to control a synthesizer by playing a musical 

instrument, singing, or experimenting with different 

sound sources. The algorithm was designed to extract 

relevant audio features from the input signal and map 

them to the synthesis parameters so that the relation be-

tween the input signal and the synthesized signal is as 

natural as possible. 

As our original implementation version was done in 

C++, for the Pure Data toolkit we developed a new patch 

from scratch and also introduced several improvements 

and simplifications. This new patch is called au-

dio2gendyn~ and uses features of the input audio to cal-

culate synthesis parameters. The synthesis engine gen-

dyn~, which is included in this patch, receives these pa-

rameters and produces the resulting sound accordingly. 

The amplitude, frequency, and timbral qualities of the 

synthesized sound are expected to follow the correspond-

ing characteristics of the input audio signal. The aim was 

not to imitate the input signal (as it is not possible with 

DSS anyway), but to achieve intuitive control over the 

synthesis process. 

The most appropriate audio features of the input signal 

for calculating the frequency limits fmin and fmax are fun-

damental frequency f0 and spectral centroid fC. Whilst for 

periodic signals the fundamental frequency works well, 

for noisy signals much better results are obtained by 

using the spectral centroid. Spectral centroid indicates the 

center of the gravity of a frequency spectrum and it is 

perceptually related to the impression of timbral bright-

ness. 

In case of the periodic input signal, the fundamental 

frequency is extracted using the object sigmund~ which is 

one of the standard Pure Data extras. The frequency lim-

its fmin and fmax are then defined as a perfect fifth below 

and a perfect fifth above the fundamental frequency, i.e. 

32 0min ff = , 23 0max ff = .              (3) 

In contrast to our initial algorithm [7], here the frequen-

cy limits are strictly related to the fundamental frequency 

by the given musical intervals (i.e. frequency ratios). 

Timbral qualities of the input sound are not considered 

for determining the frequency limits. The advantage of 

this simplification is that the frequency of the overall 

synthesized waveform depends only on the fundamental 

frequency of the input signal and never drifts too far from 

it. However, timbral qualities of the input signal are not 

neglected here; they affect the standard deviation of the 

probability distribution for the duration random walk as 

will be described later. 

If the input signal does not show significant periodicity, 

the spectral centroid is used similarly as the fundamental 

frequency in the earlier case. First, the spectral centroid fC 

is calculated using the object specCentroid~ from tim-

breID toolkit [13]. Then the frequency limits are defined 

as: 

8min Cff = , 4max Cff = .                (4) 

The scaling factors were obtained experimentally so 

that switching between periodic and non-periodic input 

signals does not cause unpleasant glitches in the synthe-

sized signal. These factors were chosen after numerous 

tests with different types of sounds including those with 

both periodic and non-periodic parts such as speech sig-

nals and sounds of plucked instruments. 

Defining the barriers for the amplitude random walk 

was a much simpler task.  The amplitude of the synthe-

sized signal is expected to follow the amplitude of the 

input signal, so the algorithm uses the root mean square 

amplitude of an input frame to control the parameter a.  

Finally, the only remaining parameters are p1 and p2. 

Standard deviations of the probability distributions in 

random walks significantly affect timbral qualities of the 

synthesized sounds. Wider probability density functions 

result with a less stable waveform and consequently less 

predictable frequency content of the synthesized signal. 

For that reason, the parameters p1 and p2 should be de-

fined accordingly to the level of how tone-like the input 

sound is, as opposed to being noise-like. A suitable 

measure for this purpose is spectral flatness [14]. This 

feature is one of audio descriptors in the MPEG-7 stand-

ard and it is commonly used for robust retrieval of song 

archives. Spectral flatness quantifies amount of peaks or 

resonant structure, as opposed to the flat spectrum of 

white noise. A low flatness suggests that the spectral 

power is concentrated in a small number of spectral 

bands, whilst higher values indicate that the power is 

more equally distributed among all bands. The spectral 

flatness is defined as a quotient of the geometric and the 

arithmetic mean of the power spectrum, i.e. 
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where x(n) stands for the magnitude of the n-th frequency 

bin.  
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To calculate the spectral flatness in audio2gendyn~ we 

employed the object specFlatness~ from timbreID toolkit 

[13]. The scaled spectral flatness is then used for the both 

parameters p1 and p2:  

FSspp ⋅== 21 ,   (6) 

where s stands for a scaling factor and SF denotes the 

spectral flatness. Many subjective tests proved the suita-

bility of such mapping. The value of the scaling factor 

was obtained experimentally so that the character of the 

synthesized signal is notably affected by the spectral 

flatness of the input signal.  

3.3 midi2gendyn~ 

The second solution for controlling DSS included in this 

toolkit is based on the standard MIDI interface. The us-

age of MIDI controls was suggested earlier [5], but only 

for direct parameter control. The musician could manipu-

late parameters with a MIDI controller and send values to 

the dynamic stochastic synthesizer in the same way as if  

using a graphical user interface. Evidently, this was not a 

different approach to control, but only facilitation. 

Most sound synthesizers can be played with MIDI key-

boards and other MIDI interfaces which generate notes 

and not just control values. To apply this traditional play-

ing approach to DSS, we implemented midi2gendyn~. It 

is the first polyphonic MIDI synthesizer based on DSS. 

The patch receives MIDI notes, velocities, and other 

controls, maps them into synthesis parameters, and em-

ploys sound units based on gendyn~ to generate the 

sound. 

To determine frequency limits fmin and fmax from the in-

put note, the algorithm converts the MIDI note number 

into the frequency and puts the limits symmetrically 

around it. This way, the frequency of the input note is in 

the middle between fmin and fmax. The width of that fre-

quency range is specified with a separate MIDI control 

value. This approach is convenient in practical cases as 

the musician can play the synthesizer using a keyboard 

and simultaneously change the frequency width using a 

slider, knob, or pedal. 

The amplitude range a is calculated by scaling the note 

velocity, whilst the parameters p1 and p2 are separately 

obtained from corresponding MIDI controls. The synthe-

sizer also receives the pitch bend control which affects 

the tone frequency and therefore the frequency limits fmin 

and fmax accordingly. 

4. EXPERIMENTS AND EXAMPLES 

The patches from this toolkit can be used in different 

ways. For that reason we prepared several typical usage 

examples and included them in the package. Those ex-

amples can be reused, modified, and extended to meet 

specific practical needs. 

4.1 Direct control and automation 

The first two examples show how a dynamic stochastic 

synthesizer can be controlled by direct parameter ma-

nipulation. In the first example, sliders on the graphical 

user interface are connected to the inlets of gendyn~ 

(Figure 2). These sliders also receive MIDI controls, so 

that they can be managed from a MIDI interface with 

physical sliders or knobs. Audio effects can be applied on 

the pure audio signal synthesized by a dynamic stochastic 

synthesizer. In these examples we added a simple reverb, 

which was very efficient in making the sound richer and 

characteristically colored. 

 

Figure 2. A patch which demonstrates direct parameter 

control using sliders. Beside sliders on the graphical us-

er interface, it is possible to use MIDI controls defined 

in the subpatch called control. 

 

The second example of direct parameter control demon-

strates parameter automation (Figure 3). The patch reads 

parameter values from tables. As Pure Data supports 

drawing values on graphical representations of tables, 

such automation could be convenient both for composing 

and live performing. 

 

Figure 3. An example of parameter automation. Param-

eter values are stored in the tables on the right side. 
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4.2 Examples of audio control 

Experimenting with different types of sounds for control-

ling the DSS showed that this synthesis technique can 

produce more than just buzzing sounds with characteris-

tic drifts in frequency and amplitude. Mapping relevant 

audio features into the corresponding synthesis parameter 

enables the synthesizer to mimic some characteristics of 

the input sound. It is easier to make simultaneous and 

quick changes in parameter values than by direct parame-

ter manipulation. The most interesting sounds for control-

ling the DSS are those with high variability of their audio 

features such as percussive sounds and human voice. 

Within the toolkit we provided two examples of receiv-

ing an audio signal for controlling the DSS. The first one 

uses inputs from the audio interface, whilst the second 

one reads a wave file as shown in Figure 4. 

 

Figure 4. Controlling the dynamic stochastic synthesis 

with an audio signal from a wave file. It is possible to 

mix the synthesized and the original signals using the 

yellow slider. 

 

4.3 Polyphonic MIDI-controlled synthesizer 

To test the midi2gendyn~ patch we used a MIDI key-

board. Phenomena which most strongly affected the play-

ing experience were frequency drifts. They always occur 

when the frequency range fmax - fmin and duration standard 

deviation obtained from the parameter p2 are higher than 

zero. Changes in the waveform frequency are characteris-

tic to DSS and result with buzzing, unstable and drifting 

sounds. One of the possible applications of such sounds 

in compositions is to layer them with the sounds generat-

ed by other synthesis engines. 

Demonstration of the toolkit and highlights from all of 

the mentioned experiments are shown in the video which 

is available at the following link:  

http://www.youtube.com/watch?v=1Uk6KeglvnI 

 

5. CONCLUSIONS 

By implementing several different approaches to control-

ling DSS in a single toolkit, we made the synthesis tech-

nique more convenient for particular use cases. This 

should motivate musicians to experiment further in their 

compositions and live performances. Since it is a non-

standard synthesis technique, we cannot expect DSS to 

suddenly become popular in a wider range of music gen-

res even when researches like this one are available. 

However, it is now more accessible to musicians than it 

was before and it is ready to be used in numerous ways. 
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ABSTRACT

Centro di Sonologia Computazionale (CSC) scientific re-
search was the premise for subsequent activities of musi-
cal informatics, and is still one of the main activities of the
Centre. Today CSC activities rely on a composite group
of people, which include the Center board of directors and
personnel, guest researchers and musicians, and particu-
larly on master students attending the course “Sound and
Music Computing” at Dept. of Information Engineering
(DEI), which is historically tightly linked to the CSC. The
dissemination of scientific results as well as the relation-
ship between art and science is hard and surely not trivial.
With this aim, this paper describes an exhibition that illus-
trated the history of CSC, from the scientific, technolog-
ical and artistic points of view. This exhibition is one of
the first examples of “a museum” of Computer Music and
SMC researches.

1. INTRODUCTION

Since the invention of musical instruments, art and tech-
nology have stimulated and benefit one another. The crafts-
manship required to make a violin is a classic example,
but the invention of music-writing techniques was also an
achievement, often based on complex mathematics, which
enabled musicians in the late Middle Ages to create intri-
cate combinations of sounds.

Over the centuries, Padova institutes, musicians and schol-
ars have helped to revolutionize the science and art of sound.
During the late 20th century, the Centro di Sonologia Com-
putazionale 1 (CSC, Center of Computational Sonology)
of Padova University (Italy) and the Electronic Music class
at the Conservatory “Cesare Pollini” in Padova gave birth
to a unique scientific, technological, and artistic experi-
ence, which stemmed from individual collaborations and
multidisciplinary exchanges.

Between the 1970s and 1990s, CSC emerged as one of
the world leading centres for research into “Computer mu-
sic”. The design and development of software programs

1 CSC was founded by Giovanni Battista Debiasi (1928-2012): this
paper is humbly and affectionately dedicated to his memory, a leading
researcher and an outstanding teacher whose brightness and kindness we
will always remember.

Copyright: c©2013 Sergio Canazza et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

and hardware devices (filters, computers) conducted by Pa-
duan researchers have since then produced state-of-the art
results from both the technological and musical standpoints,
and have generated collaborations with several renowned
contemporary composers. CSC engineering skills have been
used to build electronic and digital instruments, augmented
reality systems, immersive video-games, and measuring
instruments. It has also led to advances in such widely
differing fields as sound design, musical cultural heritage
preservation and promotion, and cognitive/physical reha-
bilitation.

The CSC is carrying out a project for the preservation
and restoration of electrophone equipments and audio doc-
uments. An important (from both scientific and dissemi-
nation points of view) moment in this project was the re-
alization of an exhibition by the University of Padova, in
collaboration with the SaMPL Lab of the Conservatory “C.
Pollini”: Visions of sound. Electronic music at the Uni-
versity of Padova, open from April 3 to July 18, 2012 at
the exhibition halls of the Botanical Garden. The exhibi-
tion showed the history of the computer music produced in
Padova and was assisted by various events, including a se-
ries of educational seminars held by CSC researchers and
some concerts. The dissemination of the Computer Music
history is hard and complicated, because of its multi-faced
nature. It is necessary to emphasize the communication
of all its different aspects, in particular it is important that
general public understand also the genesis of the computer
music works. This paper presents our experience.

The exhibition illustrated the history of CSC, from scien-
tific, technological and artistic points of view. From the
first experiments by Teresa Rampazzi and by the group
Nuove Proposte Sonore (NPS) in the sixties, the close col-
laboration among the Conservatory, the CSC and the Com-
puting Centre of the University, to the present, it was possi-
ble to expose historic equipments, as the original magnetic
tape recorder used by Teresa Rampazzi, a Synthi AKS,
an ARP 2500 (now the last example in Italy), and the 4i
System, devices which allowed the realization of the elec-
tronic music of the last decades, art music as well as con-
sumer music. It was also possible to listen to some major
works realized at the CSC, e.g., Prometeo by Luigi Nono,
Perseo e Andromeda by Salvatore Sciarrino, and Medea by
Adriano Guarnieri: for this latter musical work the original
multi-channel installation was recreated, for the first time
after its première in 2002 at the Teatro La Fenice in Venice.
The exhibition was enriched by numerous interactive in-
stallations, specially designed and realized by researchers
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Figure 1. Giovanni Battista Debiasi, Vicenza (Italy), 4th
June 1928 – Padova (Italy), 24th June 2012.

Figure 2. System panels for recording, sound synthesis
and processing in 1979.

at CSC – which today is with the Department of Informa-
tion Engineering (DEI) – to introduce visitors to the world
of sound, applications of technology, the result of the novel
research in the Sound and Music Computing field, in par-
ticular immersive reality systems, preservation and restora-
tion of musical cultural heritage, information systems for
enhanced learning and for rehabilitation of disabled peo-
ple.

This exhibit aims at showing the deep connections be-
tween academic research and the multifaceted world of
sound, and their influences on both art music and popular
music, especially from the Seventies.

This exhibition was important (i) as a moment of cultural
reflection, because it has led to the comparison of the dif-
ferent research areas that have occurred since the sixties to
the present, and (ii) as a stimulus to overcome the prob-
lems related to the preservation and restoration of cultural
heritage music the CSC.

In Sec. 2 the history of the Centre is concisely summa-
rized. Then all the sections of the exhibition are detailed, as
an example of dissemination to a general public, reported
here for consideration by the SMC community.

2. CENTRO DI SONOLOGIA COMPUTAZIONALE

The CSC was born in 1979 [1], but it was already active
since the late sixties as a point of reference for the birth and

development of computer music in the world (the musical
works realized in CSC are listed at http://csc.dei.
unipd.it/musical_productions.html). At the
same time, with its own set of electronic equipment (filters,
digital signal processors, computers) specially designed and
programmed by researchers at the Department of Informa-
tion Engineering, it is a striking witness to the technologi-
cal era and its evolution in recent decades (Sec. 4).
CSC, today directed by Giovanni De Poli, was founded
by Giovanni Battista Debiasi (fig. 1). In 1957 Giovanni
Battista Debiasi, at the University of Padova, proposed an
original work about an electronic organ based on photodi-
odes. This was the first step of a multidisciplinary future
for electric/electronic engineering and music in Padova. In
the early seventies Debiasi carried out research on speech
analysis and synthesis, in collaboration with Gian Antonio
Mian and Carlo Offelli [2, 3]. In the eighties and nineties,
in advance to the international scientific community, De-
biasi studied issues related to the preservation and restora-
tion of cultural musical heritage. He trained hundreds of
students: his research fields are now everywhere, in Italy
and in the world, and this gives the sign of the importance
that he played in the birth and development of Sound and
Music Computing (see, at least, [1, 4, 5]).

Fig. 2 shows the system panels for recording, sound syn-
thesis and processing in 1979: this system was also used in
the Summer Schools organized in CSC and that were con-
sidered as world references in the field of computer music.
Among the various hardware systems of CSC, particularly
important from the history and the musicology points of
view, was the project – granted by the Laboratory for Com-
puter Music at the La Biennale (LIMB) in Venice, in col-
laboration with IRCAM in Paris – that led to the realization
of the 4i System (fig. 3 and Sec. 7).

CSC has been mainly a centre of promotion and cultural
diffusion of music informatics since its foundation. Thanks
to close collaboration among experts of various disciplines,
it has been possible to create an interdisciplinary group,
which has become an international reference in the field,
and has come to be part of contemporary music history.
Activities of CSC can be grouped into four main areas:
scientific research, music research, production and perfor-
mance of music works, teaching and dissemination.

The rapid evolution known by computers and microelec-
tronic devices in the second half of the last century has
led to the development of several sound synthesis methods
(Sec. 5) and to reduction the processing times, allowing
to recover the performer-instrument relationship and then
reintroducing the causality between gesture and sound typ-
ical of the musician with his/her instrument. This evolu-
tion permitted to integrate the electronic medium with tra-
ditional instruments, mixing freely the sound of mechan-
ical devices with sound processing generated during the
performance: arising the live electronics performer, which
allowed to recover the absence of the performer typical of
electroacoustic music (Sec. 7), when the public was con-
fused in front of stages with only loudspeakers. The com-
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Figure 3. 4i System developed by Giuseppe Di Giugno.

puter allows to control individual processes (synthesis and
sound processing) to a more abstract level than that reached
by the electrophone equipments of the sixties (generally
based on voltage control). The use of systems with mul-
tiple speakers, thanks to which the sounds came from dif-
ferent directions (front, back, side, top, bottom) made ob-
solete the traditional concert halls and the placement of
chairs lined up in the theater. Even at this stage the CSC
played a pioneering role (see Sections 7, 8, and 9), becom-
ing a leader in the opera Prometeo by Luigi Nono (Venice
La Biennale, 1984; Teatro alla Scala, 1985) and the work
Perseo e Andromeda by Salvatore Sciarrino (Staatstheater
Stuttgart, 1991; Teatro alla Scala, 1992).
Now the CSC is carrying out researches in all the areas of
SMC field (Sec. 6).

3. WELL-CALCULATED MUSIC: PREMISES

The first section of the exhibition introduces the roots of
music in Padova. One of the major breakthroughs in the
14th century Italy was the development of written music
and musical symbols. Music had traditionally been handed
down orally, but musicians and composers had come to
realize that complex musical constructs had to be writ-
ten down and that symbols were needed to set the time-
values between different sounds. The composer and the-
orist Marchetto da Padova pioneered these developments
and his arithmetic- and geometry-based studies paved the
way for musical notation, the forerunner of modern mu-
sic scores. Mathematical studies are also at the core of
Giuseppe Tartini’s theories (1692-1770). He was “first vi-
olin and head of concerts” at St. Antonio’s Basilica in
Padova. He discovered a “terzo suono” (literally a “third
sound”), which he heard when two different notes were
played together on a violin. His work was devoted to link-
ing the physics to a musical and metaphysical theory. Tar-
tini is known for his art of bowing, as he used a specially
design bow to create virtuoso effects.
In this section of the exhibition the following items were
exhibited:

• original manuscripts (unique source worldwide) of
the first half of 15th century;

• the original Trattato di musica secondo la vera scienza
dell’armonia (Treatise on music according to the true

science of harmony) by Giuseppe Tartini, 1754. In
this treatise, published in 1754, the violinist and com-
poser Giuseppe Tartini accounted for his research on
the phenomenon of the third sound. He included el-
ements of physics, arithmetic, and geometry, orga-
nized into a complex theory which sparkled a lively
discussion;

• original ancient violins and bows.

4. WELL-CALCULATED MUSIC:
THE 20TH CENTURY

When the first instruments able to generate “new” sounds
appeared in the 1950s’, composers and musicians welcomed
enthusiastically this revolution. Electronic music was born,
i.e. music realized with either analogue electronic (1950s’
and 1960s’) or digital (since the 1970s’) devices. In the
most important international research centre, technology
was used to create new sounds, or to explore and process
sounds recorded and produced with this equipment. The
new music had no performers, and the loudspeaker – the
main mean to deliver sound to listeners – became the new
“star” of concert halls. Musical structures became more
free, while the need for accurate control of durations and
for adequate notation posed new problems.

At the CSC, Teresa Rampazzi 2 was an electronic-music
pioneer. She and Ennio Chiggio set up the NPS Group
Nuove Proposte Sonore (New Sound Proposals) in Padova
in 1965. Chiggio was part of Gruppo Enne, a group which
applied kinetics to visual art. The NPS Group conducted
research into the timbre and density of “sound events”,
creating “sound objects” (or “sounding objects” according
to Rampazzi’s own terminology) and more or less com-
plex tracks which explored acoustic phenomena. In 1972,
Rampazzi donated her equipment to the Conservatory of
Padova, which was one of the very first italian Conservato-
ries where electronic music classes were started – follow-
ing Firenze.
In this section of the exhibition the following equipments
were exhibited:

• the original ARP 2500 (see fig. 4). It is an early
1970s analogue synthesizer: it was one of the most
versatile and powerful professional synthesisers of
its time. The synthesizer came with a wide range
of compatible modules which could be connected to
generate and manipulate sound;

• EMS Synthi AKS portable analogue synthesizer man-
ufactured by Electronic Music Studios in London
(fig. 5). Its built-in pin matrix, sequencer and key-
board pack the power of an electronic-music labora-
tory into a portable briefcase;

• TEAC A 3340 S (see fig. 4). Four-track tape recorder
introduced in the mid-1970s. It played tracks through
four loudspeakers and paved the way for modern
“surround sound”;

2 The title of this section of the exhibition was an usual question by
Teresa Rampazzi to her students: “but do you have it [your music] well
calculated?”
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Figure 4. The original ARP 2500, the stop-watch and the
TEAC reel to reel tape recorder (4-tracks) used by Teresa
Rampazzi.

Figure 5. The Synthi AKS used by Teresa Rampazzi.

• Junghans stop-watch – used by Teresa Rampazzi for
the realization of her well-calculated music (see fig.
4);

• Teletype, electromechanical device used to transmit
text messages and employed by early computers at
CSC for data input/output purposes;

• Digital-to-analogue and analogue-to-digital convert-
ers at 12 and 16 bits, originally connected to the IBM
System/7, with programmable clock filter, low-pass
filters at 4.5 kHz, 7 kHz, and 14 kHz.

These items, following the musical instruments history (Sec.
3), allow the general public to understand the genesis of the
Computer Music.

5. NUMBER AND SOUND

In the Seventies, composers discovered the potential of in-
formation technology and adopted computers and electron-
ics devices: the born of Computer Music. in the interna-
tional field sound synthesis had an extraordinary impact
on music writing, allowing composers to better understand
the way in which sounds are formed and their aural effect,
transforming sometimes even the orchestral writing [6].
Sec. 3 showed how Padova in the 14th century has been
a research laboratory in musical writing (in particular with
Marchetto da Padova). In line with this, it is interesting to
note that in the Seventies the CSC contributed to the de-

velopment of a formal musical notation language for com-
puter [7].
The CSC is among the pioneers of the most innovative and
interesting methods of synthesis, based on sound source
(e.g., a musical instrument) modeling, instead of signal
modeling [8]. This synthesis uses algorithms that produce
the sound as a side effect of a process of simulation of
physical phenomena, i.e., reproducing what occurs in na-
ture. The bow-string interaction in the physical reality,
studied by Tartini in his treatise (Sec. 3), in this way be-
comes a mathematical model.

The results of the research conducted by computer music
brings a terrific deepening of knowledge within the acous-
tic and psychoacoustic. It is with these studies that the
foundations are laid for the development of auditory com-
munication in multimedia and multimodal environments
(virtual and augmented reality). In this section multimedia
installations were exhibited, in which the visitors could in-
teract with different sound synthesis techniques; a digital
juke-box with some of the most important musical works
realized in CSC, restored on purpose by the authors; a
printout MARCR J578 A, the publication by Enore Zaf-
firi Musica per un anno (Music for a year), DUCHAMP
Center; a folder NPS (Nuove Proposte Sonore), with var-
ious enclosed documents; a copy of the magazine Oggetti
Sonori (Sound Objects), or Oggetto Sonoro (Sound Ob-
ject); two original video works by Ennio Chiggio: small
television in plexiglass display cabinet, with video board,
and Dischi a rotazione apparente (Discs with apparent ro-
tation) – Marcel Rotour (1967, Photographic tape, plex-
iglass and wooden frame, 50x50x20 cm). These differ-
ent items helps general public to contextualize the musical
works, showing the relationship among music and others
arts.

6. SOUND AND SOCIETY

At the end of the Nineties, the international computer mu-
sic research domain evolved into Sound and Music Com-
puting (SMC), which also includes non-musical areas re-
lated to research on sound. The results are manifold.
Researchers in CSC developed multimodal interactive sys-
tems for teaching with special interfaces, specifically de-
signed to enhance the learning of students with disabilities.
The research on the preservation and restoration of audio
documents (see [9] for a review) are combined with tech-
nology’s innovations in information retrieval to meet the
needs of today society where everything has to be stored,
browsable, and available “anybody, anytime and everywhere”.
This implies the definition of new strategies for data stor-
age and study of new techniques of content search (e.g.,
by humming) in data mining, as well as listening strategies
appropriate to each situation (the living room, the concert
hall, the walkman/iPod headphones). Innovative 3D au-
dio techniques [10] allow to virtually recreate an environ-
ment in which various sound sources are located at dif-
ferent moving points in space, with important applications
in virtual reality systems, from immersive video games
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Figure 6. The model – as shown in the exhibition – of
the original building designed by Renzo Piano in 1984 for
Prometeo by Nono.

Figure 7. An interactive installation dedicated to explain
the results of the 3D audio research domain. The visitor
could appreciate the change of the sound spatialization de-
pending on of his head movement.

to flight simulators (see an example in fig. 7). Micro-
phones arrays systems with variable geometry are specifi-
cally designed for both monitoring of urban environments
for homeland security and as musicians tracking system for
live electronics [11].

7. MUSIC AND SPACE

The initial absence of typical performers in the electronic
music repertoire is overcome with the development of com-
puters able to generate electronic sounds in live contest and
to process the sound signal (voices or musical instruments)
in real time. Live electronics was born [12], which now is
used in a large music repertoire all over the world and with
it also grows new professional figures with a double train-
ing: musical and scientific.
The CSC also developed new interfaces to play these in-
struments, necessary to control the musical timbre and the
virtual space and polarizing the interest of many composers.
The traditional keyboard organ is not suited to control mul-
tiple parameters simultaneously, synthesis algorithms, and
sound spatialization. In the Eighties, CSC in Padua, IR-

CAM in Paris and LIMB of the Venice La Biennale jointly
developed the 4i System, a digital signal processors based
system for live electronics. This system was used in some
of the most important musical works of the second half
of the Twentieth century, including Prometeo, la tragedia
dell’ascolto (1984-85) by Luigi Nono, based on the move-
ment of sound in space. The fig. 6 shows the arrangement
of the choir and orchestra of the Prometeo in a model (dis-
played in the exhibition) of the original building designed
by Renzo Piano for the representation at the Venice La Bi-
ennale in 1984. In this section the following items were
exhibited:

• 4i System (see fig. 3). It is realized by means of a
128-kbyte memory PDP11 computer with a 4i digi-
tal sound processor (designed by Giuseppe Di Giugno),
a 16-bit digital-to-analogue converter and a control
interface for performance parameters;

• an interactive system (developed on purpose) in which
the user can control the live electronics software of
the Prometeo and contemporaneously observe the
original gesture of the live electronics performer;

• original scores with notes handwritten by Luigi Nono;

• heliography of the Prologue of Prometeo (in the 1984
version), with several original corrections and anno-
tations, probably added during the early rehearsals
in Venice;

• a multimedia installation for the interactive listen-
ing of the Perseo e Andromeda (1990) by Salvatore
Sciarrino, in which the synthesized sounds replace
the traditional orchestra. The visitors can listen the
entire work, some parts and/or the single sound ob-
ject, observing the related score.

8. MEDEA BY ADRIANO GUARNIERI (2002)

In the exhibition two large and innovative musical works
were showed: the musical theatre opera Medea (2002) by
Adriano Guarnieri and the interactive multimedia installa-
tion Casetta delle immagini by Carlo De Pirro.
Medea is a video-opera in three part loosely based on Eu-
ripide’s tragedy, for video sequences, soloists, chorus, or-
chestra and live electronics, in which the sound direction
becomes almost visual and the spatial sound seems to al-
ternate close-ups and overviews. It was showed in this ex-
hibition (see fig. 8) by means of the original stage sound-
design, using the eight-channel audio recording made dur-
ing the first performance at the PalaFenice in Venice.
The mythical story of Medea, represented by three female
voices, merges with the play of the dynamics of sound in
space. The sound produced by the singers and by the or-
chestra is detected by 68 microphones, processed by live
electronics software and finally diffused by dozens of speak-
ers distributed among the public. The sound movement in
the room, besides, is controlled in various ways (e.g.,musicians’
gestures) and reinterpreted in real time by live electronics
software. This work is one of the greatest artistic studies
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Figure 8. The stage of Medea – as represented in the exhi-
bition – using the original eight-channel audio recording as
well as three video output. Guarnieri himself, visiting the
exhibition, recognized this installation as “this is my real
Medea”.

in expressive gesture and sound interaction, a domain born
in the late 90s, which bring interesting results even in the
analysis of musical performance.
This section of the exhibition showed also some of the
better models developed at CSC related to most recent re-
search studying the possible connections between two uni-
verses that may seem antithetical, the emotions and the ma-
chines, deepening the procedures that enable the comput-
ers to communicate and simulate expressive components,
emotions, intentions and affects [13].

9. CASETTA DELLE IMMAGINI
BY CARLO DE PIRRO (2002)

This interactive multimedia installation was designed by
the composer Carlo De Pirro 3 at the CSC for Piazza Pinoc-
chio, the Italian space at the Expo 2002 in Neuchâtel (Switzer-
land), Section Artificial Intelligence and Robotics. The
work uses the results of research in the fields of analy-
sis, modeling and communication of expressive content
and emotional non-verbal interaction, by means of multi-
sensorial interfaces in mixed reality environments. The
Casetta delle immagini (Little house of the appearances) is
a sort of magic room for children, where every gesture be-
comes sound, images and colors. The visitors’ movements
were captured by cameras and analyzed by specially devel-
oped software able to process a virtual gesture model and
thus generate projection images and rhythmic sequences of
music.
A similar idea is now implemented in Stanza Logo-motoria
[14], a systems for educational purposes used in many Ital-
ian schools, that exploits a multimodal interactive environ-
ment aimed at learning through the movement and can be
used in situations of learning difficulties or for children
with multi-disabilities.

3 Adria, 1956 – Padova, 2008. Carlo, professor of Music Composi-
tion at Rovigo Conservatoire, collaborated with the CSC for more than
fifteen years: his musical compositions were (and are) a great stimulus
for the researches carried out in CSC, thanks to his innovative and artistic
approach.

In this section the original Casetta delle immagini was ex-
hibited, restored on purpose by the authors.

10. CONCLUSIONS

CSC scientific research was the premise for the other ac-
tivities of musical informatics, and it is the main focus
of the Centre. Today the CSC still supports production
of musical works, thanks to significant investments in re-
search that begun in 1979 when the Centre was officially
founded. In the early days the research was mainly fo-
cused on sound synthesis. Nowadays, the Centre is work-
ing, in synergy with the SaMPL Lab of the Conservatory
of Padova, on preservation and restoration of audio doc-
uments, new sound synthesis techniques, analytical tools,
techniques of sound spatialization, complex dynamic sys-
tems and analysis and morphing of expressive content in
music performances. Today CSC activities rely on a com-
posite group of people, which include the Center board of
directors and personnel, guest researchers and musicians,
and particularly on master students attending the courses
“Sound and Music Computing” at Dep. of Information En-
gineering of the University of Padova.
The CSC is carrying out a project for the preservation and
restoration of electrophone equipments and audio docu-
ments. The principal output of this project is the realiza-
tion of an interactive “museum” of Computer Music and of
researches in SMC field. The first attempt was the exhibi-
tion Visions of sound. Electronic music at the University of
Padua. In the authors’ opinion, it is time to start a debate
on how the scientific SMC community wants to preserve
its history and what kind of access tools we are able to
develop, in order to communicate the (scientific and ap-
plicative) potential of its researches to the general public
and (no less important) to potential investors [15].
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SMOOTHNESS UNDER PARAMETER CHANGES: DERIVATIVES AND
TOTAL VARIATION

Risto Holopainen

ABSTRACT

Apart from the sounds they make, synthesis models are
distinguished by how the sound is controlled by synthesis
parameters. Smoothness under parameter changes is often
a desirable aspect of a synthesis model. The concept of
smoothness can be made more accurate by regarding the
synthesis model as a function that maps points in parameter
space to points in a perceptual feature space. We introduce
new conceptual tools for analyzing the smoothness related
to the derivative and total variation of a function and apply
them to FM synthesis and an ordinary differential equation.
The proposed methods can be used to find well behaved
regions in parameter space.

1. INTRODUCTION

Some synthesis parameters are like switches that can as-
sume only a discrete set of values, other parameters are like
knobs that can be seamlessly adjusted within some range.
Only the latter kind of parameter will be discussed here.
Usually, a small change in some parameter would be ex-
pected to yield a small change in the sound. As far as this
is the case, the synthesis model may be said to have well
behaved parameters.

A set of criteria for the evaluation of synthesis models
were suggested by Jaffe [1]. Three of the criteria seem rel-
evant in this context: 1) How intuitive are the parameters?
2) How perceptible are parameter changes? 3) How well
behaved are the parameters? The vague notion of smooth-
ness under parameter changes (which is not the name of
one of Jaffe’s criteria) can be made more precise by the
approach taken in this paper.

From a user’s perspective, the mapping from controllers
to synthesis parameters is important [2]. In synthesis mod-
els with reasonably well behaved parameters, there are good
prospects of designing mappings that turn the synthesis
model and its user interface into a versatile instrument.
However, a synthesis model does not necessarily have to
have well behaved parameters to be musically useful. De-
spite the counter-intuitive parameter dependencies in com-
plicated nonlinear feedback systems, some musicians are
using them [3]. Likewise, acoustic instruments may have

Copyright: c©2013 Risto Holopainen et al. This is
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far from smooth responses to changes in physical control
variables (e.g. overblowing in wind instruments).

The smoothness of transitions has been proposed as a cri-
terion for evaluating sound morphings [4]. As the mor-
phing parameter is varied between its extremes, one would
expect the perceived sound to pass through all intermediate
stages as well. However, because of categorical perception
some transitions may not be experienced as gradual. It may
be impossible to create a convincing morph between, say,
a banjo tone and a sustained trombone tone.

Quantitative descriptions of the smoothness of a synthesis
parameter should use a measure of the amount of change in
the sound, which can be regarded as a distance in a percep-
tual space. Similarity ratings of pairs of tones have been
used in research on timbre perception, where multidimen-
sional scaling is then used to find a small number of di-
mensions that account for the perceived distances between
stimuli [5]. In several studies, two to four timbral dimen-
sions have been found and related to various acoustic cor-
relates, often including the attack time, spectral centroid,
spectral flux and spectral irregularity [6]. The importance
of spectrotemporal patterns was stressed in a more recent
study [7] where five perceptual dimensions were found.

Most timbre studies have focused on pitched, harmonic
sounds, in effect neglecting a large part of the possible
range of sounds that can be synthesized. At the other ex-
treme, the problem of similarity between pieces of music
has been addressed in music information retrieval [8]. The
difficulty in comparing two pieces of music is that they
may differ in so many ways, including tempo, instrumen-
tation, melodic features and so on. Most synthesis models
of interest to musicians are also able to vary along several
dimensions of sound, e.g., pitch, loudness, modulation rate
and many timbral aspects. A thorough study of the per-
ceived changes of sound would include listening tests for
each synthesis model under investigation. A more tractable
solution is to use signal descriptors as a proxy for such
tests.

There are numerous signal descriptors to choose from [9],
but the descriptors should respond to parameter changes in
a given synthesis model. For example, in a study of the
timbre perception of a physical model of the clarinet, the
attack time, spectral centroid and the ratio of odd to even
harmonics were found to be the salient parameters [10].
Since a synthesis model may be well behaved with re-
spect to certain perceptual dimensions but not to others,
the smoothness may be assessed individually for each of a
set of complementary signal descriptors.

A synthesis model will be thought of as a function that
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maps a set of parameter values to a one-sided sequence of
real numbers, representing the audio samples. It will be
assumed that all synthesis parameters are set at the begin-
ning of a note event and remain fixed during the note. Dy-
namically varying parameters can be modelled by an LFO
or envelope generator, but for simplicity we will consider
only synthesis parameters that remain constant over time.

The effects of parameter changes may be studied either
locally near a specific point in parameter space, or glob-
ally as a parameter varies throughout some range. The lo-
cal perspective leads to a notion of the derivative of a syn-
thesis model, which is developed in section 2. Parameter
changes over a range of values are better described by the
total variation, which is introduced in section 3. Then, sec-
tions 4 and 5 are devoted to case studies of the smoothness
of FM synthesis and the Rössler attractor. Some applica-
tions and limitations of the methods are discussed in the
conclusion.

2. SMOOTHNESS BY DERIVATIVE

In order to formalize the notion of smoothness, we will for-
mulate a synthesis model explicitly as a function and de-
scribe what it means for that function to be smooth. First,
we define a suitable version of the derivative. Then, in Sec-
tions 2.2 and 2.3, the practicalities of an implementation
are discussed.

2.1 Definition of the derivative

Consider a synthesis model as a function G : Rp → RN

that maps parameters c ∈ Rp to a one-sided sequence of
samples xn, n = 0, 1, 2, . . ., where the sample sequence
will be notated X(c) to indicate its dependence on the pa-
rameters. Then the question of smoothness under param-
eter changes is related to the degree of change in the se-
quence X(c) as the point c in parameter space varies. In
practice, the distance in the output of the synthesis model
will be measured through a signal descriptor rather than
from the raw output signal. If a distance were to be cal-
culated from the signals themselves, two periodic signals
with identical amplitude and frequency but different phase
might end up being widely separated according to the met-
ric, despite sounding indistinguishable to the human ear.
Signal descriptors that are clearly affected by the synthesis
parameters and that can be interpreted in perceptual terms
are preferable.

In order to treat the synthesis model as a function, it will
be assumed to be deterministic in the sense that the same
point in parameter space always yields identical sample se-
quences. The idea of relating how much a function f(x)
changes as the independent variable x changes by a small
amount leads to the concept of derivative. Functions that
have derivatives of all orders are called smooth. A more
refined concept is to say that a function is k times con-
tinuously differentiable; the larger k is, the smoother the
function.

Now, we would like to apply some suitably defined deriva-
tive to synthesis models considered as functions. To this
end, a distance metric is needed for points in the parameter

space, and another distance metric is needed for points in
the space of sample sequences. Let dp(c, c′) be a metric
in parameter space, and let ds(X(c), X(c′)) be a metric in
the sequence space. The derivative can then be defined as
the limit

lim
‖δ‖→0

ds(X(c), X(c+ δ))

dp(c, c+ δ)
(1)

where δ ∈ Rp is some small displacement in parameter
space. The limit, if it exists, is the derivative evaluated at
the point c.

In general, synthesis parameters do not make up a uni-
form space. Different parameters play different roles; they
affect the sound subtly or dramatically and may interact so
that the effect of one parameter depends on the settings of
other parameters. This makes it hard to suggest a general
distance metric that would be suitable for any synthesis
model. Our solution will be to consider the effects of vary-
ing a single synthesis parameter cj at a time, so the distance
dp(c, c

′) in (1) reduces to
∣∣cj − c′j∣∣. Furthermore, consider

a scalar valued signal descriptor φ(i)(c) ≡ φ(i)(X(c))
which itself is a signal that depends on the sample se-
quence and the parameter value. Thus, we arrive at a kind
of partial derivative evaluated with respect to the parameter
cj using a signal descriptor φ(i),

∂φ(i) ◦G(c)

∂cj
= lim
h→0

ds(φ
(i)(c), φ(i)(c+ hej))

h
(2)

where ej is the jth unit vector in the parameter space.
Clearly the magnitude of this derivative depends on the
specifics of the signal descriptors used and which synthesis
parameters are considered. In a finite dimensional space,
all partial derivatives should exist and be continuous for
the derivative to exist. Such a strict concept of derivative
does not make sense in the present context where any num-
ber of different signal descriptors can be employed, so only
the partial derivatives (2) will be considered.

Before discussing the implementation, let us recall some
intuitive conceptions of the derivative. As William Thurston
has pointed out [11], mathematicians understand the deriva-
tive in multiple ways, including the following.

• The derivative is the slope of a line tangent to the
graph, if it has a tangent.

• In terms of symbolic operations, d
dxx

n = nxn−1.

• The derivative is the best linear approximation to the
function near a point.

• It is the limit of what you get by looking at a function
under a microscope of higher and higher power.

Synthesis models are typically very complicated if con-
sidered as mathematical functions; hence the analytic ap-
proach to differentiation is out of the question and one has
to rely upon numerical approximations. The various intu-
itions of what the derivative is may guide a practical nu-
merical implementation in different directions, as will be
further discussed in Section 2.3.
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Numerical estimation of the derivative is highly sensitive
to measurement noise. Here one source of measurement
noise are the signal descriptors. Whereas one would like
to magnify a curve in order to find its derivative at a point,
doing so will also reveal more fine details caused by the
noise, which may lead to false estimates. When properly
estimated, the derivative will exaggerate irregularities and
make them easier to detect.

2.2 Pointwise or time-average distance?

The distance metric ds in sequence space has so far been
left unspecified. We propose two alternatives, each suit-
able in different situations. The signal descriptors that will
be used are based on short-time Fourier transforms of the
signal X(c) at regular intervals, using a hop size equal to
the FFT window length, L. Hence, the signal descriptor
is a sequence which we write concisely as φm(c), where
m = bn/Lc is a time index.

Using a pointwise distance metric, one may follow the
two signals over time and take the sum over their distances
|φm(c)− φm(c′)| at each moment. Since these are infi-
nite sequences, the sum may not converge. Therefore, an
exponentially decaying weighting function is applied in the
distance metric

ds(X(c), X(c′)) =

[ ∞∑
m=0

γm (φm(c)− φm(c′))
2

]1/2
(3)

where γ ∈ (0, 1) controls the decay rate. Convergence is
then guaranteed if the signal descriptors φm are bounded.

The second approach involves first taking an average over
the sequence φm(c), m = 0, 1, . . . ,M and then compar-
ing averages of two sequences. Thus, the distance becomes

ds(X(c), X(c′)) = |〈φ(c)〉 − 〈φ(c′)〉| (4)

where we take time averages

〈φ(c)〉 = lim
M→∞

1

M

M−1∑
m=0

φm(c) (5)

before computing the distance. For time-varying signals,
the drawback of the second approach is that two different
temporal sequences φm may average to the same value.

As an illustration, consider two signals of equal average
amplitude, the first having constant amplitude and the sec-
ond with a periodic amplitude modulation. Suppose we
compare the RMS amplitudes of the two signals using the
second approach (4). When averaged over sufficiently long
time, both signals will appear to have the same average
amplitude. In contrast, the pointwise distance measure (3)
will detect their difference.

2.3 Estimation of the derivative

A numerical computation of the derivative may return a
number even if the limit (1) or (2) does not exist. There-
fore, a measure of the reliability of the estimate, or “degree
of differentiability”, should be added.

Although the synthesis model is assumed to be deter-
ministic, all signal descriptors will introduce measurement
noise. If a number of windowed segments of the signal are
analyzed, then the spectrum of these segments will fluctu-
ate unless some integer number of periods fit exactly into
the window. The fluctuation can be reduced by using the
time-averaged version of the distance metric (4).

Several methods for the estimation of derivatives exist
[12]. Theoretically, it may be possible to arrive at ana-
lytical expressions for the derivative of a synthesis model
considered as a function, at least in some trivial cases. In
practice, numerical estimates have to be used. A simple
approach would be to evaluate (2) directly at two points
c and c′. Another approach is to fit a polynomial to the
curve φ(c), and then do a symbolic differentiation of the
polynomial.

The method of estimation of derivatives that will be used
here is similar to one described in ref. [12, p. 231] but
slightly simpler. The derivative at a point c0 is approx-
imated by a sequence of symmetric differences with de-
creasing distance h. A linear regression of this sequence
gives the derivative as the intercept. Suppose a sequence
of slopes

yi(c0;hi) =
φ(c0 + hi)− φ(c0 − hi)

2hi
(6)

are given. Then the limit as h → 0 can be found as the
y-intercept of the fitted line

yi = d+ bhi + ηi, (7)

which gives the estimated derivative d. This method also
provides a hint about the badness of fit, for which the root
mean square error (RMSE) of the residuals η can be used.

3. TOTAL VARIATION

Whereas the derivative is concerned with local behaviour
of a function, an even more useful perspective on the smooth-
ness of a synthesis model may be to look at its properties
over intervals of a parameter. One possible way to do so is
to measure the length of the curve that a signal descriptor
traces out as the parameter traverses some interval. If this
curve is highly wrinkled, the curve becomes rather long,
whereas a straight line connecting the endpoints means that
the parameter changes are smooth. The total variation of
a function may be used for such a measure; intuitively, it
measures the length travelled back and forth on the y-axis
of a function y = f(x), x ∈ [a, b].

Let f(x) be a real function defined on an interval x0 ≤
x ≤ xk, and suppose x0 < x1 < · · · < xk is a partition of
the interval. Then the total variation of f(x), x0 ≤ x ≤ xk
is defined as

Vxk
x0

(f) = sup
k∑
j=1

|f(xj)− f(xj−1)| (8)

taking the supremum over all partitions of the function. If
f is differentiable, the total variation is bounded and can
be expressed as
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Vxk
x0

(f) =

xk∫
x0

|f ′(x)| dx. (9)

Also, recall that one way for a function to fail to be differ-
entiable is that its total variation diverges to infinity.

The mesh of the partition, which is the greatest distance
|xj − xj−1|, needs to be fine enough when estimating the
total variation numerically. A global description of the
function’s smoothness is obtained from considerations of
the limit of the total variation as the mesh gets finer. Sup-
pose the partition of [x0, xk] is uniform with each point
separated from its nearest neighbours by |xj−xj−1| = ∆.
Then, the question is whether a limit exists as ∆→ 0.

For the present purposes it will suffice to consider ap-
proximations of the total variation using a small but fixed
mesh. Certain functions may appear to have different amounts
of total variation when observed at different scales. A slow
increase in total variation as the mesh is successively made
finer indicates that the estimation process goes as intended.

An alternative to measuring the total variation would be
to measure the arc length, which can be thought of as the
length of a string fitted to the curve if it is continuous.
Fractal curves on the plane have the property that their arc
length grows as the measurement scale gets smaller.

When measuring the total variation of a signal descriptor
over a range of synthesis parameter values, there are still
two possible approaches to how the distance is measured.
As discussed above in section 2.2, either a pointwise dis-
tance may be taken, or the distance may be taken over time
averages of the signal descriptors. The latter approach will
be used here because it is better suited for the case of static
parameters. Applications of the derivative and total varia-
tion to two synthesis models will be demonstrated next.

4. FM SYNTHESIS

With only three synthesis parameters, basic FM synthesis
is convenient for investigations of the smoothness of its
parameter space. The formula that will be used is

xn = sin(2πfcn/fs + I sin(2πfmn/fs)) (10)

with modulation index I , carrier frequency fc, modula-
tor frequency fm and sample rate fs = 48 kHz. Since
the spectrum of the signal (10) is governed by a sum of
Bessel functions [13], it may actually be possible to esti-
mate some related signal descriptors directly from the for-
mula, although we will not attempt to do so. The oscil-
lations of the Bessel functions give FM synthesis its char-
acteristic timbral flavour of partials that fade in and out as
the modulation index I increases, with the overall bright-
ness increasing with the modulation index. Brightness is
related to the spectral centroid, which will be used to study
the effects of parameter changes.

In the top of Figure 1, the centroid is shown as a function
of I at two different carrier to modulator (C:M) ratios. The
centroid, given in units of normalized frequency, is mea-
sured as the time average over 25 FFT windows using a
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Figure 1. FM synthesis. Top: centroid as a function of
modulation index for fc = fm = 440 Hz (solid line) and
fc = 311.1, fm = 440 Hz (dashed line). The outer lines
indicate one standard deviation of the centroid. Bottom:
the derivative of the centroid at fc = fm = 440 Hz.

1024 point Hamming window. As can be seen, the C:M ra-
tio 1 gives a rather bumpy curve with a general rising trend
of the centroid, but with several local peaks. The bottom
part shows the derivative, estimated with the method de-
scribed in the end of Section 2.3. Evidently, the derivative
is discontinuous at each of the peaks. The RMSE of the
linear regression used in the estimation of the derivative is
typically very small, but has sharp peaks around the dis-
continuities. It turned out to be necessary to re-initialize
the oscillator’s initial phase at the beginning of each run at
a new parameter value, otherwise there would be oscilla-
tions in the centroid as a function of modulation index that
would prevent the derivative from converging.

The total variation of the centroid over the range 0 <
I ≤ 12.5 is about 0.127 for the inharmonic ratio fc/fm =
1/
√

2, and increases to about 0.188 for fc/fm = 1. We
may now ask how the total variation changes as a function
of the C:M ratio. This is shown in Figure 2. Narrow peaks
arise at the simple C:M ratios 1 : 2, 1 and 3 : 2. Inso-
far as FM synthesis is reputed for its timbral variability as
the modulation index varies, this phenomenon is more pro-
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Figure 2. Total variation of the centroid of FM signals for
I ∈ [0, 12.5] as a function of the C:M ratio.

nounced at the simple C:M ratios that result in harmonic
spectra.

Since the density of the spectrum depends on the modu-
lation index as well as on the C:M ratio, signal descriptors
related to spectral density may provide additional insights.
The spectral entropy will be used for this purpose. Spec-
tral entropy is measured from the amplitude spectrum, nor-
malized so that all bins ak sum to 1. Then, the normalized
entropy is

H = − 1

norm

∑
k

ak log ak (11)

where a perfectly flat spectrum yields the maximum spec-
tral entropy H = 1, and a sinusoid results in the smallest
possible entropy of a signal that is not completely silent.

In Figure 3, the spectral entropy is shown as a function
of the C:M ratio as well as the modulation index. De-
spite an even geometric progression of the modulation in-
dex I ∈ [0.25, 20], the curves are slightly irregularly dis-
tributed. Two dips in spectral entropy can be seen at the
simple ratios C : M = 1, 2. These dips can be understood
to result from the fact that, at harmonic C:M ratios, several
partials overlap (negative frequencies match positive fre-
quencies), whereas for inharmonic ratios, there are more
distinct partials in the spectrum.

The total variation of spectral entropy over the range of
C:M ratios shown in Figure 3 is about 1 for I = 0.25, and
it increases monotonically to a maximum value of 2.5 at
I = 1.25. For higher modulation indices, the total varia-
tion decreases. These results can be interpreted as indicat-
ing that, if the modulation index is set at a fixed value and
the C:M ratio is varied, then the sounds will change less for
low modulation indices, and the maximum change occurs
for I = 1.25.

5. THE RÖSSLER SYSTEM

Ordinary differential equations with bounded and oscil-
lating solutions are good candidates for sound synthesis.
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Figure 3. Spectral entropy of FM as a function of C:M
ratio (horizontal) and modulation index (vertical).

Figure 4. Poincaré section of the Rössler system showing
bifurcations for c ∈ [1, 8] and a = b = 0.3.

In particular, there are many nonlinear oscillators capa-
ble of both chaotic and periodic behaviour. Rössler’s sys-
tem [14],

ẋ = −y − z
ẏ = x+ ay (12)
ż = b+ z(x− c)

is known to have a chaotic attractor at a = b = 0.2, c =
5.7. For lower values of c there are periodic solutions.
A Poincaré section across the ray x = −y, x ≥ 0 at
a = b = 0.3 and a range of values of c reveals a period
doubling route to chaos, after which there is a period two
window (see Figure 4). In the following, (12) is solved
with the fourth order Runge-Kutta method. The system is
allowed time to approach an attractor by iterating at least
25000 time steps of size 0.025 before any measurements
are taken.

The system rotates in the xy-plane, with occasional spikes
in the z variable. Therefore, the x and y variables are suit-
able for use as audio signals, after they have been suitably

650

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●●●●●

●●
●●●●●

●●
●
●

●●
●●●

●●●●
●●●●●●●●

●●●
●●●

●
●●

●
●●●

●
●

●

●

●●●

●

●●●
●●●

●

●

●
●
●●
●●
●

●
●
●
●
●●●●

●●●

●
●
●

●
●●●

●●
●

●
●
●●
●
●

●

●

●●
●●●

●●
●

●

●

●
●
●

●

●
●

●
●

●

●●
●●
●●
●

●

●●

●

●

●
●

●
●●●

●
●●●●●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●
●●●

●●●●●
●●●●

●●
●●●●

●●●●●●●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●
●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●
●
●●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●●

●●

●

●

●

●

●●

●

c

R
M

S
 a

m
pl

itu
de

1 3 5 7

2
5

8

(x + y)/2

z

Figure 5. RMS amplitude of the Rössler system; the aver-
age of x and y is greater than z for low values of c.

scaled in amplitude. The first thing to check with an or-
dinary differential equation intended for use as an audio
oscillator is its amplitude range and stability. As can be
seen from Figure 4, the amplitude grows approximately
linearly with c over the displayed range. By measuring the
RMS amplitude of each coordinate, one gets a more de-
tailed overview of the amplitude’s dependence on the pa-
rameter c (see Figure 5). Because the amplitudes of x and
y are typically not very different, their average has been
plotted together with the amplitude of the z coordinate.

Bifurcation plots already reveal a few things about the
smoothness under parameter changes. Each bifurcation is
a point where the system’s behaviour changes in a discon-
tinuous way, whereas the behaviour between bifurcations
can be expected to vary more smoothly.

Before going further, let us recall that dynamic systems
may depend critically on the initial condition. Indeed, chaos
is defined in terms of the exponential divergence of two
orbits starting from infinitesimally separated initial condi-
tions, which is measured with the largest Lyapunov expo-
nent [15]. Even more dramatically, different initial con-
ditions may lead to different kinds of behaviour. In con-
servative systems, orbits may be periodic, quasiperiodic or
chaotic depending on the initial condition. Dissipative sys-
tems, such as Rössler’s, have a basin of attraction of points
that end up on the attractor, but should an orbit be started
from outside the basin of attraction, it may wander off to
infinity.

It is important to distinguish the properties of the orbit it-
self (chaotic versus regular) from the bifurcation scenarios
as a parameter is varied. When looking at bifurcation di-
agrams, there are intervals of smooth change and intervals
that are very irregular. It is tempting to guess that the ir-
regular parts correspond to chaotic orbits, and the smooth
parts to periodic orbits. This is only a half-truth; in fact,
there are periodic windows interspersed with all the chaos.

As already seen, the RMS amplitude changes smoothly
in some regions and irregularly in others. A quick compar-
ison with the largest Lyapunov exponent λ indicates that
the irregular parts correspond to chaotic regions (see Fig-
ure 6). Although it is easy to pick out “irregular regions”
by visual inspection, a localized version of total variation
can also achieve this. The local variation (LV) is defined as

the total variation over a short interval of length δ centred
about a point x:

LV (f ;x, δ) = Vx+δ/2x−δ/2 (f) (13)

A mathematical definition of the LV would probably in-
volve taking the limit δ → 0, but for practical purposes a
small but finite interval must be used. Now the smooth-
ness of a curve may be described in the neighbourhood of
any point x0, which is computed by partitioning the inter-
val into a suitably large number of points and proceeding
as described above in Section 3. In the following example,
δ = 0.02 has been subdivided into 16 steps to find the local
variation.
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Figure 6. Greatest Lyapunov exponent (top) and local
variation of the RMS amplitude (bottom) for the Rössler
system as a function of the parameter c.

The local variation of the average RMS amplitude of the
x and y coordinates of the Rössler system are shown in
Figure 6 below a plot of the largest Lyapunov exponent
over the same parameter range. When λ = 0, the dynamics
is regular (either periodic or quasi-periodic), whereas λ >
0 indicates chaos. It is worth noting that regions of regular
dynamics correspond to low values of the local variation,
i.e., the amplitude changes smoothly. At chaotic regions,
the local variation obtains higher values, although there is
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Figure 7. Derivative of the peak amplitude of the z coor-
dinate as a function of c. Points of bifurcations are marked
with circles.

no simple correlation between λ and LV. The higher values
of LV in chaotic regions can be partly explained by the
existence of periodic windows which may be very thin, yet
are known to be dense in the chaotic regions.

In the interval 1 ≤ c ≤ 4, there is a sequence of pe-
riod doubling bifurcations. Most changes in amplitude are
too subtle to notice directly (compare Figure 5), but taking
the derivative, as shown in Figure 7, reveals points where
the slope changes. In fact, the bifurcation points would be
even easier to detect by plotting the second derivative of
the peak amplitude.

In this study of the Rössler system, the effects of tran-
sients and dynamic parameter changes have been mini-
mized. On the contrary, in a performance situation when
using the Rössler system as an audio oscillator, its param-
eters would typically change over time. Then one may no-
tice effects of hysteresis near bifucrations and in the chaotic
regions. Approaching the same parameter value from dif-
ferent directions may then result in different behaviour.

6. CONCLUSION

By conceiving of a synthesis model as a function from
points in parameter space to one-sided real sequences of
audio samples, we have introduced a concept of derivative
and total variation that can be used to describe the smooth-
ness properties of the synthesis model. The derivative re-
lates to local properties near specific points in parameter
space, whereas the total variation characterizes the amount
of change over intervals of a parameter. Interesting find-
ings were that the total variation of the centroid with re-
spect to the modulation index in FM synthesis is greater
for simple harmonic C:M ratios than for other ratios. In
other words, FM becomes smoother for inharmonic C:M
ratios than for simple ratios. In the study of the Rössler
system, we found that regular dynamics corresponds to
smooth variation in the RMS amplitude. Chaotic regions
are generally less smooth in parameter space, but there
is some variation and relatively smooth parameter regions
may exist where the system is chaotic as well.

The methods of characterizing the smoothness of synthe-
sis models can be applied to analog synthesis and even to

acoustic instruments using mechanical transducers to ex-
cite them. Mechanical transducers may be needed also for
the automated control of acoustic instruments by MIDI or
other means, but the response characteristics of the trans-
ducer and the instrument considered together may not be
known in advance and need to be mapped out. Analog,
voltage controlled synthesizers can be similarly studied by
applying some control voltage to one of its inputs. Then,
studying the signal’s response to changes in control volt-
age can further elucidate input to output relations and the
smoothness of the parameter. Although smoothness prop-
erties can be roughly assessed by visual inspection, the
derivative, and the total and local variations provide quan-
titative measures of smoothness.

Comparisons of smoothness properties across different
synthesis models are, however, not so straightforward. One
might intuitively want to argue that the Rössler system is
less smooth, on the whole, than FM synthesis, but the set
of synthesis parameters have entirely different meanings
in the two models, so a direct comparison will be prob-
lematic. The same signal descriptors and distance metrics
must of course be used for both synthesis models, and one
must decide what parameter ranges to compare.

Noise is used in many kinds of synthesis. If the noise is
prominent in the output signal, it will increase the variance
of the signal descriptors and make the estimation of deriva-
tives and total variation more complicated. If the noise
is mild enough not to alter the behaviour of the synthe-
sis model altogether, one can take ensemble averages over
many runs of the system. Stochastic synthesis such as Xe-
nakis’ Gendyn algorithm [16] may however be beyond the
scope of the present methods.

Ordinary differential equations and nonlinear feedback
systems may exhibit hysteresis. In synthesis models with
hysteresis, there is no longer a unique correspondence be-
tween the point in parameter space and the resulting out-
put signal. This fact invalidates the assumption that the
synthesis model can be thought of as a function that maps
points in parameter space to sequences in the sample se-
quence space. Sometimes a transition from one type of
behaviour to another may depend not only on the direction
of the changing parameter, but also the speed of its change.

We began by making the assumption that signal descrip-
tors could be used instead of conducting listening tests.
This is obviously an exaggeration. Firstly, one needs to
know what perceptual characteristics of sound are captured
by various signal descriptors. Second, we have been look-
ing at rather small variations in these descriptors and mag-
nified them with the derivative or considered their total
variation. It is very easy to gain a false impression that
minor variations or roughnesses in the curves would be au-
dible. Listening tests would be necessary in order to assess
how the smoothness and irregularity of parameter changes
are really perceived.

The assumption that maximally smooth parameters are
always preferable is not necessarily true. Monotonicity
and smoothness may be good, because then the parame-
ter can be remapped in a way that is more practical for the
user. Nevertheless, the rugged appearance of the parame-
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ter space of a chaotic system should not detract musicians
from using them.
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ABSTRACT

This work proposes a denoising algorithm for musical in-
struments based on the use of an excitation-filter instru-
ment model. Firstly, frequency patterns for the musical
instrument are learned. These patterns are trained in ad-
vance from the RWC database and classified into harmonic
and transient components. The harmonic patterns of the
target instrument are modelled with an excitation-filter ap-
proach. Frequency patterns from the beginning of different
notes (onsets) are also learned. Secondly, frequency pat-
terns from noise are trained. Two different types of global
degradations from vinyl audio (hum and hiss), apart from
localized degradations from crackle noise, are used in this
work. Two different types of global degradations from
vinyl audio (hum and hiss), apart from localized degra-
dations from click, crackle and scratch noise, are used in
this work. Two databases (click+crackle+scratch+hiss and
click+crackle+scratch+hiss+hum) are collected in order to
obtain different subsets for training and testing. Finally, an
NMF approach is applied to separate instrument signal and
noise from noisy performances. The proposed approach is
compared with some commercial algorithms when denois-
ing a vinyl degraded guitar database. The separation mea-
sures indicate that the proposed approach obtains compet-
itive results.

1. INTRODUCTION

The improvement of the quality for the audio material de-
graded by non-stationary noise in old recordings has been
a widely investigated problem over the last years [1–4].
Nowadays, audio restoration is an attractive research field
from a commercial viewpoint (e.g. albums or movies audio
remastering) but it is still an unsolved problem because the
quality of restored audio is quite dependent of algorithm
parameters. Hence, it is necessary the judgment of sub-
jects trained in audio to evaluate the quality of the audio
processed.

Audio restoration is the process of removing any degra-
dation to the audio material, which occurs as a result of the
recording process, in order to preserve the quality of the
original one. In general, any degradation can be classified

Copyright: c©2013 J. Parras-Moral, F. J. Cañadas-Quesada, P. Vera-Candeas,

N. Ruiz-Reyes et al. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

into localized or global. A localized degradation, which
affects only certain samples of the audio, can be described
as impulsive noise such as click, crackle or scratch. It is
usually caused by dust, dirt, scratches or breakages on the
surface of the recording medium. A global degradation,
which affects all samples of the audio, can be described
as background noise. The main global degradations are
known as hum and hiss noise. While hum noise models a
50−60Hz low frequency harmonic signal (caused by elec-
trical noise), hiss noise models broadband noise (caused by
ambient noise from the recording environment) [5].

Recent techniques, based on Non-negative Matrix Fac-
torization (NMF) [6], has been successfully applied to a
wide range of music analysis tasks [7–10]. Specifically,
NMF is able to decompose a magnitude spectrogram as a
product of two nonnegative matrices,X ≈ B · G. Each
column of the basis matrixB represents a spectral pattern
from an active sound source. Each row of the gains ma-
trix G represents the time-varying activations of a spectral
pattern factorized in the basis matrix. In this paper, we
propose a supervised NMF approach to restore the target
audio by means of the removal or attenuation of any degra-
dation in vinyl audio. This approach trains a set of spectral
patterns that represent the target audio and the most com-
mon noise active in these recordings. The training audio of
the target source is composed by samples of isolated notes
from a spanish guitar instrument [11]. The spectral pat-
terns from the guitar is trained both from the harmonic and
onset components. The harmonic patterns are learned us-
ing a excitation-filter instrument model [10]. In the same
way, the training audio of the noise is the concatenation of
a wide set of public samples recorded from the most com-
mon types of vinyl noise [12–17]. Part of this material is
not used in training to preserve the testing subset for vinyl
noises. Some experiments have been developed in order
to show the benefits of the use of instrument models and
the trained spectral patterns of vinyl noises. Results are
compared with some commercial approaches.

In this paper some proposals are shown. We propose the
use of spectral patterns for the harmonic component of the
instrument based on an excitation-filter model. The tran-
sient component of the instrument is taken into account
training a set of spectral patterns from note onsets. Also,
the vinyl noise spectral patterns are trained from some pub-
lic samples. A model for the degraded audio composed by
harmonic and transient components for the instrument and
vinyl noise is developed. Separation is performed using
an NMF algorithm to estimate the time-varying activations
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for spectral patterns from vinyl degraded signals. The in-
strument contribution of the mixed signal is obtained as a
result of the separation process.

The paper is structured as follows: Section 2 reviews the
state-of-the-art theory that is used in this paper; Section 3
shows the proposal of this work. The comparison of the
obtained results with those obtained by other state-of-the-
art methods are described at section 4 ; finally, we draw
some conclusions and discuss future work in Section 5.

2. BACKGROUND

2.1 Augmented NMF parameter estimation

Standard Non-negative Matrix Factorization (NMF), de-
veloped by Lee and Seung [6], is a technique for multivari-
ate data analysis where an input magnitude spectrogram,
represented by matrixX, is decomposed as a product of
two non-negative matricesB andG,

X ≈ BG (1)

whereB is the frequency basis andG represents the gains
or activations of the active sources along the time, being
X̂ = BG the approximation of the input matrix. The
magnitude spectrogramX, composed ofT frames andF
frequency bins, of a music signal consists of a set of time-
frequency unitsXf,t or x(f, t).

Constraining parameters to be non-negative has been ef-
ficient in learning the spectrogram factorization models. In
fact, this constraint has been widely used in SS [8,18].

In the case of magnitude spectra, the parameters are re-
stricted to be non-negative, then, a common way to com-
pute the factorization is to minimize the reconstruction er-
ror between the observed spectrogramx(f, t) and the mod-
elled onex̂(f, t). This reconstruction error can be repre-
sented by a cost function.

The most used cost functions are the Euclidean (EUC)
distance, the generalised Kullback-Leibner (KL) and the
Itakura-Saito (IS) divergences. In this work, the KL cost
function is used as is done in several systems [7,9,10].

An iterative algorithm based on multiplicative update rules
is proposed in [6] to obtain the model parameters that mini-
mize the cost function. Under these rules,DKL(x(f, t)|x̂(f, t))
is non-increasing at each iteration and it is ensured the non-
negativity of the bases and the gains. These multiplicative
update rules are obtained by applying diagonal rescaling
to the step size of the gradient descent algorithm, more de-
tails can be found at [6]. The multiplicative update rule for
each scalar parameterθl is given by expressing the partial
derivatives of the∇θl

DKL as the quotient of two positive
terms∇−

θl
DKL and∇+

θl
DKL:

θl ← θl

∇−
θl

DKL(x(f, t)|x̂(f, t))

∇+

θl
DKL(x(f, t)|x̂(f, t))

(2)

The main advantage of the multiplicative update rule in
eq. (2) is that non-negativity of the bases and the gains
is ensured, resulting in an augmented non-negative matrix
factorization (NMF) algorithm.

2.2 Multi-Excitation factorization Model (MEI)

The Multi-Excitation model proposed by Carabias et al.
[10] is an extension of the source-filter model presented
in [18]. This model achieves a good generalisation of the
harmonic basis functions for a wide range of harmonic in-
struments [10], making its use a good alternative to ob-
tain harmonic basis functions from a database of isolated
sounds of the target instrument.

The source-filter model has origins in speech processing
and sound synthesis. In speech processing, the excitation
models the sound produced by the vocals cords, whereas
the filter models the resonating effect of the vocal tract.
In sound synthesis, excitation-filter (or source-filter) syn-
thesis colors a spectrally rich excitation signal to get the
desired sound.

The model proposed in [10] extend the source-filter model
by defining the excitation as a weighted sum of instrument-
dependent excitation patterns. Under this model, the spec-
trum of a note is generated by the harmonic excitation of
the note multiplied by the filter transfer function of the in-
strument. Thus, the excitationen(f) is different for each
pitch and has harmonic nature. The pitch excitation is ob-
tained as the weighted sum of excitation basis functions
while the weights vary as the function of pitch.

Following this model, the pitch excitation can be obtained
as

en(f) =
M
∑

m=1

I
∑

i=1

wi,nvi,mG (f −mf0(n)) (3)

wherevi,m is thei-th excitation basis vector (composed
of M partials), andwi,n is the weight of thei-th excita-
tion basis vector for pitchn. The basis functionsbn(f) (or
Bf ,n) are computed following the source-filter paradigm
as

bn(f) = h(f)en(f) (4)

whereh(f) is the instrument-dependent instrument. Fi-
nally, the source-filter model with Multi-Excitation per In-
strument (MEI) for magnitude spectra of the whole signal
is the sum of instruments and pitches obtained as

x̂(f, t) =
∑

n

gn(t)h(f)

M
∑

m=1

I
∑

i=1

wi,nvi,mG (f −mf0(n))

(5)
wheren = 1, ..., N (N being the number of pitches),M

represents the number of harmonics andI the number of
considered excitations withI << N . Using a small num-
ber of excitation basesI reduces significantly the param-
eters of the model, which benefits the learning of parame-
ters. The free parameter of the model are: the time gains
gn(t) (or Gn,t), the instrument filterh(f), the basis exci-
tation vectorsvi,m and the excitation weigthswi,n.

The framework presented in [6] can be used for MEI. For
the sake of compact representation we present here the pa-
rameter update for the MEI model of (5). Multiplicative
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updates which minimize the divergence for each parame-
ter of the MEI model are computed by substituting each
parameter in eq. (2). More details can be obtained in [10].

3. DESCRIPTION

3.1 Signal factorization

Our proposal attempts to overcome the denoising problem
learning in advance the harmonic and transient basis func-
tions from the musical instrument and the spectral patterns
from the vinyl noise. For that purpose, an objective func-
tion is defined to factorize a mixture spectrogramXf,t into
three separated spectrograms,XH (harmonic part of the
musical instrument),XT (transient part of the musical in-
strument) andXN (vinyl noise part). We assume that each
of them represents the specific spectral features demon-
strated by the instrument and noise. In this manner, our
factorization model is defined (see eq.6),

X̂ = X̂H+X̂T +X̂N = BHGH+BTGT +BNGN (6)

where all matrices are non-negative matrices.
In order to estimate basis functions or activation gains

matrices, the iterative algorithm proposed in [6] can be ap-
plied. Using this algorithm, the update rule for the basis
functions can be expressed as

B = B⊙

[

(X̂)−1 ⊙X
]

H
′

1H′
(7)

where′ represents the transpose matrix operator,⊙ the
element-wise multiplication of matrices,1 is a all one el-
ements matrix withF rows andT columns (or1f,t), X

is the original spectrogram,̂X is the modeled spectrogram
andX̂

−1 is the inverse matrix regarding the modeled spec-
trogram. Eq. (7) can be used for each component of the
proposed signal factorisation (BH , BT , BN ).

The update rule for the activations gains can be written as

G = G⊙
B

′
[

(X̂)−1 ⊙X
]

B′1
(8)

Both expressions are valid for each of the components
represented in eq. (6).

In our approach, all basis functions (BH , BT , BN ) are
trained in advance from databases of guitar sounds or vinyl
recorded noise.

3.2 Basis functions training

3.2.1 Instrument modeling for harmonic components

The model revised at section2.2 requires to estimate the
basis functionsbn(f) for each noten defined in eq. (6)
asthe harmonic basis functionsBH . The basisbn(f) are
learned in advance by using the RWC database [11] as
a training database of solo instruments playing isolated
notes. Let the ground-truth transcription of the training
data be represented byrn(t) as a binary time/frequency
matrix. The frequency dimension represents the MIDI scale
and time dimensiont represents frames.rn(t) is known in

advance for the training database, then it is used to ini-
tialize the gains for the training stage such that only the
gain value associated with the active pitchn at framet and
played by instrument is set to unity, the rest of the gains are
set to zero. Gains initialised to zero remain at zero because
of the multiplicative update rules, and therefore the frame
is represented only with the correct pitch.

The training procedure is summarised in Algorithm1.

Algorithm 1 Training Harmonic Spectral Patterns
1 Computex(t, f) from a solo performance of the target in-

strument in the training database.
2 Initialise gainsgn(t) with the ground truth transcription

rn(t) and the rest of parametersh(f), vi,m andwi,n with
random positive values.

3 Update source-filterh(f).
4 Update excitation basis vectorsvi,m.
5 Update the weights of the excitation basis vectorswi,n.
6 Update gainsgn(t).
7 Repeat steps 3-6 until the algorithm converges (or the maxi-

mum number of iterations is reached).
8 Compute basis functionsbn(f) for the musical instrument

from eq. (3) and (4) .

Basis functionbn(f) are computed by this training al-
gorithm resulting in a basis function for the complete pitch
rangen played by the instrument. The instrument-dependent
basis functionsbn(f) (or BH ) are known and held fixed
during the factorization process, and therefore, the factor-
ization of new signals of the same instrument can be re-
duced to estimate the gainsgn(t).

3.2.2 Learning transient basis functions

The transient spectral patterns from a musical instrument
does not follow a harmonic behaviour. Here, our approach
is to learn a representative set of transient basis functions
from the note onsets of a training database. Again, the ba-
sisBT are learned in advance by using the RWC database
[11]. In order to initialize the gains for the training stage,
lets definero(t) as a binary time/frequency vector that rep-
resents the frames in which a note onset is active. To obtain
this vector the database of solo instruments playing iso-
lated notes is annotated supposing that the transient com-
ponents are activeTO frames from the beginning of each
note. In our experiments, a value ofTO = 5 frames is
used.

The training procedure is summarised in Algorithm2, the
number of transient basis functions is defined asO.

Algorithm 2 Training Transient Spectral Patterns
1 Computex(t, f) from a solo performance of the target in-

strument in the training database.
2 Initialise all gainsGT with random positive values for those

frames in which a note onset is active usingro(t).
3 Initialise transient basis functionsBT with random positive

values.
4 Update basis functionsBT .
5 Update gainsGT .
6 Repeat steps 4-5 until the algorithm converges (or the maxi-

mum number of iterations is reached).

As in the harmonic case, transient basis functionsBT are
known and held fixed during the factorization process.
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3.2.3 Training basis functions from recorded vinyl noise

The vinyl noise used to train vinyl noise basis functions
BN was obtained from the concatenation of a wide set
of public samples recorded from the most common types
of vinyl noise [16] [17] [18] [19] [20] [21]. From this
concatenation noise signal, two third of the total one was
considered for training and the remainder for evaluation.
Two groups of different degradations from vinyl noise are
trained:

• clicks+crackles+scratches+hiss.

• clicks+crackles+scratches+hiss+hum.

The training procedure is summarised in Algorithm3, the
number of transient basis functions is defined asR.

Algorithm 3 Training vinyl Noise Spectral Patterns
1 ComputeX from the training subset of the noise database.
2 Initialise all gainsGN with random positive values.
3 Initialise noise basis functionsBN with random positive val-

ues.
4 Update basis functionsBN .
5 Update gainsGN .
6 Repeat steps 4-5 until the algorithm converges (or the maxi-

mum number of iterations is reached).

Again, the two groups of noise basis functionsBN are
known and held fixed during the factorization process.

3.3 Denoising application

In order to synthesize the denoised instrument signal, the
magnitude instrumental spectrogram̂XH + X̂T are esti-
mated as the product of the factorizationBHGH+BTGT .
To assure a conservative reconstruction process, an instru-
mental maskMJ has been generated by means of Wiener
filtering (the mask values are defined from0 to 1).

Firstly, the magnitude spectrograms for the harmonicX̂H

and transient̂XT components of the instrument are esti-
mated using the factorization scheme proposed in eq. (6).
In algorithmic approximation, the estimation of the instru-
mental spectrogram is detailed in Algorithm4.

Algorithm 4 Estimation of instrumental components
1 Compute the magnitude spectrogramX of the degraded sig-

nal.
2 InitialiseGH , GT andGN with random nonnegative values.

3 InitialiseBH , BT andBN from the training algorithms.
4 UpdateGH .
5 UpdateGT .
6 UpdateGN .
7 Repeat steps 4-6 until the algorithm converges (or the maxi-

mum number of iterations is reached).
8 Compute the estimated instrumental spectrogram asX̂H +

X̂T .

The instrumental mask is therefore defined as

MJ =
X̂H + X̂T

X̂H + X̂T + X̂N

(9)

The phase information related to the instrumental signal
is computed by multiplying the maskMJ with the com-
plex spectrogram related to the degraded signalxJ (t) +
xN (t). The inverse transform is then applied to obtain an
estimation of the instrumental signalx̂J (t).

4. EVALUATION

4.1 Material

Two test databases D1 and D2 of vinyl degraded guitar
sounds were used to evaluate the performance of the pro-
posal. Each database is composed of five degraded files.
Each file [19–21] (see Table1), 30-seconds duration, is
created from a real-world Spanish guitar excerpt (with CD
quality) degraded by typical noise in vinyl recordings. In
the first database D1, degradations include clicks, crack-
les, scratches and hiss noise. In the second database D2,
degradations include clicks, crackles, scratches, hiss and
hum noise.

Identifier Name
F1 Danza de los vecinos
F2 Iberia
F3 Albaicin
F4 Fuente y Caydal
F5 Rumba improvisada

Table 1. Real-world CD quality Spanish guitar excerpts
used in experiments [19–21].

The degradation of the audio guitar excerpts was made
using the concatenation signal of a wide set of public sam-
ples recorded from the most common types of vinyl noise
[16] [17] [18] [19] [20] [21]. From this concatenation of
vinyl noise, two thirds of the total was considered for train-
ing and the remainder for evaluation. So, different noise
material was used for training and testing in order to vali-
date the results. Specifically, the training material has du-
rations of 228 seconds for clicks, crackles, scratches and
hiss noise and 89 seconds for clicks, crackles, scratches,
hiss and hum noise.

To evaluate different acoustic scenarios, the mixing pro-
cess between guitar excerpts and vinyl noise was produced
at 0, 5 and 10dB of signal-to-noise ratio (see Table2).

Name Database SNR (dB)
D1 0 D1 0
D1 5 D1 5
D1 10 D1 10
D2 0 D2 0
D2 5 D2 5
D2 10 D2 10

Table 2. Acoustic scenarios in the evaluation process.

4.2 Commercial audio restoration products

Three current and well-known commercial audio restora-
tion products have been used to evaluate the performance
of our proposal:

• Adobe Audition CS5.5 v4.0.
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• Izotope RX 2 (Declicker, Decrackle, Denoiser and
Hum removal).

• Waves V8 (X-Click, X-Crackle, X-Hum and Z-Noise).

Both Waves and Izotope plugins were used in Wavelab
6 audio editing and mastering suite from Steinberg [22].
Each audio restoration product has been manually tuned to
provide the best results according to noise reduction and
quality of the target audio.

4.3 Experimental setup

The proposed method has been evaluated by using the fol-
lowing parameters: frame size of64ms, hop size of32ms,
frequency sampling rate of44100Hz , 100 iterations for
NMF algorithm, number of transient basis functionsO =
10 and number of vinyl noise basis functionsR = {10, 100}
(see the following section). Sound source separation ap-
plications based on NMF algorithms usually adopt loga-
rithmic frequency discretization. For example, uniformly
spaced subbands on the Equivalent Rectangular Bandwidth
(ERB) scale are assumed in [23]. In our method, we use
the resolution of a quarter semitone by directly integrating
the bins of the STFT similary to [10].

4.4 Results

For an objective evaluation of the performance of the sep-
aration method we use the metrics implemented in [23].
These metrics are commonly accepted by the specialised
scientific community, and therefore facilitate a fair evalua-
tion of the method. The metrics for each separated signal
are theSource to Distortion Ratio(SDR), theSource to In-
terference Ratio(SIR), and theSource to Artifacts Ratio
(SAR).

In an NMF framework, the unknown parameters are ini-
tialized randomly. Therefore, the spectra resulting from
separation are different at each execution, giving different
metric results per execution. Thus, the proposed method
has been performed50 times per audio file to demonstrate
the statistical significance of the metrics. The95% con-
fidence interval for the metrics was always smaller than
1.1dB in the proposed method.

The SDR results for the denoised guitar signals when us-
ing the D1 and D2 databases at different SNRs are given in
Table3. The proposed methods are: P10 proposed method
with R = 10 noise basis functions, UP10 unrealistic pro-
posed method withR = 10 noise basis functions (the noise
is directly trained from the same noise added to the de-
graded signal which is an unrealistic situation), P100 pro-
posed method withR = 100 noise basis functions and
UP100 unrealistic proposed method withR = 100 noise
basis functions. The unrealistic approaches are used for es-
timating the loss produced in separation performance when
training the vinyl noise in an implementation different from
the real noise. The SDR value of the original input signal
is also presented. As can be seen, Waves software obtains
the best separation measures from the commercial restora-
tion products. In our approach, the use ofR = 10 bases
is better than usingR = 100, so we can conclude that the

spectral richness of the vinyl noise can be captured with
a reduced number of basis functions. Also, the proposed
methods achieve better performance for the D2 database
mainly because the hum noise is the most stable in fre-
quency. Finally, we can state that our approach is compet-
itive in relation to the commercial audio restoration soft-
ware.

Name Input Audition Izotope Waves P10 UP10 P100 UP100
D1 0 3.2 7.5 5.1 8.6 9.0 9.6 8.4 9.2
D1 5 8.3 11.8 11.2 11.7 12.4 12.9 11.4 12.2
D1 10 13.1 16.2 13.3 16.5 14.6 15.1 13.1 14.1
D2 0 4.7 -2.2 3.0 6.5 11.2 11.8 9.9 10.5
D2 5 9.7 -2.0 5.1 7.7 13.9 14.4 12.4 13.0
D2 10 14.6 -1.9 5.6 8.5 15.8 16.3 13.9 14.6

Table 3. Denoised guitar SDR results indB for D1 and D2
databases.

The SIR results for the denoised guitar signals when us-
ing the D1 and D2 databases at different SNRs are given
in Table4. These results inform about the amount of noise
present in the cleaned guitar. In all cases, the denoised
signals with the proposed methods have less interferences
from the vinyl noise.

Name Input Audition Izotope Waves P10 UP10 P100 UP100
D1 0 3.3 8.7 8.7 11.7 11.5 12.3 11.1 12.3
D1 5 8.5 13.3 15.2 14.2 16.3 17.0 16.1 17.0
D1 10 13.3 18.3 20.6 20.0 20.6 21.1 20.4 21.2
D2 0 9.7 9.7 12.2 20.8 21.4 21.5 20.5 21.2
D2 5 14.7 14.3 17.6 21.8 25.4 25.4 24.8 25.5
D2 10 19.7 19.0 22.6 28.1 29.2 29.4 28.8 29.5

Table 4. Denoised guitar SIR results indB for D1 and D2
databases.

The SIR results for the estimated vinyl noise component
when using the D1 and D2 databases at different SNRs
are given in Table5. Now, the amount of original guitar
eliminated from the denoised guitar is shown. On the con-
trary, in this case Audition and Waves approaches obtain
much better results than the proposed approach for the D1
database.

Name Audition Izotope Waves P10 UP10 P100 UP100
D1 0 18.1 1.7 17.2 10.6 11.4 8.3 10.1
D1 5 19.8 6.7 23.4 5.5 6.4 3.1 4.9
D1 10 16.8 1.8 18.6 0.6 1.7 -1.9 -0.1
D1 0 -11.6 -8.5 -1.8 3.2 3.7 0.6 2.4
D2 5 -16.0 -10.7 -7.0 -1.7 -1.1 -4.1 -2.4
D2 10 -20.2 -14.8 -11.9 -6.1 -5.5 -8.4 -6.7

Table 5. Estimated vinyl noise SIR results indB for D1 and D2
databases.

In order to give the reader the opportunity of listening
the material a webpage for the results has been created.
On this page, some audio examples (mixed, separated gui-
tar and separated noise) from database D1 and D2 can
be heard by the reader. The web page can be found at
http://dl.dropbox.com/u/22448214/SMC%202013/index.html

5. CONCLUSIONS AND FUTURE WORK

In this work, a denoising technique based on an excitation-
filter model for harmonic instruments is proposed. The
instrumental part of the degraded signal is divided into
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harmonic and transient components and trained from the
RWC database. The vinyl noise is trained from public
recordings. Basis functions are fixed from the training al-
gorithms and in the separation process the activation gains
for each component are estimated following an NMF frame-
work. The results show that the proposed approach are
competitive in comparison with some commercial audio
restoration softwares.

The main problem of the proposed approach is the simi-
larity of the transient basis functions for the instrument and
the spectral patterns of the localized degradations such as
click, crackle and scratch noise. In our opinion, this is-
sue causes the presence of instrument interferences in the
estimated noise and, consequently, the loss of instrument
signal in the denoised instrumental audio. This problem
also occurs when training the vinyl noise from the original
noise (UP10 and UP100 approaches).

For future work, an interesting idea to solve the inter-
ference problems can be the definition of sparseness and
smoothness constraints [18] in the basis functions and ac-
tivations gains of the signal factorization.

6. REFERENCES

[1] S. Godsill, P. Wolfe, and W. Fong, “Statistical model-
based approaches to audio restoration and analysis,”
J. New Music Research, vol. 30, no. 4, pp. 323–338,
2001.

[2] P. Esquef, M. Karjalainen, and V. Valimaki, “Detection
of clicks in audio signals using warped linear predic-
tion,” in Proc. 14th IEEE Int. Conf. on Digital Signal
Processing, Santorini, Greece, 2002, pp. 1085–1088.

[3] H. Lin and S. Godsill, “The multi-channel ar model for
real-time audio restoration,” inIEEE Workshop on the
Applications of Signal Processing to Audio and Acous-
tics (WASPAA), New Paltz, NY, US, 2005, pp. 335–
338.

[4] G. Cabras, S. Canazza, P. Montessoro, and R. Ri-
naldo, “he restoration of single channel audio record-
ings based on non-negative matrix factorization and
perceptual suppression rule,” inProc. 13th Int. Conf.
Digital Audio Effects DAFx, Graz, Austria, 2010, pp.
458–465.

[5] S. Godsill and P. Rayner,Digital Audio Restoration A
Statistical Model Based Approach. Springer-Verlag,
1998.

[6] D. Lee and H. Seung, “Algorithms for non-negative
matrix factorization,”in Advances in NIPS., pp. 556–
562, 2000.

[7] P. Smaragdis and J. Brown, “Non-negative matrix fac-
torization for polyphonic music transcription,” inIEEE
Workshop on the Applications of Signal Processing to
Audio and Acoustics (WASPAA), New Paltz, NY, US,
2003.

[8] G. Cabras, S. Canazza, P. Montessoro, and R. Rinaldo,
“The restoration of low-quality audio recordings based
on non-negative matrix factorization and perceptual as-
sessment by means of the ebu mushra test method,”
in Proc. of ACM Multimedia International Conference,
Firenze, Italy, 2010, pp. 19–24.

[9] N. Bertin, R. Badeau, and E. Vincent, “Enforcing har-
monicity and smoothness in bayesian nonnegative ma-
trix factorization applied to polyphonic music tran-
scription,” IEEE Trans. Audio, Speech, Lang. Process-
ing, vol. 18, no. 3, pp. 538–549, 2010.

[10] J. Carabias, T. Virtanen, P. Vera, N. Ruiz, and
F. Canadas, “Musical instrument sound multi-
excitation model for non-negative spectrogram
factorization,” IEEE Journal of Selected Topics in
Signal Processing, vol. 5, no. 6, pp. 1144–1158, 2011.

[11] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,
“Rwc music database: Music genre database and mu-
sical instrument sound database,” inProceedings of
the 4th International Conference on Music Information
Retrieval, 2003, pp. 229–230.

[12] http://bedroomproducersblog.com/2012/04/02/free-
vinyl-noises-sample-pack-released-by-mad-ep.

[13] http://www.musicradar.com/news/tech/sampleradar-
243-free-vinyl-style-samples-277010.

[14] http://daviddas.com/2011/01/vinyl-record-samples-
for-free-download/.

[15] http://grillobeats.com/blog/downloads/samples-vinyl/.

[16] http://www.thecontrolcentre.com/diamondsanddust.htm.

[17] http://www.partnersinrhyme.com/blog/public-domain-
vinyl-record-hiss-pop-crackle/.

[18] T. Virtanen and A. Klapuri, “Analysis of polyphonic
audio using source-filter model and non-negative ma-
trix factorizationn,” Advances in Models for Acous-
tic Processing, Neural Information Processing Systems
Workshop, 2006.

[19] Paco de Lucia plays Manuel de Falla, Record com-
pany: Polygram Iberica S.A, 1978.

[20] Concerto De Aranjuez, Record company: Polygram
Iberica S.A, 1978.

[21] Paco de Lucia Antologia, Record company: Polygram
Iberica S.A, 1995.

[22] Wavelab 6, Audio Editing and
Mastering Suite from Steinberg.
http://www.steinberg.net/en/products/wavelab/whywave
lab.html.

[23] E. Vincent, C. Févotte, and R. Gribonval, “Perfor-
mance measurement in blind audio source separation,”
IEEE Trans. Audio, Speech and Language Processing,
vol. 14, no. 4, pp. 1462–1469, 2006.

659

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



SPATIUM, TOOLS FOR SOUND SPATIALIZATION

Rui Penha
Universidade de Aveiro / INET-MD

rui@ruipenha.pt

João Pedro Oliveira
Universidade Federal de Minas Gerais

jppo@ua.pt

ABSTRACT

In this paper we present spatium, a set of free, open source
and modular software tools for sound spatialization, de-
scribing the creative and technical aspects considered dur-
ing its development. The system is comprised of spatializa-
tion renderers, spatialization interfaces, DAW plugins and
Max objects that communicate via OSC (Open Sound Con-
trol). They aim to: facilitate the exploration of different
approaches to sound spatialization, ease the integration of
sound spatialization into diverse compositional workflows,
smooth the transition from the studio to different perfor-
mance environments and be easily expandable to cater for
growing needs.

1. INTRODUCTION

Sound is always in space, in the sense that ”there is no
non-spatial hearing” [1], and the experimental placement
of sounds in space as a musical parameter is something that
dates back to at least the 16th century. Nevertheless, the
intentional control of sound spatialization is undoubtedly
amongst the most important conquests of electroacoustic
music. It is thus without surprise that a survey of recent
research (or even just a quick search online) reveals the ex-
istence of many tools for sound spatialization, either com-
mercial or freely available, and several composers develop-
ing their own custom solutions for specific pieces. We aim
to contribute to this field with the recent release of spatium,
a set of free, open source and modular software tools for
sound spatialization. It is comprised of: three spatializa-
tion renderers, ten spatialization interfaces, one Audio Unit
plugin, two Max for Live devices and four Max objects.
Both the software and its source are available for down-
load at http://spatium.ruipenha.pt, were one can also find
online documentation for all the elements, a short video
tutorial and a musical example.

1.1 Why (yet) another spatialization tool?

Most composers still use the built-in panning devices of ei-
ther their DAWs (Digital Audio Workstations) or hardware
mixing consoles as their primary spatialization tools, albeit
being conscious of their limitations [2]. As it is also a com-
mon practice amongst composers working with sound spa-
tialization, we set out to build spatium as a custom-made

Copyright: c©2013 Rui Penha et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

system, with specific goals that existing tools did not fully
address:

• simple integration with DAWs, including ones that
are limited to stereo busses (e.g., Ableton Live), al-
lowing the recording of spatial information as plugin
automation;

• easy adjustment to different studio and performance
environments, maximizing portability and taking ad-
vantage of increased spatial resolution at particular
venues;

• ability to choose the most suitable interface paradigm
for each musical intention, including gestural con-
trol of spatialization, kinematic spatialization and in-
troducing some novel approaches to dynamic spa-
tialization;

• ability to facilitate the realtime use of sound spatial-
ization through intuitive interfaces, minimizing the
need to fully grasp the technical details of a given
spatialization technique in advance.

spatium is still a work in progress that can greatly benefit
from the contribution of the community. We have therefore
decided to share it as both free and open source software.

1.2 Why modular?

A stratified approach has been identified as fruitful solu-
tion to integrate sound spatialization into different compo-
sitional needs and to allow different combinations of ren-
dering algorithms and controlling interfaces [3]. This mod-
ular approach also benefits from the current trend of multi-
core processors, by enabling the distribution of process-
ing between multiple cores, processors or even machines.
Being open source software, the modular architecture also
caters for the users who may want to integrate the pro-
posed interfaces with their own spatialization renderers or
the other way around: the Processing community, e.g., has
built many sketches that could easily be repurposed as spa-
tialization interfaces for spatium 1 .

2. ARCHITECTURE

As can be seen on Fig. 1, a simple spatium system is com-
posed of three main elements:

• the spatialization renderer - which receives mono-
phonic audio channels, the spatial information for

1 Many examples can be found at http://www.openprocessing.org.
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each channel and renders the result for a chosen loud-
speaker layout;

• the spatialization interface - which generates spatial
information to send, either via OSC to the spatial-
ization renderer or via Midi to be stored as plugin
automation at a specific DAW track;

• the Audio Unit plugin or the Max for Live device -
which stores spatial information as automation and
sends it, via OSC and synchronized with the audio,
to the spatialization renderer.

spatium · interface

spatium · renderer

DAW

spatium · live

spatium · track

audio
OSC
Midi

Figure 1. The modular architecture of spatium.

2.1 Coordinate System

spatium exclusively uses spherical coordinates: azimuth 0◦

is in front and increases clockwise; elevation 0◦ is at the
horizontal plane at ear level and increases towards the top;
radius goes from 0.0 at the origin to 1.0 at the surface of the
soundfield. This is known as the navigational coordinate
system and was chosen because of its familiarity, namely
due to its previous use in other spatialization tools [4].

2.2 Communication protocol

Communication protocols to send spatialization data over
OSC have been proposed, most notably SpatDIF [5]. We
chose, however, to develop our own protocol, as in order
to be compliant with SpatDIF, an audio renderer must un-
derstand and interpret all its core statements, which include
descriptors that spatium does not use (e.g., orientation) and
default position to Cartesian coordinates, as opposed to
spatium’s exclusive use of spherical coordinates. SpatDIF
was developed mainly to control several spatialization ren-
derers from one common interface, whilst spatium’s main
goal was to enable the control of a chosen spatialization
renderer using several interfaces at once. As the audio ren-
derers and the interfaces of spatium were developed in par-
allel within an integrated approach, their protocol require-
ments are much simpler than the ones needed to provide
universal control over different approaches.

One can communicate with the spatialization renderers
using four types of messages, send via UDP to port 11475:

• /spatium/#/aer f1 f2 f3

• /spatium/#/azimuth f1

• /spatium/#/elevation f2

• /spatium/#/radius f3

with # being the channel, from 1 to 16 2 , and f1 f2 f3 being,
respectively, its azimuth, elevation and radius.

3. SPATIALIZATION TECHNIQUES

spatium uses two spatialization techniques, one based on
Ambisonics with distance encoding - used in spatium·ambi,
along with its related renderers and of their underlying
Max objects - and another one based on amplitude pan-
ning between stereo pairs - used in spatium·panning and its
homonymous max object. Both techniques include some
novel strategies for the placement of sounds inside of the
soundfield that are specific to spatium.

3.1 Ambisonics with distance encoding

Ambisonics has recently regained much interest, in part
for its ability to encode spatial audio independently of the
reproduction setup. High Order Ambisonics can provide
greater spatial resolution while maintaining scalability, back-
wards compatibility, superior immersiveness and reproduc-
tion of moving sound sources. The encoding format used
in spatium is fixed as a mixed-order Ambisonics sound-
field, using a 3rd order horizontal, 1st order vertical ap-
proach. The choice of having superior resolution on the
horizontal plane was made due to the ubiquity of horizontal-
only loudspeaker systems and also because our perception
of localization has much better resolution on the horizontal
plane than on the median plane [1]. By using mixed-order
Ambisonics encoding, we are able to minimize the number
of audio channels needed to encode the soundfield, whilst
retaining periphonic capabilities. We chose, however, to
use a 12-channel 3H1V instead of traditional 8-channel
3H1P, as originally proposed by Jérôme Daniel [6], in or-
der to retain horizontal resolution even when going up in
the soundfield.

To this 12-channel 3H1V mixed-order Ambisonics sound-
field, an additional channel is added for distance encoding,
as we have proposed before [7]. This approach is related
to W-panning [8] and B Format Inside Panner [9], as they
all encode sounds inside the speaker array by increasing
the omnidirectional component while decreasing the direc-
tional components of the Ambisonics soundfield. Our pro-
posal is distinguished by isolating the sounds at the center
of the space in a specific channel, through the use of an
additional angular coordinate. This system allows for the
postponing of the application of cues for the perception of
distance to the decoding stage, where they can be adapted
to the characteristics of a specific space and sound system.

3.2 Amplitude panning between stereo pairs

This technique is used in spatium as an alternative to the
main Ambisonics renderers and objects, using amplitude

2 Using standard OSC notation, this number can be replaced by an
asterisk ∗ to control all channels simultaneously.
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panning with the least possible number of speakers, ide-
ally only a stereo pair, to spatialize a sound inside a con-
centrical loudspeaker layout with an arbitrary number and
placement of loudspeakers. When placing a sound close
to the circumference defined by the loudspeakers, it will
pan the sound between the two closest speakers, as it hap-
pens with 2D VBAP [10], using either sine or square root
panning laws. When placing the sound inside the circle, it
will use the azimuth to determine a stereo pair, the oppo-
site azimuth (azimuth - 180◦) to determine a second stereo
pair and the radius to amplitude pan between them. Whilst
these phantom images across the soundfield do not work as
traditional stereo phantom images, due to the interference
of the listener’s head, this approach enables some spatial-
ization effects such as the rotation around the vertical axis
of a sound placed in the middle of the soundfield, by keep-
ing its radius 0.0 whilst changing its azimuth. Three con-
crete scenarios can be seen on Fig. 2: to pan sound a, the
algorithm will do an amplitude panning between speakers
1 and 2; to pan sound b, the algorithm will do an amplitude
panning between speakers 1 and 5; to pan sound c, the al-
gorithm will do an amplitude panning between speakers 3
and 4, an amplitude panning between speakers 7 and 8 and
finally an amplitude panning between these two pairs.

Figure 2. Three scenarios of amplitude panning between
stereo pairs.

3.3 Max objects

These techniques were implemented as Max objects, in-
cluding three Ambisonics-based objects - spatium·encode,
spatium·decode and spatium·rotate - and one Amplitude
panning-based object - spatium·panning, along with some
auxiliary patches. They were used to develop spatium’s
renderers and are documented on the included help files.
As spatium·panning is a new technique, it required the
development of a new object, but many objects have al-
ready been developed for Ambisonics-based spatialization
in Max/MSP [11–14]. Any one of these existing libraries
provides a very flexible and rich approach to Ambison-

ics spatialization and it would have been possible to im-
plement spatium·ambi using them. We nevertheless felt
the need to develop our own Ambisonics-based objects,
not only to expand the encoding and decoding capabili-
ties with our proposal for distance encoding, but also to in-
corporate some of the characteristics of the popular VBAP
object [15] that we found particularly interesting. Most
Ambisonics-based libraries of objects for Max require the
user to have some previous knowledge about the idiosyn-
crasies of Ambisonics (e.g., spherical harmonic orders, or-
der weighting). This knowledge is of course helpful to
get good results, as it is true with any technique, but their
complexity contrasts with VBAP’s simplicity. spatium’s
objects, as the VBAP object, do not process audio, rely-
ing instead on the standard matrix∼ MSP object to render
the audio. This makes the objects’ code easier to maintain
and their output simpler to hack for specific needs. Both
the Ambisonics and Amplitude panning implementations
of the spatium objects were designed to be easily inter-
changeable with the VBAP in existing Max/MSP patches.

4. SPATIALIZATION RENDERERS

spatium has four spatialization renderers, three based on
Ambisonics with distance encoding - spatium·ambi, spatium·
player and spatium·diffusion - and another one based on
amplitude panning between stereo pairs - spatium·panning.

4.1 spatium·ambi

spatium·ambi receives mono audio channels and encodes
them into an Ambisonics soundfield with distance encod-
ing. The spatial information to encode each channel is re-
ceived via OSC. The resulting soundfield can be decoded
to several loudspeaker layouts, enabling the composition of
spatial music with (almost) any loudspeaker setup and the
fine-tuning of the piece to any given performance setup.
As it was conceived to be used alongside other applica-
tions, the main goal when designing its GUI was to make
it as compact as possible. As can be seen on Fig. 3, the top
portion shows the renderer’s 16 monophonic audio inputs,
each with its own amplitude meter and three floating-point
number displays showing its azimuth, elevation and radius.
The bottom portion shows the controls over specific points
of the audio engine, with the input to output path laid out
from left to right.

Figure 3. The GUI of the spatium·ambi renderer.

4.1.1 Granular spatialization

Some approaches have been proposed for the spatializa-
tion of granular audio, namely by using swarm-based al-
gorithms to define the grains’ positions in space [16, 17].
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The granular settings’ panel controls several parameters
of a granular engine based on Nathan Wolek’s granular
toolkit [18]. This engine feeds a sound file into four gran-
ular generators whose output iterates through four outputs
each, giving a total of 16 grain streams that can be indi-
vidually assigned to any of the 16 channels available at the
encoding stage.

4.1.2 Spectral spatialization

Some approaches have been proposed for spectral spatial-
ization [16,19], a technique that opens several possibilities
to mingle timbre and space into cohesive gestures. When
activated, the spectral engine divides the live audio input
into 28 frequency bands that can be individually silenced
or assigned to any of the 16 channels available at the de-
coding stage.

4.1.3 Decoding loudspeaker layouts

Concentric and equally spaced loudspeaker setups are the
ideal means for the reproduction of a decoded soundfield.
Regular polygons and Platonic solids are the most obvi-
ous solutions for equally spaced layouts and they consti-
tute the major part of the presets of spatium·ambi (and of
its underlying spatium·decode Max object). For the 3D
(periphonic) layouts, we used four of the Platonic solids:
hexahedron, octahedron, dodecahedron and icosahedron.
For the 2D (horizontal) layouts, we used six of the regular
polygons, based on the ones we most frequently found at
performance venus: square, pentagon, hexagon, octagon,
dodecagon and hexadecagon. The stereo output uses the
traditional Ambisonic 2-channel UHJ format [20], with mi-
nor modification to include the distance decoding. We have
found this stereo decoding very pleasing and capable of
giving a reliable rendering of an horizontal-only environ-
ment, for when the composer is forced to work with solely
the ubiquitous stereo monitoring. We have also included a
decoder for the standard ITU 5.1 layout and a horizontal-
only binaural option, using recent HRTF Measurements of
a KEMAR manikin [21]. This binaural implementation
is based on the decoding of the soundfield into a regu-
lar 24-gon loudspeaker, convoluted with stereo HRTF for
each of these positions. By replacing the hrtf#.aif files
included with the source code (with # being an integer
from 1 to 24 representing the loudspeakers from azimuth
0◦ onwards with a 15◦ increment), one can easily use cus-
tomized HRTF Measurements.

4.1.4 Decoder settings

The control of the order weights is something that is very
important to control the reproduction characteristics, namely
the spatial resolution or the size of the sweet spot. How-
ever, it can be a difficult concept to grasp for composers
with little knowledge about the Ambisonics’ underlying
math. In spatium·ambi, each loudspeaker layout choice
automatically adjusts which Ambisonic orders to use and
with what weights, defaulting to a max-rE decoder [22].
In the decoder settings panel, one can adjust the rotation of
the soundfield and the order weights. In order to simulate
distance cues such as loudness, atmospheric absorption or

near-field effect [23] at the decoding stage, one can also
adjust the level of the center portion of the soundfield and
its equalization.

4.1.5 Reverb settings

The natural reverberation is usually one of the most diffi-
cult characteristics to predict and control at performance
venues. We have thus decided to include a reverb at the
decoding stage, so its characteristics can be adjusted at
the time of performance. It is a convolution reverb, us-
ing the B-format (i.e., 1st order Ambisonics) impulse re-
sponses available at the Open AIR Library [24], along with
HISSTools’ multiconvolve∼ object [25] for realtime con-
volution. The fact that the impulse responses have less spa-
tial resolution than the soundfield being decoded is not a
big problem for diffuse reverberation purposes, but it does
imply that, in order not to loose spatial resolution, the dry
signal must always be present. After choosing the impulse
response, one can manipulate its equalization, the reverb
gain and, most importantly as a distance cue, the amount
of reverb being applied to the center channel. Albeit using
non-optimized impulse responses, this reverb implementa-
tion gives a satisfactory definition of acoustical spaces that
appear to be bigger than the performance venue.

4.1.6 spatium·player and spatium·diffusion

These two renderers are based on spatium·ambi, both have
the same output options and can share the same preset files,
presenting a smaller GUI with a waveform display on top.
spatium·player is a player for pre-encoded soundfields and
spatium·diffusion can be used to perform live diffusion of
pre-existing stereo works.

4.2 spatium·panning

Unlike the realtime, spatialization mixing-board concept
of spatium·ambi, spatium·panning was designed for the
spatialization of individual sound files before their sequenc-
ing and mixing in a DAW. This renderer thus takes an audio
file and spatializes it to any 2D, concentrical loudspeaker
setup (up to 24 channels) using amplitude panning between
stereo pairs. The loudspeaker configuration does not have
to be regular and the same sound and path can be rendered
to different loudspeaker configurations by just enabling or
disabling specific loudspeaker locations. The spatializa-
tion path can be constructed and edited as a polygonal
chain synchronized with the original audio file, using the
GUI visible on Fig. 4. spatium·panning can also receive
OSC from spatium’s interfaces to be recorded as a spatial-
ization path for further editing. The end result can then be
rendered as a set of mono audio files, one for each loud-
speaker feed.

5. SPATIALIZATION INTERFACES

Some existing stratified tools for sound spatialization fo-
cus on the possibility of controlling ”different spatial ren-
dering algorithms from one common interface” [3]. We
believe that the most interesting capability of this modular
approach, from a composer’s perspective, is actually the

663

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



Figure 4. The GUI of the spatium·ambi renderer.

other way around. Each interface has its own interaction
vocabulary and enforces a specific approach, even if solely
by making the composer’s vision cumbersome to imple-
ment. We have addressed this before, both in terms of de-
signing GUIs specifically to explore this binding between
interface and composition technique [26] and in terms of
the dangers of confining to the idiosyncrasies of one inter-
face when controlling a musical parameter [27].

We have therefore developed several interfaces (ten at the
moment of this writing) that enable both traditional and
novel approaches to sound spatialization and that are em-
ployable with all the spatialization renderers. We divide
these into three categories: dynamic spatialization, kine-
matic spatialization and gestural spatialization. These in-
terfaces send the spatial information either by OSC mes-
sages or by Midi controller values, with most of their pa-
rameters being also controllable via OSC. As Midi con-
troller values are generic by nature and the OSC ip, port
and addresses are customisable, these interfaces can also
be used to generate data for purposes other than spatializa-
tion.

5.1 Dynamic spatialization

Dynamic spatialization is the spatialization of sound whose
control is focused on the causes of movement, as opposed
to the traditional focus on the geometry of motion, charac-
teristic of kinematic spatialization. Inspired by several ap-
proaches with swarm spatialization [16, 17] and the Sound
Swing series by Bernhard Leitner [28], we developed in-
terfaces where the manipulation of forces like gravity or
friction supersedes the traditional control over key frame
positions and velocities.

spatium·pendulum and spatium·flocking are 3D spatial-
ization interfaces that share some GUI characteristics, vis-
ible on Fig. 5. The control within a 3D space using a 2D
computer environment is made possible by interacting with
one of three 2D projections. These are, from bottom left
and on clockwise order, the projection on the horizontal
plane, the projection on the frontal plane and the projection
on the median plane. The menu on the bottom right corner
can be hidden to reveal a one-point perspective 3D view
over the scene. The spatium·pendulum interface simulates

Figure 5. The GUI of the spatium·pendulum interface.

Figure 6. The GUI of the spatium·gravityBalls2D inter-
face. The control over the azimuth of the gravitational
force can be seen underneath the main circle.

a 3D pendulum, with controllable pivot position, gravity
and damping. The spatium·flocking interface uses a flock-
ing algorithm to move up to 16 birds in a 3D space, gener-
ating movements that work particularly well with granular
synthesis, as suggested by previous research [16, 17].

spatium·pendulum2D, spatium·gravityBalls2D and spatium·
springs2D are three interfaces for dynamic spatialization
that work solely in the horizontal plane and share a similar
GUI to the one visible on Fig. 6. The spatium·pendulum2D
interface is simply a 2D version of the same algorithm
used for the spatium·pendulum interface. The spatium·
gravityBalls2D interface simulates up to 16 balls that are
enclosed within the 2D soundfield. Each of these balls has
a different radius and is attracted by a gravitational force
whose azimuth is controllable, as seen on Fig. 6. The balls
bounce on the walls, when they collide with eachother and
can be launched against the other balls using a slingshot.
The spatium·springs2D interface simulates up to 6 springs
that connect as many anchors to the spatialization parti-
cle, which can be launched by dragging and releasing the
mouse.
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Figure 7. The GUI of the spatium·polygonalChain2D in-
terface.

Figure 8. The GUI of the spatium·rotation interface.

5.2 Kinematic spatialization

Kinematic spatialization is the spatialization of sound whose
control is focused on the geometry of motion (e.g., posi-
tion, velocity, acceleration), without considering external
causes for this movement. They are thus closer to some
more traditional interfaces for spatialization. The spatium·
polygonalChain2D interface, visible on Fig. 7, enables the
creation of a spatialization path as a polygonal chain, that
can be saved and retrieved for further editing. After cre-
ating the polygonal chain, the user can perform the move-
ment by moving a horizontal fader with the mouse or by
controlling its position along the timeline via OSC. With
the spatium·rotation interface, visible on Fig. 8, one con-
trols the angular acceleration on a horizontal plane, with
controllable elevation and radius. The movement acceler-
ates clockwise or counter clockwise, moving with either
variable or uniform acceleration, when the fader is respec-
tively moving or left in a fixed position, or with constant
angular velocity, when the fader is reset to 0.

5.3 Gestural spatialization

Gestural spatialization refers to both the kind of interface
and to the relation established between the spatialization
and the musical gestures. The gestural spatialization inter-
faces focus on direct, real-time control over the spatializa-
tion particle. The spatium·linearRotation interface has a
similar GUI to that of the spatium·rotation interface, visi-
ble on Fig. 8, with the topmost fader now directly control-
ling the azimuth, with two complete revolutions available.
The main purpose is to facilitate the control over the ro-
tation of the spatialization particle using the mouse, which
we found to be easier to accomplish using a linear fader in-
stead of a circular controller. With spatium·trackpad, one
can use the laptop’s trackpad as an absolute positioning

touch controller. It controls solely one spatialization parti-
cle, as we found the trackpad too small for multi-particle
control. The spatium·controlOSC interface has two modes
that enable the use of Control [29], a free, open source and
customizable touch controller that runs on both iOS and
Android and outputs OSC via Wi-Fi. The first mode, called
multitouch, is optimized for a tablet and enables the direct,
multi-touch control over up to 16 channels in a 2D space.
The second mode, called gyroscope, enables the control of
the spatialization particle’s position in a 3D space by point-
ing to the desired physical location with, e.g., an iPhone or
Android phone.

6. PLUGINS

Both the Audio Unit plugin and the Max for Live devices
developed for spatium are not actual audio effects and pass
the audio untouched to the output. They simply send their
parameters via OSC messages, thus enabling the recording
and synchronization of spatial information as automation
on any compatible DAW.

The spatium·track plugin can be placed in an audio track
effects chain to send its three parameters - azimuth, ele-
vation and radius - via OSC. Up to 16 instances of this
plugin, which uses the generic Audio Unit GUI, can be
used simultaneously, but only one can use a given channel
at a given time to avoid conflicting information. By setting
a spatialization interface to output Midi and configuring
the DAW’s automation control accordingly, one can record
the spatial information generated by spatium’s interfaces
on the same track as the audio being spatialized, enabling
its reproduction and further editing.

The spatium·live device receives, displays, stores and/or
controls spatialization information to be sent via OSC. It
can be used instead of spatium·track when in Ableton Live,
adding the possibility of being controlled directly via OSC.

The OSCsend is not a part of spatium, instead being a
generic device that can record up to three automatable pa-
rameters to be sent via OSC to any ip address and port. It
can be used to control spatium’s interfaces by setting the
appropriate addresses as parameters.

7. CONCLUSIONS AND FUTURE WORK

We hope that spatium can successfully facilitate the inte-
gration of spatialization in other composers’ workflows, at
the same time catalysing the emergence of new and cre-
ative approaches to sound spatialization. We have been
using it for almost a year and it has proven a trustworthy
set of tools, capable of promoting some unorthodox ap-
proaches to sound spatialization. After its initial release,
on October 2012, the feedback from the community has
been very encouraging, leading to some of the develop-
ments that we have included in this paper, such as the
spatium·panning, spatium·player and spatium·diffusion ren-
derers, the control of the interfaces’ parameters via OSC or
the Max for Live devices. Although we do not have con-
crete data on the usage of spatium, in the first month after
the release of the latest version at the time of this writing,
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in late March 2013, the website received circa 500 unique
visitors.

We plan to release new interfaces, to upgrade the still very
basic granular and spectral spatialization effects and to add
some new decoding layouts in the near future. Amongst
these, we plan to include 3D binaural rendering and po-
tentiate its utility as both a mobile composition aid and
as a distribution format. We also plan to implement the
capability of imposing audio effects into specific points
of the soundfield, as we have proposed before [7]. The
first practical uses of spatium also revealed the need for a
simple mixer that enables the amplitude manipulation and
summing of several soundfields placed on a timeline. The
spatium·panning object’s algorithm will also be expanded
with a 3D version.
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ABSTRACT

There is a strong analogy between the sinusoidal operator
used in FM synthesis, and the resonator filter. When im-
plemented in a direct-form structure, a resonator filter is
not suitable for use as a substitute for an FM operator, as
it is not stable under centre frequency modulation. Recent,
more robust resonator filter structures have made this use a
possibility. In this paper we examine the properties of this
structure that makes it appropriate for this application, and
describe how a network of these filters can be combined
to form a dynamic FM synthesis network. We discuss the
possible range of sounds that can be produced by this struc-
ture, and describe its application to a performance system
for improvised electroacoustic music.

1. INTRODUCTION

FM synthesis [1,2] and resonator filters [3–5] are both ma-
ture topics in digital audio signal processing. Resonators
can in some ways be thought of as a generalisation of a si-
nusoidal oscillator that can take arbitrary input. Indeed, in
the physical world, oscillators are often resonators which
are driven in some way. Hence, we have a strong anal-
ogy between resonators and the sinusoidal operators at the
heart of FM synthesis. This raises the question – what
would an FM synthesiser-like structure constructed out of
resonators and driven by an audio-signal sound like? Digi-
tal filter design has traditionally been dominated by direct-
form topologies, which generally have poor time-varying
properties. This deficiency seems to have discouraged any
development of this idea. This situation is in contrast to
the analog synthesis world, where audio-rate modulation
of filters has been part of the standard repertoire of tech-
niques since the beginning.

Previous work on the use of time-varying linear filters
outside of audio signal processing exists [6–8], and has
recently been applied in the analysis of the behaviour of
Feedback-AM synthesis [9]. Feedback-AM synthesis can
be considered to a be technique based on time-varying fil-
ters, and this analogy has been extended to second-order
filters, including the direct-form resonator filter [10]. How-
ever, the poor time-varying stability of the direct-form fil-

Copyright: c©2013 Julian Parker et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ter means that this exploration has been limited to very low
modulation depths.

In 2003, the late Max Mathews proposed a better be-
haved implementation of a resonator based on the idea of
complex multiplication [11]. This structure is anecdotally
reported to be completely stable under modulation of its
parameters. This work has unfortunately seen little atten-
tion in the time since, although some analysis of coefficient
interpolation schemes has been performed [12]. The res-
onator design proposed by Mathews is termed the ’phasor
filter’ or the ’complex resonator’, the latter of which is the
term used hereforth.

In this work, the idea of an FM synthesiser-like configura-
tion of complex resonators is explored - with arbitrary au-
dio input and the natural decay of the resonators taking the
place of envelopes in defining the dynamic behaviour of
the sound. In Section 2, we review the complex resonator
structure, derive some useful properties of the structure,
and examine the output it produces under audio-rate modu-
lation of its centre frequency. In Section 3 we describe how
a number of complex resonators can be combined into an
FM synthesis network, and qualitatively examine the range
of sounds which this structure can produce. In Section 4,
we describe how this system has so far been applied in
practice to produce musical performance systems. In Sec-
tion 5, we conclude.

2. THE COMPLEX RESONATOR

The complex resonator is a system first introduced by Math-
ews and Smith [11]. It arises from the observation that
multiplication of a complex number by a complex coef-
ficient is equivalent to rotation around the origin on the
complex plane. If we take a complex number x = reiθ

and multiply it by itself, the result is x2 = r2e2iθ. If we
repeat the multiplication n times, we have xn = rneniθ.
It should be clear that this process represents a continuous
rotation around the origin. If |x| < 1, this motion is an
in-going spiral. If |x| > 1, the motion is an out-going spi-
ral. If |x| = 1, the motion is a circle around the origin.
We can see that this circular motion is analogous to a res-
onance, with the angular velocity of the motion (defined
by θ) being the frequency of the resonance. We can write
this process as a pair of difference equations in terms of the
real and imaginary parts of the product, and hence derive a
system that looks very much like a digital filter:
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xRe[n+ 1] = r cos(θ)xRe[n]− r sin(θ)xIm[n],

xIm[n+ 1] = r sin(θ)xRe[n] + r cos(θ)xIm[n] (1)

If we add an input u[n] to the real part, and take an output
y[n] from the imaginary part we can write the system in
state space form:

x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] (2)

where

A =

[
r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

]
,B =

[
1
0

]
,C =

[
0 1

]
As we intend in this paper to use the system as a resonator

and not as a pure oscillator, it makes sense to parameterise
r in a more intuitive way. Instead, we would like to specify
a decay time for the response of the filter. Intuitively from
understanding the system as a repeated rotation, we can see
that the reduction in amplitude at each sample step is given
by multiplying by r. This clearly describes an exponential
decay. Therefore, we can calculate a desirable value of
r from a decay time τ , using the equation r = e−

1
τfs ,

where fs is the sampling frequency. It is also worth noting
that we can trivially convert from unity sampling period
angular frequency θ to a centre frequency with arbitrary
sampling period by the relation θ = fc

2πfs
where fc is the

centre frequency and fs is the sampling frequency.

2.1 Normalization

In the form described above, the resonator structure pos-
sesses a large gain at its resonant peak. For more pre-
dictable use of the resonator in larger signal processing
structures, particularly those involving feedback, it is de-
sirable to normalize the filter so that its peak gain is unity.
Also, since we are planning on modulating the filter’s cen-
tre frequency at audio rate, any fluctuations in peak am-
plitude will introduce additional sidebands due to ampli-
tude modulation. The normalisation should minimise this
problem. First, the system is expressed in transfer function
form:

Hres(z) =
r sin θz−2

1− 2r cos θz−1 + r2z−2
(3)

Assuming unity sampling period, and that the peak gain
is at the specified centre frequency of the filter (which is
correct apart from very close to DC or Nyquist, where the
poles interfere with each other), we have:

Hres(e
iθ) =

r sin(θ)e−2iθ

1− 2r cos(θ)e−iθ + r2e−2iθ

=
r sin(θ)

(1− r)(e2iθ − r)
(4)
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Figure 1. Extract from output of modulated complex res-
onator, excited with an impulse. Time-domain behaviour
at a point near to the start of the decay (top), 4096 sample
STFT taken at same point (bottom).

and therefore

|Hres(e
iθ)| =

∣∣∣∣ r sin(θ)

(1− r)(e2iθ − r)

∣∣∣∣
=

√
r2 sin2(θ)

(1− r)
√
(cos(2θ)− r)2 + sin2(2θ)

=
r
√

1
2 (1− cos(2θ))

(1− r)
√
1 + r2 − 2r cos(2θ)

. (5)

This expression could be used to normalize the peak gain
of the filter to unity, however it is rather complex and cal-
culating it every time the coefficients are updated would
be computationally expensive. With some further analysis,
we can construct a simpler approximation to this expres-
sion. By observation, we can see that the maxima of the
magnitude should occur at θ = π

2 . Taking a Taylor expan-
sion around this point, we have:

|Hres(e
iθ)| ≈ r

1− r2
− (1− r2)

2(1 + r)3

(
θ − π

2

)2
+O

[
θ − π

2

]3
(6)

Examining the first two terms of the series, we see that
as r → 1,

∣∣∣ r
1−r2

∣∣∣ � ∣∣∣ (1−r2)
2(1+r)3

∣∣∣. The same is true of the
higher-order angle-dependent terms. For the purposes of
this work, the resonator is generally used with τ on the
order of 0.01 seconds and upwards. This corresponds to a
resonance of r = 0.9977 or higher at a sampling rate of
44.1kHz. Therefore, for these purposes we can make the
approximation

|Hres(e
iθ)| ≈ r

1− r2
(7)

which can be used to normalize the peak gain of the res-
onator. The peak gain will still fall to zero when the centre
frequency is exactly at DC, but the normalization holds un-
til very close to this point.

It is also possible to exactly normalise the filter with re-
spect to varying centre frequency by using the method de-
scribed by Smith et al. [3], and inserting two zeros at z =
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±
√
r. This would be achieved by adding an un-attenuated

path from the input to output of the system, and by in-
verting the input to the first state and dividing it by sin(θ).
However, this multiplication is problematic as it results in a
divide-by-zero when the centre frequency is exactly at DC.
Given that we may want to allow the centre frequency to
take on negative values (to allow large modulation depths),
this is unacceptable. This method also produces extremely
large signal values at the input to the first state when the
centre frequency is close to DC, which will cause numeri-
cal issues in fixed-point architectures.

2.2 Time-varying stability

As the filter will be modulated at audio rate, it is wise to
examine its stability under time-varying conditions. In-
tuitively, it seems that it should be stable under arbitrary
modulation of r and θ as long as |r| < 1, as the rota-
tion that these parameters represent will always be fol-
lowing an in-going spiral. We can express this formally
by applying the sufficient (but not necessary) condition
for bounded-in bounded out (BIBO) stability of a time-
varying filter described by Laroche [13] – which is that
||A(n)||2 =

√
λmax(A∗A) < 1, ∀n where ∗ denotes the

conjugate transpose and λmax is a function which returns
the maximum eigenvalue of its argument. ExaminingA in
the case of the complex resonator, we have:

||A(n)||2 =
√
λmax(A∗A)

=

√
λmax

(
r2 cos2(θ) −r2 sin2(θ)
−r2 sin2(θ) r2 cos2(θ)

)
=
√
r2 (8)

which gives us the condition that |r(n)| < 1, ∀n which
in this case is simply the normal time-invariant stability
condition of keeping the eigenvalues of the state transition
matrix within the unit circle.

2.3 Output of a frequency modulated complex
resonator

Figure 1 shows a small extract from the signal produced by
a resonator when the centre frequency of fc = 1028 Hz is
modulated with a 642 Hz sinusoid with a modulation depth
of 998Hz. The decay time τ of the filter is 2 seconds. The
filter is excited with an impulse. Note that we use absolute
modulation depth to denote the amount of modulation, as
the usual FM synthesis concept of modulation index is not
meaningful in the general case where we do not know the
content of the modulating signal.

The sound is like that of a simple struck bell. The re-
sponse has an exponentially decaying envelope, as would
be expected in the case of an unmodulated resonator. Us-
ing a different signal as input allows a variety of dynamic
behaviours. As the bandwidth of the filters is very narrow,
only very little of the input sound is recognisable. The in-
put acts more as a way of controlling the amplitude and
spectral balance of the output signal, with the sound out-
put being dominated by distributions of sidebands of the

carrier frequency (in this case centre frequency) consistent
with those present in standard FM synthesis [1, 2].
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Figure 2. Waveform and spectrogram of cascaded four-
resonator system, excited by an impulse.

3. RESONATOR FM NETWORKS

We define a resonator FM network as a vector S of res-
onator systems parameterised by a time-invariant (or slowly
changing) centre frequency fi, a time-varying frequency
offset ai and a decay time τi.

S =


S1(f1 + a1, τ1)
S2(f2 + a2, τ2)

...
Si(fi + ai, τi)

 (9)

This vector of systems has a state space representation of
its own, given by:

χ[n+ 1] = α[n]χ[n] + βu[n]

υ[n] = cχ[n] (10)

where

χ =


x1
x2
...
xi

 , υ =


y1
y2
...
yi

 ,α =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ai

 ,

β =


b1B 0 . . . 0
0 b2B . . . 0
...

...
. . .

...
0 0 . . . biB

 , c =


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 .

(11)

The xi are the individual state vectors of each filter. The
Ai are the state update matrices. The yi are the filter out-
puts. B and C are as defined in (2), and the bi are the
coefficients representing the gain of the input signal to the
input of each filter. We also define an expression for the
overall output of the parallel systems:

Y [n] = κ · υ[n] (12)
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Where κ is the time-invariant (or slowly varying) vector of
output mixing coefficients κi.

The vector a of centre frequency offsets is calculated from
the output of the resonators as follows:

a[n+ 1] = Γυ[n] (13)

We term Γ the FM feedback matrix. Since the outputs υ
are bounded by the maximum amplitude of the input signal
(and likely much lower), the elements of Γ must be quite
large – of the order of the depth of frequency modulation
in Hz required. In fact, they are not absolute modulation
depths but instead place an upper bound on the depth of
modulation of a particular resonator by a particular output.

The behaviour of the system is governed by the vector of
centre frequencies f , decay times τ and Γ. Since each in-
dividual resonator system has unity peak gain and is com-
pletely stable under coefficient modulation, the overall sys-
tem should also remain stable regardless of the values of
Γ. We can also make some general observations about the
relationship between the output of the system and the con-
tent of Γ. For example, ||Γ|| gives a measure of the overall
depth of modulation, and hence the extent of the FM side-
bands and the complexity of the timbre. Feedback loops
are generated by entries along the diagonal of Γ, and also
by symmetrical patterns in the upper and lower triangular
parts. When Γ contains only entries in the upper or lower
triangular part of the matrix (with the diagonal empty), the
system will be in a purely feedforward configuration.

Note that there is no connection between the outputs of
the resonators and any of the inputs of the resonators. All
of the resonators are excited only by the general input sig-
nal, albeit with different weightings. This is a specific
choice, and is crucial to the use of the system as a mu-
sical instrument as it means that the overall envelope of
the output of the system is predominantly a function of the
input and the resonator ringing times. A user can therefore
interact with the system in a relatively predictable way, in
that it only produces sound when some kind of excitation
is provided.

3.1 Results

Figure 2 shows the output of a system of four resonators
configured in a simple feedforward configuration and ex-
cited by an impulse. The centre frequencies are distributed
irregularly, and the modulation depths are around 1000Hz.
The resulting sound is reminiscent of the idiophones used
in Indonesian Gamelan music. Exciting the system with a
more complex signal produces strong dynamic behaviour.
Low amplitude inputs sound like brushing or blowing on
a complex resonant object. Stronger inputs produce ex-
tremely dissonant and non-linear behaviour (although the
system remains technically linear, just not LTI).

The dynamic behaviour of the sound is completely de-
pendent on the nature of the input signal, and the natural
exponentially decaying envelope of the resonators. This
imparts a more organic quality to the sound than the pre-
cisely defined envelopes used in traditional FM synthesis.
Standard FM synthesis strategies can be used when decid-

ing on the topology of connections between resonators and
their centre frequencies.

4. APPLICATIONS

LeakDC
Compar 1

Compar 3

Compar 2

room mic

feedback

performance space

Compressor

Reverb

Mix

Mix

Lowpass

Limiter

ComplexRes 
network

ventilation
cushion

Figure 3. Overview of the performance setup.

The above described resonator network was implemented
for practical use, and applied in a performance situation.

4.1 SuperCollider implementation

The complex resonator filter was implemented as a unit
generator plugin (UGen) for SuperCollider 1 [14]. It has
the interface

ComplexRes.ar(in, freq, decay)

where in is the source signal, freq the resonance fre-
quency θ and decay the decay time τ in seconds.

Both SuperCollider code and sound examples for such
networks can be found at the webpage accompanying this
publication. 2

4.2 Performance setup

The SuperCollider ComplexRes implementation was used
in two consecutively developed setups: Compar is a feed-
forward resonator network featuring three ComplexRes
nodes. Its successor ComparFeedback implements an FM
feedback matrix. The number of nodes can be set when
defining the synthesis engine. ComparFeedback imple-
ments a superset of the Compar system.

In both designs, the complex resonator network was em-
bedded in a network of other processing structures. To re-
move unwanted DC offset, the input signal is processed
by a high-pass filter (LeakDC). After a mixing stage in
which the filter output is combined with the (low-passed)
raw signal, it is fed through a compressor and processed by

1 http://supercollider.sourceforge.net/
2 http://tai-studio.org/index.php/projects/

complexres/
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a reverberation unit. A schematic overview of the setup is
displayed in Figure 3.

Due to the increased complexity of the ComparFeedback
unit, it became evident that an extended graphical user in-
terface is needed compared to that for Compar (see Fig-
ure 5). However Compar features, despite its limitations
compared to ComparFeedback, a unique way of perfor-
mance which makes it a valuable instrument of its own.

Figure 4. Cushion-shaped musical interface made of con-
ductive yarn.

Both Compar and ComparFeedback were used as core
parts of a feedback-based performance setup, similar to
that described by Di Scipio in its general form [15]. These
performance systems were designed and implemented as
part of the project Electronic Music Practice for Neuro-
diverse People 3 . As shown in Figure 3, three copies of
the synthesis engine were used, each with a different in-
put: Compar 1 connected to a microphone placed in the
performance place, Compar 2 was wired to a contact mi-
crophone attached to a ventilation outlet, and Compar 3
processed the input of a cushion-shaped musical interface
made of conductive yarn which, when touched, renders a
noisy electrical signal (see Figure 4). The latter served as
a source of direct interaction with the sound.

The combination of all three elements created a drone-
like soundscape, grounded in the acoustic features of the
environment in which it was played. Particularly, the room-
modes of the performance space and the resonating fre-
quencies of the (already prominent) ventilation system had
a large impact on the resulting sounds. The setup was in-
spired by works such as Tudor’s Rainforest IV (1973) and
Lucier’s Music on a Long Thin Wire (1977).

Parameters such as input gain, filter frequencies, modu-
lation depths, decays and reverberation were controlled by
the artist during performance. Overall, the implemented
systems reacted in a stable manner and were intuitive to
play. Sonically, it created organic, FM-like sounds that
were highly dependent on the sound colour of the input
source: If noisy (e.g. in the case of the cushions), the re-
sulting sounds were noisy, too; the filter network mostly

3 http://tai-studio.org/index.php/projects/
deind/

Figure 5. ComparFeedback (left) and Compar GUI (right)

altered the noise colour and added short tonal elements. If
the input has a less noisy character the FM becomes much
more prominent, adding distinctive sidebands to the out-
put.

freq1

fm1

decay1
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decay2
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decay3
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Complex
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Figure 6. FM network in the Compar synthesis engine.

5. CONCLUSIONS

In this work the complex resonator filter has been exam-
ined, and results derived which are useful when applying
it in a time-varying context. These results are an approx-
imate normalisation of the filter to unity peak gain, and
a derivation of the stability condition for the filter under
parameter modulation. A new structure for dynamic FM
synthesis was proposed, based on an arbitrary number of
these filters configured to frequency modulate each other,
and a formal description of this system given. The system
is able to produce sounds within a very wide timbral space,
and possesses a unique organic quality due to the natural
exponential decay of the resonators and the use of audio
input as excitation. The resonators were implemented as a
SuperCollider UGen, and networks constructed from them
within this environment. The resulting tools were applied
within a performance system where the resonator network
is excited by both the environmental sound of the space of
the performance, and the signals generated by a cushion
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made of conductive thread.
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of second-order feedback AM synthesis,” in Proc. of
the Int. Computer Music Conf. (ICMC), Huddersfield,
2011.

[11] M. Mathews and J. O. Smith, “Methods for synthe-
sizing very high Q parametrically well behaved two
pole filters,” in Proceedings of the Stockholm Musical
Acoustics Conference (SMAC 2003), Royal Swedish
Academy of Music, August 2003.

[12] D. Massie, “Coefficient interpolation for the Max
Mathews phasor filter,” in 133rd Convention of the Au-
dio Eng. Soc., 2012.

[13] J. Laroche, “On the stability of time-varying recursive
filters,” J. Audio Eng. Soc., vol. 55, no. 6, pp. 460–471,
2007.

[14] J. McCartney, “Rethinking the computer music lan-
guage: SuperCollider,” Computer Music J., vol. 26,
no. 4, pp. 61–68, 2002.

[15] A. Di Scipio, “Listening to yourself through the oth-
erself: On background noise study and other works,”
Organised Sound, vol. 16, no. 02, pp. 97–108, 2011.

673

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



Reconfigurable Autonomous Novel Guitar Effects (RANGE)

Duncan MacConnell
Computer Science

University of Victoria
Victoria, BC

duncanmacconnell@gmail.com

Shawn Trail
Computer Science

University of Victoria
Victoria, BC

trl77@uvic.ca

George Tzanetakis
Computer Science

University of Victoria
Victoria, BC

gtzan@cs.uvic.ca

Peter Driessen
Electrical Engineering
University of Victoria

Victoria, BC
peter@ece.uvic.ca

Wyatt Page
Electrical Engineering

Massey University
Wellington, NZ

w.h.page@massey.ac.nz

ABSTRACT

The RANGE guitar is a minimally-invasive hyperinstru-
ment incorporating electronic sensors and integrated digi-
tal signal processing (DSP). It introduces an open frame-
work for autonomous music computing eschewing the use
of the laptop on stage. The framework uses an embed-
ded Linux microcomputer to provide sensor acquisition,
analog-to-digital conversion (ADC) for audio input, DSP,
and digital-to-analog conversion (DAC) for audio output.
The DSP environment is built in Puredata (Pd). We chose
Pd because it is free, widely supported, flexible, and ro-
bust. The sensors we selected can be mounted in a variety
of ways without compromising traditional playing tech-
nique. Integration with a conventional guitar leverages es-
tablished techniques and preserves the natural gestures of
each player’s idiosyncratic performing style. The result is
an easy to replicate, reconfigurable, idiomatic sensing and
signal processing system for the electric guitar requiring
little modification of the original instrument

1. INTRODUCTION

Electric guitar players have utilized audio effects since their
inception. An extensive variety of DSP guitar effects are
offered commercially, some of which even provide a code
environment for user modification of DSP algorithms 1 ;
however, in most cases the functionality of these devices is
specific and their programmability is limited. These com-
mercial audio effects are typically implemented either as
foot pedals or as separate hardware devices. An alterna-
tive is the use of a laptop and audio interface to replace
the dedicated guitar effects. This approach is generic in
the sense that any audio effect can be implemented as long

1 http://line6.com/tcddk/

Copyright: c©2013 Duncan MacConnell et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

as the computer is fast enough to calculate it in real-time.
Using a laptop is also completely open, flexible, and pro-
grammable. However such a setup requires more cables,
more power, and is cumbersome to transport and awkward
on stage [1]. In both of these cases (dedicated hardware
or laptop) the control of the effects is separated from the
actual guitar playing as shown in Figure 1.

Figure 1. Typical guitar effect Interaction - note the sepa-
ration of guitar playing vs. effect manipulation

2. RELATED WORK

Historic examples include the Guitarorgans, the analog
synth controller Stepp DGX MIDI guitar 2 , and the Roland
G 303. Systems for mobile devices acting as the DSP host
have also become common 3 .

Augmented guitars have also been explored. MIT′s Chameleon
Guitar has multiple soundboards, each equipped with piezo
sensors and DSP filtering to simulate the guitar tones of-
fered from different wood [2]. Another example, the Moog
Guitar, is an electric guitar with onboard sliders that con-
trol augmentation of the guitar′s traditional sound by send-
ing electro-magnetic energy into strings. This allows for
infinite note sustain, while similarly pulling energy from
the strings creates short staccato sounds. Edgar Berdahl
introduced a similar idea in his Feedback Guitar [3].

The DUL Radio [4] from the Center for Digital Urban
Living at Aarhus University, Denmark is a wireless ac-
celerometer sensor package designed for artist’s to use with

2 http://www.stepptechnologies.co.uk/
3 http://www.incidentgtar.com/,

http://www.misadigital.com/
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Puredata (Pd) [5] or MAX/Msp 4 . The group demonstrates
the device by attaching an accelerometer to the headstock
of the guitar for 3D gesture tracking. This makes for an
easily removable, modular solution for 3D gesture track-
ing. Unfortunately we were not able to integrate it with
the RANGES system at this time because of our LINUX
requirement which isn’t supported by the DUL drivers at
this time.

3. MOTIVATION

In designing an augmented guitar instrument, considera-
tion must be taken to ensure the extensions do not inhibit
traditional guitar technique. Effort should be made to cre-
ate intuitive control interfaces that take advantage of the
guitar player’s natural performance technique. Traditional
audio effect units and commercial DSP solutions tend to
disregard this, forcing the musician to interact with mu-
sical parameters by way of non-musical gestures: turning
a knob or adjusting a fader [6]. This conflicts with the
guitarist’s normal gestural interaction, fails to convey any
meaningful event information, and can even act as a dis-
traction for the audience [7].

There has always been a union of guitar and effect de-
spite a separation of guitar playing and effect control. To
address this issue, we have integrated minimally invasive
sensors on the body of the guitar to allow natural and intu-
itive DSP control. The RANGE system was designed for
use in performance contexts to allow guitar players more
expressivity in controlling DSP effects than conventional
pedal controllers provide.

The proximity of the sensors to the guitarist’s natural hand
position is important, as it allows the guitarist to com-
bine DSP control with traditional guitar playing technique.
Like the Moog Guitar, the sensors sit flat on the guitar
body, eliminating any interference with a guitarist’s perfor-
mance technique. Further, we have reduced the hardware
dependencies, cabling, and power requirements to a mini-
mal footprint. Design goals were motivated by the desire
to shift away from the cumbersome and distracting laptop
on stage in exchange for a smaller, open architecture. This
framework is designed to take advantage of low-cost elec-
tronic components and free open-source software, facili-
tating reconfiguration and adaptation to the specific needs
of different instruments and musicians.

4. SYSTEM DESCRIPTION

The RANGE system is based on a framework for develop-
ing robust hyperinstrument prototypes, which provides au-
dio input, output, and sensor acquisition. The framework
itself provides a completely open platform for designing
and testing hyperinstruments. The hardware and software
components that comprise this system are modular in na-
ture and the configuration is designed so that any user can
adapt this work for their own use. For this implementa-
tion, the sensor interface consists of three membrane po-
tentiometer strips mounted on the body of the guitar which

4 http://cycling74.com/

feed into the analog inputs of the embedded Linux com-
puter. We have selected the Beaglebone 5 for it’s flexibil-
ity and low cost. The guitar’s audio signal goes directly
into the Beaglebone for analysis and processing using an
Audio Cape for ADC/DAC. Pitch tracking is performed on
the incoming audio signal using Fiddle [8] and used to gen-
erate control data. The control data and DSP is managed
in Pd. The potentiometer outputs are mapped to contin-
uous controller values that modify the parameters of ef-
fect parameters, oscillators, and filters. These potentiome-
ters offer the guitarist a broad range of interface solutions
and sound design possibilities in a small embedded format
that has previously been only possible with a laptop. The
system has relatively low cost (all prices in US dollars):
Beaglebone (89), audio cape (58), and membrane sensors
(3× 13 = 39) for a total of 186 USD.

Figure 2 shows a schematic diagram of the system.

Figure 2. Schematic of RANGE

4.1 Analog Sensor Input

Membrane potentiometers are a common sensor for cap-
turing musical data, and are often incorporated into hyper-
instrument design. Adrian Freed [9] provides a detailed
look at force sensing resistors, membrane potentiometers,
and other sensors. His ”Many and DuoTouch Augmented
Guitar Prototype” 6 provides simple and elegant circuit
solutions to achieve desired sensor behaviour for musical
applications. The RANGE guitar is equipped with three
50mm SoftPot membrane potentiometers. These sensors
are arranged on the body of the guitar, near the volume and
tone controls. This arrangement allows the guitarist to eas-
ily access the sensors, and the orientation affords comfort-
able interaction. The sensors are limited to the body of the
guitar corresponding to the expressive hand of the guitar
player. The expressive hand, responsible for the rhythm
and dynamics of the guitar, is most suited for acute sen-
sor control. In addition to the three touch sensors, toggle
switches are also mounted to the guitar to provide a simple
method for switching software state.

Traditional potentiometers use the position of a sliding
wiper to determine resistance. Membrane potentiometers
function similarly, providing a variable resistance level based
on the position of the user′s finger. The main difference is

5 http://elinux.org/BeagleBone
6 http://cnmat.berkeley.edu/user/adrian_freed/

blog/2009/05/09/AugmentedGuitar
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that membrane potentiometers only allow current to flow
when the membrane is pressed, and so the value is lost
when the user′s finger is removed. The RANGE′s sensor
input behaviour must be consistent and stable in order to
be used musically. Specifically, the instrument design re-
quires that the analog input values remain when the mem-
brane is not pressed.

In order to secure a stable and usable signal from the
membrane potentiometers, pull-up resistors are used. This
forces the potentiometer to open circuit when the finger is
removed. A simple software solution is used within Pd
for detecting when the membrane is forced open, and the
previous buffered value is retained. Figure 3 shows the
corresponding circuit.

Figure 3. Membrane Potentiometer Circuit

4.2 Hardware, Software, and Latency

The RANGE uses a Beaglebone microcomputer, which pro-
vides on-board GPIO and ADC pin access, as well as UART,
I2C and SPI. It features an ARM 600 MHz Cortex-A8
core using the ARMv7-Architecture, as well as full USB
and Ethernet support. The Beaglebone is becoming widely
supported in the embedded computing community [10],
and many expansion ”Capes” are being developed to pro-
vide an array of hardware interaction opportunities. The
Beaglebone Audio Cape provides audio input and output
by way of two 3.5 mm connectors, and supports sampling
rates up to 96 kHz for capture and playback by way of the
cape’s TLV320AIC3106 codec. The system described pro-
vides a complete DSP platform, allowing users to connect
to the Beaglebone via ethernet for rapid interface prototyp-
ing.

The Beaglebone hardware ships with the Linux Angstrom
Cloud9 operating system, however many users have expe-
rienced unsatisfactory audio output quality. For this frame-
work, Ubuntu 12.04 was used, which facilitates Pd instal-
lation and interfaces well with the audio codec provided
by the Beaglebone Audio Cape. To provide access to the
Beaglebones GPIO and ADC pins, a Pd external has been
developed. The ADC provides 12-bit values, which are ac-
cessed by the external by directly reading the correspond-
ing files in the userspace. The external is designed to report
analog and digital pin values each time the object receives
a “bang” message. In this way, pin values can be obtained
at any rate, and can be coupled with other musically timed
events within the patch. The control data is not altered in
any way by the external that retrieves it, as it is meant to
make any sensor’s data available within Pd.

Control of digital audio effects has been a desired func-
tion of the RANGE from its inception. The stable sensor
values allow for reliable control, while placing the sensors
directly on the body allows the guitarist faster and more
intuitive interaction. Analog values obtained by the Pd ex-
ternal can be scaled and mapped to any control. Therefore
specific effect parameters (delay length, feedback level, fil-
ter frequency, etc.) are adjusted by the touch potentiome-
ters. This simple prototyping system is robust but offers a
lot of flexibility and potential. The potentiometers can also
provide an intuitive control interface for synthesis appli-
cations. Some novel applications include controlling os-
cillator frequency, filter frequency/bandwidth, MIDI note
attribute, and envelope values (attack, decay, sustain, re-
lease). This application allows the RANGE to be used as
a versatile synthesizer controller while the guitar can still
be played as usual. Figure 4 shows an example mapping,
with sensor input controlling a typical electric guitar ef-
fect chain on the left and common DSP applications on the
right.

Figure 4. Common Guitar Effect Setup Built in Pd

In contrast to pure controller approaches that utilize a lap-
top for DSP, our goal is to use the Beaglebone for both
control and DSP. Many modern guitar effects are actually
internally implemented using a dedicated embedded DSP
chip even though to a guitar player they appear similar to
traditional analog pedals. RANGE makes this DSP func-
tionality accessible providing a wide range of possibilities
for both digital audio effects and their control. In order
to be a viable platform for this purpose it is critical that
the overall system latency is appropriate for music appli-
cations. The framework provides simple sensor and audio
throughput, using Pd with the ALSA API.

For latency tests, it is important to perform measurements
under different system (CPU/DSP) load applications [11].
For our system, all tests were performed in the “normal
state” (audio throughput, no effects processing) as well as
the “use state” (audio throughput, effects processing). In
the normal state, audio latency for the system corresponds
to the audio delay set by Puredata. With Puredata set to 10
ms audio delay, we measure a total system delay of 10 ms.
With effects engaged, the use state latency is measured at
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12 ms. This difference can be attributed to the system load
increase from the signal processing. For pitch analysis,
normal and use state behaved the same, measuring a total
pitch analysis latency of 15 ms. All results reflect usable
latency levels, for audio applications, as they approach the
general latency goal of 10 ms [11, 12]. Figure 5 shows the
audio and pitch-tracking latency.

Figure 5. Audio Latency Measurements

5. CONCLUSIONS AND FUTURE WORK

RANGE successfully presents a reconfigurable, autonomous,
and novel DSP and sensing framework for the guitar. The
RANGE system has been used in concert several times,
and has proved to be a novel, satisfying method of DSP
interaction for the author who is a touring guitar player
and computer musician. We plan to conduct a user study
contrasting the proposed approach with a traditional elec-
tric guitar effect setup. We also plan to investigate poly-
phonic transcription using a surrogate sensing approach
[13]. Lastly we intend to extend the platform to support
magnets for robotic guitar string actuation building on the
previous work by Berdahl [3], McPherson [14], on electro-
magnetic actuation of stringed instruments. Media related
to the RANGE system can be viewed here 7 .
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ABSTRACT

Modern digital multimedia and internet technology have

radically changed the ways people find entertainment and

discover new interests online, seemingly without any phys-

ical or social barriers. Such new access paradigms are in

sharp contrast with the traditional means of entertainment.

An illustrative example of this is live music concert perfor-

mances that are largely being attended by dedicated audi-

ences only.

This papers introduces the PHENICX project, which aims

at enriching traditional concert experiences by using state-

of-the-art multimedia and internet technologies. The project

focuses on classical music and its main goal is twofold:

(a) to make live concerts appealing to potential new au-

dience and (b) to maximize the quality of concert experi-

ence for everyone. Concerts will then become multimodal,

multi-perspective and multilayer digital artifacts that can

be easily explored, customized, personalized, (re)enjoyed

and shared among the users. The paper presents the main

scientific objectives on the project, provides a state of the

art review on related research and presents the main chal-

lenges to be addressed.

1. INTRODUCTION

In the current digital age, access to recorded music is read-

ily available. This makes it very easy to serendipitously get

confronted with unknown music genres on (social) stream-

ing services. However, barriers can be experienced to re-

ally go out and experience a live performance of such an

unknown music genre: the walls of an unknown concert

venue put up a physical barrier, and at the local etiquette

of the social community that identifies most strongly with

the performed music puts up a social barrier. If people who

would be interested in exploring live performances of un-

familiar music will be faced with an isolated, imposed and

standardised concert situation they do not naturally iden-

tify with, they thus will remain ’outsiders’ to the music

and its entourage.

Present-day technologies can change the way we access

and enjoy musical concerts today. A wealth of musical

Copyright: c©2013 Gomez et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

information is available on the web, ranging from artist in-

formation to scores and lead sheets or other related infor-

mation about musical pieces. Employing automated anal-

ysis techniques, it is possible to find a way through all this

supporting information, tailored to our backgrounds and

interests. Linking this to live concert performance data, an

enriched and deepened experience of the performed music

can be created in a personalised way. This can trigger our

curiosity to see more of such performances, and share the

experience over social media to our friends who then can

pick up interest in this as well.

Following these considerations, the PHENICX project was

conceived. It focuses on researching how to improve the

accessibility of live music concert performances by ad-

dressing two main objectives:

Transforming live music concert performances into

enriched multimodal, multi-perspective and

multilayer digital artefacts

With multimodal, we mean different musical modalities,

such as audio, video, and symbolic scores. With multi-

perspective, we mean that a concert performance can be

considered from different viewpoints: physical viewpoints

in a concert hall and different user perspectives depen-

dent on their backgrounds and intents. With multilayer,

we mean that multiple music concert performance descrip-

tors can be relevant at the same time, working at differing

levels of specificity (e.g. requiring general or sophisticated

musical knowledge) and considering different time scale

resolutions. Automated and multimodal music description

techniques are relevant to this objective, such that they will

yield meaningful descriptors from the considered musical

pieces. In our approach, performance information is char-

acterised along two dimensions: that of the musical piece

(objective descriptors, valid for any rendition of the piece),

as well as its actual performance (descriptors on individual

expressive and interpretative aspects that make one perfor-

mance different from another).

Presenting digital music artefacts as engaging digital

experiences that can be explored, (re)enjoyed and

shared in many customisable and personalised ways

For this, we need advanced user profiling and community

characterisation techniques, which will pave the way for

sophisticated personalisation techniques. Next to that, tech-

niques for dedicated and adaptive information selection and
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Figure 1. PHENICX view of a musical concert.

presentation has to be investigated, as well as interactive

opportunities for audiences to engage even more with the

performance.

By working towards these objectives as outlined above,

we can transform the current audience experience of con-

cert performances, break the physical and social barriers

and decrease the perceived distance between musical per-

formers and their concert audiences.

This transformation entirely takes place in the digital do-

main. Performing musicians themselves will therefore not

have to change their way of performing, maintaining their

original performance traditions.

2. PRACTICAL SETTING

The PHENICX project will mainly focus on Western clas-

sical music in large ensemble settings. Classical music is a

very strong example of European cultural heritage, which

suffers from very strong audience stereotypes, and the gen-

eral image of being a complex and possibly boring genre.

As such, it does not straightforwardly attract new audi-

ences, and its live performance tradition may be endan-

gered as outlined in our Motivation. As will be outlined in

the remainder of this paper, Western classical music also

poses several interesting research challenges that are not

encountered for other musical genres, and thus can help in

pushing scientific advances in music and multimedia infor-

mation retrieval forward. The project will be structured in

four different research and development areas.

Multimodal musical piece analysis: the project will re-

search on suitable analysis techniques for automatic de-

scription and enrichment of the considered musical pieces.

Multimodal musical performance analysis: the project

will also address performance aspects by extracting expression-

related features from audio signals and other modalities

(e.g. score, video), synchronizing performances with their

score and with alternative performances of the same piece,

and characterizing performer’s or conductor’s gestures.

Profiling and personalization, in order to adapt concert

experiences to different user profiles.

Exploration and interaction, as a way to enhance the

concert experience through music visualization, person-

alised musical information and interactive systems for con-

ductor/performer impersonation.

In the following sections, we discuss relevant scientific

state-of-the-art in these areas and corresponding challenges

as foreseen for PHENICX. A discussion on how these chal-

lenges can be validated in real world end-user settings will

be available in [1].

3. MULTIMODAL MUSICAL PIECE ANALYSIS

The main goal of the research related to musical piece anal-

ysis in the project is to provide the audience with meaning-

ful information about the music material played in the con-

cert, including musical descriptors (e.g. theme, melodic

line, key, structure), semantic labels (e.g. mood), similar

pieces, or links to existing online information about per-

formers, composers or instruments. Moreover, the project

will research on audio processing technologies to separate

the different sections of the orchestra from mixed record-

ings in order to allow multi-perspective listening experi-

ences.

3.1 Content-based feature extraction and similarity

Current techniques are capable of automatically obtaining

features from music recordings related to different musi-

cal facets such as melody, harmony, rhythm and instru-

mentation. These descriptors are exploited by music re-

trieval and recommendation systems to compute similarity

distances and to classify musical pieces according to e.g.

artist, genre or mood [2].

However, there is a glass ceiling in current feature extrac-

tors. The accuracy of state-of-the-art methods for audio

feature extraction does not go beyond 80% (results slightly

vary for different tasks, e.g. onset detection, genre classi-

fication, chord detection, predominant melody extraction),

even though they are not always evaluated on realistic sit-

uations (limited, e.g. to simple music material). In addi-

tion, there is a semantic gap between existing descriptors

and expert musicological analyses. For instance, similarity

algorithms have been traditionally based on low-level tim-

bre descriptors, beat tracking is not accurate for expressive

music with varying tempo, and melodic/harmonic descrip-

tors are often limited to global key, which has shown to be

poor to represent the tonal content of a musical piece. In

the foreseen project, we will research on the best strate-

gies for our particular repertoire, classical music in large

ensemble settings. We will address the limitations of state-

of-the-art methods for predominant melody estimation [3],

rhythm description [4] and tonal analysis [5] to deal with

our particular music material.

In the project, we should finally investigate to what ex-

tent differing application contexts may have different no-

tions of similarity, both from a systems and user perspec-

tive, and we will consider hybrid approaches (integrating

different descriptors and temporal resolutions) as proposed

in [6]. For example, a scholar studying a particular piece

may wish to gather many recordings of the piece and will

consider these recordings to be dissimilar in comparison to

each other, while to a novice unfamiliar with the piece, all

these recordings will sound very similar to each other, and

any differences between them are not as relevant. While
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this has not frequently been addressed in literature yet, it is

an important topic to investigate since it will influence the

ultimate success of a music information system.

3.2 Music auto-tagging

The process of automatically assigning semantically mean-

ingful labels to representations of music is known as auto-

tagging. So far, auto-tagging has mostly been performed

on the level of artists (e.g. [7, 8]) or songs (e.g. [9, 10]);

only few works [11, 12] have addressed tagging of seg-

ments within a song.

To the PHENICX project, it is useful to automatically ob-

tain descriptions for recorded performances. However, this

necessitates research beyond the current state-of-the-art.

Current methods strongly focused on pop music. In clas-

sical music, a ‘song’ will typically be much longer than

in pop music, which means that novel techniques are re-

quired to obtain segment-level descriptors. Furthermore,

the multimodal and social setting of the project allows for

additional data sources such as social tags, which can be

gathered from collaborative tagging systems, textual fea-

tures extracted from web pages or microblogs, or even sim-

ple visual features mined from images (e.g., album covers

or photographs). However, once again, if these additional

data sources were considered in previous work (which is

uncommon, since the predominant focus has been on au-

dio information only), this was in the pop music domain,

and it has to be investigated to what extent they will be

equally informative for classical music.

3.3 Linking web sources of music

In PHENICX, we will extract information about perform-

ers and instruments, aim for a multimodal approach which

enriches the presentation with videos, images and other

supporting material, including possible alternative perfor-

mances of the same piece. This means that different sources

of music information need to be linked together.

Classical music is more complex than pop music: in many

cases, we are not just dealing with songs performed by

artists, but with a piece consisting of multiple movements,

written by a composer, and interpreted by varying groups

of performing artists. In terms of Semantic Web technol-

ogy facilities, the Music Ontology [13] is a rare example of

an ontology which has been expanded to deal with classical

music, and as such will be of active interest for PHENICX.

However, in the imperfect real world, (metadata) informa-

tion on classical music may not always be cleanly and con-

sistently labeled, according to this ontology. We will hence

elaborate techniques to cope with this imperfect data.

As an example of a multimodal music information sys-

tem involving web-scale information, [14] should be men-

tioned, presenting a system offering information about sim-

ilarities between music artists or bands, prototypicality of

an artist or band for a genre, descriptive properties of an

artist or band, band members and instrumentation, and im-

ages of album cover artwork. Once again, this system tar-

gets popular music, and it should be verified to what extent

the approach will translate to the classical domain.

3.4 Multi-perspective audio description: source

localisation and separation

One characteristic of orchestral music concerts compared

to other amplified musical live performances is how sound

is propagated from the performers to the audience. Sound

sources are spread over a large stage area creating an acous-

tic image in front of the audience, which is affected then by

the acoustics of the concert hall. A recording setup might

consist principally of a stereo pair microphones placed near

the conductor.

In a typical setup, however, this stereo track can be com-

plemented with a number of ze—nithal microphones cov-

ering specific instrumental sections. These zenithal tracks

are used to find the right balance in the final mastering mix.

One of the objectives of the project consists in obtaining

the localisation of the active instruments on stage from a

set of recorded tracks. This process shall include means of

providing a source signal separation. In our scenario, we

might take advantage of additional data such as the score or

source positioning informations (e.g. instrument sections).

State of the art methods of source localisation include

beamforming techniques, which take input signals from

sensor arrays. Other specific techniques address the case of

stereo signals [15]. Regarding source separation, state of

the art techniques involve Non-negative Matrix Factorisa-

tion (NMF) and PLCA [16], but more recent techniques are

also based on signal-models that exploit musical knowl-

edge [17]. Score-informed techniques such as [18] are spe-

cially relevant in the context of the project.

4. MULTIMODAL MUSICAL PERFORMANCE

ANALYSIS

The central purpose of research related to musical perfor-

mance analysis in the PHENICX project is to give the au-

dience or music consumer deeper insights into the subtle

art of expressive performance, which is so central to clas-

sical music. This requires methods for computing expres-

sive aspects (e.g., tempo and timing) from recorded or live

performance – which in turn requires methods for align-

ing performances to scores, or to each other –, models for

explaining, predicting, and visualising expressive aspects,

and methods for recognising and characterising expressive

actions by the musicians that are not readily apparent from

the audio signal (for instance, gestures by the conductor).

The latter will also be used to devise ways of directly in-

teracting with performances via gestures.

4.1 Score-performance alignment,

performance-to-performance matching, and real-time

score following

Computing a one-to-one alignment between a performance

and another representation of the same piece is important

for several purposes in the project. We distinguish three

cases: (1) aligning a recorded performance (audio record-

ing) to the musical score (“score-performance alignment”),

(2) aligning two or more performances (audio recordings)

to each other (“performance-to- performance matching”),

and (3) aligning an ongoing performance (coming in as an
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audio stream) to the score in real time (“performance track-

ing” or “real-time score following”).

In the case of score-performance alignment, the score

is usually either rendered to audio, or acoustic features

are computed directly from the score. Most alignment al-

gorithms then use some kind of Dynamic Time Warping

(DTW) to find an optimal global alignment [19–21], or

model the musical processes via statistical graphical mod-

els [22, 23]. PHENICX will focus on the DTW approach,

starting from and improving the methods proposed in [21],

which rely on the percussiveness of the considered instru-

ments sounds. Although recent efforts towards timbre-

invariant audio features are promising [24], generalising

the above methods to the wide variety of orchestral in-

struments will require the design of new audio features, as

well as fundamental modifications to the general top-down

alignment strategy. A second class of challenges concerns

the possibility of structural differences between score and

performance, or between performances [25, 26]. We be-

lieve these problems can more easily solved in DTW-based

methods.

With respect to real-time score following, there are also

two competing approaches, again based on either (online)

DTW (OLDTW) or graphical models and probabilistic in-

ference (e.g., [27,28]. Recent research on DTW-based per-

formance tracking [25] looks extremely promising – not

only with respect to computational efficiency and low la-

tency, but also w.r.t. robustness against playing errors,

omissions and insertions.

The biggest challenge in real-time tracking of classical

music is to design more effective predictive tempo models,

for the system to be able to anticipate abrupt changes in

local tempo, or the return of the soloist or orchestra after a

long rest. Here, the above predictive performance models

will play an important role.

4.2 Explanatory and predictive computational models

of expressive performance

Despite considerable research over several decades, our

knowledge of the factors that shape musical expression is

still far from complete. Valuable explanatory models do

exist, but they tend to focus on highly specific aspects of

performance, such as the form of a final ritard [29] and the

effect of phrase structure on tempo [30]. With advances

in both sensor technology and automatic transcription of

musical audio, much more substantial empirical data is

now becoming available [31], and these now allow for a

paradigm-shift from the classical music-theory driven ap-

proach to a data mining approach, inspiring new computa-

tional models of expressive performance.

In this context, Grachten and Widmer [32] recently pro-

posed a framework for modeling expressive performance.

It allows to estimate the contribution of arbitrary features

of the musical score (including, but not limited to expres-

sive markings annotated in the score) in shaping expressive

characteristics of the performance, such as tempo, loud-

ness, and articulation. Musical features are represented as

basis functions, which are linearly combined over one or

more performances, to approximate their expressive char-

acteristics. This framework can be used for explanatory

modeling, and thereby provide the users with precise char-

acterisations and explanations (e.g. in what ways do differ-

ent ensembles perform the same piece differently?). More-

over, as a computational model, the framework also allows

for predictive modeling. Accurate hypotheses about the

shape of musical expression in a performance can improve

score-performance alignment and real-time score follow-

ing [25].

4.3 Gesture recognition

The purpose of gesture recognition in the project is to pro-

vide additional insight into how expressive performances

are realized, and to facilitate interactive music-making sce-

narios. In the literature on the recognition of body gestures,

we can distinguish two main approaches: Machine learn-

ing (usually supervised – e.g., [33]) and analytical tech-

niques. The analytical description of gestures in order to

recognise them is the most used technique right now in

commercial applications and devices that require gesture

recognition. Other frameworks allow describing the ges-

tures rather than program them directly, as in [34] that al-

lows this description in a form of regular expressions.

In PHENICX we will consider an analytical approach to

recognise the principal components of specific symbolic

gestures for different instruments using a composition tech-

nique and an agent-based framework [35], as well as gen-

eral features of the whole body movement, and try to recog-

nise concurrent performances of these gestures at the same

time for multi-user interaction. More precisely, in the field

of studying body movement of music performers we can

find several approaches, like recording precise movement

of a violin bow to synthesise its sound [36] or (more related

to our approach) studies about “Air playing” [37]. Our re-

search will try to link body movements and gestures to high

level properties of music, such as loudness, tonality, tempo

and note density.

5. PROFILING AND PERSONALISATION

PHENICX strives to offer personalised music experiences.

This means that adequate user and recommendation mod-

els need to be set up.

An important direction to consider here is that of profiling

and personalisation through social media mining, in which

we build forth on techniques proposed in existing work in-

cluding [38–41]. Of these references, only [41] explicitly

deals with music recommendation, showing that users pre-

fer social recommendations (taking into account friends)

over non-social ones, and that social recommendations are

particularly well-suited to discover relevant and novel mu-

sic. However, the proposed user model is relatively coarse.

Furthermore, in general it is important to realize that apart

from general taste, a person’s preference for a certain item

will also be influenced by ad hoc context and search intent.

In existing music-related work, the concept of ‘context’

has been defined and addressed in varying ways. In [42], a

study is presented investigating if and how various context

factors relate to music taste (e.g., human movement, emo-
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tional status, and external factors such as temperature and

lighting conditions). Other work involving context e.g. in-

cludes temporal context [43], listening history and weather

conditions [44], walking pace or heartbeat rate [45,46], ge-

ographical location [47], and driving circumstances [48].

As for the latter work, while eight different contextual driv-

ing factors are considered, the application scenario is quite

restricted and the system relies on explicit human feed-

back. In PHENICX, upon establishing relevant context

factors to the practical application scenarios of interest, we

will rather aim to rely on implicit user feedback to adhere

to the requirement of unintrusiveness, which is a prerequi-

site for wide user acceptance.

The concept of ‘intent’ deals with the ‘why’ behind an ac-

tion. In terms of information search, moving beyond tex-

tual search, search intent is now increasingly being stud-

ied for the image and video domains, e.g. [49, 50]. In

PHENICX, we strive to make another step forward in this

field, by explicitly studying and considering search intent

and particular information needs in the music domain as

well.

Finally, there are two recommendation aspects which have

not been studied extensively yet, but are well-known and

deserve closer examination within our project. First of all,

especially if different performances of the same piece are

considered to be different entities in a recommender sys-

tem (e.g. because the metadata does not fully match), ‘long

tail’ issues [51] will occur, in which many musical items

will have relatively low consumption counts. Furthermore,

we wish to advance towards serendipitous findings, build-

ing forth on a model for serendipitous music retrieval and

recommendation proposed by Schedl et al. [52], and estab-

lishing proper evaluation methodologies for this [53].

6. EXPLORATION AND INTERACTION

In the area of exploration and interaction, the project will

research on two different areas. The first one is to pro-

vide meaningful visualization of musical pieces and per-

formances from different layers as extracted by multimodal

piece and performance analysis (Section 3-4). The second

one is to allow the audience to interact with the concert

from different perspectives according to source (section

3.4) and user profile (section 5).

6.1 Visualisation of music pieces and performances

We can distinguish two qualitatively distinct sources of in-

formation to be exploited in visualisation: the score itself,

from which users can be informed about melodic lines,

harmony, motifs or structure; and a specific performance,

the specific way the written music was actually realized.

Performance differences such as timing, phrasing and dy-

namics are quite notable for the symphonic repertoire, be-

ing one of the main sources of engagement and enjoyment

for the audience. Moreover, both dimensions – score and

performance – can inform and enrich each other. For users

with different musical backgrounds (e.g. naive listeners,

basic musical training, professional musicians), the most

relevant musical descriptions and their corresponding vi-

Figure 3. ‘Performance Worm’ visualisation of expressive

timing and dynamics in Beethoven’s First Piano Concerto.

sualisations will differ in terms of modalities, types and

specificity levels. As outlined in section 3.1, we will em-

ploy different types of automatic music descriptors, which

take different temporal scales into account, ranging from

short-time melodic description to global key properties.

Existing real-time music visualisation tools for tonality

include dynamic tracking in both audio and symbolic do-

mains [54], [55], but most of them are mostly intended to

inform musicians (in music theory terms). We propose an

extension of temporal multi-scale techniques for the analy-

sis and representation of a variety of audio and/or symbolic

features, through time-scale summarisation and mapping

into feature spaces and geometrical colourspaces. This has

been proposed for temporal multiscale tonality represen-

tations and interactive navigation of music pieces [5], il-

lustrated in figure 2. For tonality, some of these models

have been validated as perceptually relevant by cognitive

psychology methodologies [56], and they have been used

to inform real-time music performances, such as jazz im-

provisations. This approach is being currently extended

beyond usual tonal simplifications, covering other musical

(non-tonal) representation domains, and as interactive con-

trollers for music creation.

In addition to properties of the music (the composition)

itself, we also want to visualise interesting aspects to the

specific performance. Examples of performance visual-

ization are the Performance Worm [57] and more general

phase plane representations [58]. While these uncover rather

local timing and dynamics patterns, multi-level visualisa-

tions such as the Timescapes used in [59] can visualise how

expressive timing shapes a piece at many levels simulta-

neously, making explicit also long-term developments and

large-scale structure in a performance.

For live, real-time visualisation on stage, visualisation

methods must be integrated with a real-time performance

tracker, which is less trivial than it may seem. For instance,

all of the above-mentioned methods rely on some kind of

smoothing over time, and in doing so, effectively need to

look ‘into the future’ of a given point in time. Predictive

performance models may alleviate this problem. More-
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Figure 2. Multiscale tonality visualization of Finale of Haydn’s ”Rider” String Quartet, op.74 n.3 (in Gm).

over, timing and (global) dynamics are only two aspects

of a much more complex and multi-faceted phenomenon.

We will also investigate new ways of visualising dimen-

sions such as articulation, balance of the voices/instrument

sections in the orchestra, etc.

6.2 Multi-perspective audio processing: source

auralisation

With the separated signals and information about the in-

struments location as presented in Section 3.4, we can at-

tend a meaningful process of auralisation. Recent approaches

have addressed the concept of upmixing (i.e. providing a

spatial multi-channel output from a mono or stereo audio

signal) by means of source separation techniques [60]. The

challenge here is to provide a meaningful auralisation of

the orchestral content by exploring different options from

an acoustic zoom for a given instrument section, to virtu-

ally place the listener in a specific position on stage.

6.3 User-generated and multi-perspective concert

video

Finally, it is of relevance to mention recent approaches re-

garding multi-perspective and user-generated concert video

content. This topic has been emerging in several recent

works, and since such content reflects collective strategies

taking into account a particular person’s view on a concert,

it can be of interest for PHENICX too.

As for existing work,in [61] audio fingerprints are used to

synchronise multiple user-generated concert video record-

ings, and key moments within a concert are detected based

on the amount of overlap between multiple user clips. In [62],

an automated video mashup system is presented, synchro-

nising different user videos through camera flashes, and

generating an aesthetic mashup result based on formalised

requirements as elicited from video camera users. Finally,

in [63] a concert video browser is demonstrated based on

segment-level visual concept detectors, in which crowd-

sourcing mechanisms are used to improve the indexing re-

sults. It is striking that none of these existing methods ac-

tually base their analyses or evaluations on musical audio

content, nor do they try to relate obtained results to musical

content. In contrast, in PHENICX, since multi-perspective

video and social information are to be used to get a better

insight into the live musical performance, musical aspects

will need to be taken into account explicitly.
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ABSTRACT

Automatic melody extraction from music audio has proven
to be challenging. In this paper we focus on semi-automatic
melody extraction, where prior information produced by
the user is used in the algorithm. Our experiment shows
that users – even without a musical background – are able
to produce useful approximations of both the note onset
times and the pitches in the melody that is being extracted.
We present a dynamic programming algorithm that takes
this user-generated information and uses it for melody ex-
traction. The algorithm is based on audio samples that are
built around approximate note onset times. In addition to
this, approximate note pitches can be used to constrain the
set of possible melodies. We compare our algorithm with a
state-of-the-art melody extraction algorithm using orches-
tral music material. In the evaluation we use simulated
note approximations that could have been produced by a
user without a musical background. In this setting, the ac-
curacy of our algorithm is remarkably better than that of
the automatic algorithm.

1. INTRODUCTION

In the automatic melody extraction problem, the input is
an excerpt from a musical work as an audio signal, and
the output is a symbolic representation of the most im-
portant melody line in the excerpt. Practical applications
for automatic melody extraction include the construction
of datasets for music search engines and sheet music pro-
duction for individual pieces.

Automatic melody extraction is a difficult problem [1].
The difficulties lie in recognizing which frequencies in the
audio signal are fundamental frequencies of musical notes
and furthermore, which of the notes belong to the melody.
Human listeners can easily follow different instruments and
they have previous knowledge about melody structure. It
is difficult to transmit these skills to a computer.

Most melody extraction systems share a common struc-
ture [4, 11, 14]. First, potential melody frequencies are
filtered from the audio signal. After this, the melody is
constructed using knowledge about the properties of typ-
ical melodies. Another popular approach to melody ex-
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traction has been separation of melody and accompaniment
sources [2, 9]. More information of the proposed melody
extraction systems can be found in [13, 15].

In this paper, we concentrate on semi-automatic melody
extraction. To facilitate the melody extraction from the au-
dio signal, a semi-automatic system uses additional mu-
sical information given by the user. First we study what
kind of information can be gathered from users, both with
and without a musical background. After that, we present
and evaluate a melody extraction algorithm that uses this
information.

Of course, semi-automatic systems have severe limita-
tions compared to independent systems. They cannot be
used to automatically process large datasets because they
require user interaction. However, an important use case is
the transcription of an individual piece for which there is
no sheet music available. In this case, it may be acceptable
for the user to take a significant amount of time to help the
system produce the final transcription.

User information has already been used in some signal
separation systems. For example, users can provide infor-
mation about instruments playing the melody [6], give a
partial transcription [7] or select the audio source corre-
sponding to the melody [3]. In Songle [5], a first draft for
the transcription is produced automatically, and after that
the users can work on it collaboratively.

The organization of the rest of the paper is as follows:
In Section 2 we study the ability of the users to recognize
note onset times and the pitches in the melody. In Sec-
tion 3 we present a semi-automatic melody extraction al-
gorithm which uses approximate note onset times and the
pitches produced by the user. In Section 4 we evaluate
our algorithm and compare it with a state-of-the-art auto-
matic melody extraction algorithm. Finally, in Section 5
we present our conclusions.

2. NOTE APPROXIMATIONS

We conducted an experiment where human listeners ap-
proximated note onset times and the pitches in the melody.
The experiment shows that users can produce useful onset
time and pitch approximations for semi-automatic melody
extraction. Our melody extraction algorithm in Section 3
is based on these approximations. We also use the results
of the experiment for estimating error distribution in the
evaluation of the algorithm in Section 4.
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Figure 1. The Star Wars melody in the first task.
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Figure 2. The Parsifal melody in the second task.

2.1 Experiment set-up

The experiment consisted of two tasks, both involving a
short orchestral music excerpt containing a melody. The
excerpt in the first task was a theme from Star Wars by
John Williams (Figure 1), and the second excerpt was a
theme from Wagner’s Parsifal (Figure 2). We tried to select
melodies that are clear and unambiguous. Furthermore, we
presumed that the first excerpt would be familiar for the
participants and the second excerpt would be unfamiliar.

We had 30 participants in our experiment. Group A con-
sisted of 15 participants without a musical background.
Those participants either had no experience playing an in-
strument or singing, or had only practiced music for a short
period of time during their childhood. Group B consisted
of 15 participants with a strong musical background who
had practiced music actively for a long time. All the partic-
ipants were university students, and none of the them were
professional musicians or experienced transcribers.

Figure 3 shows the user interface used in the experiment.
The window is divided into two parts: the upper part con-
tains a spectrogram of the audio file and the lower part con-
tains a staff line with the melody. Initially, the staff line is
empty. The system allows one to play a selected segment
of the audio file or the melody in the staff line. In the lat-
ter case, the melody is synthesized using a flute-like sound.
Notes can be added to the staff line by pressing a key while
listening to the audio file. After this, the pitches of the
notes can be adjusted and the notes can also be moved or
removed.

Both tasks in the experiment consisted of three subtasks.
The first subtask was to mark down the pulse of the melody
by pressing a key at regular intervals. This subtask served
as an introduction to the user interface. After this, the sec-
ond subtask was to determine the note onset times in the
melody and finally, the third subtask was to adjust the note
pitches. We report the results of the latter two subtasks
because they are relevant for our algorithm.

The participants were briefly told how to use the system
at the beginning of the experiment. They were asked to
work carefully, but were also told not to use too much time
if they could not hear something easily. The participants
typically used 10–30 minutes for each of the two tasks.
The participants’s performance during a task was not com-
mented on, and they had to decide themselves when they
were ready.

Figure 3. The user interface used in the experiment.

Task Group Participants avg σT min σT
Star Wars A 6 0.19 0.03

B 13 0.08 0.03
Parsifal A 11 0.13 0.08

B 15 0.14 0.09

Table 1. Number of participants with no more than one
extra or missing note. The average and minimum error
deviation of note onset times are calculated for those par-
ticipants.

The results in the Parsifal task were generally better than
in the Star Wars task. This can be explained both by the
nature of the melodies and by the structure of the experi-
ment. The orchestration of the Parsifal melody is slower
and lighter, which may make it easier to perceive and mark
down. In addition to this, the Star Wars task was the first
task in the experiment and the participants were more ac-
quainted with the system when they started the Parsifal
task.

2.2 Onset time determination

In the note onset time subtask, the participants placed notes
on the staff line. The participants had to determine both the
number of notes and the horizontal positions of the notes.
The principal method for this was to press a key at each
note while listening to the music. The participants were
allowed to listen to the music an unlimited number of times
and could move and remove notes afterwards.

Let t1, t2, . . . , tn denote the reference note onset times
measured in seconds and x1, x2, . . . , xm the approximate
onset times by the participant. If we assume that n = m,
we can calculate the root mean squared error σT of the
onset time using the formula

√
(
∑n

1 (tk − xk)2)/n.
However, in practice, n and m may differ. For example,

several participants ignored the C# note at the beginning of
the Parsifal melody, probably interpreting it as a glissando.
In the following, we regard a note onset time approxima-
tion as accurate if it contains the correct number of notes,
or only has one extra or missing note.

Table 1 shows the numbers of participants with the cor-
rect number of notes, or just one extra or missing note. The
average and minimum error deviation of these participants
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Task Group d = 0 d = 4 d = 7 avg σP
Star Wars A 1 2 7 2.41

B 9 14 14 0.83
Parsifal A 1 2 9 2.81

B 11 12 15 0.71

Table 2. Number of participants who produced an d-
approximation when d ∈ {0, 4, 7}. The average error is
calculated for participants having a 7-approximation.

Task Group Intervals Parsons code
Star Wars A 1 2

B 14 14
Parsifal A 1 9

B 11 14

Table 3. Number of participants having correct intervals
and Parsons codes.

are also shown. If n 6= m, we calculate the error by ex-
cluding one note onset time in the data so that the error is
minimized. About half of the participants in group A, and
almost all in group B, produced accurate note onset time
approximations.

Interestingly, in the Parsifal task the results of groups A
and B are very similar to each other. This suggests that the
musical background has a minor role in determining the
onset times for a slow melody. Instead of this, a more im-
portant factor may be the experience in using the computer.
Among the most accurate participants in this subtask were
active computer gamers without any musical background.

Our melody extraction algorithm in Section 3 is based
on note onset time approximations. It is important for the
algorithm that the errors in Table 1 are small, ranging from
0.03 to 0.09 among the best participants without a musical
background. In Section 4, we use an error deviation of 0.05
in producing evaluation material for the algorithm.

2.3 Pitch determination

In the note pitch subtask, the participants were given a tem-
plate with correct note onset times. Their task was to de-
termine a pitch for each of the notes. This was done by
moving the note vertically using the keyboard while listen-
ing to the original audio file and the synthesized melody.

Musical background had a strong impact on this subtask.
Most participants with a strong musical background (group
B) determined the correct pitches easily. However, the par-
ticipants in group A were in general unable to determine
pitches accurately. Several participants commented that it
was difficult to compare original and synthesized pitches
because the timbre was different. This phenomenon has
also been reported in previous studies [12].

Instead of exact pitches, we now focus on approximate
pitches. Let c1, c2, . . . , cn denote the correct pitches in the
melody measured in semitones and a1, a2, . . . , an repre-
sent the approximate pitches, also in semitones, produced
by the participant. Furthermore, we define a d-approxima-

tion as a sequence of pitches where the distance from the
correct pitch is not more than d semitones, i.e. |ck− ak| ≤
d, for every k. For example, d = 7 means that the pitch
difference is no more than a perfect fifth. We also calcu-
late the root mean squared error σP of the pitches using the
formula

√
(
∑n

1 (ck − ak)2)/n.
Table 2 shows the number of participants who produced
d-approximations where d ∈ {0, 4, 7} as well as the aver-
age errors of the pitches for participants with a 7-approxi-
mation. While the participants in group A could not recog-
nize the pitches exactly, half of them produced a 7-approx-
imation of the pitch sequence.

The intervals of consecutive pitches are another impor-
tant aspect of the pitch sequence. The intervals of a pitch
sequence are correct if ck+1− ck = ak+1−ak for every k.
Furthermore, the Parsons code is correct if the directions
of the intervals are correct i.e. ck < ck+1 iff ak < ak+1,
ck > ck+1 iff ak > ak+1, and ck = ck+1 iff ak = ak+1.

Table 3 shows the number of participants with the correct
intervals and Parsons codes. Interval recognition was as
difficult as exact pitch recognition: again only participants
in group B were able to recognize correct intervals. How-
ever, in the Parsifal task, more than half of the participants
produced a correct Parsons code.

Note pitch approximations can be used in our algorithm
in Section 3, and they significantly enhance melody extrac-
tion results. In Section 4, we use an error deviation of 2.5
in producing evaluation material for the algorithm.

3. ALGORITHM

This section describes our melody extraction algorithm that
uses musical information produced by the user. The al-
gorithm exploits standard techniques for calculating pitch
salience values for audio segments [13, 15]. However, the
user information allows signal processing and dynamic pro-
gramming methods that are usually not possible.

The algorithm selects relevant audio segments using the
approximate note onset times, and approximate pitches can
be used to constrain the search for the melody. The funda-
mental assumption in the algorithm is that the approximate
note onset times are known beforehand. The results of Sec-
tion 2 suggest that this assumption is meaningful when the
user helps with the extraction.

The input of the algorithm consists of an audio file and the
approximate note onset times retrieved from the user. As
in Section 2.2, the sequence t1, t2, . . . , tn denotes the note
onset times. Each value tk is the time in seconds where the
kth note begins.

The algorithm assigns a pitch pk for each note onset time.
Each pitch is a note number in semitones, and it can be
calculated from the note frequency f using the formula
12 log2(f/27.5). Then, for example, the note number of
A = 440 Hz is 48, and the interval between pitches pa and
pb is |pa − pb| semitones.

3.1 Signal processing

The usual first step in melody extraction algorithms is to di-
vide the audio signal into small frames that have a constant
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length. After that, a frequency spectrum for each frame is
calculated using the Fourier transform or a similar method.
However, our algorithm uses a different approach because
the note onset times are available.

For each note onset time tk the algorithm calculates the
Fourier transform of the window [tk + w1, tk + w2]. The
idea is to select the values w1 and w2 so that in the result-
ing window the frequencies of the melody are strong. If
tk + w2 > tk+1, the window is [tk . . . tk+1]. We evaluate
different ways for selecting the parameters in Section 4.

After this, the algorithm calculates a salience value sk,p
for each note onset time tk and pitch p. The salience val-
ues will be used in the second phase of the algorithm, and
the objective is that pitches with large salience values are
strong candidates for melody pitches.

Let ak,f be the normalized amplitude of frequency f in
the Fourier transform of note onset time tk using linear
interpolation. The algorithm calculates the salience value
sk,p as a weighted sum of the harmonics [8] by the formula

sk,p =
n∑

i=1

ak,if(p)hi (1)

where f(p) = 27.5 · 2p/12 and hi is the weight of the ith
harmonics and n is the total number of harmonics. In this
paper we use the values n = 3 and hi = 1/i.

Note that we assume that the tuning is near A = 440 Hz
and does not change during the excerpt. This is a realistic
assumption in orchestral music that we focus on.

3.2 Dynamic programming

The melody selection procedure of our algorithm is based
on dynamic programming. The salience value of a pitch
sequence p1, p2, . . . , pn is the sum

∑i=n
i=1 si,pi of the indi-

vidual salience values.
The algorithm selects a pitch sequence with a maximum

salience value using the following recursive formula:

vk,p =


−∞ if p /∈ Pk

sk,p if k = 1
sk,p + max

r∈Nk−1,p

vk−1,r if k > 1
(2)

Here vk,p is the maximum salience value of a pitch se-
quence for note onset times t1, t2, . . . , tk whose last pitch
is p. The set Pk contains the possible values for pk. Cor-
respondingly, the set Nk,p contains the possible values for
pk when pk+1 equals p. The construction of sets Pk and
Nk,p is the topic of Section 3.3.

The values vk,p can be computed efficiently using dy-
namic programming. Now maxp∈Pn

vn,p is the maximum
salience value for the pitch sequences that satisfy the con-
straints given by sets Pk and Nk,p. The pitch sequence
with maximum salience can be constructed in reverse or-
der: first set pn = argmaxp∈Pn vn,p and then for k < n,
select pk so that vk,pk

+ sk+1,pk+1
= vk+1,pk+1

.

3.3 Constraints

The sets Pk andNk,p constrain the set of possible melodies
that the algorithm can produce. Let pmin and pmax be

Dataset Type Excerpts Length
Dvorak Classical 11 319 s
Rota Film 8 230 s
Tchaikovsky Classical 11 335 s
Wagner Classical 9 380 s
Williams Film 10 348 s
Total 49 1621 s

Table 4. The material used in the evaluation. There were
five datasets: three sets came from classical composers and
two came from film composers.

the lowest and highest possible pitches in the melody and
Pall = {pmin, . . . , pmax} the set of all possible pitches.

If we do not have any constraints for the pitches, we can
define the sets Pk and Nk,p simply as follows:

Pk = Pall

Nk,p = Pall
(3)

Now suppose that we have some information about the
note pitches produced by the user. As in Section 2.3, let
c1, c2, . . . , cn be the correct pitches and a1, a2, . . . , an be
the approximate pitches. There may be numerous errors in
the approximate pitches. However, the results of Section
2.3 suggest that they can still be used.

First we assume that the approximate pitch sequence is a
dP -approximation i.e. |ck − ak| ≤ dP for every k. Now it
is possible to construct the set Pk as follows:

Pk = {p ∈ Pall : |ak − p| ≤ dP } (4)

Furthermore, if we assume that the Parsons code of the
approximate pitch sequence is correct, we can construct
the set Nk,p in the following way:

Nk,p = {r ∈ Pall : r < p, ak < ak+1} ∪
{r ∈ Pall : r > p, ak > ak+1} ∪
{r ∈ Pall : r = p, ak = ak+1}

(5)

4. EVALUATION

In this section we evaluate our algorithm using an orches-
tral music collection. We also compare our algorithm with
a state-of-the-art automatic melody extraction algorithm.
We present the best results of the algorithms and study the
impact of the parameters in our algorithm.

4.1 Material

The material used in the evaluation, as presented in Table
4, consists of 49 audio excerpts with a total length of 27
minutes. We extracted the excerpts from CD tracks into
mono WAV files with a sample rate of 44,100 Hz.

The material differs from the material used in MIREX
[10] in two ways. First, all the excerpts are from orches-
tral works, whereas most of the material in MIREX is vo-
cal music with a light accompaniment. Second, all the ex-
cerpts are from real recordings.
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To get the reference melodies, we manually annotated the
melodies in the material. Each annotation consists of note
onset times and pitch values. All the melodies are contin-
uous, i.e., we interpret that there are no pauses between
consecutive notes. We attempted to select melodies that
are clear and unambiguous. However, there is always some
subjectivity in determining the melody.

Details concerning the material and our annotations used
in the evaluation are available on our website 1 .

4.2 Algorithms

We evaluated four versions of the algorithm described in
Section 3. We call the different versions of the algorithm
A1, A2, A3 and A4. A1 uses only note onset time infor-
mation. In addition to this, A2 uses note pitch approxi-
mations, A3 uses Parsons codes and A4 uses both pitch
approximations and Parsons codes.

We generated the user information in the evaluation from
the reference annotations. We assumed that the number of
the notes is correct and used normal distribution for simu-
lating the user error: N(µN , σ

2
N ) and N(µP , σ

2
P ) denote

the distributions for note onset times and pitches. We used
reference onset times and pitches as means and experi-
mented with different standard deviations. Furthermore,
we set the allowed pitch difference so that dP = 2σP . The
Parsons codes were always correct.

This simulation is, of course, a simplification compared
to the real situation. However, a large-scale experiment
with real users was not possible, and we expect that, de-
spite its limitations, the simulation sheds light on the ap-
plicability of the approach.

We compared our algorithm with MELODIA [15] which
is a state-of-the-art melody extraction algorithm. MELO-
DIA is a fully automatic system and it does not utilize user
information. The parameters for MELODIA are the voic-
ing tolerance vM and the monophonic noise filter nM .

As opposed to our algorithm, MELODIA produces a pitch
frequency for each frame in the audio and can identify
frames without melody using a negative pitch value. We
converted the pitch frequencies f to note numbers using
the formula 12 log2(f/27.5). Furthermore, we also inter-
preted the negative pitch values as melody pitches because
the melodies in our material are continuous.

4.3 Results

First, we present the best results achieved by the algo-
rithms. After this, we present the results of our algorithm
using varying error deviations and window parameters.

We calculated the melody extraction accuracy using the
formula lc/lt where lc is the total length of segments where
the output of the algorithm corresponds to the reference,
and lt is the total length of the data. The accuracy can
be calculated for an excerpt, a dataset or the material as
a whole. The formula is similar to the overall accuracy
metric used in MIREX, except that in MIREX the accuracy
is calculated frame by frame.

1 http://cs.helsinki.fi/u/ahslaaks/smc13/

Dataset A1 A2 A3 A4 M
Dvorak 0.15 0.42 0.20 0.57 0.21
Rota 0.27 0.70 0.35 0.75 0.47
Tchaikovsky 0.20 0.60 0.20 0.70 0.24
Wagner 0.26 0.52 0.32 0.62 0.41
Williams 0.33 0.62 0.39 0.70 0.32
Total 0.24 0.56 0.29 0.66 0.33

Table 5. The best results of the algorithms. The error de-
viations are σN = 0.05 and σP = 2.5 and all the other
parameters are optimized.

σP \σN 0 0.01 0.05 0.1 0.2 0.5
0 1.00 0.99 0.94 0.88 0.75 0.53
1 0.86 0.86 0.81 0.75 0.63 0.45
2 0.75 0.74 0.71 0.66 0.56 0.40
3 0.65 0.65 0.63 0.58 0.49 0.37
4 0.60 0.60 0.58 0.54 0.45 0.33
5 0.57 0.55 0.54 0.50 0.41 0.30

Table 6. The results of A4 for all of the material when the
error deviations σN and σP change.

Table 5 shows the best results of the algorithms. For gen-
erating the user information from reference melodies, we
used error deviations σN = 0.05 and σP = 2.5, which
are realistic deviations based on Section 2. After this, we
selected window parameters w1 = 0.5 and w2 = 0.55 that
produced the best results on the evaluation material.

M denotes the automatic MELODIA algorithm. We chose
parameters vM = 0.5 and vF = 0 that produced the best
results on the evaluation material.

The results of A1 and A3 were equal or weaker than that
of MELODIA, depending on the dataset. The results of A2
and A4, that use approximate pitch values, were substan-
tially better. In MIREX, the overall accuracy of MELO-
DIA was 0.70 [15] which suggests that our material is more
challenging than the material used in MIREX.

Table 6 shows the results of A4 when the error deviations
σN and σP change and where the window parameters are
w1 = 0.5 and w2 = 0.55, as tehy were previously. It
seems that accurate onset times are more important than
accurate note pitches; even the results with σP = 5 were
reasonable. As expected, the accuracy without deviation
was 1.00.

Table 7 shows the results of A4 when the window pa-
rameters w1 and w2 change and the error deviations are
σN = 0.05 and σP = 2.5, as they were previously. Here
wd is the length of the window i.e. wd = w2 − w1. There
were no big differences in the results in this case. The de-
viation in the onsert times of the approximate notes makes
it difficult to determine the window parameters.

5. CONCLUSIONS

In the first part of the paper, we described an experiment
in which the participants transcribed two melodies from
orchestral music excerpts. As expected, most participants
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w1 \wd 0.05 0.1 0.25 0.5 1
0.05 0.51 0.55 0.59 0.58 0.56

0.1 0.60 0.60 0.61 0.57 0.56
0.25 0.63 0.64 0.61 0.58 0.57

0.5 0.66 0.66 0.62 0.59 0.59
1 0.63 0.63 0.61 0.58 0.58

Table 7. The results of A4 for all of the material when the
window parameters w1 and wd = w2 − w1 change.

with a musical background were able to determine note
onset times and pitches accurately. However, about half
of the participants without a musical background also pro-
duced useful information about the melody, even if they
could not determine note pitches exactly.

In the second part of the paper, we presented a semi-auto-
matic algorithm for melody extraction. This algorithm is
based on a dynamic programming scheme and assumes
that approximate note onset times and the pitches in the
melody are available. Thus, the algorithm requires help
from the user to extract the melody.

The proposed algorithm is intended for users without a
musical background because they can benefit from it the
most. Even if they cannot determine note pitches accu-
rately, they can provide approximations good enough for
the algorithm. Constraining the range of possible pitches
greatly simplifies the melody extraction problem.

When using simulated information from users without a
musical background, the results of our algorithm are con-
siderably better than that of a state-of-the-art automatic al-
gorithm. Of course, a severe weakness in our algorithm is
that it requires a lot of work on the part of the user, which
limits its applicability in practice.

Our future work aims to constrain the pitch range of the
melody notes by using less prior information or by limiting
it automatically. One possible approach only requires the
user to transcribe a subset of the notes, as in [7]. Another
possibility is to assume that the approximate pitch range,
i.e. the register of the melody, is known. For example,
in orchestral music, it is often the case that the melody is
located in the high register.
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ABSTRACT

A new method is presented for the joint estimation of the
inharmonicity coefficient and the fundamental frequency
of inharmonic instrument sounds. The proposed method it-
eratively uses a peak selection algorithm and a joint param-
eters estimation method based on nonlinear optimization.
We further introduce an adapted tessitura model to evalu-
ate our proposed method for piano sounds and to compare
it with state-of-the-art techniques.

1. INTRODUCTION

The stiffness of instrumental strings effectuates the fre-
quencies of the modes of vibration to be highly inharmonic.
This effect is decisive for most string based instruments
and marks a significant part of the perceptive sound charac-
teristic of the piano [1]. Inharmonicity means that the par-
tial frequencies are not exact integer multiples of their fun-
damental but located at increased positions. The amount
of increase is reflected by the inharmonicity coefficient β,
while the frequency f of a partial k can be expressed for
all partials K present in a signal by the relation:

fk = kf0
√

1 + k2β, k = 1 . . .K (1)

where f0 denotes the signals fundamental frequency, which
is in fact a theoretical value, as there is no partial with that
specific frequency present in an inharmonic signal. Hence,
the inharmonicity coefficient β as well as the fundamental
frequency f0 can not easily be measured from an instru-
ments signal, but they need to be taken into account for
a lot of different applications, like f0-estimation and har-
monic sinusoidal analysis, as well as for prior knowledge
to control sound synthesis of string based instruments. And
finally, demixing of sound mixtures is an emerging topic,
which also relies on good estimations of the inharmonicity
coefficient and the fundamental frequency.

In the following section we give a brief overview on three
previous estimation methods and point out several draw-
backs of them in section 3 before we give a detailed de-
scription of our approach, which aims to solve these draw-
backs. An extensive evaluation of our approach with an
adapted tessitura model, comparing it with the three other
methods is presented in the 4th section.

Copyright: c©2013 Henrik Hahn et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

2. PREVIOUS METHODS

Several methods for the automatic estimation of the inhar-
monicity factor β with according refinement of the funda-
mental frequency f0 have been proposed in the past years.
Galembo and Askenfelt proposed a method [2] based on
inharmonic comb filtering (ICF). In this method, the pa-
rameters for the inharmonic comb filter have been found by
an exploration of a vast range of possible parameter values
within three consecutive steps and refining the parameter
grid in each. The algorithm finally interpolates the best pa-
rameter sets to obtain its f0 and β-coefficient. Hodgkinson
et al. proposed a method [3] using median-adjustive trajec-
tories (MAT). This algorithm works in an iterative manner
in which a partial k of the inharmonic series is selected
and used for improving the estimate of β and f0. The im-
proved estimates are then used to search the next partial k.
The most recent approach is based on Non-negative ma-
trix factorization by Rigaud et al. [4, 5] aiming at the joint
estimation of f0 and β-coefficients for several fundamental
frequencies at once with a specific focus on the polyphonic
case. Another approach has been proposed in [6] showing
similar accuracy, but improved computational performance
to the ICF method.

3. PROPOSED METHOD

3.1 Drawbacks in recent methods

All recent methods we studied so far share similar draw-
backs. First of all, they usually work with a fixed maxi-
mum of around 30 partials or fixed amplitude thresholds
to avoid using too noisy signal components for the estima-
tion. But, especially low pitched piano tones may exhibit
very rich spectra containing more than 200 partials. For
an analysis which tries to reliably identify as much partials
as possible in such a signal, the estimation of the β coef-
ficient needs to be executed for far more partials, because
slight deviations in the β estimation will remain unnoticed.
Figure 1 illustrates how such small errors in the estimation
of the β coefficient result in misleading partial detection.
Increasing the amount of partials for the estimation of β is
by no means a trivial task as it requires a suitable strategy
for selecting reasonable spectral peaks and rejecting noisy
signal components. Furthermore, some approaches need
at least 5 partials for a reliable estimation, but high pitched
piano notes or moderately high pitched but with very low
intensity do not contain more than 3 to 4 partials. Espe-
cially low intensity signals require a robust distinction be-
tween noise and sinusoid within a peak selection process
but also require the estimation to be robust against noisy
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Figure 1. Analysis of the effect of the deviation in β.
Boxed values indicate hypothetical deviations of the β
value from its ‘real’ value in percent. Dashed curves
demonstrate the resulting deviation in frequency estima-
tion for respective partial index.

partials. Previous approaches often use heuristics to either
neglect noisy partials during the peak selection or reduce
their influence in the estimation process.

3.2 General method description

The proposed method estimates jointly the inharmonicity
coefficient β and the fundamental frequency f0 in an iter-
ative manner, which can be used on several frames at once
and is illustrated in figure 2. For the algorithm a signal
segment y(t) behind the signals attack point is selected to
ensure, the algorithm analyses no transient components. A
standard f0 estimation [7] is applied and the f0 informa-
tion is then being used to set the analysis parameters for
the STFT adaptively to guarantee suitable analysis win-
dow lengths according to the fundamental. The STFT is
taken for N overlapping frames n yielding Y (f, n) and all
spectral bins are classified into the 3 classes: main lobe,
side lobe or noise component using the peak classification
method proposed by Zivanovic et al. [8]. The algorithms

fk(n)

f0(n) Y(f,n)

f0(n)
β

stop?

k+1

β
f0(n)

k=1 Parameter
estimation

y(t)

C(f,n)

Spectrum 
ClassificationSTFTPre-f0

Estimation

Peak 
selection

Figure 2. General scheme of proposed iterative method.

main loop identifies a valid peak for the current partial in-
dex within each frame and estimates a new f0 for each
frame n and a new β for all frames within each iteration
until some abort criterion has been reached. With increas-
ing partial index, the estimated parameters converge to our
target values.

3.3 Peak selection step

The selection of a valid peak within the spectrum is done
in 4 steps:

1. Estimate the frequency of the current partial f̂k(n)
by using eq. (1). Use the initial f0(n) and β = 0 for
the first iteration, and the updated values in all later
ones.

2. Select all spectral peaks classified as main lobe with-
in a narrow band fb around the estimated partials
frequency f̂k(n):

f̂k(n)− pf0(n) ≤ fb ≤ f̂k(n) + pf0(n), p = .25

3. If two or more peak candidates have been found with-
in at least one frame, we apply a logarithmic ampli-
tude weighting function using a Hann window, cen-
tered at the estimated position f̂k(n), with window
length fb and select the peak with the strongest log-
arithmic amplitude after weighting.

4. Refine the frequency of the selected peaks by QIFFT
and bias correction as proposed by Abe et al. [9].

3.4 Estimation step

With at least 3 partials within one frame, we can estimate
the parameters β and f0(n) for all frames n. As shown
in eq. (2), we use the squared deviation of our estimated
values from the measured partial frequencies normalized
with the fundamental frequency to achieve equal error sur-
face scalings for all possible fundamental frequencies. The
final objective function with normalizations according to
the number of frames N and amount of partials per frame
K(n) is given in eq. (3).

R =
1

2

(
fk(n)− kf0(n)

√
1 + k2β

f0(n)

)2

(2)

O1 =
1

N

N∑
n=1

1

K(n)

K(n)∑
k=1

R (3)

As the objective function (3) reflects the least–mean–
squared (LMS) error of all f0-normalized deviations of our
partial frequency estimations with their measured peak fre-
quency counterparts, optimization reflects a fitting of eq.
(1) to the measured data in the LMS sense. The optimiza-
tion is being done by a gradient descent approach, whereas
we utilize the method of the scaled conjugate gradient [10],
denoted CG throughout this document, for faster conver-
gence compared with other methods. The gradient func-
tions for both parameters are shown in eq. (4) and (5).

∂R

∂β
= − k3

2
√

1 + k2β
(4)

∂R

∂f0(n)
= − fk(n)

f0(n)2
(5)
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3.5 Stop criterion

We only use two disjunctive abort criteria: If the next par-
tial f̂k(n) in the peak selection process would raise above
the Nyquist frequency within one frame n or if no valid
partial has been found for 3 consecutive iterations in at
least one frame of the main loop. This means, the algo-
rithm tries to use as much partials as possible of the signal,
since it only stops, if the signals maximum bandwidth or
some supposed noise level has been reached.

4. EVALUATION

For the evaluation we will compare the results of our pro-
posed method with the results of the 3 algorithms men-
tioned in chapter 2: ICF, MAT and NMF. Our proposed
method will be denoted CG in the figures. We will use
an artificial data sound of inharmonic sounds, created us-
ing an additive synthesis model and inharmonicity values
taken from the tessitura model for the β coefficient shown
in [5] as well as the 3 piano data sets from the RWC li-
brary [11] and a piano sound set taken from the IRCAM
Solo Instruments library recorded with two microphones.
The artificial data set will be used to compare all β co-
efficient estimation algorithms with a given ground truth.
For the general evaluation of all data sets we will establish
a tessitura model for the evolution of the coefficient for
all sound samples contained in each data set. The tessitura
model for the evolution of β over the MIDI index is derived
from [5] and will be used to measure the variance of each
estimation algorithm to quantify its accuracy. Furthermore,
we will compare the computational efficiency of all algo-
rithms by measuring their realtime factors. For each algo-
rithm a MATLABTM implementation has been used there-
fore the realtime factors are more suitable for a comparison
in between the algorithms rather than to give an indication
for the performance of native implementations. For all al-
gorithms we used equal analysis parameters to ensure all
algorithms analyze exactly the same frames of the signals
and as most other algorithms also need a pre-f0 estima-
tion, we used the same pre-f0 for all of them. The win-
dow length for the STFT was set to 6 times the roughly
estimated fundamental with 4 times spectral oversampling
and a blackman window. As our algorithm works on sev-
eral frames, we took 3 consecutive frames with a hopsize
of 1/8 of the analysis window length, whereas the other
algorithms analyzed the 3 frames independently.

4.1 Tessitura model of the β coefficient

The tessitura model for the β coefficient introduced in [5]
is a function of the MIDI valuem representing its evolution
for the whole keyboard of a piano. It can be represented as
the sum of two linear asymptotes in the logarithmic scale,
whereas these two asymptotes are being described as Tre-
ble (bT ) and Bass bridge (bB) and are characterized as lin-
ear functions, parametrized by its slope and constant value,
such that the model βφ(m) can be described as:

βφ(m) = ebB(m) + ebT (m) (6)

= e(φ1m+φ2) + e(φ3m+φ4) (7)

with φ being a vector of four elements containing the slope
and constant parameters of the linear functions bB and bT
respectively. All algorithms apart from ours estimate 3 co-
efficients, denoted β̂, for each input sound file according
to the 3 signal frames which are being used by our algo-
rithm to estimate a single value. A curve fitting is done
in a least-squares sense by minimizing the variance of the
model βφ(m) according to (8) with M∗ representing the
estimates of a single algorithm for one data set. We are
using the logarithm of β as well as β̂ for the objective
function to account for the logarithmic behavior of the β
coefficient.

O2 =
1

2

M∗∑
m

| log(β̂(m))− log(βφ(m))|2 (8)

Again we are using the scaled Conjugate Gradient method
[10] to obtain the tessitura model βφ(m) with minimum
variance using the gradients (9) and (10) for optimizing
the parameters for the functions bB and bT with i either
being set to 1 or 3 for eq. (9) or set to 2 or 4 for eq.
(10). The four initial values for vector φ are choosen as
[−0.09,−6.87, 0.09,−13.70]T .

∂O2

∂φ1|3
=

M∗∑
m

| log(β̂(m))− log(βφ(m))|me
(φim+φ(i+1))

βφ(m)

(9)

∂O2

∂φ2|4
=

M∗∑
m

| log(β̂(m))− log(βφ(m))|e
(φ(i−1)m+φ(i))

βφ(m)

(10)
As the estimation algorithms may give highly noisy results
especially for the upper pitch range we delimit the usage
of β̂ values to a range which is logarithmically close to the
initial value by accepting only values which are smaller
than ten times the initial function value and bigger than
one tenth of it. This is demonstrated in fig. 3, but to fi-
nally compute the variance σ2 = 2N−1O2 we take all
N estimations of β̂ into account. The variance according

Initial Inharmonicity Coeffcient β with limits

β

Midi
30 40 50 60 70 80 90 100

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

Figure 3. The initial model βφ(m) (solid) and limits
(dashed) for adaptation

to all estimations of β̂ of one algorithm on data set can
be used to determine its estimation accuracy, because we
can assume the inharmonicity coefficient of one piano to
roughly follow our tessitura model for β. We can further
state, that the instruments original β coefficient is equal
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for all recordings of the same note of this instrument and
constant along time. Therefore, each instrument exhibits
a certain variance due to slight tuning errors of its inhar-
monicity. This variance is unknown and reflects the lower
boundary for every estimation algorithm. As all our al-
gorithms estimate either a single inharmonicity value per
frame of each sound sample (MAT, ICF, NMF) or a single
value per sound sample (CG), the more these values are
varying, the less accurate this algorithm has to be. There-
fore, we can use the overall variance of the inharmonicity
estimations of one algorithm for one data set to determine
its accuracy performance.

4.2 Evaluation on artificial data

The sounds have been generated by additive synthesis us-
ing eq. (1) to generate the partials frequencies with the β
coefficients taken from the initial tessitura model βφ(m)
for each corresponding fundamental frequency, a decay-
ing spectral envelope as well as a simple Attack–Release
temporal envelope. The sounds do not include any kind of
noise.

We estimated the β values with all methods for all synthe-
sized sounds and measured their deviations from the orig-
inal values used for synthesis. Fig. 4 shows the resulting
relative errors as percentage of the original β value denoted
β̄. As can be seen in fig. 4 the MAT, NMF and CG meth-

f0 / MIDI

1
0
0
·

(

β
−

β̂
)

/
β

Relative Error of β̂ in %
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Figure 4. Error in estimation of β given as percentage.

ods outperform the ICF method with relative errors below
0.1% until MIDI index 86 (D6). Above that index, only
the NMF and CG method stay below 0.1% or even drop
further down. The estimated tessitura models of all algo-
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Figure 5. Estimated β̂ for the artificial data set.

rithms for the artificial set are shown in fig. 5 and their
resulting overall variance of the estimated β̂ is depicted in
fig. 6. The extremely high variance of the results for the
MAT and ICF is especially caused by the low estimation

accuracy for high pitches (MIDI index values above 85).
The increased variance of the NMF method is due to es-
timation errors around MIDI index 35 at which the inhar-
monicity coefficient reaches its absolute minimum. Hence,
our proposed CG outperforms the MAT and ICF methods
significantly in terms of overall variance as it almost never
shows an accuracy error of more than 0.1%.
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Variance values for artificial data set.

Figure 6. Variance of measurements on artificial data.

4.3 Evaluation on recorded data

The RWC piano library contains recordings of 3 different
grand pianos. Each piano has been recorded for all pitches
in 3 different intensity levels (pp, mf and ff ). The piano
set of the IRCAM Solo instruments library also contains
recordings for all pitches but with up to 7 intensity levels
per pitch and as it has been recorded with 2 discrete chan-
nels, we treat these separately. It can be seen in the figures
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Figure 7. Estimated β̂ for RWC piano 1

7 to 11, that the NMF as well as our proposed CG method
show especially in the upper pitch range significantly less
noise in the estimation of β̂ compared to the ICF and MAT
methods. This seems to be caused by the adaptive noise
level used by the NMF method and the peak classification
used by CG for selecting reasonable partials. Also, the use
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Figure 8. Estimated β̂ for RWC piano 2

of a Kulback-Leibler-divergence with euclidean distance
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(NMF) and a minimum variance method (CG) for estimat-
ing β shows to be clearly superior to a heuristic grid search
(ICF) or a median method (MAT). The CG method only
shows a slightly higher variance for the RWC 2 data set,
whereas it outperforms NMF on all other data sets up to a
factor of 20 for the RWC 3 data set . The overall estima-
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Figure 9. Estimated β̂ for RWC piano 3
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Figure 10. Estimated β̂ for IRCAM Solo Instrument piano
left channel
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Figure 11. Estimated β̂ for IRCAM Solo Instrument piano
right channel

tion performance is demonstrated in fig. 12. Here, the av-
eraged variance values from all data sets are shown as bars,
whereas their minimum and maximum values are given as
error bars. It can be observed, that the CG method has
the least variance closely followed by the NMF method.
The ICF method is far from being accurate, whereas the
MAT method rates third. In terms of computational per-
formance, as shown in 13, the MAT method is by far the
fastest method, but it clearly lacks in estimation accuracy
in the upper pitch range, whereas our proposed method CG
outperforms NMF which showed similar estimation results
as well as the ICF method.

MAT ICF NMF CG

1e-02

1e-01

1e+00

1e+01

Variance values averaged over all data sets.

Figure 12. Averaged variance of measurements on real
world data according to the tessitura model. The error
bars indicate the minimum and maximum variance values
among all data sets.
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Figure 13. Processing real-time factors for all 4 algorithms
averaged for all data sets with 95% confidence intervalls.

5. CONCLUSION

In this paper we gave an overview about three recent ap-
proaches (ICF, MAT and NMF) for the estimation of the
inharmonicity coefficient and fundamental frequency of in-
harmonic instrument sounds. We pointed out some issues
which are not well addressed in these previous methods
and showed possible solutions for these drawbacks with
our proposed algorithm. In the evaluation we have shown
that for synthetic data with known inharmonicity our pro-
posed algorithm works below an average estimation er-
ror in β of 0.1% which clearly outperforms the ICF and
MAT method and showed similar accuracy as the NMF
method. For real world signals our proposed method again
significantly outperforms the MAT and ICF algorithms and
showed superior performance in computational efficiency
compared with the NMF method which showed a similar
estimation accuracy.

Hence, this article shows that a peak selection algorithm
with adaptive noise and sidelobe rejection paired with a
minimum variance based parameter estimation is a suit-
able strategy for a robust detection of the inharmonicity
coefficient and a signals fundamental frequency.
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ABSTRACT 
One of the critical challenges in music teaching is provid-
ing ways for students to search easily across very large 
amounts of music data, in order that they can build intui-
tion and gain experience around the ways in which dif-
ferent music styles are comprised. This paper demon-
strates how MusicXML can be used to create large music 
data sets that can be utilized for searching and recom-
mendation, in order to facilitate music learning.  

1. INTRODUCTION 
This paper will outline a methodology to facilitate explo-
ration across large bodies of musical information. The 
methodology will utilize the data-format MusicXML, 
showing that it can by used to create data sets that are 
both amenable to searching, and for deriving recommen-
dations. The motivation behind this methodology is to 
enhance the understanding that music learners can gain in 
regard to the mechanics that underlie different music 
styles, and to facilitate the exploration of music for those 
who have limited experience with complex music scores.  
 
Having access to extremely large corpuses of music, ren-
dered as data, is a growing phenomenon, especially in 
recent years. The field of Music Information Retrieval 
(MIR), here characterized as ‘having access to increased 
bodies of music and the accompanying challenges of how 
to extract meaningful music content information’ [1] is 
growing rapidly. Solutions that, up until recently, have 
been regarded as impossible (such as the automated tran-
scription of complex music [2,3,4] and the automated 
optical recognition of music scores for the purpose of 
converting this into MIDI and MusicXML data [5] are 
becoming a reality. Music is also far more available than 
it has been in the past: there is a vast and growing amount 
of music scores and music recordings to be found online 
(seen in such initiatives as the IMSLP and Petrucci Music 
Library [6]. Additionally, the belief that the transcription 
of recorded music can only be accurately achieved 
through manual means is increasingly being challenged 
by a growing number of technological solutions that can 
accomplish this task [7]. The changing nature by which 
music data is obtained is part of the wider technological 

phenomenon of ‘Big Data’, characterised by vast data 
sets becoming available and being amenable to nuanced 
interrogation [8]. However, with the increased access to 
music in the form of data comes the increased challenge 
in finding ways to understand and iterate through this 
data.  
 
This paper will show how MusicXML can be prepared as 
a mineable data set, provide examples of how data search 
functionality can be implemented across this data, and 
demonstrate a way in which prediction and recommenda-
tion can be implemented. It will suggest further applica-
tions and research that are applicable to both music teach-
ing and music prediction. The code for this paper has 
been written in Python and can be downloaded and pe-
rused at the code repository service, GitHub1. 

2. DATA PREPARATION 
MusicXML is a well-formed subset of the XML data 
format and was purpose designed to capture, as a data set, 
the various attributes that can be seen on a music score 
(in terms of western musical notation). Currently the data 
attributes number around 650, and include such things as: 
clef, time signature, tempo, lyrics, written annotations, 
part names etc. Since its introduction in 2004, Mu-
sicXML has become ‘the most quickly adopted symbolic 
music interchange format since MIDI’ [9]. MusicXML is 
now well established in the Music Information Retrieval 
field as a promising vehicle by which to drive the design 
and inform the data-stores of music related applications 
[5]. 
  
To prepare the MusicXML data-set under consideration, 
the data was first parsed using the python Music21 mod-
ule, an API developed at MIT specifically for music 
analysis [10]. This allowed the MusicXML data to be 
transformed into a nested Python dictionary structure. 
The initial testing set of MusicXML data (forming the 
corpus) consisted of the music scores of two pieces of 
music: a movement from a Beethoven String quartet and 
a transcription of Keith Jarrett jazz piano solo2. Each of 
these pieces of music was divided into logically named 
parts, where each part can be regarded as what occurs on 
a single music stave on the score. For the Beethoven ex-
                                                             
1 https://github.com/jgab3103/music-app 
2 Beethoven’s String Quartet No. 2, Op. 59, 4th Movement, and a tran-
scription of Keith Jarrett solo on Autumn Leaves, taken from the Tokyo 
1996 live album. 
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ample, the parts were named, vln_1, vln_2, vla, and vlc, 
signifying the instrumental parts within a string quartet.  
 
Creating the parts in the jazz example was more complex, 
and the MusicXML data was prepared using not only the 
transcription but also the jazz lead sheet of the song under 
consideration, which listed the song’s harmonic progres-
sion. Each voice in the harmonic progression was given 
its own part, consisting of root, third, fifth, seventh, ninth, 
eleventh and thirteenth. The transcribed solo was given 
its own part also. A visualization of this data, prior to 
being rendered into MusicXML, can be seen in Figure 1. 
 
 

 
 
Figure 1 
 
Each part was then broken up into a series of events (ei-
ther note events or rest events) and these events can best 
be intuited as any occurring note or rest in a musical pas-
sage on a given music stave. Information regarding the 
note or rest event’s duration, the midi-frequency (listed as 
-1 if it was a rest event) and the note or rest event’s posi-
tion was captured. The position of the note was regarded 
as being relative to the bar of music so, for example, if 
the time signature of the part was currently 4/4, and the 
note or rest event occurred on the 3rd beat of the bar, the 
value would be captured as .75 (being three quarters of 
the way through a 4/4 bar. The resulting data structure 
parts and note and rest events can be seen in Figure 2. 
 

 
Figure 2 
 
To facilitate the searching of this data set, each note or 
rest event was given a unique name that could act as an 
index. This name was created from a concatenation of 
various elements that were extracted from the parsed da-
ta. These elements were: 1) the bar in which the note or 
rest event occurred; 2) the relative position in the bar the 
note or rest event occurred and 3) the current tempo (in 
beats per minute). An example of such a concatenated 
string is “123_.75_120”, here indicating the 123rd bar in a 
particular part, located at a position three quarters be-
tween the start and end of the bar, and having a current 
tempo of 120 beats per minute. 
 
Although the sample data set is here quite limited, it is 
important to note that that this data set could be arbitrari-
ly large. It could be all Beethoven’s string quartets, or all 
string quartets, or all of Keith Jarrett’s jazz solos. Regard-
less of what style pieces of music are perceived to be, 
they here form part of the same corpus.  
 
During the data preparation stage a number of utility 
functions were also created. The most notable of these 
were, firstly, a graphing function (using Python’s Mat-
plotlib library) that allowed the visualization of a series 
of note or rest events within a part, similar to the piano 
roll view editor often found in digital audio workstation 
(DAW) software. Secondly, a write-to-MIDI function 
was created using the Python library MIDIutil that al-
lowed the data set to be written to an output midi file, 
which can be heard, or easily converted back into Mu-
sicXML format in software packages such as Sibelius and 
MuseScore.  
 
Considering the vast array of attributes that can be found 
in MusicXML as well as the sonic qualities of audio mu-
sic generally, it is worth noting that there is a great deal 
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that has been left out during the creation of the data set. 
Information regarding things such as timbre, score anno-
tation and dynamics are absent. The data set has been 
purpose designed as a searchable index of frequencies, 
the relative time at which frequencies occur, and the 
speed (i.e. tempo) at which they occur. Collecting just 
this information is enough to inform a highly useful 
search engine.  

3. DATA SEARCH TO FACILITATE 
LEARNING 

With the data structured in the manner above, where each 
note or rest event was indexed, it became possible to 
search in order to seek specific and similar musical situa-
tions. It became possible to look for the occurrences of 
specific chords or harmonic progressions across a large 
corpus of music. It also became possible to see how 
things such as different tempo could influence note 
choice, or to examine similar passages in different key 
signatures. The design of the data set allowed multi-
parameter searching across parameters such as piece 
name, part name, tempo, duration, time-signature, posi-
tion in bar and time signature.  

As an example of the kind of learning that could be facili-
tated with this data set, consider a student of jazz who 
wishes to search for all instances of minor 7 flat 5 chord 
that occurs in all jazz examples within a given corpus, 
regardless of key. The motivating question of the student 
is to gain an understanding of how different musicians 
improvise on this chord. To undertake such a search, it is 
possible to iterate through the parts, firstly finding any 
part named ‘root’. If this part is found, it is possible to 
compare the distance between midi frequencies of the 
root part to other parts of the same piece of music (here 
the third, fifth and seventh part) that occur at the same 
time (i.e. same bar and position in bar). If the distances 
indicated are 3, 6 and 10 (respectively indicating a minor 
third, flattened fifth, and flattened seventh), a suitable 
candidate has been found, and can be returned to the user.   

As an alternate learning example, consider a student of 
orchestration wishes to look across a large corpus, which 
could include all the orchestral works of Prokofiev, Mah-
ler, Stravinsky, and Ravel. The student might wish to 
seek all the examples where there is a solo cello part that 
occurs in the cello’s upper range (i.e. above G4), where 
the tempo is between 60bpm and 80bpm. This would 
return all examples of passages of solo cello in a slow 
tempo setting, and would allow the student to gain an 
intuition into the different ways composers write for solo 
cello at this tempo and range. Rather than relying on 
standard rules of thumb about how to orchestrate in this 
setting (i.e. that the violas will often take on the tradition-
al role of cellos when the cello is playing in a higher 
range at a slow tempo) this provides the student with 
concrete examples and intuitions about those times com-
posers choose to move away from things that are typical-
ly done. 

These types of searches, while useful, are fairly simplis-
tic. A student may not wish to have to rely on part names 
from which to derive information. What if a student, ra-
ther than seeking all minor 7 flat 5 chords in jazz pieces 
within the corpus, was seeking all instances of minor 7 
flat 5 chords that occur, regardless of how they are 
voiced. (i.e. in root position or inversion). Because a mi-
nor 7th flat 5 chord can be characterised by the set of dis-
tances between the midi-frequencies of various parts, it is 
possible to calculate this, and search for it. For example, 
a C minor 7 flat 5 chord, consisting of the notes C, E flat, 
G flat and B flat can be characterised by the list of dis-
tances that occur between each note, in this case [3, 3, 4, 
2] seen in Figure 3.  

 
Figure 3 
 
Note that in order to be able to locate a C minor 7 flat 5 
chord from any voicing or inversion that may appear 
across various parts, the various frequencies under con-
sideration need to first be collected and arranged in the 
manner of Figure 4, building chord structures by succes-
sively taking the note that is the shortest distance away. 
For example, if the note C is found in one part, and the 
notes B flat, E Flat and G flat are found in other parts at 
the same time, the chord can then be constructed by tak-
ing the note the shortest distance away from C (the B 
flat), and then by taking the note the shortest distance 
from the B flat (the G flat) and finally appending the E 
flat. This creates an ordered list of distances (being [3, 3, 
4, 2]) that can be used to define a minor 7 flat 5 chord. If 
the chord appears in first inversion, the ordered list will 
hold, simply starting at a different point and wrapping 
around (becoming the list of distances of [3,4,2,3]).  

 
Figure 4  

This kind of search makes it possible to interrogate the 
corpus in order to seek occurrences of a particular chord 
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type, regardless of its voicing or the parts in which it oc-
curs. One of the benefits of this type of searching is that it 
allows students to explore similar sonorities regardless of 
the style in which they are occurring, and hear different 
chord structures in different contexts. If, for example, the 
corpus included all of Wagner’s operas as well as a large 
set of jazz improvisations, this search picks up not only 
the minor 7 flat 5 chords in the jazz examples, but the 
minor 7 flat 5 chords found in the opening bars in Tristan 
and Isolde (the so called “Tristan chord”). This would 
afford students a powerful insight into the ways in which 
similar sonorities are handled in different musical settings 
and styles.  

As a final learning example, consider a scenario where a 
student wishes to find all examples of a minor 7th flat 5 
chord that is followed by a dominant chord, in a II-V 
progression (i.e. in the key of C minor, a D minor 7th flat 
5 chord followed by a G Dominant 7 chord). Using the 
same procedure as above to locate the chord structure, a 
dominant chord can be found. The challenge lies in find-
ing where these two chords form a II-V progression. This 
can be accomplished by examining the distance between 
the frequencies located at the beginning of the set of dis-
tances characterizing the minor 7 flat 5 chord, and the 
frequency located at the beginning of the set of distances 
characterizing the dominant chord. 

Searching data in this way allows some exciting possibili-
ties in music pedagogy to start to emerge. It becomes far 
simpler to expose music students to correlations between 
different genres; it becomes far quicker to iterate through 
many differing examples. It allows students with different 
musical backgrounds (i.e. those with limited exposure to 
navigating complex orchestral scores) to explore different 
types of music.  

Like any typical implementation of a search engine, it is 
also possible to keep a search history so students can 
track the things that have interested them most. If the 
database is linked to audio examples it also becomes pos-
sible to provide customized listening to students based on 
their searches (i.e. consider a scenario in where the ex-
amples returned from a student’s search of all minor 7 
flat 5 chords can be ported to an iPod or similar device). 
Finally, this type of searching allows user profiling to 
take place, (a growing phenomena preference systems 
[11,12]), so it becomes conceivable to data mine the 
searches that students undertake in order to create a 
shareable profile of those pieces of music in the corpus 
they prefer.  

4. GOING FURTHER THAN  
SEARCHING: RECOMMENDATION 

While it is useful to be able to implement a search engine 
for music data, is it possible to go further? Often it is 
productive to not only provide music students with a 
range of similar examples, but also with a mechanism by 
which to be able to directly compare their own work to 

composers and improvisers whose works they are study-
ing. Consider the problem of teaching students how to 
carry out counterpoint or multi-part harmony. Theorist 
and educator Kent Kennan notes that it is critical in such 
a situation, to ensure students understand that, a ‘good 
melodic line [consists of] a sense of direction and a cli-
max point, both of which contribute to a clear cut and 
interesting melodic contour…[as well as a] pleasing bal-
ance between conjunct and disjunct motion and ascend-
ing and descending motion’ [13].  This is typical state-
ment of many instructive music texts. Yet what does it 
actually mean? Qualities such ‘as sense of direction’ and 
‘climax point’ are subjective. It is possible then, to take a 
different route? What if students were placed in a posi-
tion, whether they are composing or improvising, of be-
ing able to view a possible set of choices of the next note 
in a phrase whilst they are in the process of creating a 
phrase, given what is happening in the corpus as a whole? 

Using this data set to build some kind of recommender 
system is in some ways a complicated enterprise. The 
data set is good in the sense that it has no issues one 
would usually expect in a large data set such as data spar-
sity or any kind of data inflation. However at the same 
time, this data set is problematic. The first reason for this 
is that, if the data set is normalized and plotted in multi-
dimensional space, note and rest events that are quite 
different in terms of their behavior through the corpus 
would sometimes cluster together. Consider the notes at 
(a.) and (b.) in Figure 5. They are very similar in some 
respects (i.e. frequency and duration), however in musical 
passages on-beats (seen here at a.) and off-beats (seen 
here at b.) tend to behave quite differently. 

 
Figure 5 

The second issue arises when considering those data 
points that should be regarded as similar, yet do not ap-
pear clustered closely when plotted in multi-dimensional 
space. Consider an example that was same in all respects 
as that listed in Figure 5, but transposed to key of F sharp 
major. Even though these would be very similar passages 
they would appear as markedly different. Related to this, 
consider how different absolute pitches operate depend-
ing on the setting in which they occur. The note middle C 
could be found in a passage that is in the key of G Major, 
C minor, or E flat major and would behave in markedly 
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different ways. Consequently, being able to use this data 
in a predictive manner requires that these issues somehow 
be accommodated.  

Rather than calculating distances between note and rest 
events in multi-dimensional space, one alternative ap-
proach to his problem could be to collect certain attrib-
utes found in the data set, locate them in a tuple, and then 
find identical tuples across the corpus with a view to cre-
ating a list of the next possible note and rest events these 
tuples could lead to. It would then be possible to use 
weighted probability to calculate the likelihood that any 
note or rest event defined with an identical tuple could 
lead to certain other notes. 

 
Figure 6 

An example of a data structure to accommodate this is 
listed in Figure 6 and utilizes the same information found 
in the data set already converted from MusicXML. The 
attributes ‘position_in_beat’, ‘position_in_bar’ and ‘dura-
tion’, are drawn directly from the data set. The 
‘time_duration_of_beat’ attribute is an actual time value, 
calculated using duration and tempo (being duration mul-
tiplied by tempo divided by 60).  

Although previously the data set has utilized the attribute 
‘midi_frequency’ to denote frequency, to implement rec-
ommendations, frequency will instead be denoted only in 
terms of a list of the minimized distances to other fre-
quencies occurring at the same time in different parts of 
the same piece of music.  

For example, if the note or rest event under consideration 
is the quarter note E (seen at (a.) in the Figure 7), its fre-
quency is calculated by measuring the distance (modulo 
12) between this note and any other notes occurring at the 
same in different parts time (seen at (b.) and (c.) Note 
also that this distance is minimized: the distance to the 
other notes (here being a C and a G) is the distance to the 
closest C and closest G).  

 
Figure 7 

 

The data set is then converted into a set of tuples, an ex-
ample of which can be seen in Figure 8. When looking 
over the entire corpus, it now becomes possible to find 
identical points at which this tuple occurs and to then 
investigate what happens next. If, for example, one hun-
dred examples of the tuple were found across the corpus 
leading to three possibilities as to which note or rest 
events that could occur next, this could be returned to the 
user as a weighted probability to be used as recommenda-
tion. 

 
Figure 8 

This is perhaps one of the simplest ways to differentiate 
between different note and rest events in a corpus in order 
to introduce a notion of recommendation. However it 
does make it possible to discern similar data points across 
the corpus and to see where these data points lead.  

There are of course issues here. It is not an ideal solution 
to simply return to a recommendation based on the high-
est probability, as this will certainly limit variety. Addi-
tionally, if every note or rest event in the corpus can be 
rendered as a tuple upon which recommendations can be 
made, when there are tuples occurring at the same time 
(derived from note or rest events in different parts that 
occur at the same time), which tuple’s recommendation 
should be given precedence? The challenge with this ap-
proach is how to adjust the probability weightings. Possi-
ble solutions could include utilizing different parts of the 
corpus to influence probability weightings, or identifying 
common sequences of tuples, which could suggest recur-
ring themes in the music and adjusting the weights based 
on this.  

The possibility of suggesting recommendation based on 
the data set offers some exciting opportunities. Increas-
ingly, music software packages (such as Logic Pro, 
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Cubase etc.) provide composers with a range of automat-
ed music creation tools (such as pre-recorded loops) to 
facilitate composition. The approach outlined above in-
troduces the possibility of taking this a step further: to 
allow composers to be presented with different options 
around how their compositions might unfold as they write 
them, and even to have these recommendations be de-
rived from the behavior of their own customized corpus. 
Additionally, utilizing a data set drawn from MusicXML 
has ramifications for the way in which music preference 
systems can be designed. Consider music streaming ser-
vices such as Pandora, which rely on the manual catego-
rization of different types of music in order that it can be 
data-mined: is it feasible to use MusicXML data mining 
to speed up this process?  

5. CONCLUSION 
This paper has demonstrated a way in which MusicXML 
data can be used in order to create a mineable data set. It 
has shown how search functionality can be implemented 
across the data set and how it can be used for recommen-
dation. This way of interacting with music provides a 
means by which students can gain very deep insights into 
a large corpus of music and develop strong musical intui-
tions based on concrete examples.  
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[firstname].[lastname]@jyu.fi

ABSTRACT

People can accurately classify music based on its style by
listening to less than half a second of audio. This has
motivated efforts to build accurate predictive models of
musical genre based upon short-time musical descriptions.
In this context, perceptually relevant features have been
considered crucial but only little research has been con-
ducted in this direction. This study compared two tim-
bral features for supervised classification of musical gen-
res: 1) the Mel-Frequency Cepstral Coefficients (MFCC),
coming from the speech domain and widely used for mu-
sic modeling purposes; and 2) the more recent Sub-Band
Flux (SBF) set of features which has been designed specif-
ically for modeling human perception of polyphonic mu-
sical timbre. Differences in performance between models
were found, suggesting that the SBF feature set is more ap-
propriate for musical genre classification than the MFCC
set. In addition, spectral fluctuations at both ends of the
frequency spectrum were found to be relevant for discrim-
ination between musical genres. The results of this study
give support to the use of perceptually motivated features
for musical genre classification.

Introduction
Humans are very accurate at arranging music into genre
classes, even when pieces were listened for the first time.
Further, the correct genre might not be known by listeners,
but they could still affirm to what genres a piece of music
would definitely not belong to. In fact, less than half a sec-
ond of music is enough information for people to classify
the type of music with great accuracy and identify other
information such as title and artist [1, 2].

This brings the question of how people perceive and rec-
ognize musical styles and what are the descriptions in the
music that make it possible to categorically decide that a
given song belongs to a specific genre. In other words, the
question is how can humans confidently build hypotheses
about the style of musical pieces based on such a limited
evidence. It seems that the vertical structure of the mu-
sic or short-time descriptions of musical polyphonic timbre
could help us to understand these fascinating perceptual

Copyright: c©2013 Martin Hartmann et al.

This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original
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processes. However, it is not easy to build accurate pre-
dictive models of musical higher-level knowledge based
on musical timbre descriptions. One reason is the lack
of an acoustic explanation of polyphonic timbre. Pitch
and loudness can be described as high or low, but musi-
cal timbre cannot be directly measured this way since it is
possibly composed of multiple perceptual dimensions [3],
such as dryness, brightness, or fullness. A second reason
for this difficulty refers to the indirect path between mu-
sical descriptors and what is actually understood by hu-
mans about the musical content. In the particular case of
content-based music information retrieval (MIR), this “se-
mantic gap” refers to the insufficiency of low-level infor-
mation extracted from the musical signal to arrange mu-
sic based on cultural meanings and interpretations shared
by communities [4]. Despite these problems, plenty of ap-
proaches to music genre classification have been suggested
for more than a decade.

The aim of this study is to compare the performance of
two timbre-based features for supervised music genre clas-
sification. The mel-frequency cepstral coefficients (MFCC)
[5] come from the domain of speech and have been widely
used for multiple music modeling purposes, whereas the
sub-band flux set of features (SBF) has been recently sug-
gested [6] and it is designed specifically for musical poly-
phonic timbre modeling. A main premise in this study is
that perceptually relevant timbre-based features can help
us understand better the acoustic foundation of polyphonic
musical timbre and alleviate the constraints of the seman-
tic gap in music genre classification. The performance of
these two descriptors was comprehensively inspected us-
ing different data sets, feature combinations and learning
algorithms for feature selection and classification.

1. BACKGROUND

Genre classification is widely studied in MIR perhaps be-
cause musical genres have been historically important in
music stores and libraries for categorization based on es-
sential similarities. In the digital era, automatic genre clas-
sification offers applications outside scientific areas, for
example in radio playlists, music database systems or for
content tagging in social networking services.

The task of genre classification has been reviewed, for ex-
ample, in [7]. A great variety of musical features has been
evaluated for music genre classification based on audio
signal. Commonly extracted features are timbral, rhyth-
mic and melodic [7]. The best results for this task seem
to be obtained using timbre-based feature extraction. For
example [8] obtained one of the highest performances for
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Feature Frequency Range (Hz)

Sub-band No. 1 0 - 50
Sub-band No. 2 50 - 100
Sub-band No. 3 100 - 200
Sub-band No. 4 200 - 400
Sub-band No. 5 400 - 800
Sub-band No. 6 800 - 1600
Sub-band No. 7 1600 - 3200
Sub-band No. 8 3200 - 6400
Sub-band No. 9 6400 - 12800
Sub-band No. 10 12800 - 22050

Table 1: Sub-Band Flux frequency ranges.

the data sets analyzed in this study using a feature ex-
traction method that roughly consisted of the computation
of modulation spectra from timbre-based features. There
has been also research on combinations based on different
musical representations, for example [9] using chord tran-
sition rules together with spectral, rhythmic and melodic
features. As regards the number of features used for clas-
sification, it is important to reduce the feature space of
models to ease their interpretation and avoid over-fitting,
which might arise e.g. due to data noise. For instance, fea-
ture selection based on genre separation ability has been
implemented to evaluate timbre features for music cluster-
ing [10].

Mel-Frequency Cepstral Coefficients

The MFCCs are widely used in plenty of MIR tasks to
discard pitch information and describe the spectral shape
of the musical signal. This set of features was designed
in the 70s for speech recognition purposes [5] and were
later implemented in music modeling [11]. Due to their
widespread use, MFCCs are often selected as a timbral fea-
ture benchmark, so it is common to compare new timbre-
based features against the MFCCs. For example, non-negative
matrix factorization of spectrograms were introduced for
genre classification and their performance was assessed
against results obtained using MFCCs [12].

Sub-Band Flux

The SBF set of features is a descriptor of perceived poly-
phonic musical timbre and was pioneered by [6]. The set
represents frequency and amplitude fluctuations as a func-
tion of time in ten octave-scaled frequency channels. High
correlations between this feature set and perceptual rat-
ings of polyphonic timbre were found in the study by [6].
35 participants rated 100 very short musical excerpts us-
ing bipolar timbre semantic scales (Strong-Weak, Empty-
Full, and so forth). Using factor analysis, the results were
grouped into three perceptual dimensions: Brightness, Ac-
tivity and Fullness. A regression analysis showed that some
SBFs explained optimally these dimensions. Similar re-
sults were also found in a cross-cultural setting [13], and
[14] recently found high correlations between SBFs and
movement features in a study on music-induced movement.

Data Set GTZAN ISMIR04

blues (100) classical (320)
classical (100) electronic (115)
country (100) jazz/blues (26)
disco (100) metal/punk (45)

Genre hip hop (100) rock/pop (101)
classes jazz (100) world (122)

metal (100)
pop (100)
reggae (100)
rock (100)

Excerpts 1000 729

Table 2: Music data sets used for data collection.

Primary Set Features

SBFµ 10
MFCCµ 13
SBFµσ 20
MFCCµ+SBFµ 23
MFCCµσ 26
MFCCµσ+ SBFµσ 46

Table 3: Feature combinations used in the study and their
respective sizes. Means are represented with the symbol µ
and the combination of means and standard deviations is
represented as µσ.

The SBF derives from the spectral flux feature, which is
defined as the Euclidean distance between successive spec-
tral frames. For the calculation of the SBFs, the signal is
firstly decomposed with an octave-scaled filter bank using
the frequency ranges shown in Table 1. The spectral flux
is computed for each of the resulting frequency channels.

2. METHOD

This section will explain in detail how the feature extrac-
tion and classification stages were performed in this study.
Musical features were extracted from two data sets, and
the descriptors were compounded into subsets of different
sizes using feature combination and dimensionality reduc-
tion. Finally, a classification stage of distribution modeling
and testing was implemented. The general design is illus-
trated in Figure 1.

Data Sets

In order to compare both timbre-based features, two data
sets were used: the GTZAN set, originally developed for
one of the first studies on musical genre classification [15],
and the ISMIR04 set, which is a publicly available part of
a bigger data set [16]. Before being subjected to feature
extraction, the musical data was preprocessed by trimming
audio down to 50 seconds from the middle of each file to
reduce computational load in the ISMIR04 data set, which
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Figure 1: General design of the study.

consists of whole songs. Also the sampling rate was uni-
formed to 44100 Hz as a means to use the same algorithms
for feature extraction in both data sets.

The main characteristics of the GTZAN and ISMIR04 data
sets are presented in Table 2. The data sets differ in number
and type of genre classes and in number of excerpts. Also
the relative balance of the data sets, or the distribution of
the examples into genres is fairly different. GTZAN is a
balanced data set because each of the genres contains 100
musical examples. This differs from the imbalance of the
ISMIR04 data set, which for example contains 320 classi-
cal songs but only 26 examples in the jazz/blues class.

Feature extraction

The frame-based extraction of MFCCs and SBFs was per-
formed in MIRtoolbox 1.3 [17] using an analysis window
of 25 milliseconds and a hop size of 50 % following pre-

vious studies such as [15]. Two feature statistics were ob-
tained, the average (µ) and standard deviation (σ) along
frames. In addition, a feature scaling to zero mean and
unit variance was performed based upon the normality as-
sumption. The aim of this standardization procedure was
to prevent the classification results from getting distorted
by the feature ranges.

The means and standard deviations of MFCCs and SBFs
were combinated into different feature sets to assess clas-
sification upon different scenarios. Six primary sets of dif-
ferent feature size were generated, as presented in Table 3.

Feature Selection and Classification

Each of the six primary sets was subjected to the attribute
selection and classification stage. Pattern recognition algo-
rithms were run in Weka, a suite for machine learning [18].
First, optimal feature subsets were obtained using feature
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Figure 2: GTZAN (a) and ISMIR04 (b) accuracies as a function of feature cardinality.

selection. The final classification stage consisted of model
building and testing of the subsets.

In order to perform feature selection and classification, a
random division of the data into training and testing sub-
samples was undertaken. The music datasets were split
into halves to ensure a good tradeoff between train and test
data. Training data was used for the feature selection stage
and for model training, whereas testing data was saved for
further use in the final classification. The data splitting was
stratified, i.e. a similar ratio of examples per class between
training and testing sets was ensured.

The feature selection stage was performed using Wrap-
per forward selection algorithms. In Wrapper selection,
the training set is used as a new primary set. This set is
partitioned into training and testing data for the purpose
of inner classification. Three algorithms were tested for
feature selection using inner 4-fold CV: instance-based k-
Nearest Neighbors (k==10) (k-NN), Support Vector Ma-
chines (SVM) and Naı̈ve Bayes (NB). For each primary
set, subsets of all possible sizes were generated. The fea-
tures chosen for the subsets were the best ones for each
subset size based on maximum classification rates.

Next, a model was built and tested for each of the feature
subsets in a classification routine that consisted of the same
learning algorithms used for feature selection. An outer
CV loop was utilized to obtain final classification estimates
by evaluating a maximum amount of instances. The loop
consisted of a three-step sequence of random partition of
the primary sets, feature selection and classification that
was repeated 10 times. Finally and for each classification
model, the CV accuracies were averaged.

3. RESULTS

The classification accuracy per CV split was calculated as
the number of correctly classified instances divided by the
total number of test music examples. A total of 828 classi-
fication estimates were obtained after averaging the accu-
racy values that were obtained from each cross-validation
fold. The results are presented in Figures 2a and 2b, which
show the classification estimates as a function of feature
cardinality. Each of 18 profiles in the plots is grouped to
indicate classification models using MFCCs, SBFs, or a
combination of both. For both data sets, the highest ac-
curacies were offered by the MFCCµσ+ SBFµσ feature
set (SVM classification). The maximum CV accuracy ob-
tained for the GTZAN set was 67.28 % using SVMs for
classification of the best 34 features from the feature com-
bination MFCCµσ+ SBFµσ . For the ISMIR04 set, the
maximum CV accuracy was 70.58 % using SVMs to clas-
sify the MFCCµσ+ SBFµσ best 36 features. The sec-
ond highest accuracies were obtained using SBFµσ (SVM
classification). For any particular feature size, classifica-
tion models consisting of feature means and standard devi-
ations (µσ) performed better than models with only mean
(µ) feature values. As regards the learning algorithm used,
the best performances of each feature combination were
obtained using SVMs. The minimum CV accuracies, ob-
tained from the MFCCµσ subsets of the best single feature
using k-NNs, were 45.99 % in GTZAN and 22.10 % in IS-
MIR04.
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Figure 3: Mean t-value for each feature across all pairs of genres (GTZAN).

4. ANALYSIS

The MFCCs and SBFs were compared by performing sta-
tistical analyses of difference between classification model
performances and by estimating the separation ability be-
tween genre classes that was yielded by the features. Only
the GTZAN data set was chosen for most of the analyses;
both sets are difficult to compare due to their differences
in number of excerpts and in type and distribution of genre
classes. GTZAN was preferred over ISMIR04 because it is
widely used in MIR; another reason is that its balanced dis-
tribution made it possible to compare SBFs and MFCCs
using t-tests for equal sample sizes, thus offering a rela-
tively higher statistical power.

The separation ability is here understood as the level of
discrimination between classes obtained using independent
two-sided paired t-tests. Figure 3 offers an estimation of
the feature relevance for overall discrimination between
genres for the GTZAN data set. The plot shows, for each
feature, a mean t-value that summarizes paired t-tests for
assessment of separability between each possible pair of
genres in GTZAN. The lowest and uppermost SBFs as well
as the MFCC σ 3 yielded high mean t-statistic values.

For further analyses based on the classification accura-
cies, it was relevant to estimate if the obtained performance
was above chance level. The baseline accuracy [19] of a
data set is used as a benchmark for this purpose. It corre-
sponds to the percentage of the class that is most frequent
in the set. For both data sets, the obtained CV accuracies
were found to surpass the accuracy that would be obtained
by assigning all the examples to the most populated class.
The GTZAN baseline is 10 %, while the obtained minimum
CV accuracy was 22.10 %. In the case of the ISMIR04 set,
the baseline is 43.9 %, while the minimum result obtained
was 45.99 %. Since the minimum results were higher than
baseline accuracies, the obtained performance exceeded
chance level.

For the next analyses based upon classification results it
was opted to utilize models based on the SVM learning al-
gorithm. Only this classification technique was chosen be-
cause for each of the classifiers that were tested, the differ-
ence between the performance of MFCC and SBF models
was found to be fairly similar.

The results of all the SVM classifications based on full-
sized feature combinations were compared in order to find
out whether the performance of MFCC and SBF models
differed. Since the number of cross-validation folds was
not large enough to meet normality assumption [19], the
accuracies obtained for each full-sized feature combina-
tion were assessed running a non-parametric Friedman’s
test with post-hoc analysis following previous studies such
as [20]. Figures 4a and 4b show the differences in perfor-
mance between the classification models. Each box plot
displays the per-fold performance distribution of a single
feature combination. The figures show eleven differences
between models at p-values lower than 0.05, out of which
three were found for both GTZAN and ISMIR04 models: 1)
The SBFµσ set performed higher than the MFCCµ set at
p < .001 level; 2) the MFCCµ set yielded lower results
than the MFCCµσ+ SBFµσ feature set (p < .001); 3)
the MFCCµσ+ SBFµσ feature set performed higher than
the feature combination MFCCµσ (ISMIR04: p < .001,
GTZAN: p < .05).

Finally, an analysis based on SVM classification results
obtained from full sized combinations of MFCCµσ and of
SBFµσ was carried out for the GTZAN set data. These
particular classification models were chosen in order to
compare all the SBF descriptors against the totality of the
extracted MFCC descriptors. The most accurately classi-
fied genres for the chosen models were classical, metal and
jazz.

The MFCCµσ and SBFµσ models were compared by
finding out if there were any genres for which one fea-
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Figure 4: Comparison of SVM classification results based on different feature set combinations using GTZAN (a) and
ISMIR04 (b) music data sets. The boxes are presented in increasing order of median classification accuracy. A Friedman’s
test was utilized to find differences based on the CV accuracies of each full-sized feature set combination. Differences in
performance of classification model pairs that exhibited p-values lower than 0.05 are shown with braces. The corresponding
p-values for these cases are indicated with asterisks (*:p < .05, **: p < .01, ***:p < .001) .

ture combination offered good class separability but the
other did not, and vice versa. The separability between
classes was evaluated from the t-statistic of all the fea-
tures for certain pairs of genres. The genre pairs shown
in Figure 5 were chosen based upon the MFCCµσ and the
SBFµσ SVM classification models and their differences in
genre misclassification. In order to find the genre pairs,
the confusion matrices corresponding to these classifica-
tion models were modified by summing their respective
upper and lower triangles in order to add the false posi-
tives of each possible genre pair together. Two triangu-
lar matrices were obtained; the triangle corresponding to
SBFµσ was subtracted from the MFCCµσ triangle, and
vice versa. The required genre pairs were chosen from the
elements in the triangular matrices based on the maximum
values that were obtained from each subtraction. It was
found that country and jazz were relatively highly misclas-
sified by SBFµσ models and relatively lowly by MFCCµσ

models: as shown in Figure 5, the MFCC σ 3 descriptor
showed a comparatively high t-statistic with regards to the
separability between country and jazz. In contrast, hip-
hop and reggae showed relatively high misclassification for
MFCCµσ and comparatively low for SBFµσ models. As
shown in the plot, the SBF σ 3 offered the highest t-values
for the discrimination of these genres. A similar procedure
with symmeterized confusion matrices was used in a genre
classification study by [20].

5. DISCUSSION

The comparisons between the MFCC and SBF sets over
different conditions showed that SBF sets performed better
than MFCCs in the majority of the cases. This is observed
for both music data sets despite variations in the general
shape of the GTZAN and ISMIR04 plots (Figs. 4a and 4b)
that might be due to differences in their baseline accura-
cies. To illustrate this, classical music comprises 10 %
of the balanced GTZAN data set, which has 10 classes.
In comparison, from the unbalanced ISMIR04 set with 6
classes, almost 44 % consists of classical music. This
genre is in the latter case overrepresented, which would
lead to relatively higher results in ISMIR04 if a naı̈ve learner
assigned all the examples to the most populated class.

As regards the use of different learning algorithms to find
differences between MFCC and SBF model performance,
it was found that the results were consistent for the three
classifiers used. It can be suggested that the difference in
performance between SBF and MFCC models is mostly
invariant, at least with respect to the chosen classifiers.

Based on the analysis of mean separability, congruent
results were found between the class discrimination ob-
tained from certain features and prior findings regarding
perceived polyphonic timbre dimensions. As shown in Fig-
ure 3, the mean separability of each feature for all possible
combinations of genres yields fairly different profiles for
MFCCs and SBFs, probably because the features them-
selves are fundamentally different. The high average t-
statistic for the extreme SBFs suggests that the lower and
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Figure 5: T-statistic of all features in genre pairs (coun-
try/pop in upper graph, hip hop/reggae in lower graph)
for which MFCCµσ and SBFµσ models showed important
differences in genre misclassification (GTZAN data set).

upper extremes of the spectrum are especially important
for the purpose of genre classification. This tendency fol-
lows results by [6,13] regarding correlations between SBFs
from the extreme frequency channels and the perception of
polyphonic timbral Activity, Fullness and Brightness. In-
deed, the SBF descriptors with the highest t-values in Fig-
ure 3 were found to correlate with perceptual dimensions
in previous studies on polyphonic timbre perception [6]. It
can be thus suggested that the perceived dimensions of Ac-
tivity, Fullness and Brightness that are described by some
SBFs are relevant for the purpose of musical genre clas-
sification. In this sense, perceptually motivated features
have been considered potentially crucial for music classi-
fication [21], although few research has been conducted so
far in this direction.

The aforementioned contemplation might be also valid
for some MFCC descriptors, particularly MFCC µ 1 and
MFCC σ 3. The relevance of perceived brightness is also
suggested by the high average t-value of MFCC µ 1, which
correlates with this timbral feature. As regards MFCC σ 3,
which corresponds to energy at extreme low and mid-high
frequencies, this descriptor exhibited a high mean t-statistic,
implying that the lower spectrum end might be purposeful
for genre classification. Based on the cosine basis func-
tion corresponding to MFCC 3, inter-class discriminations
from this feature correspond to differences in energy co-
variance between the lower extreme of the mel spectrum
and frequencies around 2500 Hz.

The MFCC σ 3 was also found to discriminate well jazz
music from country, as shown in Figure 5. Since this fea-
ture is a standard deviation, it is plausible that the separa-
bility obtained between jazz and country is due to a rela-
tively higher variance in low frequencies over time in the

case of country music. As regards the discrimination be-
tween hip hop and reggae, the t-test results in Figure 5
showed that this appears to be a burdensome task using
MFCCs. The SBFs that can separate better these two classes
are the means and standard deviations of SBF 3 and SBF 4,
which correspond to fluctuations at low frequencies. Per-
haps the generally “fuller” sound that could be perceived
in hip hop music when compared to reggae corresponds to
the higher SBF µ 3 found in hip hop excerpts, as SBF 2
and SBF 3 represent perceived Fullness [6, 13].

Notably, standard deviations of features not only offered
particularly good separability but also seemed to be fa-
vorable with regards to the obtained classification perfor-
mance when compared to feature combinations that con-
sisted only of mean values. With this respect, it might be
that the addition of standard deviations increased the fea-
ture redundancy of the subsets, reducing its noise and im-
proving the separation between classes [22]. In any case,
the results raised the question of the relevance of stan-
dard deviations for music classification. While the fea-
ture means are a customary measure of central tendency,
the feature standard deviations are less prevalent and could
be considered as a problematic statistic for music descrip-
tion. These refer to changes over time, but do not give
cues about the temporal evolution of the music because the
time-scale of change is unknown. To illustrate this, the
loudness of a musical piece that is pp during the first half
and ff during the second half could have the same standard
deviation as that of a piece whose dynamics varied period-
ically.

It is worthy to remark that the separability analyses were
conducted for individual features and for pairs of genre
classes, thus it is not possible to tell whether the features
that yielded high t-values had an optimal individual con-
tribution in the multi-class classification experiment with
multiple features. In other words, descriptors that showed
high separation ability might not have necessarily been de-
cisive in the classification task.

6. CONCLUSIONS

The present findings showed that the SBF feature set, which
has been designed specifically for modeling human percep-
tion of polyphonic musical timbre, is a promising feature
for genre classification due to its satisfactory classification
performance over a number of scenarios. For the analyzed
cases, SBF models performed better than MFCC models.
In addition, spectral fluctuations at both ends of the fre-
quency spectrum were found to be relevant for discrimi-
nation between musical genres. Even though the classi-
fication results were comparatively lower than those ob-
tained by other approaches using a higher number of fea-
tures and pioneering classification methods, the outcomes
of this study encourage the evaluation of perceptually mo-
tivated features for musical genre classification. The re-
sults follow previous ideas regarding the importance of
global frequency distribution in genre discrimination [4],
and support the hypothesis that the energy fluctuations within
certain frequency channels, more specifically in lower and
upper spectrum ends, can be very useful for the task of
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music genre classification. A possible extension of the pre-
sented work would be to test the SBF feature set in other
MIR tasks such as music segmentation. Other natural di-
rections for future studies in genre classification include
the use of SBF with newer modeling techniques as well
as experiments on more challenging music data sets. Fi-
nally, the design of perceptually interpretable features that
boost efficiency through compact musical representations
can provide critical insights for MIR.
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ABSTRACT

In this paper, we propose a new acoustic feature signature
based on the multiscale fractal dimension extracted from
sound signals for the content-based retrieval of environ-
mental sounds such as field-recording sounds shared through
Freesound. The multiscale fractal dimension de-rived from
the fractal theory is known as a descriptor representing sev-
eral features of the sound waveform. We report the basic
characteristics of the enhanced multiscale fractal dimen-
sion (EMFD) extracted from each sound signal. Further-
more, we developed a similarity search system for envi-
ronmental sounds using EMFD and Mel frequency cepstral
coefficients 39 (MFCC39). We have compared the descrip-
tiveness of EMFD signature and MFCC39 for the search
purpose and found some competitive aspects of EMFD sig-
nature against MFCC39. These results show that EMFD
signature is useful for describing the features of environ-
mental sound and applicable to the search of large-scale
sound databases.

1. INTRODUCTION

These days, handy PCM sound recorders are growing pop-
ular. Not only music creators but also many amateurs are
enjoying recording environmental sounds, sharing them on
the web and creating new music by utilizing them. In
general, environmental sounds comprise various types of
sound, such as those made by creatures, natural phenomenon
and machines, city noise, music, speeches and so on. To
analyze environmental sounds, various types of acoustic
features have been proposed [1–4]. For promoting com-
munications and music creations utilizing database of field-
recording sounds on the web, it is important to find appro-
priate acoustic features for search-ing tasks that describe
timbre, tone and texture of sounds more effectively.

In this paper, we show the method to compute the fractal
dimension and the multiscale fractal dimension (MFD) of
a sound signal in chapter 2. In chapter 3, we show the pro-
cess of the development of EMFD based on MFD. In chap-
ter 4, we demonstrate the basic characteristics of EMFD.

Copyright: c©2013 Motohiro Sunouchi et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

In chapter 5, we show the method to evaluate the descrip-
tiveness of EMFD signature and report the results of the
evaluation.

2. MULTISCALE FRACTAL DIMENSION

2.1 Fractal Dimension of a Curve

Mandelbrot, who advocated a concept of fractal, demon-
strated that some structures in nature could be modeled
well by the theory of fractals [5]. Fractal dimension is one
of the numerical values that can describe characteristics of
a fractal. The fractal dimension of a straight line, which is
a special case of a curve, is 1. In general, the fractal dimen-
sion of a curve is defined as a real number between 1 and
2. The fractal dimension of a curve in a two-dimensional
space can be calculated as follows.

As an example of a curve, let’s take the sound wave-form.
A covering area can be drawn by a moving disk, whose
radius is r, along the curve of waveform. The center of
the disk should be at any position on the original wave-
form curve and the width of the covering area like a belt
becomes 2r. Fig. 1 shows the covering area obtained by
moving the disk along the waveform. This covering area is
called Minkowski Sausage.

time  >
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n
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m

p
li

tu
d

e
>

>

Figure 1. Sound waveform and Minkowski sausage

Let A(r) be the area of Minkowski Sausage obtained by
a disk of radius r. We plot logA(r) with respect to logr
to obtain Fig. 2. For curves in nature such as coastlines,
the plot of logA(r) versus log r is often like a straight line.
Equation (1) shows that the fractal dimension D can be
defined as the gradient of the plotted line subtracted from
2.
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log (r)

log A (r)

Figure 2. Double logarithmic plot of A(r) vs. r of
Minkowski Sausage

D = 2− lim
r→0

logA(r)

log r
(1)

2.2 Multiscale Fractal Dimension of Sound Waveform

In practice, sound waveform may have different structures
depending on its scale, therefor fractal dimension D may
vary by the value of r. Let grad(r) be the gradient of
logA(r) versus log r, then multiscale fractal dimension
(MFD) is defined as function of r by the equation (2).

D(r) = 2− grad(r) (2)

MFD at time t denoted by D(r, t) can be defined for a
fixed short time scanning window, say 50msec in this pa-
per, of target sound’s waveform. The function D(r, t) is
called fractogram. P. Maragos utilized MFDs to reduce
the error in speech recognition system using HMM and
reported the modest improvement in recognition perfor-
mance [6]. A. Zlatintsi used MFDs to analyze short-time
music signal structures at multiple time scales and con-
cluded that there is a strong evidence that MFDs can well
describe the structure and properties of instrument sounds
[7].

3. ENHANCED MULTISCALE FRACTAL
DIMENSION

We developed the method to compute the signature “en-
hanced multiscale fractal dimension” (EMFD) of sound
based on MFD. The following procedures are performed
to compute EMFD. EMFD can be computed as follows.

3.1 Preprocessing a Target Sound

A target sound to analyze should be first normalized with
its maximum amplitude to be -0.1db, and converted in the
standard format based on the following specifications, the
sampling rate (frequency) is chosen to be 44,100hz, while
the bit depth is 16bits. We use only a single channel.

3.2 Creating MFDs Profile

To compute the area of Minkowski Sausage, we setup a
unit disk vector Cr whose radius is r based on the equation

・・・ ・・・

r = 1

C 1 = (0, 1, 0)

r = 2

C 2 = (0, 1, 2, 1, 0)

r = 5

C 5 = (0, 3, 4, 4, 4, 5, 4, 4, 4, 3, 0)

Figure 3. Mesh-Approximation of a unit disk

arean = 5

min

max

arean = 2 arean = 5 arean = 5

n n+1n -1

arean = 0

maximum value minimum value

sampling position

step = 0 step = 1 step = 2 step = 3 step = 4

Figure 4. Steps for computing the area of Minkowski
Sausage at n-th sampling position in the current scanning
window by sliding the unit disk of r=2.

(3). Fig. 3 shows how the model of unit disk is built. The
vector Cr, whose radius is r, includes 2r elements that
denote the vertical distance from the top to the center of
unit disk at each horizontal position.

Cr =
{

floor
(√

2ri− i2
) ∣∣∣ i = 0→ 2r, i ∈ N

}
(3)

Fig. 4 shows how the area of Minkowski Sausage at
the n-th sampling position is computed by sliding the unit
disk along the sound signal in the current scanning win-
dow. The striped block corresponds to the minimum value
at the n-th sampling position that is covered by the unit
disk at each discrete step, whereas the gray block corre-
sponds to the maximum value. At each discrete step of
sliding the unit disk, the maximum and minimum values
at each n-th sampling position are independently updated
to keep respectively the maximum value and the minimum
value. Let n be the sampling position, r be the radius of the
unit disk, arean be the area of Minkowski Sausage at each
sampling position n and sig(n) be the amplitude value of
sound signal at each sampling position n, then arean is
computed by equation (4). MFD is computed using the
equation (5) for 132 different discrete values (r = 1, 2, ... ,
132). The minimum radius (r = 1) corresponds to the sam-
pling period of the sound signal (1/44.1 ms) and the range
of different values of r corresponds to the range of the time
scales from 1/44.1 to 3 ms.

arean = max
step=0→2r

{sig (n− r + step) + Cr (step)}

− min
step=0→2r

{sig (n− r + step)− Cr (step)} (4)
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MFD(r) = 2− log {A(r + 1)/A(r)}
log {(r + 1)/r}

(5)

swp(sound) =

{
0, 50, ...,floor

(
the length of the sound in milliseconds

50
− 1

)
× 50

}
(6)

EMFD
dimbin=1→50
rbin=1→132

=

{
card {t |1 + 0.02(dimbin− 1) ≤MFDt(rbin) < 1 + 0.02dimbin, t ∈ swp(sound)}

card {swp(sound)}

}
(7)

3.3 Enhanced Multiscale Fractal Dimension

In this paper, we use a fixed width scanning window of
length 50ms. The set of fixed scanning windows of the tar-
get sound is defined as swp(sound) by equation (6). MFD
for each scanning window can be obtained as a vector of
length 132, each of which takes a value between 2 and
1. To describe features of various types of environmental
sounds using a single type of signature, we define a new
signature, namely the enhanced multiscale fractal dimen-
sion (EMFD). EMFD is defined as a feature vector com-
puted as the two-dimensional histogram of time-varying
MFD values. Each bin contains the percentage of the scan-
ning windows of the target sound. We define 50 bins with a
width of 0.02 for the value of the fractal dimension of each
scanning window and the 132 bins with a width of 1 for the
radius of the unit disk. The value in each bin is computed
by equation (7). In the equation (7), the card(A) returns
the cardinality of set A. And dimbin is a counting number
that corresponds to the bins for the value of the fractal di-
mension and rbin is a counting number that corresponds
to the bins for the radius of the unit disk. For example,
the value of bin whose dimbin is 1 and rbin is 1 is (the
number of the scanning windows in which the MFD(1) is
between 1 and 1.02) / (the total number of the scanning
windows). The equation (8) is always true at each radius
of the unit disk. The Fig. 5 is an image which visualizes
the EMFD of a cuckoo sound. The higher the value of bin
is, the darker the color of the bin is in the figure.

50∑
dimbin=1

EMFD = 1.0 , at each radius of the unit disk

(8)

3.4 Logarithmic EMFD with a Long Time Scale

Furthermore we developed a derived signature to utilize for
similarity search task and for the evaluations of the descrip-
tiveness of EMFD in chapter 5. We have analyzed vari-
ous types of environmental sounds using EMFD and found
that EMFD seems to have informative values for larger unit
disks than the disk of 3ms radius (r=132). We extended the
maximum radius of the unit disk to 218 that corresponds
to 5 milliseconds (1/10 of the period of scanning window)
and the discrete values to include {r = round(1.4x), x =
1, ..., 16}. For the dimensionality reduction of the feature
vector, we reduced the number of bins for the dimbin from
50 to 32. We define this 32 (dimbin) x 16 (rbin) fea-
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Figure 5. EMFD histogram of a cuckoo sound
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Figure 6. EMFD-LL histogram of a cuckoo sound

ture vector as EMFD-LL. Fig. 6 shows the EMFD-LL his-
togram of the same cuckoo sound as the one in Fig. 5.

4. BASIC CHARACTERISTICS OF EMFD

To demonstrate the basic characteristics of EMFD and to
estimate the robustness of EMFD as a signature, we ap-
plied EMFD to test sound signals.

4.1 EMFD of Single Sine Waves

Fig. 7 shows the EMFD histograms of single sine waves of
110hz, 220hz, 440hz, 880hz and 1760hz. The higher the
frequency of a signal is, the smaller the value of the radius
at the first peak of EMFD histogram becomes. The fractal
dimension of a single sine wave converges to 2.0 at the
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Figure 7. EMFD histograms of single sine waves of
110hz, 220hz, 440hz, 880hz and 1760hz

the radius of the unit disk rwavelength

Figure 8. Minkowski Sausage by the unit disk with which
the fractal dimension converges to 2.0

radius of the unit disk around the half of the wavelength of
the signal. For a single sine wave of 440hz, the half of its
wave length is 1000/440/2 = 1.14(ms). We can find that
the EMFD histogram of 440hz sine wave converges 2.0 at
around 1.14 (ms) in Fig. 7. Fig. 8 explains this property
of EMFD. When the radius of the unit disk is more than
500/frequency, even if the radius increases, the area of
Minkowski Sausage becomes nearly constant. Therefore
the fractal dimension converges 2.0 by equation (2).

4.2 Robustness of EMFD against Volume Level and
Phase Shifting

To analyze various types of environmental sounds with EMFD
and for more reliable evaluation of the descriptiveness of
EMFD in chapter 5, we demonstrate the robustness of EMFD
against changing volume levels and phase shifting of sound
signals. To test sounds with different volume levels, we
prepared 3 sine waves of 110hz, 440hz and 1760hz with
maximum volume of -0.1db. We duplicated the sound files
and damp the signal level to -12db (≈ 1/4) and -24db
(≈ 1/16) for the test. In Fig. 9, the three of EMFD his-
tograms in the upper row show the test results. The original
signal (black line) and the signal damped to -12db (dark

gray line) show almost the same EMFD at any frequency.
There seems to be difference between the original signal
and the signal damped to -24db (light gray line) especially
with a large radius of the unit disk. The difference of the
fractal dimension is no more than 3.12% (r=132, 440hz).
If the sound amplitude is reduced to 1/16, the impression
in hearing the sound should be totally different. There-
fore we may conclude that EMFD has enough robustness
against changing volume levels.

Next we applied EMFD to single sine waves of 60hz,
180hz and 540hz with their phase shifted by 0 (black line),
π/4 (dark gray line) and π/2 (ight gray line). In Fig. 9, the
three of EMFD histograms in the lower row show the test
results. The lower the frequency of signal is, the bigger its
impact from the difference between the phase of signal and
scanning window is. The difference of the fractal dimen-
sion is no more than 1.07% (r = 132, 60hz). And if the
frequency is higher than 400hz, we can find vanishingly
small difference only in the histograms. For practical pur-
poses, EMFD has enough robustness against phase shifting
to scanning window.

5. EVALUATION OF DESCRIPTIVENESS OF
EMFD SIGNATURE

To evaluate the descriptiveness of EMFD signature, we
have developed a similarity search system using the k-nearest
neighbors method. As a sound dataset, sufficient num-
bers of environmental sounds with metadata have been im-
ported to the search system via Freesound API [8]. We
evaluated the descriptiveness of acoustic features based on
the similarity index we defined between tag groups of search-
key sound and that of the retrieved sounds.

5.1 Sound Dataset

To collect environmental sounds for the sound dataset, we
chose the Freesound project [9]. The database of Freesound
stores many types of sounds uploaded by users. Freesound
allows users to share their recording sounds and to describe
metadata about shared sounds on the web. Each sound
in this database is labeled with a group of tags, and they
are relatively well maintained as user generated contents
[10]. By utilizing Freesound API, applications can access
the database of Freesound easily.

Based on the rules we defined, the sounds and its meta-
data were imported to our search system. The rules are
as follows. These imported sounds are tagged with field-
recording. The length may be between 1 second and 600
seconds. We chose the top 3,000 sounds in descending or-
der of downloaded number. After sounds were imported
to the search system, each sound is converted to the uni-
formed format (1 channel, sampling rate at 44,100hz, bit
depth is 16bits with volume adjustment) for normalization
to extract acoustic features including EMFD. The average
length of imported sounds is 70.4 seconds.

5.2 Acoustic Features

The most well known feature for speech recognition and
music classification may be mel-frequency cepstral coeffi-
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Figure 9. EMFD histograms to estimate the robustness. The upper row: Difference for changing volume levels. The lower
row: Difference for phase shifting to scanning window.

cients (MFCC) [11]. We chose MFCC for the comparison
of descriptiveness with our EMFD-LL. We computed the
standard 13 MFCC coefficients with their first and second
derivatives. It is called MFCC39. The EMFD-LL is a fea-
ture vector consisting of 512 elements as mentioned in the
sub section 3.4. To achieve the best possible performance
of searching tasks by k-NN method, we applied Principal
Components Analysis (PCA) for feature vector of top 600
sounds (in descending order of downloaded number) in
dataset to reduce their dimensionality. For the feature sets
of EMFD-LL + MFCC39, PCA is applied for the concate-
nated original feature vectors. Table 1 shows the acoustic
feature sets and the length of its feature vectors.

Feature Sets L1 L2
1 EMFD-LL 512 72
2 MFCC39 (13MFCC+13∆+13∆∆) 39 12
3 EMFD-LL + MFCC39 551 74

Table 1. List of acoustic feature sets for the comparison of
descriptiveness of them. L1 is the length of concatenated
original feature sets. L2 is the length of the feature vector
after applying PCA.

5.3 Evaluation Method

We have developed a similarity search system based on
the k-NN method using respective features as mentioned
above. When user chooses any sound in dataset and its
feature set via web browser, the search result list based on
the selected feature set is shown instantly.

To evaluate the descriptiveness of each feature set, we
defined the similarity index between the tag group of the
search-key sound and that of the retrieved sounds. To com-
pute the similarity index between tag groups, we utilized

the Natural Language Tool Kit (NLTK) [12] with a lexical
database WordNet [13].

The similarity between tag1 and tag2 is defined as equa-
tion (9). The function of path similarity provided by
NLTK returns a score denoting how similar two synonym
groups are, based on the shortest path that connects the
meanings in the is-a taxonomy. Two synonym groups c1
and c2 denote those with tag1 and tag2 respectively as their
elements. Then similarity between tag groups is defined
by equation (10) and the similarity index between the tag
group of the search-key sound and that of each retrieved
sound in its search result list is defined as equation (11).
The symbol s denotes the search-key sound and rs denotes
the retrieved sounds in the search result list. The closer
the meaning similarity of tag groups between search-key
sound and each retrieved sound is, the bigger the similarity
index is.

simtag(tag1, tag2) = max
c1,c2
{path similarity(c1, c2)}

(9)

simtaggroup(tags1, tags2)

=

∑
t1∈tags1 max

t2∈tags2
{simtag(t1, t2)}

card(tags1)
(10)

simsound(s, rs)

=

∑
res∈rs simtaggroup(tagss, tagsres)

card(rs)
(11)

5.4 Evaluation Results

For each of 3,000 sounds in the dataset, we computed the
similarity index between itself as a search-key and each
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retrieved sound in search result list. Fig. 10 shows the
average values of the similarity index for each feature set.
The values in the column “top n” are the average values of
the similarity indices that a search-key sound and retrieved
sound(s) in the top n rank in search result list. For refer-
ence, the average value of the similarity indices between
the two randomly chosen sounds is 0.230.
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Figure 10. The evaluation results of the similarity index

Furthermore, to analyze for which kind of environmental
sounds the EMFD-LL can have good descriptiveness, we
picked up tag groups based on the following procedures.
Let simE be the similarity index between a search-key
sound and its top 10 retrieved results using EMFD-LL and
simM be that of MFCC39. Next we created two groups of
sounds in the dataset, EMFD-LL Group gE and MFCC39
Group gM defined by equation (12).

gE = {gE ∈ dataset |simE > simM } (12)
gM = {gM ∈ dataset |simE < simM }

Then we calculated the occurrence ratio for each tag la-
beling sounds in each group gE and gM . The occurrence
ratio of each tag is defined as (number of occurrences of
the tag labels to sounds in the group) / (number of sounds
in the group). Let oct(g, tag) be the function returns the
occurrence ratio of the tag in group g. We picked up tag
groups based on the equation (13). The parameter a is an
optional coefficient to narrow down the options to choose
tags. It seems that EMFD-LL can describe well the fea-
tures of sound labeled with some tags in T (a).

T (a) = {tag |oct(gE, tag) > oct(gM, tag)× a} (13)

We made sound groups with tags picked up and compute
the similarity index for each sound group. As a result, we
found that sound groups that EMFD-LL is obviously effec-
tive include, for example, {frog, frogs}, {children, child}
and {waves, beach, sea, ocean}. Fig. 11 shows the simi-
larity index of each group.

6. CONCLUSIONS

In this paper, we proposed the acoustic feature signature
EMFD based on the MFD and demonstrated the basic char-
acteristics of EMFD. To evaluate the descriptiveness of
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Figure 11. The evaluation results of the similarity index
for sound groups for which EMFD-LL is obviously effec-
tive.

EMFD signature of the environmental sounds, we devel-
oped the similarity search system using k-NN method and
the similarity index. From the evaluation results, we found
that the descriptiveness of EMFD-LL+MFCC39 is higher
than that of MFCC39. Furthermore, for the sounds tagged
with, for example, flogs, children, waves, beach, sea and
ocean, the descriptiveness of EMFD-LL is obviously higher
than that of MFCC39. Our goal is to improve the method to
utilize EMFD and to improve the descriptiveness of EMFD
so that we achieve the similarity search system for the envi-
ronmental sounds with better performance. For our future
research, we intend to trace the unique properties of the
descriptiveness of EMFD and develop the improved signa-
ture with lower dimensionality.
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ABSTRACT

We propose a novel technique called Semantic Layer Pro-
jection (SLP) for predicting moods expressed by music
based on audio features. In SLP, the predictive models
are formed by a two-stage mapping from audio features
to listener ratings of mood via a semantic mood layer. SLP
differs from conventional techniques that produce a direct
mapping from audio features to mood ratings. In this work,
large social tag data from the Last.fm music service was
analysed to produce a semantic layer that represents mood-
related information in a low number of dimensions. The
method is compared to baseline techniques at predicting
the expressed Valence and Arousal in 600 popular mu-
sic tracks. SLP clearly outperformed the baseline tech-
niques at predicting Valence (R2 = 0.334 vs. 0.245),
and produced roughly equivalent performance in predict-
ing Arousal (R2 = 0.782 vs. 0.770). The difficulty of
modelling Valence was highlighted by generally lower per-
formance compared to Arousal. The improved prediction
of Valence, and the increasingly abundant sources of social
tags related to digital music make SLP a highly promising
technique for future developments in modelling mood in
music.

1. INTRODUCTION

The modern age of digital music consumption has brought
new challenges in organising and searching rapidly expand-
ing music collections. The popular appeal of music is often
attributed to its striking ability to elicit or convey emotion.
Therefore, managing large music collections in terms of
mood has significant advantages that complement conven-
tional genre-based organisation.

Social music services such as Last.fm 1 play an important
role in connecting digital music to crowd-sourced seman-
tic information. A prime advantage of using Last.fm data
is in the large number of users worldwide applying seman-
tic tags, i.e., free-form labels, to elements of the music do-
main, e.g. tracks, artists and albums. Tags are used in order
to communicate users’ music listening preferences that are
also used for improving the service. The data is available to

1 Last.fm: http://www.last.fm/

Copyright: c©2013 Pasi Saari et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

researchers through a dedicated API, which makes it pos-
sible to apply semantic computing to tags related to mil-
lions of tracks. Semantic computation of Last.fm tags has
been found effective in characterising music information
related to genre, mood, and instrumentation [1]. Parallel to
analysing crowd-sourced tags, a tag set dedicated to music
research purposes has also been collected in [2]. The im-
portance of mood tags has been highlighted in several stud-
ies, including [3], claiming that mood tags account for 5%
of the most commonly used tags. Applying semantic com-
putation to tags can therefore yield effective mood-related
semantic models for music.

The prominence of mood in music is reflected by the
large number of studies modelling expressed or induced
emotion. To this end, two prevalent techniques emerged:
i) the dimensional model of Valence, Arousal and Tension;
and ii) the categorical model of basic emotions such as hap-
piness, sadness and tenderness. On one hand, these models
have been found mutually inclusive to a large degree [4].
On the other hand, more general models of emotion have
also been proposed, and refined using a taxonomy specifi-
cally designed for musically induced emotion [5].

These types of representations have been widely used in
computational systems for predicting mood from audio.
Feature extraction methods have been developed, for in-
stance, in [6] and [7], providing a good basis for mod-
elling and predicting perceived moods, genres and other
characteristics of musical audio. The typical approach in
most previous studies involves the use of computational al-
gorithms, such as supervised machine learning, to predict
perceived moods directly from audio features. For a more
detailed overview of the advances of mood modelling and
recognition, see e.g. [8].

Achieving high efficiency of these models, however, re-
lies heavily on good quality ground-truth data. Due to the
expense of human annotation, ground-truth is laborious to
collect, and therefore typical data sets are limited to a few
hundred tracks. This leads to challenges in mood predic-
tion emerging from the high dimensionality of audio fea-
ture data and from the need for complex model parameter
optimisation, often resulting in the lack of generalizability
of the predictions to novel tracks [9]. One way of overcom-
ing these challenges and increasing the efficiency of mood
prediction is to utilise audio content related to a large num-
ber of tracks and associated crowd-sourced semantic tags.

In this work, we use multivariate techniques in a novel
way to predict listener ratings of mood in 600 popular mu-
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sic tracks, using an intermediate semantic layer created
from tag data related to a substantially large collection of
tracks. This demonstrates how a large collection of tracks
and associated mood tags can be used to improve predic-
tion quality. The new technique involves mapping audio
features (audio level) to a semantic mood space (seman-
tic layer) first, and then mapping the semantic mood space
to listener ratings (perceptual level). This differs from con-
ventional methods that map audio directly to the perceptual
level. Instead, we use direct mapping as baseline to assess
the efficiency of the proposed technique.

2. RELATED WORK

This section summarises past research on connecting au-
dio, as well as semantic and perceptual levels to represent
music. Figure 1 illustrates how previous studies relate to
the approach presented here.

2.1 Mapping from Audio Features to Semantic Layer

The challenge of auto-tagging music tracks can be con-
sidered analogous to our task. Gaussian Mixture Mod-
elling (GMM) was used in [10], whereas [11] employed
Support Vector Machines (SVM) for this purpose. Bertin-
Mahieux et al. [12] proposed a boosting-based technique.
This provided higher precision (0.312) and overall F-score
(0.205) with somewhat lower recall (0.153) compared to
hierarchical GMMs proposed in [10], when a set of gen-
eral tag words were considered. In the context of mood
tags, the authors reported 0.449, 0.176, 0.253 precision,
recall and F-score, respectively, noting that, due to the spe-
cific experimental conditions, the results are bounded at a
value lower than one. Miotto and Lanckriet [13] found that
using semantic modelling of music tags improves auto-
tagging compared to the conventional approach of treating
each tag individually without any tag similarity informa-
tion. The proposed Dirichlet mixture model (DMM) cap-
tured the broader context of tags and provided an improved
peak precision (0.475) and F-score (0.285) compared to
previous results using the same data set, when combining
DMM with different machine learning techniques.

2.2 Mapping from Audio Features to Perceived Mood

Yang et al. [14] modelled moods represented in the Arousal-
Valence (AV) plane using Support Vector Regression (SVR)
with LIBSVM implementation [15] trained on audio fea-
tures. Reported performance was lower for Valence (R2 =
0.281) than for Arousal (R2 = 0.583). Eerola et al. [16]
compared various linear regression models at predicting
multidimensional emotion ratings with acoustical features.
A set of film soundtrack excerpts collected in [4] were
used in this experiment. The best models based on Partial
Least Squares Regression (PLS) showed high performance
at predicting listener ratings of Valence, Arousal, and Ten-
sion (R2 = 0.72, 0.85, 0.79). Especially for Valence, the
performance was strikingly higher than in [14]. The same
soundtrack data was utilised in classification of music to
four basic emotion categories in [9], showing the maxi-
mum accuracy of 56.5%. Audio features related to tonality

Perceptual level

Semantic layer

Saari et al. (2011)
Eerola et al. (2009)
Yang et al. (2008)

Miotto et al. (2012)
Bertin-Mahieux et al. (2008)
Turnbull et al. (2008)
Mandel & Ellis (2007)

THIS STUDY

Saari & Eerola (2013)
Saari et al. (2013)
Laurier et al. (2009)
Levy et al. (2007)

Lamere (2008)
Levy & Sandler (2008)
Turnbull et al. (2007)

Eerola & Vuoskoski (2011)
Zentner et al. (2008)
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Lartillot & Toiviainen (2007)
Tzanetakis & Cook (2002)

Figure 1. The difference of the present and past studies
in mapping between audio features, semantic layer, and
perceptual level. Selected past research is cited for each
sub-task.

(average majorness of the mode and key clarity), as well as
to the average slope of the onset attacks were found to be
the most effective predictors of the perceived mood. SVM
has been particularly popular in the annual MIREX mood
classification challenge 2 representing the state-of-the-art
in the field. Moreover, SVM together with ReliefF feature
selection produced competitive results [17].

2.3 Mapping from Semantic Layer to Perceived Mood

The studies of Laurier et al. [18] and Levy et al. [19] com-
pared semantic models of mood based on social tags to
emotion models proposed by research in affective sciences,
as well as expert-generated mood categories used in the
MIREX challenge. The accuracy of tag-based semantic
models at predicting listener ratings of musical mood was
assessed in [20], proposing a technique called Affective
Circumplex Transformation (ACT) for the task, based on
previous research in affective sciences [21, 22].

ACT was used to predict perceived mood in 600 popular
music tracks. The results showed promising performance
(R ≈ 0.60) for the ratings related to the dimensional emo-
tion model as well as separate mood terms. Similar analy-
sis across separate sources of curated editorial annotations
for production music, and crowd-sourced Last.fm tags for
commercial music, was performed in [23]. The results sug-
gested that semantic models of mood based on tags can be
used interchangeably to predict perceived mood across dif-
ferent annotation types and track corpora.

To apply the approach taken in [20] and [23] to new track
corpora, semantic annotations need to be available for the
corresponding tracks. In order to predict mood in unanno-
tated track corpora, one must rely on other type of infor-
mation, such as audio features. In the present study, we
show how semantic tag data that was found to be promis-
ing and relevant in previous work can be used to enhance
audio-based mood prediction.

2 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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# Tracks # Terms # Terms / track
Mood set 259,593 357 4.44
SET10K 9,662 357 5.53

Table 1. Statistics of the mood term sets.

3. METHODOLOGY

3.1 Semantic Computing of Mood in Music

The following procedures were applied to uncover a se-
mantic space of mood in music. More detailed account on
the analysis and data collection is given in [20].

3.1.1 Vector-Space Modelling

First, a mood vocabulary was collected by aggregating and
lemmatising mood term lists from several research papers
in affective sciences, music psychology and Music Infor-
mation Retrieval (MIR), and term lists in the Allmusic.com
web service (see [20] for details). Synonyms and inflected
forms of the vocabulary terms were identified and aggre-
gated or added manually (e.g., happy ≈ happiness), result-
ing in 568 unique terms.

Semantic computation was applied to audio tracks and
mood tags collected in [20]. Mood vocabulary terms were
identified in tags using a bag-of-words approach similar
to [1], and terms were applied to associated tracks accord-
ingly. We excluded tracks with less than 2 mood annota-
tions, as well as terms associated to less than 100 tracks,
to avoid working with overly sparse information. Table 1
shows the resulting data (mood set) (SET10K is described
in Section 3.2). Finally, the mood data set was normalised
by computing Term Frequency - Inverse Document Fre-
quency (TF-IDF) weights: n̂i,j = (ni,j+1) log( R

fi
), where

ni,j is the original frequency weight related to term wi and
track tj , R is the total number of tracks, and fj is the num-
ber of tracks term wi is associated to.

3.1.2 Latent Semantic Modelling

A low-rank approximation of the TF-IDF matrix was com-
puted by Singular Value Decomposition (SVD) and Mul-
tidimensional Scaling (MDS). SVD decomposes a sparse
matrix N so that N = USV T , where matrices U and V
are orthonormal and S is the diagonal matrix containing
the singular values of N . Rank k approximation of N is
computed by Nk = UkSk(V k)T , where the i:th row vec-
tor Uk

i represents a term wi as a linear combination of k
dimensions. Similarly, V k

j represents track tj in k dimen-
sions. Based on a rank k approximation, dissimilarity be-
tween terms wi and wî is calculated by using the cosine
distance between Uk

i S
k and Uk

î
Sk.

To represent mood terms explicitly in a low-dimensional
space, non-metric MDS [24] with Kruskal’s stress-1 crite-
rion was applied on the term dissimilarities, obtained by
the rank k approximation of mood TF-IDF using SVD.

Next, we used the Affective Circumplex Transformation
(ACT) proposed in [20] to conform the MDS configuration
to the space of Arousal and Valence (AV), using AV values
of 101 mood terms given in [21, p. 1167] and [22, p. 54].
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Figure 2. ACT with rank k = 16. Only the most fre-
quently applied tags are shown for each part of the AV-
space. Tag frequencies are reflected by the size of circles.

This technique is used here to (i) increase the interpretabil-
ity of the MDS configuration; and (i) allow us to directly
predict mood from the semantic layer. The first two dimen-
sions of the resulting space represent Valence and Arousal
as shown in Fig. 2 (with k = 16). The size of the circles
reflects the frequencies of tags in the mood set, ranging
from 110 tracks (“vindictive”) to 79,524 tracks (“chill”).

Finally, to represent a track in the MDS term space, we
applied projection based on the positions of the associated
terms. Given an MDS term configuration yi = (yi1, yi2, yi3),
i ∈ (1, ..., |w|), position of a track represented by a sparse
term vector q is computed by the center-of-mass:

t̂ =
Σiqiyi
Σiqi

. (1)

3.2 Data set Description

Two data sets were used in our analysis: a 9,662 track
subset of the mood set (SET10K), and a set of 600 tracks
(SET600) collected in [20]. The audio tracks in both sets
are non-overlapping.

SET10K was sampled from the mood set in a balanced
manner by optimising mood variance in terms of track pro-
jections in the semantic space and including only unique
artists. We use this set in successive analysis for mapping
audio features to the semantic layer of mood. Audio con-
tent of the SET10K consists of 15-30s preview clips ob-
tained from Last.fm. The clips are typically samples of full
tracks in 128kB/s mp3 format starting from 30s-60s into
the audio. Arguably, these samples contain relevant mate-
rial that, up to a certain limit, characterise the full tracks.

SET600 was annotated in a listening test [20], where 59
participants rated 15s excerpts of 600 popular music tracks
from Last.fm in terms of perceived mood expressed by
music. Moods were rated in nine point Likert-scales for
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Valence (“negative” / “positive”), Arousal (“calm” / “ener-
getic”), Tension (“relaxed” / “tense”), Atmospheric, Happy,
Dark, Sad, Angry, Sensual and Sentimental. The excerpts
were sampled from full tracks corresponding to positions
in the Last.fm previews. SET600 consists of 15s clips us-
ing 320kB/s mp3 format.

3.3 Audio Feature Extraction

Audio features describing dynamics, rhythm, pitch, har-
mony, timbre and structure were extracted from SET10K
and SET600 using the MIRtoolbox [6]. Statistical means
and standard deviations over features extracted from vari-
ous short 50% overlapping time frames were computed to
obtain song-level descriptors. The resulting set of 128 fea-
tures is presented in Table 2. For the features describing
rhythmic repetition (127-128) and zero crossing rate (43-
44), we used long frame length of 2s, whereas for chromagram-
based features such as the repetition of register (125-126),
key clarity (19-20), centroid (17-18), mode (21-22), HCDF
(23-24), and roughness (25-26) we used a frame length of
100ms. For other features the frame length was 46.4ms ex-
cept for low-energy ratio (3), which was extracted directly
from the full extent of the signal.

Features from SET10K were normalised using the z-score
transform. All feature values more than 5 standard devi-
ations from zero were considered outliers and truncated
to the extremes [−5, 5] (0.1% and 1.3% of the values in
SET10K and SET600 respectively). SET600 was then nor-
malised according to the means and standard deviations of
SET10K. In particular, we discovered a slight discrepancy
in mean RMS energy (1) between SET10K and SET600.
The energy was generally higher in SET600, perhaps due
to the use of different MP3 encoders. However, this was
ignored in our study for simplicity.

3.4 Regression Techniques and Model Evaluation

3.4.1 Semantic Layer Projection

We propose a novel technique for mood prediction in mu-
sic termed Semantic Layer Projection (SLP). The technique
involves mapping audio features to perceived mood in two
stages using the semantic mood level as a middle layer, in-
stead of the conventional way of mapping audio features
directly to the perceived mood. SLP may be implemented
with several potential mapping techniques. We choose to
use PLS for the first mapping, due to its higher perfor-
mance demonstrated in previous research, and linear re-
gression for the second.

First, we apply PLS to the SET10K to produce a mapping
from audio features to the 10-dimensional semantic mood
representation obtained using ACT. We compare two vari-
ants of the semantic mood layer: (SLP10D) track projec-
tions in all 10 dimensions of the mood space, and (SLP1D)
track projections in separate dimensions corresponding to
Valence (1st dim.), and Arousal (2nd dim.). To map from
audio features to the semantic layer, we apply PLS to each
dimension separately. Then, we project the audio features
of SET600 to the semantic layer using the obtained map-
pings. Finally, we apply linear regression between the 10-

Table 2. Extracted feature set. Feature statistics (m =
mean, d = standard deviation) are computed across sam-
ple frames.

Category No. Feature Stat.
Dynamics 1-2 RMS energy m, d

3 Low-energy ratio –
4-5 Attack time m, d
6-7 Attack slope m

Rhythm 8-9 Fluctuation (pos., mag.) m
10 Event density m
11-12 Pulse clarity m, d
13-14 Tempo m, d

Pitch 15-16 Pitch m, d
17-18 Chromagram (unwr.) centr. m, d

Harmony 19-20 Key clarity m, d
21-22 Key mode (majorness) m, d
23-24 HCDF m, d
25-26 Roughness m, d

Timbre 27-28 Brightness (cutoff 110 Hz) m, d
29-30 Centroid m, d
31-32 Flatness (< 5000 Hz) m, d
33-34 Irregularity m, d
35-36 Skewness (< 5000 Hz) m, d
37-38 Spectr. entropy (<5000 Hz) m, d
39-40 Spectr. flux m, d
41-42 Spread m, d
43-44 Zerocross m, d

MFCC 45-46 1st MFCC m, d
...

...
...

...
69-70 13th MFCC m, d
71-96 1st -13th ∆ MFCC m, d
97-122 1st-13th ∆(∆) MFCC m, d

Structure 123-124 Repetition (spectrum) m, d
125-126 Repetition (register) m, d
127-128 Repetition (rhythm) m, d

dimensional (SLP10D) and 1-dimensional (SLP1D) layer
representations and the listener ratings.

We optimise the number of components used in the PLS
mappings using 50× 2-fold cross-validation. In each fold,
we divide SET10K into training and test sets, and estimate
how well the PLS mapping based on train set fits the test
set. To decide on the number of components, we apply (50,
100)-fold cross-indexing proposed in [9]. Cross-indexing
is a technique developed to tackle model over-fitting in
choosing the optimal model parameterisation from several
candidates. Finally, we use the selected number of compo-
nents to form a model based on the whole SET10K.

3.4.2 Baseline Techniques

In this study, two baseline techniques – PLS and Support
Vector Regression (SVR) – were compared with SLP. These
techniques were chosen since they represent regression meth-
ods that were already found efficient in previous MIR stud-
ies. Baseline techniques were applied in the usual way,
mapping audio features of SET600 directly to the ratings
of perceived mood.

We use PLS in a conventional way with 2 components as
in [16]. In SVR, we use the Radial Basis Function (RBF)
kernel and apply grid search to optimise the cost (C = 2l,
l ∈ [−3, ..., 3]) and gamma (γ = 2l, l ∈ [−13, ..., 8])
model parameters. Moreover, we optimise the set of au-
dio features used in SVR by feature subset selection. To
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this end, we apply the ReliefF [25] feature selection algo-
rithm adapted for regression problems. ReliefF produces
relevance weights τ ∈ [−1, 1] for the individual features
by taking into account their prediction potential and re-
dundancy. To choose a subset of the features, we use a
relevance weight threshold τ0 = 0 and include all features
with τ > τ0.

3.4.3 Cross-Validation Procedure

For validating the performance of the techniques, we use
50×2-fold cross-validation corresponding to 2-fold cross-
validation run 50 times, and report the mean and stan-
dard deviation over the 100 performance estimates for each
technique. All model optimisation and feature selection is
based solely on the training set at each run.

4. RESULTS AND DISCUSSION

In SLP10D and SLP1D we use the rank k = 16 for SVD
computation. This choice of k was found effective in [20],
while other values had no consistent effect on the perfor-
mance and did not improve the results.

Fig. 3 shows the performance of each technique at pre-
dicting the ratings for Valence and Arousal. For Valence, it
is evident that SLP outperformed the baseline techniques.
SLP10D gave the highest performance (R2 = 0.334 ±
0.035), outperforming SLP1D (R2 = 0.252±0.032). SLP10D

performed at significantly higher level (t(99) = 17.994, p =
5.63 × 10−33) 3 than SVR (R2 = 0.245 ± 0.048), while
the difference between SLP1D and SVR was not signifi-
cant. Conventional PLS was the least efficient with a per-
formance of R2 = 0.152± 0.045.

Cross-indexing to optimise the number of PLS compo-
nents in mapping from audio features to the semantic space
yielded 7 components for SLP10D and 13 components for
SLP1D. The number of components for SLP10D is the
average across 10 dimensions, while the latter relates to
the first dimension of SLP10D. The regression model used
in the second-stage mapping of SLP10D relied heavily on
the first semantic dimension related to Valence: the first
dimension showed an average significance of p ≈ 10−4

across cv-folds. SLP10D model therefore bears a strong
similarity to the SLP1D. ReliefF feature selection to op-
timise the set of audio features used in SVR yielded on
average 43 features (SD = 11).

In general, the fact that SLP1D outperformed SVR shows
the efficiency of SLP. In SLP1D tracks are explicitly pro-
jected to Valence already in the first-stage mapping from
the audio features to the semantic layer. Therefore min-
imal learning is required within SET600 for the second-
stage mapping to perceived mood. This contrasts to the
extensive adaptation to SET600 in SVR, which involves
feature selection, cost and gamma optimisation, as well as
support vector optimisation.

The overall performance for predicting Valence was at
a significantly lower level than the performance of R2 =
0.72 reported in [16]. Most notably, the PLS technique that
was successful in [16] did not give convincing performance

3 Pairwise Student’s t-test across cv-folds.

here. Since the set of audio features used in these studies
is similar, the difference in performance is possibly due to
the variety of genres covered by SET600. This is in con-
trast with the previous study using only film soundtracks.
Film music is composed to mediate powerful emotional
cues [4], which may provide higher variance in feature val-
ues so that better representations can be learnt. However,
the performance in the present study is in line with other
past research such as [14] (R2 = 0.281).

All techniques gave notably higher performance for Arousal
than for Valence. In this case, SLP10D again yielded the
highest values (R2 = 0.782 ± 0.020), but outperformed
SVR (R2 = 0.770 ± 0.028) only marginally. PLS gave
the third highest performance (R2 = 0.751 ± 0.027) out-
performing SLP1D (R2 = 0.745 ± 0.019). For Arousal,
SLP1D used five PLS components, while the performance
of SVR was obtained with 37 features on average (SD =
9). Again, the second-stage regression model in SLP10D

relied mainly on the 2nd dimension (p ≈ 2 × 10−9) re-
lated to the Arousal dimension used in SLP1D. Despite
more complex training within SET600, SLP10D gave only
slight, although highly significant (t(99) = 5.437, p =
5.4× 10−7) performance gain over SVR. In fact, all tech-
niques performed better than R2 = 0.7, which corrobo-
rates past findings that audio features provide a robust basis
for modelling perceived Arousal in music.

Similar patterns in the general performance levels between
techniques were found in modelling ratings in the other
seven scales related to individual mood terms. In gen-
eral, moods that are characterised by high or low arousal,
such as Angry and Atmospheric, performed at similar, yet
slightly lower level than Arousal, whereas moods such as
Happy and Sad – characterised by positive and negative
valence – produced performance similar to Valence.

Since SLP10D produced clearly the highest performance
for Valence, while outperformed SVR by a more modest
margin for Arousal, it is worth to compare the potential of
these techniques in future approaches to mood prediction.
SVR represents a sophisticated state-of-the-art technique
that is efficient in learning characteristics of the training
data relevant to the target mood, but requires complex op-
timisation of multitude of model parameters. Robust learn-
ing of SVR, and any method that could be used as baseline
is solely dependent on high quality training data, which is
typically laborious to collect. This also means that gener-
alizability of these models to unknown music tracks, and
possibly to new music genres, can not be guaranteed, as
found in [26]. On the other hand, the efficiency of SLP is
primarily based the first-stage mapping from audio to the
semantic layer, and require only minimal adaptation to test
data. This is suggested by the promising results of SLP1D

that produced explicit mood estimates already at the first-
stage.

Semantic data required to built the semantic layer can be
collected from online services by crowd-sourcing. Some
services already make available data related to millions of
tracks. Therefore, the cost of collecting training data for
SLP is related mostly to obtaining the audio representa-
tion of the training set. Larger data for the semantic layer
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Figure 3. Performance (R2 ± sd) for each technique in predicting the perceived mood.

enables more delicate learning and would presumably in-
crease the model performance. We therefore claim that the
potential of SLP in future mood prediction approaches is
higher than that of SVR. Note, however, that as SLP in gen-
eral can be implemented with any prediction model, SVR
can in fact be implemented in the future as the mapping
technique within SLP.

Finally, we seek to gain understanding of what audio fea-
tures are the most useful for modelling Valence and Arousal.
We apply SLP10D using each audio feature category de-
scribed in Table 2 separately. Table. 3 shows the results.
Eight harmony-related features including Mode and Key
clarity were found to be the most useful in predicting Va-
lence (R2 = 0.186), and in fact, the model using only
these 8 features would have outperformed PLS using all
features. Features describing timbre, structure, and MFCC
showed modest potential for predicting Valence (R2 >
.10), whereas rhythm features were largely redundant in
this particular task. Prediction of Arousal was on the other
hand highly efficient with most feature categories. Tim-
bre (R2 = 0.687) and MFCC (R2 = 0.649) features per-
formed the best. Prediction with harmony-related features
was also competitive (R2 = 0.653), while even the four
pitch-related features could predict Arousal at moderate
level (R2 = 0.471).

In general, these results support previous findings that
harmony-related features are useful in mood prediction [9],
and that timbre-related features are more useful for predict-
ing Arousal. The results also highlight the need to either
optimise existing harmony-related features, or to uncover
and investigate a wider variety of audio descriptors for Va-
lence prediction.

5. CONCLUSIONS

In this study we developed a novel approach to predict
the perceived mood in music called Semantic Layer Pro-
jection (SLP). By introducing a two-stage mapping from

Table 3. Performance (R2 ± sd) of SLP10D using differ-
ent audio feature categories. Number of features in each
category are presented in brackets.

Valence Arousal
Dynamics (7) 0.092± 0.031 0.536± 0.034
Rhythm (7) 0.056± 0.044 0.583± 0.028
Pitch (4) 0.074± 0.034 0.471± 0.031
Harmony (8) 0.186± 0.035 0.653± 0.030
Timbre (18) 0.141± 0.037 0.687± 0.027
MFCC (78) 0.123± 0.030 0.649± 0.026
Structure (6) 0.127± 0.043 0.547± 0.025

audio features to semantic layer and finally to mood rat-
ings, SLP provides a way to exploit semantic information
about mood learnt from large music collections. It also
facilitates building predictive models for disparate music
collections. The proposed technique outperformed SVR, a
sophisticated predictive model on the Valence dimension,
and produced prediction performance roughly at the same
level on the Arousal dimension.

The results highlight the difficulty of modelling the Va-
lence dimension in music. However, SLP provides clear
advantage compared to baseline techniques specifically in
this task, which signifies its high potential that can be de-
veloped further in more general audio and semantics-based
mood recognition models.

Future direction of the present study includes using more
efficient collection of tracks to represent the semantic layer,
and improving the prediction of Valence via an extension
of the audio feature set. Moreover, a version of the pro-
posed technique that takes musical genre into account –
possibly by introducing a genre layer – will be developed
to further generalise our model to many different types of
music collections.
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ABSTRACT

This paper describes an open-source software for real-time
rhythm annotation. The software integrates several mod-
ules for graphical user interface, user management across
a network, tap recording, audio playing, midi interfacing
and threading. It is a powerful tool for conducting listen-
ing tests, but can also be used for beat annotation of mu-
sic or in a game setup. The parameters of this software,
including the real-time constraints, are not pre-defined in
the code but can be easily changed in a settings file. Fi-
nally, the framework used allows for scalability, as it was
developed in openFrameworks. We show the usefulness of
the software by applying it in a cross-cultural beat tapping
experiment during the ISMIR 2012 conference. An analy-
sis of the collected real-time annotations indicates that lis-
teners encounter difficulties in synchronizing to music in
presence of unfamiliar rhythmic structures and instrumen-
tal timbres.

1. INTRODUCTION

When analyzing a piece of music, an important initial step
is to obtain an understanding of its temporal structure; to
know: where boundaries between melodic phrases are,
where the downbeats are located, where an instrument be-
gins to play a note? Annotating such aspects of musical
structure is a time-consuming task, but human annotations
are often needed for the evaluation of automatic analysis
approaches, or for obtaining insight into human perception
of musical structure.

Tanghe et al. [1] described the process of annotating note
onsets. They noted the absence of suitable annotation tools
for their purposes. In their conclusion they underlined the
importance of an easy-to-use, flexible, dedicated system
for music annotation. Visual feedback, multi-layer anno-
tations, connectivity to external user interfaces, flexible in-
put and output, were found to be the key features of such a
system.

Moreover, during the time-consuming and possibly bor-
ing process of manual annotation, the subjects can be mo-
tivated by designing the application as a game, providing
the subjects with some goal to achieve. With one single

Copyright: c©2013 Marius Miron, Fabien Gouyon, Matthew E.P. Davies et

al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author
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exception [2], focused on collecting tags for music pieces,
we are not aware of annotation systems which have been
specically designed as a game.

Regarding annotation tools that integrate into existing soft-
ware, Gouyon et al. [3] presented a semi-automatic rhythm
annotation tool. This open-source tool is integrated into
WaveSurfer 1 . It comprises a beat tracking algorithm, which
sets the time values for the beats, and an annotation tool,
which allows the editing of these time values. The an-
notator can stratify the beats into several metrical levels,
however without the ability to simultaneously edit beats at
several levels in real-time. MUCOSA [4] is a music con-
tent semantic annotator also based on WaveSurfer. The
environment stores metadata at three different levels using
an annotation client and a collection tagger. Additionally,
it supports sharing annotations between various research
groups via an administrative web interface. Li et al. [5]
introduced editable audio and music segmentation layers
into the Audacity editor 2 . While it offers important visual
cues to the annotator, it is mainly focused on phrase seg-
mentations, and not on rhythm or note onset annotation.

With respect to stand-alone annotation tools, Sonic Visu-
alizer [6] is a music analysis and annotation platform de-
veloped in C++. In a similar way to MUCOSA, it struc-
tures information into several editable layers. It lacks the
annotation sharing and user management capabilities of
MUCOSA, but is highly expandable due to the integration
of VAMP plug-ins which can provide automatically gener-
ated guides for annotation, e.g. by using an onset detection
algorithm first, and then modifying its output by hand.

Most existing annotation tools were not designed for ex-
perimental conditions or games. For these systems, impor-
tant settings such as the time sampling rate for user inputs
are not available for editing. Other features, such as user
management [4], or MIDI interfacing are present in some
systems, but absent from others [5].

In this paper, we present beatStation, a software focused
on (but not restricted to) rhythm annotation. The software
can be applied in a game setup and provides functionalities
for beat perception experiments. Compared to the other
annotation software presented above, beatStation has mul-
tiple modules, and can be easily expanded as it was im-
plemented in openFrameworks 3 . The application is open-
source, flexible and scalable. It uses several popular open-
Frameworks add-ons for user and file management across
network, audio playing, graphical user interface, process

1 http://sourceforge.net/projects/wavesurfer/
2 http://audacity.sourceforge.net
3 http://www.openframeworks.cc/
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Figure 1: Software framework

threading, MIDI interfacing, and can be easily extended
with more add-ons. Due to the flexibility of openFrame-
works, it can be ported to any operating system platform,
including mobile platforms.

Moreover, beatStation allows a user-friendly approach to
conduct experiments by providing access to a range of pa-
rameters of the application from a simple settings file. Ad-
ditionally, various stations can be simultaneously used in
a client-server configuration, providing user management
control. The software can be configured e.g. to annotate
meter at several levels simultaneously in real-time, but also
the annotation of melodic motif and phrase boundaries is
possible. The data collected from the subjects is easily ac-
cessible and portable for analysis in the form of xml-files.

The beatStation was used during the ISMIR 2012 confer-
ence to gather sensorimotor synchronization [7] responses
from subjects when asked to tap to Turkish and euro-genetic
popular music. The experiment was designed as a game,
in which attendants were motivated to tap the beat across a
set of music stimuli to maximize their chances of winning
a competition. This pilot experiment was a great success,
and the software ran continuously for 5 days without inci-
dent. The results of the experiment provided us with some
valuable insights into the ways listeners respond to musi-
cal styles they are not familiar with. These insights have
already been used to design a dataset for a more thorough
analysis of sensorimotor synchronization in Turkish music.

The remainder of the paper is structured as follows: In
Section 2, we present the software framework with each
module add-on. Section 3 presents details of our case study,
and results are analyzed in Section 4. Finally, Section 5
concludes the paper.

2. SOFTWARE FRAMEWORK

As stated in [8] , openFrameworks introduced a framework
which can be easily used by creative individuals, and also
incorporates the strong assets of the C++ programming
language. Since its introduction, a huge variety of applica-
tions has been developed and the community of developers
has grown considerably. The framework grew as external
code was added in the form of add-ons. Many of these
add-ons can be combined in a single application, making
it possible to connect various modules related to visuals,
sensors and even algorithms for audio signal processing or
sound synthesis.

The beatStation application has a basic setup, as depicted
in Figure 1, including the core modules of beat tapping
recording and storing, graphical user interface, and user

Figure 2: Screenshot of the beatStation interface

management. Its extended setup includes external script
calling and client-server communication.

The add-ons used inside beatStation are as follows:
ofxUI and ofxTextSuite for the graphical user interface,
ofxXMLSettings for storing the data related to users and
tapping, ofxDirList to load sound files or xml data files,
ofxTCPClient and ofxTCPServer for tcp/ip communica-
tion. Additionally, the following pre-existing openFrame-
work classes were used: ofxMidi for midi connectivity,
ofThread for calling an external application to process the
results, ofSoundPlayer for playing sounds.

2.1 Recording and storing real-time input

Our motivation was to create a software for real-time rhythm
annotation, where the subject would be asked to tap to a
musical stimulus. Hence, the tappings can capture various
aspects such as beats, note onsets or downbeat structure –
indeed any time-based information which can be meaning-
fully entered in real-time.

The subject is presented a set of songs, which is located
in the sounds directory. Whether the songs are presented
in a random or alphabetical order can be chosen by mod-
ifying the randomFiles variable in the settings.xml
file. The number of times the subject can listen to a song
can be set from the noPlays variable, in the same file. If
a song is played more than once, then only the final set of
annotations are retained. The subject’s responses are saved
in the data directory every time a user quits the interface
or finishes annotating a song. Each user has an associated
XML file where the tapping data is stored on the following
structure:

<tapping userID="14" currentSound="1">
<songIndexes>2 </songIndexes>
<song songID="2" tryNo="1">

<fileName>file1.aiff</fileName>
<transcription></transcription>
<transcription2></transcription2>

</song>
</tapping>

The unique ID of each user and the number of sounds
tapped are stored at the top level. The lower levels stores
the IDs of songs tapped, and for each one of those, the
name of the song, and transcription values in milliseconds.

Annotation can be performed using the keyboard or a
MIDI interface, e.g. drum pads for beat annotation. The
settings related to MIDI are midiPort, midiChannel, midiNote,
and midiNote2. When using the computer keyboard, the
subjects can tap various metrical levels using the SPACE
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(a) KEYBOARD

(b) MIDI INTERFACE

Figure 3: The histograms representing the delay between the
onsets of the pulses in the signal and the time instances tapped
on, using (a) the KEYBOARD, and (b) the MIDI INTERFACE

and TAB keys. The associated settings are tapWithSpace,
and tapWithTab.

Regarding the real-time performance, the MIDI and the
keyboard have associated event listener functions, which
capture the events from the external interfaces. Checking
for keyboard and MIDI interruptions with an event listener
introduces a delay, which cannot be controlled using the
application. This delay depends on the operating system,
the MIDI drivers and the MIDI interface.

The unpredictable variability of the timing accuracy of
general purpose computers was discussed in [9] . In this
paper, we computed the tapping latency for our application
when using a MIDI interface Roland Handsonic HPD-10
connected through a Digidesign USB sound card, and the
keyboard, on a 2012 iMac computer. Five subjects were
asked to tap along a sound example of 170 seconds dura-
tion, comprising equidistant pulses at a period of 500ms.
Each subject tapped the sound example three times, first
using the MIDI interface and then the keyboard.

In Figure 3, we depict a histogram of timing differences
between the taps and the pulse locations in the signal. The
delay using the keyboard is almost twice as large, but still
lies within the tolerance demanded e.g. in beat tracking
evaluation [10]. The standard deviation is similar for both
interfaces and is in the range of the typically reported hu-
man variability [7] in sensorimotor synchronization.

2.2 Graphical User Interface

The graphical user interface (GUI) comprises several scenes
for each stage of the application: user registration, user
log-in, instructions, song annotation, and display of results.
The user can move from one scene to another following a
sequence of steps. First, the user has to register in the main
GUI, where a basic description of the experiment is dis-
played. Then the application displays a set of instructions
describing the task which is to be performed by the subject.
After this, the tapping GUI is loaded. At this stage, the user
can listen to songs and input their taps. A results page is
displayed when the user finishes tapping all the songs or
quits.

As depicted in Figure 2, the PLAY button is used to start
playback of a song, after which the NEXT button can be
used to move to the following sound example. All the
buttons are disabled when a song is playing, except the
QUIT button (provided the canQuit variable has been set
in the settings file). The volume can be adjusted with the
VOL slider. The instructions can be displayed with the IN-
STRUCTIONS button. The percentage played from a song
can be seen in the rotary slider.

The software can be customized for various setups. The
initial description can be edited in the description.txt
file. In a similar way, the text for the instructions can be
changed in the instructions.txt file.

The core of the GUI is the ofxUI add-on, which offers
GUI scene management, widget layout, spacing, font load-
ing, and several GUI widgets as buttons, input boxes, radio
buttons etc. The absolute dimension of the GUI elements
can be set by altering the value itemDimGUI in the set-
tings file. Also, the application can be ran windowed or
full screen by modifying the fullscreen variable in the same
file. Users can be prevented to exit the application by set-
ting a password in the field passToExit.

2.3 User Management

Before being presented with the audio stimuli, each subject
is required to register in the application. For the prototype
we only asked for a name, but more complex information
could be gathered. Using the name, we generate a unique
numeric ID and another ID based on the initials of the en-
tered name. The latter can be used to log-in to the applica-
tion and to resume the experiment at a future date, which is
useful when the subject can perform the experiment in sev-
eral parts. Additionally, we record the time and date of the
registration. This data is stored in the data/users.xml
file, with the following structure:

<users>
<records>1</records>
<maxID>0</maxID>
<user>

<ID>0</ID>
<name>tt1</name>
<fullname>tt</fullname>
<date>2012-10-01</date>

</user>
</users>

The number of records and the maximum ID in the XML
is stored at the higher level, and the information concerning
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each subject, ID, name, full name, registration date, on the
lower level.

2.4 Client-Server Communication

Within our specific experiment setup, we wished to have
several stations operating in parallel. Therefore we imple-
mented a client-server architecture which allows different
computers to communicate over a network. This architec-
ture allows users to login into different machines (e.g. with
different datasets) without the need to create a new user ac-
count each time.

Each client station sends a message to the server each
time a user authenticates or creates an account. The server
listens on a port for incoming messages from the client sta-
tions. If a message is received, the server checks if the user
exists, and if it needs to, adds the user to the users.xml.
Then, the server sends a message back to the client which
tells the client if the user already exists in the database,
or if it has just been added. Using this information from
the server, the client allows the user to proceed using the
application.

A station can either be determined as client or server by
modifying the isClient variable in the settings file. If set to
a client, the port to communicate is set using the tcpPort
variable, along with the IP address of the server, ipServer.
All annotations are stored on the local machine, regardless
of whether the station is a client or server.

2.5 Calling External Scripts

In order to process annotation data on the fly, external scripts
can be called depending on certain values in the settings
file. These values are launchScript, which tells the ap-
plication to launch a script or not, scriptDirectory, the
relative path to the directory where the script resides, and
appToLaunchPath, the full command line of the external
program which calls the script. For instance, during our IS-
MIR experiment, we called an Octave 4 script to evaluate
the recorded taps as follows:

<appToLaunchPath>
/Applications/Octave.app/Contents
/Resources/bin/octave -qf --quiet
--eval "clear all; cd path;
tapping2(’xmlin’,’xmlout’);exit;"

</appToLaunchPath> -

The tapping2 script reads the tapping data file, xmlin,
and outputs a results file xmlout.

2.6 Designing for various setups

The beatStation was designed to function as a game dur-
ing the ISMIR 2012 conference, having two stations in a
client-server architecture. In this setup, the subjects were
encouraged to annotate all songs, in order to achieve a bet-
ter position in the high-score table. The high-score table
was displayed on the log-in/registration page. We imposed
a lower limit of five songs that someone has to tap in order
to enter the high-score, a value that can be modified us-
ing the minTaps variable. The version of the beatStation

4 http://www.gnu.org/software/octave/

used at ISMIR 2012 can be downloaded from the Github
repository 5 .

In general experimental setups, there may be no require-
ment for a high-score table. For this reason, we disabled
the script launching possibility in the final version, which
automatically disables the high-score table. Subjects can
not quit the application (canQuit = 0), and an additional
page with a questionnaire can be launched in the applica-
tion. The related code is commented in the source code,
but can be adapted and activated. The more generic, non-
ISMIR, version of the beatStation can be obtained from the
Github repository 6 .

The beatStation can be used for annotating the beats or
any other events in music in real-time. As it is primarily
designed for listening tests, it does not offer additional vi-
sual cues, and it can record high resolution annotations, on
two (in our case: metrical) levels simultaneously (see Sec-
tion 2.1). It doesn’t allow editing of the annotations but the
data can be easily exported to any other framework that al-
lows editing (e.g. Sonic Visualiser). Functions to read the
data into a Octave structure are provided with the software.

3. CASE STUDY

The goal of our experiments at ISMIR 2012 with two beat-
Stations was, (apart from a real-world test of functional-
ity), to collect data recording the sensorimotor synchroni-
sation of listeners to music stimuli from two different mu-
sic cultures; Turkish Makam music and euro-genetic pop-
ular music. By analysis of the recorded tapping sequences
and their relation to annotated ground truth, we aim to ad-
dress the question of whether high mutual agreement be-
tween tapping sequences (i.e. which arises when users tap
the same way to the stimuli) is indicative of accurate tap-
ping compared to the ground truth. By comparing these
findings between the recorded taps and ground truth for
stimuli from the two music cultures, we can obtain first in-
dications into how difficult following the rhythm in Turk-
ish music is for listeners who are unfamiliar with it, com-
pared to generally more familiar euro-genetic popular mu-
sic. We also investigate which musical properties caused
problems in synchronizing with the stimuli.

When registering at a beatStation, a subject was asked
to “listen to some short samples of music and to tap your
perception of the most prominent pulse”. Subjects were al-
lowed to tap to a stimulus a second time, if the subject was
not satisfied with their initial taps. The taps were recorded
using the space bar of the keyboard, and high-quality head-
phones were used. The whole setup took place in the reg-
istration hall of the conference venue. While we are aware
that this was not an ideal environment for conducting ex-
periments of this kind, no subject reported the background
ambient noise to be a problem. In order to motivate sub-
jects to tap as many stimuli as possible, the beatStation
was set up as a game, a kind of informal tapping competi-
tion. To that end, we used the script functionality (see Sec-
tion 2.5) to compare the subjects taps with existing ground

5 http://github.com/nkundiushuti/beatStationISMIR/
6 http://github.com/SMC-INESC/beatStation/

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

732



truth, and a high score table was generated with the scores
of the “best” tappers.

In this paper, the Information Gain evaluation measure [10]
was applied for the computation of all comparisons be-
tween beat annotations. In this evaluation measure, lo-
cal timing deviations between beat annotations are summa-
rized in a beat error histogram. The beat error histogram
is characterized by a concentration of magnitudes in one
or a few bins if annotations are strongly related, and by a
flatter shape if the two annotations are unrelated. The de-
viation of this histogram from the uniform distribution, the
so-called Information Gain, is measured using K-L diver-
gence. This Information Gain measure has a range from 0
to 4.7 bits using the parameters described in [10], with 0
bits implying lack of any relation between two sequences,
and higher values indicating a strong relation.

On the server beatStation, the dataset in [11] was used.
This dataset, referred to as ISMIR2012, consists of 48 au-
dio excerpts of 15s length each, which form part of the
MillionSongSubset from the Million Song Dataset [12].
For the other beatStation, we selected 36 excerpts of 15s
length, which we refer to as the MAKAM dataset. For all
excerpts contained in the two datasets, ground truth anno-
tations of the beat were performed by the authors of the
paper. For excerpts in additive meters, e.g. 9/8, the pulsa-
tion at the metrical level of the 1/8 notes was annotated.

4. DATA ANALYSIS

Throughout the ISMIR2012 conference a total of 157 users
registered at the beatStations. While this number reflects
the high interest that the experiment attracted, many users
only tapped a small number of files. While we didn’t ask
for explicit feedback from users, we suspect this may have
been due to limited time available within the conference.
To simplify our analysis, we retained only those users who
tapped all files, which was done for each tapping station
separately. By pure coincidence, we ended up with a set of
21 subjects for both the ISMIR 2012 and MAKAM dataset.
While some enthusiastic subjects tapped to both datasets,
the two sets of subjects were not identical.

We first compute the degree of mutual agreement between
tapping sequences by comparing all pairs of annotations
for a song using the Information Gain measure. We also
computed the ground truth performance of each tapping
sequence by comparing it with the ground truth annotation
using the same measure. Then, we computed the Mean
Mutual Agreement between all tapping sequences for a
recording (Tap-MMA), and the mean Ground Truth Perfor-
mance among all tappers for a specific song (mean GTP).
Figure 4 shows a very high correlation between these two
measurements, with the correlation coefficients being 0.951
for the ISMIR2012 and 0.930 for the MAKAM dataset.
This shows that on both datasets mutual agreement in syn-
chronization to the sound is strongly related to a high agree-
ment with the annotated ground truth. While the corre-
lations are high, both the Tap-MMA and the mean GTP
of the taps are lower for the MAKAM data than for the
ISMIR2012 data. On the MAKAM dataset we measure
total means of 1.70 bits and 1.98 bits for Tap-MMA and
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Figure 4: Scatter plots of the mean GTP over the Tap-MMA for,
(a) the ISMIR2012, and (b) the MAKAM dataset

mean GTP, respectively, on the ISMIR2012 dataset we ob-
tain 2.43 and 2.11 bits. This is reflected by the scatter plot
depicted in Figure 4a reaching further up to the right up-
per corner than the scatter plot for the MAKAM dataset
depicted in Figure 4b.

Based on this analysis we infer that the MAKAM dataset
represented a higher degree of difficulty for the sensorimo-
tor synchronization than the ISMIR2012 dataset. This con-
clusion is supported by considering how often the subjects
chose to tap a sample for a second time; For the MAKAM
dataset 41% of the tapped annotations stem from a second
attempt, while for the ISMIR2012 dataset the subjects only
chose to tap a file again in 25% of the cases. This indicates
that subjects were more confident that their spontaneous
taps correlate with the musical meter for the familiar styles
of euro-genetic popular music.

Finally, we use the outcome of the experiments to obtain
conclusions about what traits influence synchronization for
human listeners on the MAKAM dataset. First, those ex-
cerpts with 4/4 time signatures were tapped more accu-
rately compared to the ground truth, and wtih greated mu-
tual agreement. Secondly, samples having either no per-
cussive accompaniment or where the rhythmic accompani-
ment is played by Western drums cause problems for the
listeners as well. While the former can be attributed to
a larger rubato style in those performences, the latter re-
veals an interesting problem. In many recordings, Western
drums, often in the form of electronic MIDI drums, are
introduced to accompany rhythmic idioms that were orig-
inally not connected with them (such as the 9/8 Aksak).
Even though the instrumental timbre of the drums intro-
duce clear phenomenal cues for the beat, their accultura-
tion seems to present problems to the listeners.
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5. CONCLUSIONS

We presented a real-time annotation software, used for an
experiment designed as a beat tapping game during the IS-
MIR 2012 conference. We introduced every layer of the
used framework and its role in the overall architecture.
Furthermore, we showed how basic features can be con-
trolled from a simple settings file, in order to design vari-
ous experimental setups. Our case study indicates that the
software is stable having run across two machines for five
continuous days during the ISMIR conference. We found
that for our task the small latency in the system was not
problematic and did not effect our ability to evaluate tap
sequences. Through an objective comparison of input in-
terfaces we confirmed that external MIDI hardware offers
lower latency than using the SPACE bar on a standard com-
puter keyboard.

The software can be used to capture in real time any kind
of information that requires tapping: beats, onsets, rhyth-
mic patters, structure segmentation. On the other hand,
currently the data analysis is only offerred for comparing
beats using Matlab/Octave. Moreover, the future develop-
ment of the application can take various directions. For
instance, an annotation software with off-line editing of
annotations could incorporate visual cues and editing fea-
tures, as well as additional interaction with the audio, such
as adding pause and stop buttons. In an experimental setup
for e.g. sensorimotor synchronization, the additional ques-
tionnaire page can be activated in the application and the
parameters can be set according to the user’s needs.

The results of our case study show that Turkish Makam
music poses different challenges to listeners when asked
to follow the beat of a piece. These challenges seem to
be related to rhythmic structures as well as instrumental
timbres. This motivates us to conduct a more formal com-
parative study of tapping behavior on additive and divi-
sive rhythm which addresses the influence of cultural back-
ground of the listener and examines the various possible
ways humans synchronize to these rhythms. Such a study
is an important contribution to widening the focus of cur-
rent research in MIR to include rhythms from other cul-
tures, and to incorporate adequate cultural concepts of beat
and rhythm into processing tools.

Finally, serialization of data and client-server communi-
cation should be adapted to gather tapping data from dis-
tributed devices onto a server. The basic game setup can be
redesigned to allow users to compete against each other, or
work in teams to achieve higher mutual agreement.
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ABSTRACT 

One of the major parameters in music is the overall speed 

of a musical performance. Speed is often associated with 

tempo, but other factors such as note density (onsets per 

second) seem to be important as well. In this study, a 

computational model of speed in music audio has been 

developed using a custom set of rhythmic features. The 

original audio is first separated into a harmonic part and a 

percussive part and onsets are extracted separately from 

the different layers. The characteristics of each onset are 

determined based on frequency content as well as percep-

tual salience using a clustering approach. Using these 

separated onsets a set of eight features including a tempo 

estimation are defined which are specifically designed for 

modelling perceived speed. In a previous study 20 listen-

ers rated the speed of 100 ringtones consisting mainly of 

popular songs, which had been converted from MIDI to 

audio. The ratings were used in linear regression and PLS 

regression in order to evaluate the validity of the model 

as well as to find appropriate features. The computed 

audio features were able to explain about 90 % of the 

variability in listener ratings.  

1. INTRODUCTION 

This study is focused on one of the major parameters in 

music, the overall speed of a musical performance. From 

a music theoretic background we are used to associate 

speed with the tempo of the music. However, as suggest-

ed earlier, the perceived speed is related to the tempo but 

may also be dependent on other aspects like the note 

density (number of onsets per second) [1]. An indirect 

indication of this was provided in [2] where it was found 

that the note density (and not the tempo) was constant for 

a certain emotional expression across different music 

examples. Madison & Paulin [3] asked listeners to rate 

the speed for 50 music examples spanning a variety of 

musical styles and rhythms. They found that speed corre-

lated with tempo but also indicated that there must be 

other aspects involved in the perceptual judgment of 

speed. In Figure 1, three examples with different tempos 

and onset densities are shown. As outlined in Table 1, 

example A has a slow tempo but the hi-hat plays on 

16th notes. As a result, the number of onsets coming from 

percussive instruments is high. Example B has a high 

number of onsets from harmonic instruments (e.g. vocals, 

piano, etc.) but a moderate tempo. Finally, example C has 

the highest tempo but the lowest overall note density. 

How do these different aspects affect the perceived 

speed? In this study we will model the perception of 

speed by extracting specifically developed features (such 

as tempo and onset densities) from music audio. An im-

portant idea is that the model should exploit the charac-

teristics of the onsets to better understand the music.  

 

Figure 1. Several factors that can influence the per-

ceived speed of a piece of music. The tempo is one im-

portant factor but onset density is relevant as well. 

Example Tempo Drum-Ons Harm-Ons 

A Slow Fast Mid 

B Mid Mid Fast 

C Fast Slow Slow 

Table 1. Different characteristics of the music which are 

related to speed. A song may have a slow tempo but 

many onsets that increases the perceived speed. 

Tempo

Kick Snare HiHat Harm-Ons

A.

Tempo

Tempo

B.

C.

Copyright: © 2013 A. Elowsson et al. This is an open-access article dis- 

tributed under the terms of the Creative Commons Attribution License 3.0 

Unported, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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The current work is part of an ongoing study about per-

ceptually determined features in music information re-

trieval. In a previous study it was shown that speed could 

be modeled by a combination of tempo and different note 

densities of the instruments using symbolic data [4]. The 

explained variation was about 90 % using linear regres-

sion. This indicates that a similar result could in theory be 

obtained using audio data provided that the appropriate 

low-level audio features could be extracted. 

A flowchart of the processes used in the model is 

shown in Figure 2. As a first step, source separation (Sec-

tion 3) was used to separate harmonic content and per-

cussive content in the audio as well as to cluster onsets 

into different groups. Features were computed from both 

the percussive and the harmonic part as well as from the 

original audio as described in Section 4. To find appro-

priate features as well to evaluate the validity of the mod-

el, regression was used, in which the audio features were 

mapped against ground truth data consisting of listener 

ratings of speed. This is described in Section 5. 

2. SPEED DATA AND AUDIO EXAMPLES 

The speed estimations were perceptually determined in a 

previous experiment in which 20 listeners rated speed for 

each music example on a quasi-continuous scale marked 

slow-fast with the range 1-9. The music examples were a 

set of 100 ringtones consisting mainly of popular songs, 

originally in MIDI format and converted to audio [5, 6].  

3. SOURCE SEPARATION AND ONSET 

DETECTION 

The intermediate processing steps between audio and 

feature extraction (green boxes in Figure 2) are described 

in this section.  

3.1 HP-Separation 

Source separation was used to separate harmonic and 

percussive content. Source separation has been used in 

the past in computational models related to rhythm [7]. 

The method proposed by FitzGerald [8] was used as the 

first step of the separation. The basic idea of the method 

is that percussive sounds are broadband noise signals 

with short duration and that harmonic sounds are narrow 

band signals with longer duration. To be able to separate 

these different sounds, the audio is transformed to the 

spectral domain by using a short-time Fourier transform 

(STFT). By applying a median filter across each frame in 

the frequency direction, harmonic sounds are suppressed. 

By applying a median filter across each frequency bin in 

the time direction percussive sounds are suppressed. 

After median filtering, the signal is transformed back to 

the time domain again using the inverse STFT. 

To further suppress harmonic content in the percussive 

waveform a second separation stage incorporates a con-

stant-Q transform (CQT) [9].  The CQT can be under-

stood as an STFT with logarithmically spaced frequency 

bins, accomplished by varying the length of the analysis 

window. The implication relevant to this study is that a 

high frequency resolution can be achieved also in the low 

frequencies, at the expense of a poor time resolution.  

The frequency resolution of the CQT was set to 60 bins 

per octave and each frame was median filtered across the 

frequency direction with a window size of 40 bins. After 

filtering, the percussive signal was transformed back to 

the time domain using an inverse CQT.  

By transforming back to the time-domain, the underly-

ing phase information is retained. The phase can be re-

garded as a mapping that connects a frequency bin to a 

certain point in time. This is especially useful in the 

CQT-stage as the filtering can be performed at a low 

 

MIDI 

Audio (Original) 

Harmonic Percussive 

Percussive 

HP-separation (STFT) 

HP-separation (CQT) 

SF-CQT 

SF-STFT 

SF-CQT 

SF-STFT 

On Det. 

On Det. 

SF-CQT 

On Det. Clustering 

On Dens. Bass 

On Dens.  Harmonic 

On Dens. Perceptual 

On Dens. Strong 

Strong Cluster IOI 

Tempo S-Curve 

Percussiveness 

MIDI 

Audio 

Process 

Feature 

Figure 2. Flowchart of the processes used to compute audio features for the speed in music. Audio is generated from 

MIDI, the audio is filtered to separate harmonic and percussive content, onsets are detected from a spectral flux, and 

audio features are computed. 
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time-resolution (with window lengths up to a second); but 

subsequent onset detection algorithms can be computed 

at a higher time-resolution.  The resulting percussive and 

harmonic waveforms are shown in Figure 3. 

 

Figure 3. The result of the HP-separation. The original 

waveform is separated into a percussive and a harmonic 

waveform. The example is a 3-second section of the 

song Candy Shop, by 50 cent, which will be used to 

visualize the feature extraction throughout this paper. 

3.2 Onset Detection 

Audio features were computed from all three waveforms 

(original, harmonic and percussive) by the scheme shown 

in Figure 2. The first step, independent of feature and 

waveform, was to compute a spectral flux (SF) [10], 

where spectral fluctuations along the time-domain are 

detected. The SF was computed several times in different 

ways. Some shared steps will be described here, with 

unique steps described in Sections 4.1-4.8.  The power 

spectrum was computed with a CQT or an STFT and 

converted to sound level. A range of 30 dB was used. 

Thus, the maximum sound level of each band is set to 0 

dB and sound levels below -30 dB are set to -30 dB. Let 

L(n, i) represent the sound level at the ith frequency 

bin/band of the nth frame. The SF is given by
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where b is the number of bins/bands. The variable s is the 

step size and H is a half-wave rectifier function, or for the 
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The implication of Eq. 2 is that negative spectral fluctua-

tions have a slight influence on the onset detection func-

tion. Onsets were detected by peak picking on a low-pass 

filtered curve of the spectral flux (see Figure 4). 

 

Figure 4. The onset detection functions that discover 

onsets by finding peaks in the SF.  In this example har-

monic onsets are tracked.  

3.3 Clustering 

To better exploit the characteristics of the percussive 

onsets they were clustered into groups. The clustering 

was based on sound level in 8 frequency bands, spaced 

approximately an octave apart, as well as the RMS sound 

level. As the appropriate number of clusters is unknown 

beforehand, three k-means clusterings [11, 12] were car-

ried out, with the number of clusters k, set to 2, 3 and 4. 

The fit of each clustering attempt was defined by the 

smallest Euclidian distance between any two clusters, 

where a large smallest distance gave a higher fit. When 

choosing which clustering attempt to use, a higher num-

ber of groups (k) were premiered over a lower if their fit 

was similar. The result is shown in Figure 5. 

 

Figure 5. The clustering of percussive onsets. In exam-

ple A the drums are clustered into three different clus-

ters. In example B three clusters are initially discovered, 

but the onsets in Cluster 1 are assigned to Cluster 2 & 3.  

Original

Percussive

Harmonic

Harmonic Onsets

Original

B.

A.

Cluster 1     2 & 3 Cluster 2 Cluster 3

Cluster 1 Cluster 2 Cluster 3
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When the clustering is completed the onsets have been 

divided into 2, 3 or 4 clusters. At this point the clusters 

are further analyzed to find out if the sound of the onsets 

in two of the clusters can be combined to form the sound 

of the onsets in a third cluster. This happens in example B 

of Figure 5. The k-means clustering has divided the on-

sets into three different clusters, corresponding to the 

sound of the kick and the hihat combined, as well as both 

played separately. The algorithm then compares the dif-

ferent clusters and discovers that Cluster 2 (the kick) and 

Cluster 3 (the hihat) can be combined to form the sound 

of Cluster 1 (the kick and the hihat). To account for this, 

each onsets belonging to Cluster 1 will instead be set as 

belonging to both Cluster 2 and Cluster 3, and Cluster 1 

will cease to exist. This does not happen in example A of 

Figure 5 where 3 unique clusters have been identified. 

4. FEATURE EXTRACTION 

A total of 8 audio features were computed, 2 from the 

original waveform, 5 from the percussive waveform and 

1 from the harmonic waveform. The audio features are 

shown as the end result in the flowchart in Figure 2. The 

8 features are explained in Sections 4.1-4.8, with one 

subsection for each feature. 

4.1 Onset Density – Harmonic 

Onsets in harmonic instruments were tracked from the 

original waveform, with the SF of a CQT. The bins of the 

CQT were not combined into broader bands before the 

SF. This facilitates the detection of harmonic onsets, as a 

pitch shift of a semitone in an instrument will result in an 

increase in energy in the half wave rectified SF.  

To avoid false onset detections at pitch glides from vi-

bratos, shifts of a peak by 20 cents (one bin), without an 

increase in sound level, were restricted from affecting the 

SF. This was accomplished by subtracting the sound level 

of each bin of the new frame, by the maximum sound 

level of the adjacent bins in the old frame. The onset 

detection function for harmonic onsets is shown in Fig-

ure 4. 

4.2 Onset Density – Bass 

Onsets in the low register (frequencies between 40 Hz 

and 210 Hz) were tracked with an SF of the lower bins of 

an STFT. The frequency bins were summed to a single 

band before the SF.  

4.3 Onset Density – Perceptual weighting 

Percussive onsets were tracked with an SF of an STFT on 

the percussive waveform. The bins of the frequency do-

main representation were divided into 13 non-

overlapping frequency bands (half-octave spacing). Sub-

band processing for onset detection has been described in 

[13], and can be motivated by its similarity to human 

hearing [14]. The strength of each detected onset was 

calculated based on the average sound level of the first 

50 ms from the onset position, where lower frequencies 

were given a higher relevance.  

To further determine the perceived strength of the on-

sets, each onset was compared to the surrounding onsets 

within 1.5 seconds. This time span (3 seconds in total) 

was defined as the perceptual present of the particular 

onset. By comparing it with the strongest onset within the 

perceptual present its strength could be altered to repre-

sent its perceptual impact. The onset was given a higher 

strength if there were no significantly stronger onsets 

within the perceptual present. If there were onsets that 

were significantly stronger, its strength was lowered. The 

height of the cluster-bars in Figure 6 represents the per-

ceptual strength of each onset. To derive at a measure of 

onsets density, the sum of the perceptual strength of the 

onsets was used. 

 

Figure 6. An overview of the processes involved in ex-

tracting 5 features (described in Section 4.3-4.7) from 

the percussive waveform. Onsets are detected and clus-

tered into different components to gain an understand-

ing of how the music will be perceived. The perceptual 

weighting of the onsets is represented by the height of 

the bars.  In this particular song, Tempo is derived from 

the IOI between kick and handclaps and only the kick 

belonged to a strong cluster. The percussiveness feature 

is related to the height of the peaks in the onset detec-

tion function, as visualized by the dotted line. 

4.4 Onsets Density – Strong 

The strongest clusters of the clustering process were used 

to compute two features. The first feature was simply the 

number of onsets, belonging to a strong cluster, per sec-

ond. This feature was only computed for periods of 

strong onsets within 1.5 seconds of each other. 

4.5 Strong Cluster IOI 

The second feature derived from the strong clusters was 

developed to catch the assumed perception of a slow 

speed, when the interonset intervals (IOIs) of onsets be-

longing to the same strong cluster are long. As an exam-

ple, a song with equally spaced drum onsets consisting of 

“Kick, Snare, Kick, Snare, Kick Snare,..” was assumed to 

Onsets Perceptual

Tempo

Cluster 1 (Kick)

Cluster 2 (Claps)

Cluster 2 (Toms)

Cluster 4 (Shakers)

Period Length

Strong Cluster IOI

Percussive
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have a higher perceived speed than a song where the 

drums instead plays “Kick, Kick, Snare, Kick, Kick, 

Kick, Snare, Kick, etc..”. This is accounted for in the 

Tempo feature as well, because the tempo in the second 

example would be half the tempo of the first example.  

In Figure 6, this feature is derived from the IOI be-

tween onsets belonging to Cluster 1. Common IOIs are 

detected by peak picking in a low pass filtered histogram 

of cluster IOIs. Each found peak contributes to the feature 

based on its relative height as well as the cluster strength. 

4.6 Tempo S-Curve 

The tempo detection algorithm is part of an ongoing 

project, and a detailed description is in preparation. All 

distances between onsets within 5 seconds from each 

other are used to detect the tempo.  

4.6.1 Period Length 

First, the period length of the percussive waveform is 

detected. The period length corresponds to the length of 

the most prominent pattern of repeated rhythmic sounds 

in the music. A histogram over onset distances is generat-

ed, where the contribution of each onset-pair increases 

with increasing similarity in spectrum as well as increas-

ing onset strength. The leftmost peak in the low pass 

filtered histogram, within 92 % of the highest peak, is 

chosen as the period length. 

4.6.2 Tempo 

    

Secondly, the tempo (beat length) is detected. A histo-

gram over onset distances is once again generated, where 

the contribution of each onset-pair increases with increas-

ing dissimilarity in spectrum as well as increasing onset 

strength. The final probability distribution for tempo is 

the Hadamard product of the histogram and several fil-

ters. One filter is based on the determined period length. 

The idea is that the beat will be a simple ratio of the peri-

od length, so Hanning windows are produced at positions 

0,1,2,.
1 1 1

,
2 3

.
2

n n

len lenP P n
     

       
 


   

  (3) 

  Another filter is based on IOIs within strong clusters as 

described in Section 4.5. The general distribution of tem-

pos in popular music is taken into account in one filter 

and several filters are connected to the onset density of 

the particular song. The highest peak in the final proba-

bility distribution was chosen as the tempo. 

4.6.3 S-Curve  

In compliance with the findings in [3], an S-Curve (Fig-

ure 7) was applied to the tempo value, giving differences 

in tempo a higher impact between 60 and 160 BPM. 

        

 
Figure 7. The S-Curve that gives differences in tempos 

between 60 and 160 BPM a higher impact. 

4.7 Percussiveness 

One feature was based on the percussiveness of the on-

sets. This estimate is derived from the height h of the 

peaks in the SF of the percussive waveform, as shown in 

Figure 6. 

1 p

1

p

1

(i)

(i)

n

i

n

i

h

Percussiveness

h










                       

 

   

Equation 4 gives the mean peak height when p is 0, an 

estimate closer to the lowest peaks when p is negative, 

and an estimate closer to the highest peaks when p is 

positive. In this study p was set to 0.4. 

4.8 SF CQT 

When extracting information from the harmonic wave-

form the integral of the SF was used; indicated as the 

colored area in Figure 8. The use of an onset detection 

function was avoided as the HP-separation had removed 

all transients from the harmonic waveform. The use of a 

CQT was motivated by the harmonic nature of the pro-

cessed audio. Spectral changes in high frequencies were 

used for this feature. 

 

Figure 8. The integral of the spectral flux of the har-

monic waveform. 

5. PREDICTING SPEED FROM THE 

FEATURES 

Two regression techniques were used to analyze the 

mapping between the computed audio features and the 

listener ratings of speed. First, a multiple linear regres-

sion was used, justified by a predictor-to-case ratio higher 

Harmonic

SF - CQT

(4) 
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than 1:10. Secondly, PLS regression was used [15]. PLS 

regression carries out data reduction, whilst maximizing 

covariance between features and predicted data [16].   

   The multiple linear regression between listener ratings 

and computed audio features is presented in Table 2. As 

shown, a linear combination of the computed audio fea-

tures was able to explain about 90 % of the variability. In 

comparison, the agreement among the listeners estimated 

by the mean intersubject correlation was 0.71 and 

Cronbach’s alpha 0.98 [4]. 

Multiple Regression - Speed 

R
2
 = 0.909 Adjusted R

2
 = 0.900 

Variable   beta    sr
2
 p-value 

On Dens. - Harmonic 0.205  0.033 0.000*** 

On Dens. - Bass 0.130  0.007 0.016*   

On Dens. - Perceptual 0.302  0.018 0.000*** 

On Dens. - Strong -0.155  0.010 0.004**  

Strong Cluster IOI 0.127  0.006 0.021*   

Tempo S-Curve 0.430  0.056 0.000*** 

Percussiveness -0.095  0.005 0.041*   

SF CQT  0.107    0.004 0.053    

Table 2. The prediction of the perceptual feature speed 

from computed audio features. The variable sr2 is the 

squared semi-partial correlation coefficient. 

The most important feature was Tempo S-Curve, fol-

lowed by Onset Density - Harmonic, Onset Density - 

Perceptual and Onset Density - Strong (negative contri-

bution). The independent contribution in terms of the 

squared semi-partial correlation coefficient sr2 indicates 

that Onset Density - Bass, Strong Cluster IOI, Percus-

siveness and SF CQT each increased the explained vari-

ance with less than 1 %.  The negative contribution of 

Percussiveness could be explained as a higher perceived 

speed when the percussive onsets are less clear.  

    A partial least square regression (PLS) of the same 

features is shown in Table 3. With 3 components, the 

cross-validated adjusted R2 indicates that just below 90 % 

of the variability could be explained. Note also that the 

cross-validation procedure only lowers the result margin-

ally, supporting the validity of the features. 

PLS Regression - Speed 

Number of Components Used = 3 

R
2
 = 0.907 Adjusted R

2
 = 0.903 

R
2
 cv = 0.883 Adjusted R

2
 cv = 0.878 

Component Explained variance Cum. variance 

1 0.853 0.853 

2 0.042 0.895 

3 0.011 0.907 

Table 3. The prediction of the perceptual feature speed 

from computed audio features. The squared correlation 

coefficient R2 was derived using Partial Least-square 

Regression (PLS), with 10-fold cross validation. In the 

lower part, R2 as a function of the number of components 

is shown. Components 4-8 did not contribute and are not 

shown. 

The fitted values of the linear regression from Table 2 

are shown in Figure 9 below. As seen in the figure, the 

deviations from the target are rather evenly distributed 

across the range and with a maximal deviation of about 

one unit. 

 

 

Figure 9. The fitted values in the prediction of the per-

ceptual feature speed, where higher means faster. For 

each song (numbered for easier identification), the x-

axis represents the estimated speed (derived from com-

puted audio features), and the y-axis represents the 

ground truth (derived from listeners). 

6. CONCLUSIONS AND DISCUSSION 

The computed audio features were able to explain about 

90 % of the variability in listener ratings. The most im-

portant features were tempo together with onset densities 

for different layers of the music. The validity of the fea-

tures was supported by a cross-validation, and fitted val-

ues were relatively close to target values. 

The results show that it was possible to reach the same 

high explained variance on audio data as on MIDI data 

using similar features [4]. This indicates that the appro-

priate low-level audio features have been extracted, 

which is reassuring for the ongoing study.  

Since good results were achieved only after we applied 

source separation, both in terms of clustering and HP-

separation, the segmentation of data seems to be a prom-

ising path forward. From an ecological point of view it 

seems reasonable to assume that the interaction between 

onsets of the same source is relevant; especially if the 

sound of this source is one of the most prominent ones. 

By clustering onsets we can detect onsets belonging to 

the same source and thus use the rhythmic pattern of this 

source in the model. By using several onset detection 

functions on separate parts of the audio, different aspects 

of the music can be captured. The CQT seems to be suit-

able for detecting onsets in harmonic instruments, while 

the better time-resolution of the STFT in lower frequen-

cies facilitates the detection of percussive instruments. A 

drawback with the proposed system is that the computa-

tion of several STFTs and CQTs is relatively time con-

suming. 
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ABSTRACT

This paper presents a novel approach to global key
extraction from audio recordings, restricted to the gen-
re Classical only. Especially in this field of music, mu-
sical key is a significant information since many works
include the key in their title. Our rule-based method
relies on pre-extracted chroma features and puts speci-
al emphasis on the final chord of the piece to estimate
the tonic note. To determine the mode, we analyze the
chroma histogram over the complete piece and estima-
te the underlying diatonic scale. In both steps, we ap-
ply a multiplicative procedure to obtain high error ro-
bustness. This approach helps to minimize the amount
of false tonic notes which is important for further key-
related tonality analyses. The algorithm is evaluated
on three different datasets containing mainly 18th and
19th century music for orchestra, piano, and mixed in-
struments. We reach accuracies up to 97 % for correct
full key (correct tonic note and mode) classification
and up to 100 % for correct tonic note classification.

1. INTRODUCTION

The key is an essential information about a musical
work. Especially in Western art music, the usage of dif-
ferent keys shows some historical peculiarities that are
connected to the evolution of the musical instruments
and tuning schemes. Inspired by the ability to play all
keys on keyboard instruments, J. S. Bach and several
latter composers created series of works for every sin-
gle key. In other works, musical keys obtain certain
characteristics or special semantic meanings.

Therefore, automatized extraction of musical key is
an important task in Music Information Retrieval (MIR).
Besides applications for annotating classical music da-
tasets, the key may also be necessary for further MIR
tasks like genre classification or composer identificati-
on. For such scenarios, all key misclassifications con-
stitute a problem. Especially, the system should avoid
confusions of fifth-related keys that arise frequently in
many common algorithms, e.g. in [1–4].

Copyright: c©2013 Christof Weiß. This is an open-

access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

To this end, we first consider the special role of the
final chord in this paper. For most pieces, the root
of this chord (the first note in a cluster of ascending
thirds) equals the tonic note of the written global key.
We combine this information with a scale estimation
of the complete piece. For this, we present the idea of
multiplicative chroma processing to estimate a chord’s
root or a diatonic scale. We show that this reduces
classification errors compared to template-based me-
thods.

This rule-based approach is inspired by music theory
and does not make use of machine learning techniques
so far. We restrict ourselves to consider classical music
only. For other genres like Rock, Pop or Jazz, such a
method may not work since there may arise a consi-
derable number of fade out endings or complex final
jazz chords.

2. RELATED WORK

Since the concept of musical key is not defined preci-
sely in many cases, automatic key extraction remains
a challenging MIR task—also on classical music data.
There are algorithms dealing with symbolic data on-
ly, as well as direct audio analysis methods on which
we focus on in this paper. Recent overviews can be
found in [2, 5], also comparing knowledge-based and
data-driven algorithms—the two main approaches.

In general, the first step is an extraction of chroma
features. Motivated by studies on human pitch per-
ception [6,7], many algorithms match the chroma sta-
tistics to pitch class profiles or use advancements of
such approaches [1, 5, 8–10]. In the MIREX 2005 con-
test (1252 classical pieces synthesized from MIDI), the
best results reached 87 % correctly identified keys [3].

Among the works concerning data-driven techniques,
Hidden Markov Models (HMMs) are used most fre-
quently [4,11]. They also show promising results in lo-
calized tonality analysis and chord detection. Chai and
Vercoe [4] combine HMMs with a two-step approach,
considering diatonic scale and tonic note individually.
Noland and Sandler [11] investigate the effect of the si-
gnal processing parameters and test their HMM-based
approach on recordings of Bach’s well-tempered piano,
book 1 (48 tracks), yielding 98 % correct classification
for the best parameter settings.

There are works considering special sections of the
recordings: Izmirli [9] investigates the first seconds of
85 classical pieces by different composers (randomly
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chosen from a NAXOS dataset) with up to 86 % suc-
cess. Chuan and Chew [12] test their geometrical ap-
proach on the beginning of several Mozart sympho-
nies yielding up to 96 % success rate. Extending these
tests to a wide stylistic range, they reach 75 % correct
accuracy [13]. Van de Par et al. [14] combine profile
training with special weighting of the beginning and
ending section. They evaluate on piano music 1 with
high accuracies up to 98 %.

3. SYSTEM OVERVIEW

In the presented key detection system, we make use of
the final chord’s significance in Western classical mu-
sic applying a two-step approach: First, we estimate
the final chord’s root and the complete piece’s domi-
nating diatonic scale individually. Then, we combine
these informations to obtain the most probable full key
consisting of the tonic note and the associated mode
(major/minor). An overview is shown in Fig. 1.

audio data

feature extraction

tonic note
estimation

diatonic scale
estimation

final frame
selection

key

decision process

Figure 1. The key extraction process.

3.1 Feature Extraction

The system is based on chroma features which are
commonly used to represent the harmonic content of
music [15, 16]. We use the Chroma Toolbox of Müller
and Ewert [17] to extract pitch and chroma features
from the audio data in a preprocessing step. First, we
calculate a pitch representation from the audio signals
via a multi-rate filter bank, covering the pitch range of
a grand piano (MIDI pitches Nos. 21–108). To account
for the global tuning, we use the tuning estimation of
this toolbox package and apply a shifted filter bank if
the difference from a 440 Hz tuning exceeds 15 cent.
We obtain a set of Ntot pitch feature vectors p (88-
dim.), each covering a frame of length 50 ms:(

p1, . . . ,pi, . . . ,pNtot
)

(1)

To estimate the overall dynamics, we calculate the ave-
rage L1 norm of these vectors:

||p||mean =
1

Ntot

Ntot∑
i=1

||pi||1 (2)

1 cf. Sec. 4.1 and [10] for details

Next, the energy of all pitch bands belonging to a pitch
class (chroma) is summed up and normalized to ob-
tain 12-dim. chroma vectors c, where cik is the k-th
component of the i-th chroma vector:(

ci1, c
i
2, . . . , c

i
12

)
=̂ (C,C], . . . , B) (3)

Then, we add up all vectors over the piece to obtain
a normalized (using L2 norm) chroma histogram g:

g′ =

Ntot∑
i=1

ci , g =
g′

||g′||2
(4)

For all pitch- and chroma-related vectors, we identify
flat and sharp notes (C] = D[) and understand the
indexing in a circular way (k → 1 + (k − 1) mod 12).

3.2 Tonic Note Estimation

3.2.1 Frame Selection

Starting from this feature set, we estimate the root of
the piece’s final chord. Since we do not want to consi-
der frames containing silence, we take the last N final
feature frames that exceed a defined energy threshold.
To account for the overall loudness of the piece, we ap-
ply a dynamical adaption for the energy threshold. We
calculate the L1 norm of the pitch feature vectors 2 pj

and select only vectors fulfilling the condition

||pj ||1 > fe · ||p||mean (5)

with a suitable factor fe.

3.2.2 Chroma Processing

From the frame selection thus obtained (length Nend),
we compute a 12-dim. chroma histogram h:

h′ =

Nend∑
m=1

cm , h =
h′

||h′||2
(6)

Here, we are only interested in the root and not in the
mode of the final chord, and thus ignore this chord’s
third. 3 To consider the tonal relationship between the
chroma classes, we re-sort the entries of h according
to a perfect fifth ordering by re-ordering the indices:

(1, 2, . . . , 12)→ (2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 12, 7)(
hfifth

1 , . . . , hfifth
12

)
=̂ (D[, A[, . . . , C, G, . . . , B, F])

We multiply these values for each two neighboring
entries

hprod
k = hfifths

k · hfifths
k+1 (8)

to consider only such chroma peaks, where the respec-
tive upper fifths is also present. The principle is illus-
trated in Fig. 2.

2 Since the chroma features are normalized, we compute the
energy measure directly on the pitch features.

3 In classical music, the final chord may not be representative
for the overall mode of the piece: Many minor pieces end in
the respective major chord (“Picardy third”), certain symphony
movements show a development from minor to major, etc.
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Since the majority of classical pieces’ final chords—
independently of their mode—contain strong energy in
the root as well as in the fifth chroma, this procedure
provides the final chord’s root with a high reliability:

kroot = arg max
k

hprod
k (9)

Also for third-less chords or even monophonic endings,
this method works well, as the third partial of the
root always produces some energy in the fifth chroma.
To estimate the likelihoods, we calculate confidence
measures P tonic

k using the euclidean norm:

P tonic
k =

hprod
k

||hprod||2
(10)
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Figure 2. The final bars of Frédéric Chopin’s Im-
promptu No. 1 for Piano, op. 29 in A[ major. The up-
per plot shows the re-sorted chroma histogram hfifths

from the last N = 30 frames (cf. Eqs. 5–6), which
results in the lower one hprod after pairwise multipli-
cation (cf. Eq. 8). From this, we identify the correct
root A[ even though the maximum value in the chro-
ma histogram belongs to E[.

3.3 Diatonic Scale Estimation

Since classical works or single movements may pass
through certain tonal progressions, show parts in other
keys, or even end in a key different from the global
key 4 , we consider the complete length data to iden-
tify the diatonic scale that corresponds to the global
key’s major or natural minor scale. To this end, we use
the chroma histogram g from the preprocessing step
(Sec. 3.1) and try to estimate the most probable diato-
nic scale or “tonal level”. This concept, illustrated e.g.

4 Most frequently, this is the corresponding minor/major key;
cf. remarks to Sec. 3.2

in [18], is suitable for various tonal analysis tasks. As
an example, G major as well as E minor are denoted
as “+1 level” (1]), B[ major and G minor as “-2 level”
(2[). As a diatonic scale consists of seven fifth-related
notes (cf. Fig. 3), we again re-sort the histogram to a
fifth ordering and compute a 12-dimensional vector by
multiplying each seven fifth-related chroma energies
corresponding to the respective diatonic scale (Inde-

xing: gprod
1 → k = −5 diatonic (= D[ major scale),

. . ., gprod
12 → k = +6 diatonic):

gprod
k =

1+(k+11) mod 12∏
l=1+k mod 12

(
gfifths
l

)m(a)
l (11)

level 0 diatonic

5

,
6

�,
7

,�
4

,� �
9

,�
8

,
10

,
12

,�
11

,�
3
,�

2

,�,
l=1

�

Figure 3. A diatonic scale (level 0) in a representation
of neighboring fifths. The notes are signed with the
indices of m(a). The tonic note for the corresponding
major scale is C (l = 6), for the minor scale A (l = 9).

To account for the individual relevance of the notes,
we test a weighting 5 by five different templates of

exponents m
(a)
l :

m(1) = (0 0 0 0 1 1 1 1 1 1 1 0)

m(2) = (0 0 0 0 1 3 2 1 2 3 1 0)

m(3) = (0 0 0 0 3.75 4.75 3.00 3.75 4.25 4.50 3.75 0)

m(4) = (0 0 0 0 4.04 5.87 4.27 3.51 5.00 4.57 3.20 0)

m(1) corresponds to equal weighting. In m(2), we em-
phasize the notes of the tonic chords (for the level 0
diatonic of Fig. 3, these are the C major and the A
minor chord). m(3) is computed from the templates of
Temperley [7], where we summed up the major and
the relative minor profile, multiplied with 0.5. m(4) is
the same for the Krumhansl templates [6]. The non-
diatonic notes are exponentiated by 0 and thus not
considered. Up to this, the scale estimation step basi-
cally equals a common template matching. 6 However,
the multiplicative procedure leads to a high fidelity,
since yet shifting by one fifth (i.e., one small gl value

in the product Eq. 11) leads to a small gprod
k entry.

Again, we compute confidence measures for all 12
levels via

P scale
k =

gprod
k

||gprod||2
. (12)

5 Note that for a product calculation, weighting has to be
done by exponentiation and not by multiplication.

6 The fifth ordering is just for visualisation: In this represen-
tation, all diatonic scale notes are neighbors.
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3.4 Decision Process

To select the most probable key from the confidence
measures computed before, we build a 24-dimensional
confidence vector, combining every tonic note confi-
dence with the associated major and minor scale con-
fidences, where the exponent s serves as a tuning pa-
rameter between root and scale influence:

Pmajor
k =

(
P tonic
k

)s · P scale
k

Pminor
k =

(
P tonic
k

)s · Pmscale
k

(13a)

Pcombined =
(
Pmajor,Pminor

)
(13b)

For the minor case, one has to shift the scale vector
by three entries to associate the roots with the corre-
sponding 7 minor scales:

Pmscale =
(
P scale

10 , . . . , P scale
12 , P scale

1 , . . . , P scale
9

)
(14)

The highest P combined
k provides the key:

k∗ = arg max
k

P combined
k (15)

The normalized confidence vector for the full key is

P key
k =

P combined
k

||Pcombined||2
. (16)

The confidence for the selected key is P key
k∗ .

4. EVALUATION

4.1 Description of the Datasets

To evaluate our algorithm, we consider three data-
sets of classical music audio recordings. The first one
(Symph) contains classical and romantic symphonies
(all movements) from 11 composers, 115 tracks in total
(cf. Tab. 1), taken from a dataset of NAXOS recordings.

Composer Symphonies No.

Beethoven, L. v. 2, 3, 8
Brahms, J. 2, 3
Bruckner, A. 3, 4, 8
Dvořak, A. 5, 7
Haydn, J. 22, 29, 60, 103
Mendelssohn-B., F. 3, 5
Mozart, W. A. 35, 39, 40, 41
Schubert, F. 2, 3, 8
Schumann, R. 2, 4
Sibelius, J. 3, 4
Tchaikovsky, P. I. 5, 6

Table 1. Contents of Symph dataset.

The second dataset (SMD) is a selection from Saar-
land Music Data Western Music, collected in a colla-
boration of Saarland University and MPI Informatik
Saarbrücken with Hochschule für Musik Saar [19]. The
dataset contains music for solo, voice and piano, as

7 We identify sharp and flat chromas (D[ =C]): E.g., the
tonic confidence for C] is multiplied with the confidence of level
−5 for the D[ major likelihood, and with the confidence of level
+4 for the C] minor case.

well as chamber and orchestral music. We annotated
the key for the 126 tracks showing clear tonality. 8

Third, we test our method on a dataset of piano mu-
sic recordings (Pno). This data was used to investigate
key determination in the publications [10] and [14] and
thus, allows for a direct comparison. The set contains
237 piano pieces by Bach, Brahms, Chopin and Sho-
stakovich which are explicitly dedicated to a special
key, as in the ”well-tempered piano”. Detailed infor-
mation about the recordings can be found in [10].

Dataset Symph SMD Pno tot.

major global key 70 % 57 % 49 % 56%

minor global key 30 % 43 % 51 % 44%

major final chord 72 % 55 % 70 % 67%

minor final chord 12 % 20 % 14 % 15%

third-less fin. chord 16 % 25 % 15 % 18%

fin. chord =̂ gl. key 70 % 64 % 53 % 60%

fin. root =̂ gl. tonic 99 % 98 % 98 % 99%

Table 2. The datasets’ properties with respect to glo-
bal key and final chord.

Table 2 shows some properties of the datasets. Final
chord and global key coinicide for only 60 % of the pie-
ces. However, the final chord’s root matches the global
tonic note almost always. Most of the mode deviations
are picardian thirds (20 %), where a minor piece ends
in the relative major chord (The opposite case is ra-
re). The rest is caused by third-less final chord (18 %)
like empty fifths (1 %) or unisono endings (17 %). 71 %
end in a full triad, 11 % end in a fifth-less chord.

4.2 Experimental Results

We investigate the influence of the system parameters
in a large study (Tab. 3). First, we show selected re-
sults for different energy threshold factors fe, where
a value of fe = 0.15 % seems to separate best silence
from music frames. In the test of the weight exponents
m(a), the emphasis of the chord notes in m(2) and the
template derived from Temperley m(3) perform best.
To estimate the individual influence of root and scale
estimation, we also run the algorithm with different
weight exponents s in the decision process, where a
slight preference of the scale confidence yields best re-
sults. For the size of the final frame set, a value of
N = 40 frames corresponding to 2 seconds performs
best. This value seems to balance the requirements for
short chords (no failures caused by previous chords)
with a sufficiently high reliability. With the low dy-
namic threshold fe, we are also including reverb to
a certain extent. Because of this, and of the frequent
occurence of final ritardando in classical music, we do
not have to worry about choosing a fixed small number
of final frames N independently of the tempo.

8 To this end, we skipped works of Bellini, Berg, Debussy, Do-
nizetti, Martin, Poulenc and Ravel as well as the first and second
movement of Faure’s op. 15. From Schumann’s works, op. 15 and
48 have been removed, since they are work cycles and do not
constitute separated pieces in some way. For detailed informa-
tion, see http://www.mpi-inf.mpg.de/resources/SMD. The key
annotations are also available on this website.
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To check the influence of the individual steps, we
perform single runs without the multiplicative proce-
dure in the tonic note estimation and in the diatonic
scale estimation, respectively (block (E) in Tab. 3).
From this, we can see that the multiplication in the
diatonic scale does not improve much. However, the
multiplication in the tonic note estimation leads to a
clear advancement, even when combined with a basic
template matching with the Krumhansl profile (E4).

Parameters Symph SMD Pno

(A) m = m(3), N = 40, s = 0.8

fe = 0.10 % 92.2 % 94.4 % 96.2 %

fe = 0.15% 92.2% 93.7% 97.0%

fe = 0.25 % 92.2 % 92.9 % 96.6 %

fe = 0.50 % 92.2 % 92.1 % 94.9 %

(B) fe = 0.15 %, N = 35, s = 0.75

m = m(1) 88.7 % 92.1 % 94.1 %

m = m(2) 93.0% 95.2% 95.8%

m = m(3) 92.2 % 93.7 % 96.6 %

m = m(4) 89.6 % 91.3 % 95.4 %

(C) fe = 0.15 %, N = 35, m = m(3)

s = 0.5 89.6 % 91.3 % 95.8 %

s = 0.8 92.2% 93.7% 97.0%

s = 1.0 92.2 % 93.7 % 96.2 %

s = 1.2 92.2 % 92.9 % 96.2 %

(D) fe = 0.15 %, s = 0.8, m = m(3)

N = 10 90.4 % 89.7 % 93.2 %

N = 30 92.2 % 93.7 % 96.6 %

N = 40 92.2% 93.7% 97.0%

N = 60 90.4 % 90.5 % 96.6 %

(E) fe = 0.15 %, s = 0.8, m = m(2), N = 35

(E1) 83.5 % 80.2 % 82.3 %

(E2) 91.3 % 92.0 % 92.0 %

(E3) 76.5 % 62.7 % 55.3 %

(E4) 90.4 % 91.3 % 93.7 %

Table 3. Correct full key classification results for dif-
ferent parameter sets. We test the influence of the
energy threshold factor fe (A), the weight exponent
set m(a) (B), the root–scale weight exponent s (C),
and the size of the final frame set N (D). The best
results for each parameter are printed bold. In (E1),
the multiplication in the tonic note estimation Eq. 8 is
replaced by a simple maximum-picking. In (E2), the
product Eq. 11 is replaced by a weighted sum. (E3)
considers both these changes at the same time. For
(E4), we use the full combined (major + parallel mi-
nor) Krumhansl template (non-diatonic entries non-
zero) and again calculate a sum instead of a product.

Most of the parameters discussed here show import-
ant impact especially on one of the databases. In our
interpretation, this is caused by different acoustic be-
havior (orchestra vs. piano) as well as properties of
the music (cf. Tab. 6) and its temporal dimensions
(symphonic vs. solo/chamber music). Individual error
rates for two of the best parameter sets are shown
in Tab. 4. Hereby, we emphasize the small number of
fifths errors that arise frequently in other approaches.
Third errors include all tonic note relations of minor
and major thirds, including the relative key. Especially

Dataset Symph SMD Pno

Correct full key 92.2% 93.7% 97.0%

Correct tonic note 98.3 % 96.0 % 97.5 %

Fifth errors 0.9 % 2.3 % 0.8 %

Third errors 0.9 % 1.6 % 1.7 %

Ø confidence 96.5 % 96.5 % 98.2 %

Correct full key 93.0% 95.2% 95.8%

Correct tonic note 100 % 96.8 % 97.0 %

Fifth errors 0 % 1.6 % 0.4 %

Third errors 0 % 1.6 % 2.5 %

Ø confidence 96.1 % 96.2 % 97.1 %

Table 4. Key extraction results for fe = 0.15 %, N =
40, s = 0.8, m = m(3) (upper block) and fe = 0.15 %,
N = 35, s = 0.75, m = m(2) (lower block).

Dataset Symph SMD Pno

Correct full key 73.0% 71.2% 62.9%

Correct tonic note 78.4 % 71.2 % 62.9 %

Fifth errors 9.0 % 12.8 % 13.1 %

Third errors 12.6 % 14.4 % 20.2 %

Table 5. Results of the MIRtoolbox key algorithm.

on symphonic data, identification of the correct tonic
note is clearly more reliable than full key detection.

For our best parameter sets, we reach results slight-
ly below the state-of-the-art [11, 12]. Taking into ac-
count that these algorithms are evaluated on music
from one composer for one type of orchestration, our
results may be comparable, since we considered a wide
range of styles and instrumentations. On Bach’s well-
tempered piano, we reach 100 % full key identification
for the upper settings in Tab. 4. On the Pno set, we
almost reach the 98 % accuracy presented in [14]. To
compare to a public algorithm, we run the key detecti-
on algorithm of MIRtoolbox from Univ. Jyväskylä [20]
on our data, a common chroma- and template-based
approach. Looking at the results in Tab. 5, we see that
our method performs clearly better for detection of the
full key and especially of the tonic note .

Epoch 1) 2) 3) 4)

No. in Symph 0 46 26 43

No. in SMD 11 49 20 46

No. in Pno 144 0 0 93

total No. 155 95 46 185

Correct full key 98% 96% 96% 92%

Correct tonic note 99 % 98 % 100 % 96 %

Table 6. Results by epoch: Baroque (1), Classical (2),
Early Romantic (3) and Late Romantic / Modern (4)
music. Parameters like in Tab. 4, lower block.

Last, we show the results by musical epoch in Tab. 6.
To this end, we clustered the results by composer and
aggregate music by Bach (Baroque), Haydn, Mozart
and Beethoven (Classical), Schubert, Schumann and
Mendelssohn (Early Romantic), and the rest (Late Ro-
mantic and Modern). We see the accuracy decreasing
with composition time as expected because of the in-
crease of tonal complexity during the centuries.
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5. CONCLUSIONS

We presented a new rule- and theory-based approach
to extract the key from classical music audio recor-
dings. The method puts special emphasis on the final
chord of the piece. After extracting chroma features, a
number of final frames exceeding a dynamic threshold
is selected. From this, the final chord’s root is determi-
ned via a pairwise multiplication of fifth-related chro-
ma values. From a full-piece chroma statistics, the sys-
tem estimates the underlying diatonic scale. Finally,
combining these results by multiplying corresponding
confidence measures provides the full key.

For the evaluation, we considered three datasets on
symphonic, mixed and solo piano music containing 478
recordings in total. We performed a parameter study
and reach an average success rate of 95.0 % for full key
detection and 97.7 % for tonic note detection for the
best parameter settings. Hence, our results are in the
range of most state-of-the-art approaches for automa-
tic key detection, specialized on classical music.

Since our method provides the final chord’s root with
a high reliability, our approach can be combined with
other chroma processing as well as machine learning
techniques. So, this may be a helpful tool to facilitate
renaming, browsing, and analyzing of classical music.
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ABSTRACT 
Although a variety of interfaces for music retrieval have 
been proposed so far, they are not always valid for re-
trieving classical music, a piece of which is recorded by 
many players. The lineup that current music retrieval 
systems suggest for a given musical piece is likely to be 
in order of sales. This is not always desired by classical 
music lovers, who are interested in various interpretations 
of a piece. In this paper, PEVI, a novel interface based on 
a scape plot for finding interpretations of classical music, 
is presented. The scape plot window, which visualizes the 
most similar performances of a specified scope (multiple 
layers) in a specified piece by using color tags, is used as 
the key to assigning a range of musical pieces to be re-
ferred to. Similar performances are displayed, on a differ-
ent window, as their coordinates represent the similarity 
of two selected musical features in regard to tempo, dy-
namics, and delicate control within a beat. Users of PEVI 
are able to observe the transition of the indices of similar 
performances by changing the scope on the scape plot 
and each weight of the musical features. In this paper, the 
effectiveness of PEVI is discussed with an analysis of 
difference performances of “Romance de Amor.” 

1. INTRODUCTION 
Recently, many music information retrieval systems have 
been proposed. We can easily find songs that are similar 
to a favorite piece or are cover songs. Popular music lov-
ers enjoy the benefits of the service provided by music 
information retrieval systems, mainly the classifying of 
content on the basis of collaborative filtering approaches. 
By contrast, these services are not always scrupulous 
enough for classical music listeners. One of the big dif-
ferences between classical music and popular mu-sic is 
that there exist plenty of performances of a particular 
musical piece in the genre of classical music. For classi-
cal music listeners, the differences of each performer's 
(conductor's) interpretations or expressions are important. 

Recommendations made by existing music information 
retrieval systems, such as instrumentations that are simi-
lar to query tune or a lineup of bestselling performances, 
are often not those desired by classical music listeners.  

The goal of this paper is to provide such classical music 
listeners with a music retrieval interface that can also be 
used as a tool for active music listening [1]. For this goal, 
musical features such as tempo, dynamics, and delicate 
control within a beat should be used as the indices of sim-
ilarity. One such implementation is Maezawa et al.’s 
“Query-by-Conducting” [2]. It makes use of global tempo 
transition information given by a user’s conducting ac-
tions in order to search for similar performances. 

It is desirable that the user can specify the scope (part) 
of the performance to be searched. Interpretation or ex-
pression of an expressive musical performance is essen-
tially multi-layered, from each note-level, phrase-level, 
and section-level expression. A function for assigning the 
scope of a performance is especially required for dealing 
with classical music. As a tool for visualizing expressive 
music performances, C. Sapp proposed a visualization 
called the “scape plot” that shows the most similar per-
formances of a specified scope (multiple layers) in a 
specified piece by using color tags [3]. The “scape plot” 
it-self is static, and it does not show the second most sim-
ilar data and below. In this paper, we propose an interface 
for retrieving and analyzing expressive performances of 
classical music called “PEVI.” The main feature of PEVI 
is the ability to use the scape plot as an interface to indi-
cate the scope of a performance that is specified. 

This paper is organized as follows. In Section 2, the 
possibility of being able to use a scape plots as an inter-
face for music information retrieval and as an analysis 
system for classical music is described. In Section 3, an 
outline of PEVI is described. The possibilities of PEVI 
are discussed on the basis of an analysis of different per-
formances of “Romance De Amor” in Section 4, and 
conclusions are in Section 6. 

2. SCAPE PLOT AS PERFORMANCE RE-
TRIEVAL INTERFACE 

2.1 Scape Plot 

In classical music, many artists perform from the same 
printed scores, but there are many different musical ex-
pressions produced by various interpretations. In addition, 

Copyright: © 2013 First author et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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a layered structure is also an important factor of musical 
expressions. There are cases when features of a micro-
scopic structure are different from those of a macroscopic 
structure. In The Mazurka Project, C. Sapp proposed the 
scape plot as a way of visualizing the similarity between 
performances in multiple layers at the same time [3]. The 
scape plot has a triangular shape. Figure 1 is a sample of 
a scape plot. 
 

 
 

Figure 1. Sample of a scape plot. The base vertical line 
is the time axis of a piece. The index color of the most 
similar performance of the span to the query is plotted 
at the vertex of the equilateral triangle, the base of 
which is the “scope.” 

The base of the scape plot represents the time axis of a 
piece; in other words, the left vertex means the start, and 
the right vertex means the end of a piece. When a section 
of the piece or the base of a scape plot is chosen, a tri-
angle that has a section specified as the base is decided, 
and the top vertex of the triangle is colored to indicate the 
most similar performance. Each performance is assigned 
a unique hue. The top vertex of the scape plot shows the 
most similar performance in regard to the whole piece. 
Thus, the scape plot shows the most similar performance 
in every time scale at the same time. 

2.2 Using Scape Plot as Span Controller for Calculat-
ing Similarity 

The scape plot is quite good for use as a visualizer of 
expressive musical performances. However, it can only 
visualize the most similar performance of each scope. 
The remaining performances are not visualized. We also 
cannot know how similar performances are. We solve 
these problems and propose a novel system that uses the 
scape plot as not only a way of visualizing but also as a 
user interface for giving a scope in order to calculate the 
similarity of performances, the results of which, includ-
ing the invisible information on the scape plot, are dis-
played in another area. Thus, we will be able to under-
stand the performances in detail by watching the real-
time trajectories of similar performances while listening 
to the query performance. 

Important features that identify an expression are, for 
example, tempo, dynamics, timbre, and expression within 

a beat. Above all, tempo and dynamic features have a 
large effect on musical expressions and are extracted rela-
tively easily and correctly, so they are frequently used as 
tools for comparing expressions, as is also adopted in the 
scape plot. In addition to tempo and dynamic features, the 
proposed system is designed to deal with features related 
to delicate control within a beat. 

3. PEVI 

3.1 Overview 

PEVI is a novel interface based on the scape plot for 
finding interpretations of classical music. An overview of 
PEVI is shown in Figure 2. The first thing that users of 
PEVI do is to give the query performance of a music 
piece. Then, the user can limit the number of perfor-
mance examples retrieved, which contributes to improve 
time resolution of visualization. Users are allowed to give 
weight to each feature considered for similarity calcula-
tion.  

 

 
Figure 2. Overview of PEVI 

The functions of visualization that PEVI offers are the 
scape plot, which is also used as a scope controller, the 
piano roll of the query and the selected performances 
which are retrieved, line graphs of the selected features, 
and real-time trajectories of the performances in a select-
ed two-feature plane (so called the “performance worm” 
[4]) and in polar coordinates. 

An example of the GUI of PEVI (top page) is shown 
in Figure 3. This figure is a snapshot of the visualizing of 
performances of Prelude Op. 28 No. 7 in A major by F. 
Chopin in the tempo-dynamics plane. The half-tone dot 
meshing area in the left figure is the span used for calcu-
lating similarity. When users push the play button, they 
can listen to the span of the query performance while 
watching animated visualizations of the trajectories of the 
performances that are retrieved. 
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Figure 3. Main GUI of PEVI. Half-tone dot meshing 
area in the left figure is the span used for calculating 
similarity. Color index represents name of performer. 

 

    
Figure 4. Sample of visualizations with PEVI 

 
Figure 4 shows samples of visualization of the per-

formances retrieved. The left shows the visualization in a 
polar coordinate, and the right shows the performance 
worm. Users of PEVI are able to change the query by 
selecting a colored index in these visualizations just like 
web-surfing. 

3.2 Calculating Similarity 

We use Pearson product-moment correlation as the 
similarity between each feature of performances. The 
sequence x means the data of a query, and the sequence y 
means the data of one of the target performances. 𝑥 and 𝑦 
mean arithmetic averages of sequence x =    𝑥!  and se-
quence y =    𝑦! . Then, Pearson coefficient, often called 
an “r-value” in statistics, is defined as:  

 
Peason x, y = !!!!! !!!!

!!!! !! !!!! !!
                 (1) 

 
The value range of Pearson correlation is −1.0 to +1.0. 

The 1.0 indicates an identical match between two per-
formances.  

Figure 5 shows an example of the Pearson correlation 
of tempo between two performances. It shows there is a 
strong correlation in the scope from beat 1 to 3, almost no 
correlation in the scope from beat 3 to 10, and a negative 
correlation in the scope from beat 7 to 10. 

 

 
Figure 5. Sample of Pearson product-moment 

3.3 Data Format of the Performances 

PEVI accepts performance data that are written in com-
pliance with the CrestMuseXML and DeviationIn-
stanceXML formats, which are compatible with Crest-
MusePEDB1, a database for expressive performances [5]. 

The objects of the collection stored in CrestMusePEDB 
are pieces of classical music up until the early twentieth 
century whose copyrights are expired, mainly piano 
pieces composed by J. S. Bach, W. A. Mozart, L. V. Bee-
thoven, and F. Chopin, and pieces that are often covered 
by earlier studies or are interesting as research objects are 
chosen. Performance expressions are labeled by hand 
from recordings of excellent performances. Transitions of 
tempo and dynamics are extracted at the beat level, and 
timings and the shifts of the dynamics of each tone are 
extracted at the MIDI level. Deviations of each tone from 
a printed score are detected as a musical expression. The 
data are written in compliance with MusicXML. We ob-
tain tempo and dynamics transitions in increments of a 
quarter note. 

4. USER EVALUATION 
In this section, a preliminary user evaluation of PEVI is 

described. The goal of implementing PEVI is to expand 
the possibility of using the scape plot to retrieve and ana-
lyze classical music, where expressing the notes of a 
score makes much sense. The effectiveness of the visual-
ization, usability, possibilities, and problems were col-
lected by using a questionnaire. 

Seven university students (from 20 to 24 years of age), 
whose musical experience ranged from the novice level 
to more than 10 years of piano playing, participated in the 
evaluation. After an explanation of how to use PEVI, the 
participants were made to use it freely to access perfor-
mances until they judged that they had fully used the 
functions of PEVI. The experimenters explained the 
meaning of some of the musical terms in the GUI to the 
novice participants during the procedure on demand. The 
average operation time was around one hour. 

The participants were asked to score the following 
items on a scale of 1 to 6 (1: lowest, 6: highest): a) intui-
tiveness of visualizing two styles (polar coordinate and 
                                                             
1 http://www.crestmuse.jp/pedb/ 
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performance worm), b) effectiveness of visualizing deli-
cate control within a beat to listen to the differences be-
tween performances, c) effectiveness of using the scape 
plot to assign a “scope” to calculate similarity, d) effec-
tiveness of giving weight to each feature, and some items 
regarding the total usability of PEVI. In addition, partici-
pants were asked to write their opinions freely regarding 
the total usability.  

As for the visualization, the participants preferred the 
performance worm style to the polar coordinate style. 

The effectiveness of visualizing delicate control within 
a beat was given significantly high scores (P < 0.05) by 
the participants who had some musical experience. 

In comparison, participants with little musical experi-
ence answered “I can hear the differences between per-
formances, but I’m not sure what makes the differences. 
From the start, I have never listened to music knowing 
there exists differences among the performances.” These 
results illustrate that PEVI is an effective tool for enhanc-
ing the pleasantness of listening to music for listeners 
with some musical experience rather than for novice lis-
teners. 

As for the total usability, the intuitiveness of the GUI 
and pleasantness were given high scores, 5.8 and 5.0 re-
spectively. We may conclude that PEVI is a novel tool 
for active music listening, especially for classical music. 

5. ANALYZING “ROMANCE DE AMOR” 
PEVI is expected to be used to analyze how each of the 

performers (performances) affects each other, which is 
regarded as a typical theme of musicology. This usage 
was originally pointed out by C. Sapp as an application of 
the scape plot in [6]. However, PEVI, which is imple-
mented as an interactive application that enables users to 
change weights for the features and the span, provides 
users with smoother operation in order to achieve this 
goal. In this section, the potential of PEVI is discussed by 
introducing examples of performances of “Romance de 
Amor” for guitar. 

“Romance de Amor” is a Spanish folksong. The first 
eight bars at the beginning are shown in Figure 6. After 
being used as the theme of the French film “Jeux inter-
dits,” it has been one of the most famous pieces of music 
for guitar and has been performed by many guitar players, 
including professionals and amateurs. It is not so strange 
to frame the hypothesis that the relationship between 
master and disciple, nationalities, and age may cause 
there to be similarities in performances. This hypothesis 
is examined by retrieving performances of “Romance de 
Amor” by using PEVI. 

 

 
Figure 6. Beginning part of “Romance de Amor” 

 
The retrieved guitarists were Narciso Yepes, Kiyoshi 

Shomura, Kazuhito Yamashita, Shin-ichi Fukuda, 
Daisuke Suzuki, Yasuji Ohagi, and Kaori Muraji. First, 
“Romance de Amor” was made known to the world by 
the virtuoso performance of Yepes. Shomura is one of a 
few Japanese guitarists who studied under Yepes. Suzuki, 
Ohagi, and Muraji studied under Fukuda, who is a friend 
of Shomura. Both Yamashita and Fukuda and both Ohagi 
and Muraji are guitarists of the same generation, respec-
tively. Suzuki is a Jazz guitar player as well as a classic 
guitar player. Ohagi and Muraji are the youngest among 
the seven guitarists and regarded to play the latest inter-
pretation of the song. Muraji is the only female guitarist 
of the seven. Yamashita is known for his transcendent 
technique and is regarded as a unique guitarist by the 
others. 

The performance data for this analysis were obtained 
with experienced guitar players’ iterated listening and 
revision, using a tool2 for creating a performance data 

                                                             
2 http://en.sourceforge.jp/projects/cmx/ 

Figure 7. Analyzing guitar performances of “Romance de Amor” 
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provided by the CrestMusePEDB committee.  
 The result of the analysis is shown in Figure 7. The 

right side of Figure 7 shows the analysis when Shomura’s 
performance was set as the query performance. There was 
no distinctive similarity between Yepes’ and Shomura’s 
performances when the weights for the tempo, dynamics, 
and delicate control within a beat were equally given. In 
accordance with a gain in the weight for dynamics, the 
area that shows Yepes’ performance (magenta) in the 
scape plot expanded at the first half. We could find simi-
larity in the expression of dynamics between Shomura 
and Suzuki’s performances. When the weights for tempo, 
dynamics, and expression in a beat were set to 1:2:0, we 
could see similarity between Shomura’s and Muraji’s 
performances. 

The left side of Figure 7 shows the results when queries 
were set to Suzuki, Ohagi, Muraji, and their teacher, Fu-
kuda, respectively. Each weight for tempo, dynamics, and 
expression within a beat were set to 1:1:1. In the plot for 
Fukuda (around the center area), we could see a big yel-
low area that represented Ohagi and a big purple one that 
represented Muraji. We could see that red represented 
Suzuki, the area of which was small compared with those 
for yellow and purple, at the base of the triangle. This 
shows that Suzuki inherited local features of expression 
from his teacher Fukuda the most. The second and third 
performances most similar to Fukuda’s were also those of 
his pupils. These observations suggest that Fu-kuda’s 
pupils inherited features of expression from their teacher, 
Fukuda, the most. The next performance similar to Fuku-
da’s was that of Yamashita, who is of the same genera-
tion as Fukuda.	 

The three scape plots at the most left side are those of 
Fukuda’s three pupil guitarists. Some similarities were 
observed between Suzuki’s and Muraji’s performances. 
They were especially similar at the latter half, where ex-
pression in regard to dynamics was similar to that of their 
teacher, Fukuda. Compared with Suzuki’s and Muraji’s 
scape plot, Ohagi’s one looked different. It seems that 
performers of the same generation may play in a different 
style, even when their teacher is the same. 

Figure 8 shows snapshots of the transition of the per-
formances, where Ohagi’s performance was set as the 
query. This shows that Muraji’s performance (in pink) 
got closer to Ohagi’s, replacing Fukuda’s (in blue) be-
tween bars 5 and 8. 

 

 
Figure 8. Transition of the performances, where 
Ohagi’s performance was given as the query. Left and 
right figures are snapshots at bars 5 and 8, respectively. 

6. DISCUSSION 
PEVI enables interpretations to be retrieved and ana-

lyzed by focusing on factors of musical features. We ex-
pect that the main users of PEVI will be classical music 
enthusiasts and scholars. For example, PEVI could be 
used for an analysis of student/teacher similarities or ge-
nealogical studies of musical performers. PEVI will be 
useful for not only comparing the degree of similarity but 
also for knowing which factors of musical expressions or 
which part of a performance are affected by a teacher. For 
the player, the findings obtained by using our system can 
be used as a reference. The features in the macroscopic 
layers are especially difficult to understand only by ear.  

Of course, PEVI will also be useful for those beginning 
to listen to classical music. Comparing expressions is one 
way to enjoy classical music, but it is difficult to find 
differences of expressions by using only one’s own ear. 
PEVI enables these differences to be understood by lis-
tening to and “touching” the performances and by inves-
tigating specific factors. If our system can work on mo-
bile devices, it will be of great use to many classical mu-
sic listeners. 

The database of musical expressions enabled us to 
make our system. Separating each tone from recordings is 
helpful for manipulating or understanding expressions. 
Recently, audio source separation techniques have been 
rapidly developing [7,8,9]. We can easily separate one 
note from recordings. This will encourage construction of 
separated music databases and advance automatic music-
understanding technologies. If a bigger musical expres-
sion database were constructed, our system would be able 
to deal with many more performances in the future. Fur-
thermore, if musical features can be detected perfectly 
and automatically from live performances, we can com-
pare our own performances to those of virtuoso perfor-
mances. PEVI will be able to help every performer who 
learns how to express themselves by listening to profes-
sional players and both music school students and ama-
teur players. 

If we use expression within a beat, we can compare the 
musical features of performances in detail. Pianists do not 
always play left- and right-hand notes together, according 
to aural traditions, although they are written as simultane-
ities in a printed score. Deviations of the left and right 
hand produce various expressions and characterize the 
performance. In addition, articulations such as legato and 
staccato are also important musical features for identify-
ing interpretations. Individual performers will be charac-
terized more minutely. 

As future work to further develop our system, we would 
like to reflect on other important musical features when 
retrieving interpretations, for example, the timbre and 
expression within a beat. Currently, PEVI deals with only 
two musical features: tempo and dynamics transition. If 
we use timbre, PEVI is useful for investigating interpreta-
tions of performances played as instrumentals with in-
struments that have much more ability to change timbre 
than does the piano, for example, the guitar and other 
strings. 
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7. CONCLUSIONS 
In this paper, PEVI, a novel interface based on the scape 
plot for finding interpretations of a specified piece, was 
presented. The scape plot has two problems: it is not able 
to visualize performances that are not the most similar 
and it cannot control the weights of musical features. The 
interface solves these problems by displaying the invisi-
ble information on another area and adding a function to 
change the weights of tempo and dynamics transition and 
to redraw the scape plot. As a result, we can easily find 
objective performances for any musical feature of a spec-
ified performer in a pool. As future work, we would like 
to add functions for selecting target performances, mixing 
expressions of multiple performances, playing new ex-
pressions, and reflecting other musical features, for ex-
ample, timbre, expression within a beat, and articulations 
in interpretation retrieval. 
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ABSTRACT

In this paper we argue that the notion of music similar-
ity should be expanded into sub-similarities, meaning that
similarity of music has to be judged with respect to a cer-
tain context, such as melody, harmony, rhythm or timbre.
We start by focusing on timbre similarity, restricted to the
domain of Electronic Dance Music (EDM). We will assess
the similarity of segments of music, thus we start by study-
ing segmentation before we come to the topic of similar-
ity. The segmentation algorithm performs well on an EDM
dataset as well as on a standard MIREX dataset. Initial lis-
tening tests of the similarity model give promising results
but will have to be further evaluated in future research.

1. INTRODUCTION

Similarity in music is a fascinating but complicated con-
cept. Although most people clearly understand when a
piece of music is similar to another, a good formalization
of the concept of music similarity does not yet exist.

In the academic field of Music Information Retrieval, var-
ious systems have been developed that classify music ac-
cording to a certain type of similarity [13,14,23,24,35,37].
On the other side, in industry, a number of tools have been
released that can recommend similar music (Apple Genius,
last.fm, Pandora). Such systems and tools, however, often
(1) rely on metadata or listener ratings and not on the ac-
tual audio, (2) consider similarity as a holistic entity, and
(3) consider only complete musical records. As a result,
only limited functionality can be provided to the end user.

Let us briefly go through the shortcomings of existing
systems.

Most existing music-recommendation apps use metadata
(keywords tagged by the user which can include informa-
tion about artist, title, genre and more [29]), or collabo-
rative filtering (relevance of a song to a user is predicted
based on similar users’ ratings [25]), meaning that the mu-
sic itself (the audio file) is not studied . Therefore, the
amount of music that can be used as both input and out-
put is limited, and the functionality is limited to finding
matches that have the same label. The presented research
in this paper focuses on content-based music retrieval, in
which the audio is studied. In this way, we can use all mu-

Copyright: c©2013 Bruno Rocha et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

sic that we have, and have access to all musical information
contained in the audio.

Musical similarity consists of many facets, for example,
tempo, rhythm, meter, instrumentation and pitch contour.
Current research and industrial tools often treat similar-
ity as a monodimensional property, aiming for an arbitrary
’best match’. However, it is known that similarity depends
on context [11]. By all means, we can imagine that a piece
of music could be rhythmically similar to another piece,
without being similar in melody or harmony (e.g. salsa
music has a typical rhythm, similar for most salsa mu-
sic, but different salsa tracks vary in melody/harmony/...)
Therefore, it is useful to expand the notion of similarity
into sub-similarities, meaning that similarity of music has
to be judged with respect to a certain context, such as melo-
dy, harmony, rhythm or timbre. The research described in
this paper is part of a larger project in which several sub-
similarities are studied. This paper focuses on timbre sim-
ilarity.

Most studies in the area of music similarity concentrate
on the similarity of pieces of music or songs as a whole.
We can, however, imagine that a piece of music is similar
to only a part of another piece of music, for example its
introduction. The overall similarity between the two pieces
will be therefore not that high, while the similarity between
the first song and the introduction of the second could be
of great importance. Therefore, in this project, we have
focused on the similarity of segments of music, and thus
we start by studying segmentation before we come to the
topic of similarity.

Since the topic of music similarity, even when restricted
to just timbre similarity of music segments, remains a broad
subject, we decided to treat it in the restricted domain of
electronic dance music (EDM). The choice for this genre
was motivated by the collaboration with audio software
company Elephantcandy, which identified a specific need
for similarity tools in this genre. After a brief introduction
into EDM, this paper will report on our study on segmen-
tation and timbre similarity.

The contributions of this paper are two-fold: (1) we present
an algorithm for the detection of structural boundaries in
EDM, of which the main innovations are the addition of
a first downbeat detection and the implementation of mu-
sically informed rules; (2) an algorithm to perform poly-
phonic timbre similarity is presented, of which the main
novelty is the modification of the concept of roughness.
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2. ELECTRONIC DANCE MUSIC (EDM)

Electronic Dance Music (EDM) is a label that defines a
metagenre encompassing a heterogeneous group of mu-
sics made with computers and electronic instruments [27].
Most EDM tracks are made with the expectation of being
combined with other tracks and danced to. However, some
genres, although drawing on the conventions of EDM, are
not suitable for the dance floor or written intentionally for
not dancing [9].

Until recently, EDM was (with some sporadic exceptions)
an underground culture, i.e. cultivated outside the view of
the general public eye [18], but it has risen to the main-
stream charts of the music industry [20]. Today it has be-
come common for established Top 40 artists and producers
to infuse elements of popular EDM styles in their music.
EDM “has broken free from the underground to become
the driving beat behind pop music and product sales, the
soundtrack of choice for a new generation” [17].

Almost all EDM share certain musical characteristics: (1)
a steady tempo, mostly in the range of 120-150 BPM (de-
pendent of genre); (2) a repeating bass drum pattern [9].

Timbre, often also referred to as texture, stands out as a
primary compositional parameter in EDM. It is seen as the
criterion by which patterns may be differentiated most eas-
ily [46]. Most of the timbral changes that occur in EDM
involve an element either entering or leaving the mix. In
Butler [9], DJs Shiva and Stanley described a prototypi-
cal structure of EDM tracks. They based their descriptions
mainly on timbral changes. As the DJs Butler [9] inter-
viewed stated, in EDM “everything happens in four”, be
it beats, measures, or hypermeasures. However, empirical
analysis in the current project showed it has become in-
creasingly common for producers to introduce an element
of surprise, typically by adding one measure at the end of
some segments.

3. UNSUPERVISED DETECTION OF
STRUCTURAL CHANGES IN EDM

The segmentation of time series into meaningful, coherent
units by automatically detecting their boundaries is a chal-
lenge crossing several scientific domains [39]. A musical
segment is a region with some internal similarity or con-
sistency in a given feature space, such as timbre or instru-
mentation, implying that it has temporal boundaries at its
start and end [12]. Tzanetakis and Cook [43] stress the im-
portance of segmentation in Music Information Retrieval
(MIR), where it is better to consider a song as a collection
of distinct regions than as a whole with mixed statistics.
Performance in audio similarity can benefit from segment-
ing the tracks beforehand [12].

As pointed out before, timbral changes are essential for
EDM producers when considering structural changes. Au-
couturier and Sandler [2] argue that, to segment a song into
its relevant sections, one should discard any pitch and har-
monic information and focus on timbre alone.

To find structural segments in EDM we will (1) extract
timbral features, and (2) divide the music into segments,
based on these features. In order to take into account the

dynamic evolution of a feature, the analysis has to be car-
ried out on a short-term window that moves chronologi-
cally along the temporal signal; each position of the win-
dow is called a frame [28]. After extracting the relevant
features on subsequent frames one has to calculate the dis-
tance between each frame and all the others, according
to a certain distance measure. The largest calculated dis-
tances represent the segment boundaries. We will explain
all steps of the segmentation algorithm below. The MIR
Toolbox [28] was used to perform most of the steps.

3.1 Detection of first bass drum downbeat

Many EDM tracks begin with beatless intros and culminate
in turning the beat around, a phenomenon that occurs when
people perceive a certain metrical structure which is vio-
lated later (usually by introducing a beat on the perceived
off-beat) [9]. For this reason, the entrance of the bass drum
in an EDM track often results in a decisive metrical repre-
sentation [9]. In some cases, DJs may even skip beatless
intros and start playing from the first bass drum beat, rep-
resenting the start of the main structure of the track, which
makes its detection a critical step for the performance of
the segmentation algorithm.

To detect the first bass drum downbeat, we start by apply-
ing a bandpass filter and then compute the global energy of
the filtered signal by taking the root average of the square
of the amplitude, also called Root Mean Square (RMS), on
non-overlapping windows of 30 seconds, in order to find in
which part of the audio file is the beat likely to start (beat-
less intros usually have low-energy in the low-frequency
region). An onset detection is then performed on the thirty
seconds window where the energy rises abruptly, leaving
us with candidates for the first downbeat. We select the
first that exceeds a given threshold and save the previous
part as the first segment. See figure 1 for a visual explana-
tion.

3.2 Tempo estimation and confidence measure

Tempo estimation is performed in order to detect the du-
ration of a beat. This is important because all features
(for both the segmentation and the similarity tasks) are ex-
tracted on beat-related frame lengths.

Looking at local correlation between samples we can eval-
uate periodicities in a signal. An autocorrelation function
is computed on the onset detection curve and translated
into the frequency domain in order to be compared to a
spectral decomposition of the onset detection curve, and
the two curves are subsequently multiplied [28]. The result
is a curve with peaks as indications of the most predomi-
nant periodicities found in the track. We then perform peak
picking and select the highest peaks above a certain thresh-
old. The highest peak is selected as the tempo of the track.

A binary confidence measure telling us about the likeli-
ness that the detected tempo is correct is then derived from
the harmonic relation between the found peaks. When only
one peak is detected or all the observed peaks are harmoni-
cally spaced (which would give alternative tempos that are
for example two or three times as fast), the estimated con-
fidence value is 1. If there are several peaks with no har-

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

755



(a)

(b)

(c)

(d)

Figure 1. Detection of the first downbeat. (a) Audio wave-
form after downsampling, (b) audio waveform after band-
pass filtering, (c) RMS energy curve, (d) Onset detection
on 30 second window. Song: “Insomnia (Monster Mix)”
by Faithless.

monic relation between the spacing of the peaks, the es-
timated confidence value is 0. This measure will be used
later, on the level of fine-tuning the segment boundaries
(section 3.4).

3.3 Novelty detection

After computing the tempo score in beats per minute (BPM)
and building a vector with all the beat positions, we com-
pute the magnitude spectrum of each frame of the signal.
The frames are beat-aligned with 87.5% overlap so that we
decompose the energy along frequencies for each beat of
the track.

We perform a cepstrum analysis in order to find peri-
odic sequences in the signal. This is motivated by the fact
that timbre should be the most important characteristic for
segmentation [2, 9], and by analysis on both MFCC and
cepstrum-based segmentation.

Following Foote [19], we then compute the cosine dis-
tance between each possible pair of frames from the cep-

(a)

(b)

Figure 2. Novelty detection. (a) Similarity matrix with
kernel size of approximately 30 seconds, (b) Novelty
curve. Song: “& Down” by Boys Noize.

strum data to get a self-similarity matrix (figure 2). Con-
voluting along the main diagonal of the similarity matrix
results in a novelty curve that indicates the temporal lo-
cations of significant timbral changes by its peaks. These
locations present the segment boundaries that we searched
for.

3.4 Musically informed rules

Although our algorithm located the segment boundaries
based on timbral changes, we are not done yet. The nature
of EDM requires us to fine-tune the segment boundary lo-
cations. Butler [9] categorizes sounds in EDM as rhythmic,
articulative, or atmospheric. For the purpose of segmenta-
tion, articulative sounds, which are brief and intermittent,
are very important. They usually appear before structural
boundaries, such as the beginning of a measure or multi-
measure group, in order to raise expectation for a segment
boundary for the listener. As the novelty detection is based
on textural changes and the timbres of articulative sounds
are frequently quite distinct from the neighbours, novelty
peaks are detected when these sounds occur. However, the
relevant structural changes usually follow these sounds and
start on a downbeat.

To overcome this displacement, we propose a set of heuris-
tic rules to align the obtained novelty peaks with the most
probable structural boundaries - for the tracks on which the
tempo was estimated with confidence. We analyze the dis-
tances between peaks and update them at each iteration,
forming a dynamic structure. Furthermore, to account for
the extra measure issue (explained in section 2), an asym-
metric weight was applied, such that the gravitation toward
the 8th or 16th measure mark is stronger when a boundary

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

756



Figure 3. Application of musically informed rules to de-
tected boundaries. The timeline is shown in beats (0 cor-
responds to the first detected beat; 4 beats = 1 measure).
Heuristic rules dictate a dynamic and asymmetric weight
towards the 8th and 16th measures.

is detected before than when it is detected after that mark.
Figure 3 shows the effect of the rules on a hypothetical
track.

For the tracks that had a tempo estimation with confi-
dence=0, the detected boundaries remain unchanged, as
the changes would most probably result in a less precise
estimation of the segment boundaries. However, for the
tested datasets, more than 90% of the tracks had confi-
dence=1.

3.5 Evaluation of segmentation

The segmentation algorithm was evaluated using several
datasets: (1) EDMs, an in-house EDM dataset specially
created for this project 1 , consisting of 35 songs - anno-
tated by the authors - from 19 artists; (2) RWC Pop [21],
annotated by two groups of researchers RWO corresponds
to the annotations of the dataset creators and RWQ corre-
sponds to the annotations made in the Quaero project [4];
(3) Eurovision dataset [5]. Found segment boundaries are
considered correct if they are within ± 0.5 seconds (pre-
cise) or ± 3 seconds (relaxed) from a border in the ground
truth annotations. Based on the matched hits, boundary
retrieval recall rate, boundary retrieval precision rate, and
boundary retrieval F-measure are calculated.

The results can be found in table 1. Of the EDMs dataset,
we show the results both with and without the musically
informed rules. On the other datasets, the rules did not
make a significant difference and we show only the results
where the musically informed rules have been applied. The
algorithm performs well on the EDMs dataset. As can be
seen from table 1, the musically informed rules increased
the F-score with around 10 points on the 0.5s tolerance-
window level. Although this method was created specif-
ically for EDM, results on the RWC Pop dataset would
be in the top 3 of best performing algorithms submitted to
MIREX 2012, with its best performing algorithm having
F (3s) = 0.77 on RWQ and F (3s) = 0.71 on RWO [32].
This suggests that structural changes in pop music might
have the same periodicity as in EDM. This method does
not reach high performance on the Eurovision dataset. An
explanation for this might be that, in this song contest, pop
music is usually mixed with traditional music from several

1 The annotations are available for research purposes on request to the
authors.

Dataset P0.5s R0.5s F0.5s P3s R3s F3s
EDMs
(no rules)

37.10 51.48 41.63 63.62 86.34 73.80

EDMs 46.52 62.87 51.67 62.15 84.83 69.38
RWO 28.10 23.95 25.28 70.11 63.70 65.08
RWQ 31.40 27.86 28.99 66.74 61.25 62.59
EUR 9.27 9.15 8.86 43.85 43.55 42.39

Table 1. Boundary retrieval precision rate (P), recall rate
(R) and F-score (F) with two tolerance windows: ±0.5 sec-
onds and ±3 seconds. Three annotated datasets were used:
in-house (EDM-set), RWC (original (RWO) and Quaero
(RWQ) annotations) and Eurovision (EUR).

European countries of which the structural boundaries may
be quite distinct.

4. MUSIC SIMILARITY: TIMBRE

Cambouropoulos [11] explains that the concept of similar-
ity always depends on context, such that we can only speak
of similar music with respect to a certain context such as
timbre, melody, rhythm etc. To make a start with defining
musical similarity in this way, and since timbre is seen as
the criterion by which patterns in EDM may be differenti-
ated most easily [46], this paper focuses on timbre similar-
ity.

Studies in timbre perception indicate that the phenomenon
of timbre is multidimensional, with a number of factors in-
teracting to produce the exact tone quality that is perceived
by a listener [16]. These factors have been identified to
include, among others, spectral flux, spectral centroid, and
attack time [10, 26, 34]. These studies focused on mono-
phonic timbres. However, here we want to describe poly-
phonic textures, which the aforementioned features cannot
represent.

For our purposes, we have empirically made a selection
of a small number of features to describe timbre in EDM.
We will now describe the three types of features that we be-
lieve capture the most relevant dimensions of a polyphonic
texture for comparison with other textures.

4.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) [15] are u-
sed to represent the spectral envelope of a given sound,
which is one of the most salient components of timbre. We
calculate them by first computing the power spectrum suc-
cessively on frames with the duration of a beat, followed
by logarithmically positioning the frequency bands on the
Mel scale, and finally performing a discrete cosine trans-
form on the bands [28].

The number of MFCCs that well represent a spectral en-
velope is subject to discussion. The low order MFCCs ac-
count for the slowly changing spectral envelope, while the
higher order ones describe the fast variations of the spec-
trum [1]. Therefore, while it is true that the more MFCCs
we compute, the more precise the approximation of the sig-
nal’s spectrum is, a large number of MFCCs may not be ap-
propriate, as we are only interested in the spectral envelope
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and not in the finer details of the spectrum [3]. The same
authors reported an ideal value of 20 coefficients, which
we selected.

For the computation of these features, we frame the signal
into half-overlapping windows with duration of a beat and
calculate the mean of each coefficient for each segment,
ending up with twenty values per segment.

4.2 Spectral Flatness

Spectral flatness, also referred to as tonality coefficient,
measures the sinusoidality of a spectrum [33]. It indicates
whether the distribution of the spectrum is smooth or spiky,
and provides a way to quantify how tone-like a sound is, as
opposed to being noise-like. The spectral flatness is calcu-
lated by dividing the geometric mean of the power spec-
trum by the arithmetic mean of the power spectrum, i.e.:

N

√
ΠN−1

n=0 x(n)

1
N

∑N−1
n=0 x(n)

, (1)

where x(n) represents the magnitude of bin number n.
For the computation of the spectral flatness, we split the

spectrum into four bands. Then we frame the signal into
half-overlapping windows with the duration of a beat. Fi-
nally we calculate the mean spectral flatness for each band,
ending up with four values per segment.

4.3 Dirtiness

Helmholtz [22] introduced the term auditory roughness,
also referred to as sensory dissonance, in the psychoacous-
tics literature. It is related to the beating phenomenon that
occurs whenever a pair of sinusoids is close in frequency
[36]. Roughness can be considered as an attribute of tim-
bre, as it is usually described as a function of a signal’s
amplitude envelope and corresponding spectral distribu-
tion [45].

We took the notion of roughness and approached it from a
different perspective. Dirtiness is a term used by EDM lis-
teners and producers when referring to a particular sound
quality that is pervasive in synthesizers (as used in EDM)
there is even a subgenre of EDM called Dirty Dutch [41]
and numerous online videos teach how to achieve a dirty
synth sound. Spectral analysis revealed that dirtiness might
be (partly) explained by the detuning that producers apply
to their synth sounds. This detuning is characterized by a
varying stream of frequencies very close to the harmonics
of the fundamental frequency we perceive as the pitch of
the played sound, which can therefore be described using
the concept of roughness.

We are not interested in the value of roughness at each
instance but in its value over a larger period of time with
a high frequency resolution. For this reason, we compute
roughness values in half-overlapping windows of 8 beats.
For the computation of roughness we use Vassilakis [44]
model. Dividing the spectrum into four bands, we then cal-
culate the mean for each band, ending up with four values
per segment.

4.4 Feature vector for timbre similarity

The aforementioned features (20 MFCCs, 4 Spectral Flat-
ness values, and 4 Dirtiness values) together make a feature
vector that describes the timbre of a segment. The similar-
ity between two different timbres is then described by cal-
culating the Euclidian distance between the two associated
feature vectors.

Initial listening tests on this similarity rating model gave
promising results. Since no groundtruth database exists for
timbre-similarity, we could not perform an evaluation of
the model. We plan to do a full evaluation of this similar-
ity measure by creating our own groundtruth corpus in the
near future. The algorithm in its present form computes
a similarity rating based on different timbral features with
equal weighting. One might expect that some features may
be more important than others and that the optimal weight-
ing scheme is different from the one we have used here.
Optimizing the weighting is planned for future research as
well, but is however highly dependent on confident ground
truth.

5. DISCUSSION AND CONCLUSIONS

We have presented our model for structural segmentation
and timbre similarity for electronic dance music. The seg-
mentation algorithm included a set of musically informed
rules to account for the fact that segment boundaries in
EDM are usually on the beat. The algorithm was eval-
uated on various corpora, and performed best on an in-
house dataset of EDM. Although this method was created
specifically for EDM, results on the RWC Pop dataset can
compete with the best performing algorithms submitted to
MIREX 2012, suggesting that the structural boundaries un-
derlying EDM follow the same principles as the boundaries
in pop-music.

In the literature, the topic of segmentation has been ap-
proached from different angles, and can be interpreted as
phrasing/grouping [6, 30], or structural segmentation [8,
31]. Structural segmentation is described as to identify
the key structural sections in musical audio as for exam-
ple verse and chorus, and should be accessible to every-
body (needing no particular musical knowledge) [32]. The
question however here is, whether there is indeed consen-
sus on the concept of structural segmentation. One issue
that we came across, for example, is the question whether
it is necessary for a segment boundary to coincide with a
downbeat. We found this to be the case for EDM, and in
this case the “preference” for perceiving a new segment
starting on a downbeat overruled the concept of timbral
change that was underlying our algorithm, hence the intro-
duction of the musically informed rules. One can wonder
whether this is the case for other genres as well.

An issue related to this is how far phrase-segmentation
and structural segmentation merge. If a phrase, starting
with an upbeat, introduces the start of new structural seg-
ment, does the structural segment start with the start of the
phrase (on the upbeat) or does it start on the downbeat fol-
lowing the upbeat?

The evaluation process of segmentation algorithms is im-

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

758



portant to consider as well. Several studies use only a ±
3 second tolerance window for evaluation. We would like
to argue that this window is too large to be able to assess
algorithms in a detailed way. If the large window is used to
cover up misalignments like ones caused by issues that we
outlined above (e.g. boundaries on upbeats or downbeats),
then these are the issues that we should consult instead of
hiding them with large tolerance windows. Problems like
these have been discussed before [38] and we feel it is im-
portant to continue this discussion.

Besides the segmentation algorithm we have presented
our model for timbre similarity in EDM. A feature vector
has been created to describe a particular timbre, with the
most novel feature being ‘dirtiness’, which accounts for the
rough sound that is characteristic for some types of EDM.
The selection of features for this feature vector was based
on empirical tests on a reduced dataset, for which only the
features described in section 4 seemed to reveal any partic-
ular relevance. Initial listening test gave promising results,
but since no groundtruth dataset exist, a formal evaluation
has not been done. We plan to do a full evaluation of this
similarity measure by creating our own groundtruth corpus
in the near future. This evaluation will also include statisti-
cal tests involving other features and comparisons between
MFCC-only approaches (e.g. [42]) and ours.
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ABSTRACT

In this paper, we propose a method for extracting a melodic
outline from a note sequence and a method for re-transforming
the outline to a note sequence for non-note-level melody
editing. There have been many systems that automatically
create a melody. When the melody output by an automatic
music composition system is not satisfactory, the user has
to modify the melody by either re-executing the composi-
tion system or editing the melody on a MIDI sequencer.
The former option, however, has the disadvantage that it
is impossible to edit only part of the melody, and the lat-
ter option is difficult for non-experts, musically untrained
people. To solve this problem, we propose a melody edit-
ing procedure based on a continuous curve of the melody
called a melodic outline. The melodic outline is obtained
by applying the Fourier transform to the pitch trajectory of
the melody and extracting low-order Fourier coefficients.
Once the user redraws the outline, it is transformed into a
note sequence by the inverse procedure of the extraction
and a hidden Markov model. Experimental results show
that non-experts can edit the melody to some extent easily
and satisfactorily.

1. INTRODUCTION

Automatic music composition systems [1–6] give the user
original music without requiring the user to perform mu-
sically difficult operations. These systems are useful, for
example, in the situation that a musically untrained per-
son wants original (copyright-free) background music for
a movie. These systems automatically generate melodies
and backing tracks based on the user’s input such as lyrics
and style parameters. In most cases, however, the gener-
ated pieces do not completely match those desired or ex-
pected by users because it is difficult to express the desire
as style parameters. The common approach for solving
this problem is to manually edit the generated pieces with
a MIDI sequencer, but this approach is not an easy opera-
tion for musically untrained people.

The goal of this study is to achieve an environment that
enables musically untrained users to explore satisfactory
melodies by repeated trial-and-error editing of melodies
generated by automatic music composition systems. There
are two reasons why it is difficult for musically untrained

Copyright: c⃝2013 Yuichi Tsuchiya et al. This is an open-access article distributed
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people to use a conventional MIDI sequencer. The first
reason is that musically untrained listeners understand mu-
sic without mentally representing audio signals as musical
scores [7]. The melody representation for melody editing
should therefore not be based on musical notes; it should
capture the coarse structure of the melody that an untrained
person would recognize in an audio signal. The second
reason is that it is difficult for untrained people to avoid
dissonant notes in a MIDI sequencer. A certain support
is therefore needed to avoid such notes using a computing
technology.

In this paper, we propose a new sub-symbolic melody
representation called a melodic outline. The melodic out-
line represents only the coarse temporal characteristics of
the melody; the notewise information of the melody is hid-
den. This representation can be obtained by applying the
Fourier transform to the pitch trajectory of the melody. Be-
cause low-order Fourier coefficients represent the coarse
melodic characteristics and high-order ones represent the
fine characteristics, we can obtain the melodic outline by
applying the inverse Fourier transform to only low-order
Fourier coefficients. Once the melodic outline is obtained,
the user can redraw the outline with a mouse. The re-
drawn outline is transformed into a sequence of notes by
the inverse procedure of melodic outline extraction. In this
process, the selection of notes dissonant to the accompani-
ment are avoided to select by using a hidden Markov model
(HMM).

The rest of the paper is organized as follows. In Section 2,
we describe the concept of the melodic outline. In Section
3, we present a method for melodic outline extraction and
conversion of the outline to a sequence of notes. In Section
4, we report experimental results. Finally, we conclude the
paper in Section 5.

2. BASIC CONCEPT OF MELODIC OUTLINE

A melodic outline is a melody representation in which the
melody is represented as a continuous curve. An example
is shown in Figure 1. A melodic outline is mainly used for
editing a melody with a three-step process: (1) the target
melody represented as a sequence of notes is automatically
transformed into a melodic outline, (2) the melodic out-
line is redrawn by the user, and (3) the redrawn outline is
transformed into a note of sequence. The key technology
for achieving this is the mutual transform of a note-level
melody representation and a melodic outline. We think that
this mutual transform should satisfy the following require-
ments:
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Figure 1. Example of melodic outline. (a) Input melody,
(b) Melodic outline

1. A melodic outline does not explicitly represent the
pitch and note value of each note.

2. When a melodic outline is inversely transformed into
a note sequence without any editing, the result should
be equivalent to the original melody.

3. When a melodic outline edited by a user is trans-
formed into a note sequence, musically inappropri-
ate notes (e.g., notes causing dissonance) should be
avoided.

No previous studies have proposed melody representa-
tions satisfying all these requirements. Various methods
for transforming a melody to a lower-resolution represen-
tation have been proposed such as [8], but these repre-
sentations are designed for melody matching in query-by-
humming music retrieval, so they cannot be inversely trans-
formed into a sequence of notes. OrpheusBB [9] is a human-
in-the-loop music composition system, which enables users
to edit automatically generated content when it does not
satisfy their desire. When the user edits some part of the
content, this system automatically regenerates the remain-
ing part, but the editing is performed at the note level.

The flow of the melody editing is shown in Figure 2. The
method supposes that the user composes a melody with an
automatic music composition system. The melody is trans-
formed into a melodic outline with the method described
in Section 3.1. The user can freely redraw the melodic
outline. Using the method described in Section 3.2, the
melodic outline is inversely transformed into a note se-
quence. If the user is satisfied with the result, the user
again edits the melodic outline. The user can repeat the
editing process until a satisfactory melody is obtained.

3. METHOD FOR MUTUAL TRANSFORM OF
MELODIC OUTLINE AND NOTE SEQUENCE

In the section, we describe our method for editing melodies
developed using the process described above (Figures 3
and 4). Our melody editing method consists of three steps:
(1) transform of a note sequence into a melodic outline, (2)

Figure 2. Flow of melody editing.

editing of the melodic outline, and (3) inverse transform of
the edited melodic outline into a note sequence.

3.1 Transform of a Note Sequence into a Melodic
Outline

The given MIDI sequence of a melody (Figure 3 (a)) is
transformed into a pitch trajectory (Figure 3 (b)). The pitch
is represented logarithmically, where middle C is 60.0 and
a semitone is represented by 1.0. (The difference from note
numbers is that non-integer values are acceptable.) Re-
garding the pitch trajectory as a periodic signal, the Fourier
transform is applied to this trajectory. Note that the in-
put to the Fourier transform is not an audio signal, so the
result does not represent a sound spectrum. Because the
Fourier transform is applied to the pitch trajectory of a
melody, the result represents the feature of temporal mo-
tion in the melody. Low-order Fourier coefficients repre-
sent slow motion in the melody while high-order Fourier
coefficients represent fast motion. By extracting low-order
Fourier coefficients and applying the inverse Fourier trans-
form to them, a rough pitch contour of the melody, i.e., the
melodic outline, is obtained (Figure 3 (c)).

3.2 Inverse Transform of a Melodic Outline into a
Note Sequence

Once part of the melodic outline is redrawn, the redrawn
outline is transformed into a note sequence. The overview
of the procedure of the transform is shown in Figure 4.

First, the Fourier transform is applied to the redrawn out-
line (Figure 4 (a)). Then, the higher-order Fourier coeffi-
cients of the original pitch trajectory, which had been re-
moved when the melodic outline is extracted, are added to
the Fourier coefficients of the redrawn outline to generate
the same pitch trajectory as the original melody from the
non-redrawn part of the melodic outline. Next, the inverse
Fourier transform is applied, producing the post-edit pitch
trajectory (Figure 4 (b)).

Next, the pitch trajectory is transformed into a note se-
quence. In this process, notes that cause dissonance with
the accompaniment should be avoided, which is achieved
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using a hidden Markov model. The HMM used here is
shown in Figure 5. This model is formulated based on the
idea that the observed pitch trajectory O = o1o2 · · · oN is
emitted with random deviation from a hidden sequence of
note numbers H = h1h2 · · ·hN that does not cause disso-
nance.

The HMM consists of hidden states {si}, each of which
corresponds to a note number.(Therefore, each hn takes
an element of {si}.) Each state si emits a value of pitch
following a normal distribution N(i, σ2). For example, the
state s60, corresponding to the note number 60, follows the
normal distribution with a mean of 60.0 and a variance of
σ2. The variance σ2 is common among all states and is ex-
perimentally determined; it is set to 13 in the current imple-
mentation. In the current implementation, 36 states, from
s48 to s84, are used. The transition probability P (sj |si) is
determined as follows:

P (sj |si) = p1(sj) p2(si, sj),

where p1(sj) is the probability that each note number ap-
pears in the target key (C major in the current implementa-
tion). This is experimentally defined based on the idea of
avoiding non-diatonic notes as follows:

p1(si) =



16/45 (C)
2/45 (D)
8/45 (E)
3/45 (F, A)
12/45 (G)
1/45 (B)
0 (Non-diatonic notes)

In addition, p2(si, sj) is the probability that note num-
bers i,j successively appear. This probability is also ex-
perimentally defined based on the pitch interval between
the two note numbers as follows:

p2(si, sj) =



1/63 (Augmented fourth、
Diminished fifth
Major sixth, Minor seventh)
Major seventh)

2/63 (Perfect prime)
4/63 (Minor sixth)
6/63 (Perfect fourth, Perfect fifth)
10/63 (Minor second, Major second、

Minor third, Major third)

Currently, the editing targets only the diatonic scale. These
transition probabilities are applied only at each note bound-
ary and no transitions are accepted between the onset and
offset times of each note, because only pitch editing is
currently supported for simplicity. As described above,
the transition probabilities are manually determined so that
non-diatonic notes in the C major scale are avoided. How-
ever, the transition probabilities can be learned using a
melody corpus. If the transition probabilities are learned
with melodies of a particular genre (e.g., jazz), they would
reflects melodic characteristics of that genre.

By using the Viterbi algorithm on this HMM, we obtain
a sequence of note numbers H = h1h2 · · ·hN (which

Figure 3. Overview method of extracting note sequence to
melodic outline. (a) MIDI sequence of melody, (b) Pitch
trajectory, (c) Melodic outline.

would not contain dissonant notes) from the pitch trajec-
tory O = o1o2 · · · oN . Finally, the result is output in the
MIDI format.

4. IMPLEMENTATION AND EXPERIMENTS

4.1 Implementation

We implemented a system for melody editing based on the
proposed method. In this system, the original melody is
assumed to be an output of Orpheus [4]. After the user cre-
ates a melody using Orpheus, the user inputs the melody’s
ID given by Orpheus into our system. Then, the system
obtains a MIDI file from the Orpheus web server, and dis-
plays the melody both in a note-level representation and
as a melodic outline(Figure 6 (a)). Once the user redraws
the melodic outline, the system immediately regenerates
the melody with the method described in Section 3 and
updates the display(Figure 6 (b)). If the user is not satis-
fied after, listening to the regenerated melody, the user can
redraw the melodic outline repeatedly until a satisfactory
melody is obtained.

4.2 Example of Melody Editing

We demonstrate an example of melody editing using a melodic
outline. As a target of editing, we used a four-measure
melody generated by Orpheus [9], which generates a melody
based on the prosody of Japanese lyrics. We input a sen-
tence (Yume mita mono wa hitotsu no kofuku / Negatta
mono wa hitotsu no ai) 1 taken from a Japanese poem
“Yume mita mono wa...” by Michizo Tatehara, and obtained
the melody shown in Figure 7 (a). Figure 7 (b) shows

1 This literally means “All I dream is a piece of happiness. All I hope
is a piece of love.”
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Figure 4. Overview of transforming melodic outline to
note sequence. (a) Edited melodic outline, (b) Generated
pitch trajectory, (c) Generated melody.

a melodic outline extracted from this melody. From this
melodic outline, we can see the following: (1) this melody
has disjunct motion in the second measure, (2) the pitch
rises gradually from the third measure to the forth measure,
(3) the melody ends with a downward motion in pitch.

We edited this melody with the melodic outline. The last
half of the melodic outline is redrawn so that the gravity of
the pitch motion is higher than that of the original melody.
The redrawn melodic outline and the melody generated
from it are shown in Figures 7 (c) and (d), respectively.
The generated melody reflects the editing; it rises in higher
pitch than the original melody.

Figure 5. Overview of HMM for estimating note sequence
from pose-edit pitch trajectory

Figure 6. The user interface of edit display. (a)Input
melody, (b)Edited the melodic outline.

Table 1. Questionnaire results (instructed editing).
A B C D E F average

Q1 6 5 7 6 7 7 6.3
Q2 6 7 5 6 7 6 6.1
Q3 5 6 6 6 6 6 5.8

4.3 User Test

We asked human subjects to use this melody editing sys-
tem. As with the previous section, the melody to be edited
is prepared by giving a sentence ( Osake wo nondemo ii /
Sorega tanosii kotodattara)2 taken from a Japanese poem
“Clover no harappa de ...” by Junko Takahashi to Orpheus.
The melody is shown in Figure 8 (a). We asked the subjects
to edit this melody in two ways. The first way is based on
the instruction to make all notes in the last measure higher.
The second way is free editing. After each editing, we
asked the subjects to answer the following questions:

Q1 Were you satisfied with the output?
Q2 Did you edit the melody without difficulty?
Q3 Were you able to edit the melody as desired?
(7: Strongly agree, 6: agree, 5: weakly agree, 4: neutral,
3: weakly disagree, 2: disagree, 1: strongly disagree)

The subjects were six musically untrained people (20–21
years old).

2 This literally means “You may drink alcohol, if it makes you happy.”
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Figure 7. Example of melody editing. (a) Input melody,
(b) Melodic outline of (a), (c) Edited melodic outline, (d)
Note representation of generated melody.

Table 2. Questionnaire results (free editing).
A B C D E F average

Q1 6 6 6 5 6 5 5.6
Q2 6 7 7 3 6 6 5.8
Q3 6 3 6 3 7 6 5.1

The results of the questionnaire for the instructed editing
are listed in Table 1. Almost every subject agreed on all
three questions. Figures 8 (b) and (c) show the melodies
generated by Subjects C and F, respectively. The melody
of Figure 8 (b), as instructed, has lower pitches in the last
measure than in the last measure of the original melody,
and is musically acceptable. Although the melody of Fig-
ure 8 (c) has some higher notes in the last measure than in
the last measure of the original melody, it is also musically
acceptable.

The results of the questionnaire for the free editing are
listed in Table 2. Most subjects agreed on all the ques-
tions. Figures 8 (d) and (e) shows the melodies generated
by Subjects A and E, which are mostly musically accept-
able. The third measure of the melody of Subject E starts
with A♭, which might cause a sense of incongruity because
it is a non-diatonic note. The subject, however, is proba-
bly satisfied with this output because the subject’s answer
to Q1 is 7. Two subjects answered 3 for Q3, which could
be because the time for the experiment is limited. In the
future, we will conduct a long-term experiment.

5. CONCLUSION

In this paper, we proposed a method enabling musically
untrained people to edit a melody at the non-note level
by transforming the melody to a melodic outline. The
melodic outline is obtained by applying the Fourier trans-

Figure 8. Melodies created by subjects.

form to the pitch trajectory of the melody and extracting
only low-order Fourier coefficients. After the outline is re-
drawn by the user, it is transformed into a note sequence.
In this transform, a hidden Markov model is used to avoid
notes dissonant to the accompaniment. Experimental re-
sults show that both the editing user interface and the re-
sults are satisfactory to some extent for human subjects.

In the content design field, it is said that controllers for
editing content should be based on the cognitive structure
of the content and at an appropriate abstraction level [10].
When a user interface for editing content satisfies this re-
quirement, it is called directable. Melodic outlines are
designed based on the insight that non-professional lis-
teners cognize melodies without mentally obtaining note-
level representations. The melody editing interface based
on melodic outlines is therefore considered to achieve di-
rectability in editing melodies.

We have several future issues. First, we plan to extend the
method to edit the rhythmic aspect of melodies. Second,
we will try to learn the state transition probability matrix
from a music corpus. In particular, we will try to achieve
a matrix that has characteristics of a particular genre by
learning the matrix with a corpus of that genre. Finally, we
plan to conduct a long-term user experiment for investigat-
ing how users acquire or develop the schema of melodies
through our system.
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ABSTRACT

We present a content-based music collection exploration
tool based on a variation of the Self-Organizing Map (SOM)
algorithm. The tool, named SoundAnchoring, displays the
music collection on a 2D frame and allows users to explic-
itly choose the locations of some data points known as an-
chors. By establishing the anchors’ locations, users deter-
mine where clusters containing acoustically similar pieces
of music will be placed on the 2D frame. User evalua-
tion showed that the cluster location control provided by
the anchoring process improved the experience of building
playlists and exploring the music collection.

1. INTRODUCTION

Commonly used interfaces for organizing music collec-
tions, such as iTunes and Microsoft Media Player, rely
on long sortable lists of text and allow listeners to inter-
act with music libraries using textual metadata (e.g., artist
name, track name, album name, genre, etc.). Text-based
interfaces excel when the user is looking for specific tracks.
However, these interfaces are not suited for indirect queries,
such as finding tracks that sound like a given track. Fur-
thermore, text-based interfaces do not give users the ability
to quickly summarize an unknown music collection.

Content-Based music collection Visualization Interfaces
(CBVIs), such as Islands of Music [1], MusicBox [2] and
MusicGalaxy [3], use Music Information Retrieval (MIR)
techniques to group tracks from a collection according to
their auditory similarity. In these interfaces, acoustically
similar tracks are placed together in clusters, whereas dis-
similar tracks are placed further apart. Consequently, CB-
VIs can reveal relationships between tracks that would be
difficult to detect using text-based interfaces.

A number of CBVIs rely on the Self-Organizing Map
(SOM) [4] to organize the tracks of the music collection ac-

Copyright: c©2013 Leandro Collares et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

cording to acoustic similarities. In the traditional SOM al-
gorithm, however, users cannot determine the positions of
clusters containing acoustically similar tracks on the music
space. Additionally, the clusters’ positions are randomized
between different executions of the algorithm. We believe
these characteristics can have a negative impact on the user
experience.

In order to address the previously described issues, this
paper presents SoundAnchoring, a CBVI that not only em-
phasizes meaningful relationships between tracks, but also
allows users to determine the general placement of track
clusters themselves. With SoundAnchoring, users can cus-
tomize the layout of the music space by choosing the lo-
cations of a small number of tracks. These ‘anchor’ tracks
and their respective positions determine the locations of
clusters containing acoustically similar tracks on the mu-
sic space. Such features allow users to create playlists eas-
ily without giving up control over which tracks are added.
SoundAnchoring turns a music library into an interactive
music space in three steps: feature extraction, organization
and visualization.

Feature extraction involves calculating an n-dimensional
‘feature’ vector for each track. Since each element of the
feature vector is an acoustic descriptor, tracks whose fea-
ture vectors are similar will be acoustically similar.

In the organization stage, we use AnchoredSOM, a vari-
ation of the traditional SOM algorithm. AnchoredSOM
maps the music collection into a 2D representation that can
be displayed on a screen. Moreover, AnchoredSOM gives
users the power to determine the positions of clusters con-
taining acoustically similar tracks on the 2D music space.

Lastly, the output of AnchoredSOM is used to render a vi-
sualization of the music collection. SoundAnchoring pro-
vides users with different ways to interact with the collec-
tion. If present, metadata is used to enrich the visualiza-
tion. An outline of SoundAnchoring is depicted in Fig-
ure 1.

SoundAnchoring was evaluated through a user study. The
anchoring process was evaluated positively. Ultimately,
users felt that SoundAnchoring was easier to use than the
control system, which was based on the traditional SOM
algorithm. Thus, we conclude that the ability to choose
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Figure 1: Outline of SoundAnchoring. A feature vector
is computed for each track of the music collection. The
set of feature vectors is a high-dimensional space that is
mapped to two dimensions using the AnchoredSOM al-
gorithm. The output of the algorithm is used to create a
visualization of the music space. Users customize the po-
sitions of clusters containing acoustically similar tracks on
the music space by choosing the locations of anchors.

anchors and their positions on the music space is an im-
portant feature in CBVIs that employ SOMs.

The remainder of the paper is organized as following:

• Section 2 contains related work on CBVIs that use
SOMs.

• Section 3 describes the design of SoundAnchoring,
with an emphasis on the organization and visualiza-
tion stages.

• Section 4 describes the user study conducted to eval-
uate SoundAnchoring.

• Section 5 presents and discusses the results of the
user study.

• Section 6 closes the paper with conclusive remarks
and possible avenues of future work.

2. RELATED WORK

The SOM has been frequently employed in content-based
interfaces to generate visualizations of music collections.
Other dimensionality reduction techniques used for mu-
sic collection organization include Principal Component
Analysis (PCA) and Multidimensional Scaling (MDS), em-
ployed in MusicBox [2] and in MusicGalaxy [3], respec-
tively.

In SoundAnchoring, SOM is employed to make optimum
use of screen space on mobile devices. Tolos et al. [5] and
Muelder et al. [6] showed that the music space produced
by PCA presents problems regarding the distribution of
tracks. Mörchen et al. [7] suggested that since the out-
put of PCA and MDS are coordinates in a 2-dimensional

plane, it is hard to recognize groups of similar tracks, un-
less these groups are clearly separated. By choosing suit-
able parameters for the SOM algorithm, we believe that
the music space can be displayed in an aesthetic way and
occurrences of regions completely devoid of tracks can be
minimized.

The first interface for music collection exploration that
employed SOMs, SOMeJB, was an adaption of a digital
library system. Interfaces that employ SOMs have evolved
since then by incorporating more possibilities of interac-
tion and customization, and auditory feedback.

SOMeJB (SOM-extended Jukebox), devised by Rauber
and Frühwirth [8], introduced the use of SOMs for music
collection exploration but still relied heavily on text to rep-
resent the music space. SOMeJB extended the functionali-
ties of the SOMLib digital library system [9], which could
organize a collection of text documents according to their
content. SOMeJB was aimed to enable users to browse a
music collection without a particular track in mind. The
music library visualization generated by SOMeJB com-
prised a grid with track names grouped according to acous-
tic similarities between tracks. Even though SOMeJB rep-
resented a major departure from metadata-based organiza-
tion, text was still the principal element of the interface.

In Islands of Music, a SOM-based interface developed by
Pampalk et al. [1], the importance of text was diminished.
The goal of Islands of Music was to support the explo-
ration of unknown music collections using a geographic
map metaphor. Clusters containing similar tracks were vi-
sualized as islands, while tracks that could not be mapped
to any of the islands were placed on the sea. Connec-
tions between clusters were represented by narrow strips
of land. Within an island, mountains and hills depicted
sub-clusters. It was also possible to enrich the visualiza-
tion by adding text summarizing the characteristics of the
clusters.

Islands of Music inspired several content-based interfaces
that, in addition to employing the geographic metaphor,
refined the possibilities of interaction between users and
music collections. PlaySOM, developed by Neumayer et
al. [10], relied on the same metaphor of Islands of Music.
PlaySOM improved the interaction with the music library
by allowing users to add all tracks of a SOM node to a
playlist.

Further refinements in interfaces using SOMs employed
audio to assist in navigating music collections. Sonic SOM,
devised by Lübbers [11], featured spatial music playback
to provide users with an immersing experience. Knees et
al. [12] developed nepTune, a 3D version of Islands of Mu-
sic [1]. In nepTune, the user would navigate the music col-
lection with a video game controller while tracks close to
the listener’s current position were played using a 5.1 sur-
round system. Metadata retrieved from the Internet, such
as tags and artist-related images, were displayed on screen
to describe the track being played. Lübbers and Jarke [13]
conceived an interface similar to nepTune. Valleys and
hills replaced islands and oceans, respectively. Auditory
feedback was enhanced by attenuating the volume of the
tracks that deviated from the user’s focus of attention.
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A system developed by Brazil et al. [14, 15] combines
both visual and auditory feedback for navigation. In this
system, a user would navigate a sound space by means of
a cursor surrounded by an ‘aura’. All sounds encompassed
by the aura would be played simultaneously, but spatially
arranged according to their distances from the cursor.

Although computer-based organization of music is an im-
portant tool for exploring of music collections, the per-
ception of music is known to be highly subjective [16].
Thus, different listeners employ different methods to ex-
plore their music libraries. In order to accommodate these
methods, interfaces should ideally adapt to the user’s be-
haviour.

The previously described work of Lübbers and Jarke [13]
allowed users to customize the environment by changing
the positions of the tracks, adding landmarks, or building
and destroying hills. These actions would modify the simi-
larity model employed to organize the music collection and
thus cause the system to re-build the environment to reflect
the user’s preferences.

A similar approach was adopted by Stober and Nürn-
berger [17], who developed BeatlesExplorer. In this in-
terface, a music collection comprising 282 Beatles tracks
was organized using SOMs. A user could drag and drop
tracks between nodes, which would make the system re-
locate other tracks so that the collection organization could
satisfy the user’s needs.

Interfaces for music collection exploration with smart-
phones and tablets in mind were also developed. Such
interfaces benefited from the increase in processing power
and storage for mobile devices and new possibilities of user
interaction provided by touch-based screens. PocketSOM-
Player, created by Neumayer et al. [10], was an interface
derived from PlaySOM geared towards mobile devices. In
PocketSOMPlayer, tracks could be added to a playlist by
drawing trajectories on the music collection visualization.

Improvements in multi-touch gesture interaction stimu-
lated the design of interfaces that allowed visually-impaired
individuals to explore music collections without relying on
the WIMP (window, icon, menu, pointer) paradigm. In
the prototype developed by Tzanetakis et al. [18] for iOS
devices, a random track would begin to play as soon as
the user tapped on a square of the SOM grid. Moving
one finger across squares would cause tracks from adjacent
squares to cross-fade with each other, thereby generating
auditory feedback.

With SoundAnchoring, users choose ‘anchor’ tracks and
their positions on the music space. AnchoredSOM, a vari-
ation on the traditional SOM algorithm, places acoustically
similar tracks on the neighbourhood of each anchor. There-
fore, users are able to determine both the locations of clus-
ters on the music space and their auditory content.

The concept of anchoring was introduced by Giorgetti et
al. [19], who employed SOMs for localization in wireless
sensor networks. The algorithm devised by Giorgetti et al.
did not modify the weight vectors of nodes that contain
anchors. Furthermore, Giorgetti et al.’s algorithm replaced
the input vector with the node’s weight vector when the
input vector was mapped to an anchor node. In Anchored-

SOM, weight vectors of all nodes are modified, while input
vectors remain constant.

SoundAnchoring allows users to select tracks individu-
ally or by moving one finger over the music space, based
on the implementation of Neumayer et al. [10]. While
moving the finger on the device’s surface, users receive au-
ditory feedback derived from the mechanism designed by
Tzanetakis et al. [18] for assistive browsing.

3. SOUNDANCHORING DESIGN

The design of SoundAnchoring is comprised of three steps:
feature extraction, organization and visualization. Feature
extraction consists of representing each track of the col-
lection as a vector of features that characterize the musical
content. Tracks that sound alike are close to each other in
the feature space. In organization, the high-dimensional
feature space is reduced to a 2-dimensional representation.
The topology of the feature space is preserved during this
step. Finally, the output of the organization stage is used
to produce a visualization of the music space. Users can
interact with this customizable music space visualization
and build playlists.

Feature extraction is carried out on a desktop computer,
as it is independent from user interaction. Organization
and visualization take place on an iPad 2. The forthcoming
subsections present details pertaining to each step.

3.1 Feature Extraction

Feature extraction is the computation of a single feature
vector for each track of the music collection. Before per-
forming feature extraction, the first and the last fifteen sec-
onds of each track are removed to avoid lead-in and lead-
out effects. The audio clips are then divided into 23-ms
frames, with a 12.5-ms overlap. Each frame is multiplied
by a Hanning window and has its Discrete Fourier Trans-
form (DFT) calculated. After that, we calculate a set of
features for each frame. Later, the value series for each fea-
ture is divided into a 1-second frame, with length of 12.5
milliseconds between the beginning of each frame. The
mean and variance of each frame are computed, generating
two series fµ and fσ . Finally, the mean and variance of fµ
and fσ are calculated. Therefore, there are four elements
in the feature vector for each acoustic feature calculated.

The sixteen acoustic features employed in SoundAnchor-
ing are frequently used in automatic genre classification
tasks: thirteen MFCCs (Mel-Frequency Cepstral Coeffi-
cients), Spectral Centroid, Spectral Rolloff and Spectral
Flux [20]. After feature extraction, each audio clip yields
a 64-dimensional feature vector. Tracks that have similar
feature vectors sound alike. AnchoredSOM reduces the
64-dimensional feature space to two dimensions for easy
visualization. Acoustically similar tracks are placed close
to each other on the 2D music space.

3.2 Organization

The organization stage maps the 64-dimensional feature
space to discrete coordinates on a grid using SOM. This
dimensionality reduction technique preserves the topology
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of the high-dimensional space as much as possible; tracks
that have similar feature vectors should be placed close to
each other, whereas tracks that have dissimilar feature vec-
tors should be apart in the 2-dimensional space. SoundAn-
choring employs AnchoredSOM to allow the user to define
the location of some specific tracks or anchors.

The traditional SOM is an artificial neural network in
which nodes are arranged in a 2-dimensional rectangular
grid. During the execution of the SOM algorithm, the neu-
ral network is iteratively trained with input vectors, namely
the feature vectors computed during feature extraction. At
the end of the execution, different parts of the network are
optimized to respond to certain input patterns.

Each node of the SOM is characterized by two parame-
ters: a position in the two-dimensional space and a weight
vector of the same dimensionality as the feature vectors:
64. When a feature vector is presented to the network, the
best matching node (BMN), i.e., the node whose weight
vector is the most similar to the feature vector is deter-
mined. The feature vector, which corresponds to one track
of the music collection, is mapped to the BMN. The BMN’s
weight vector is updated to resemble the feature vector.
Weight vectors of the BMN’s neighbouring nodes are also
updated towards the feature vector. The magnitude of the
change in the neighbouring nodes’ weight vectors, which
is determined by the learning rate, decreases with time
and distance. The neighbourhood size also decreases with
time. After several iterations, different parts of the net-
work will have similar weight vectors and, consequently,
will respond similarly to certain feature vectors.

In visualizations of music collections based on the tradi-
tional SOM algorithm, tracks that sound similar tend to be
close to each other. The SOM algorithm, however, does
not have information regarding genre labels as only fea-
ture vectors are used as input to the algorithm. Thus, the
locations of genre clusters are an emergent property of the
SOM.

The weight vectors are usually initialized with small ran-
dom values. Consequently, the positions of clusters con-
taining acoustically similar tracks on the music space can-
not be determined in advance by the user. Moreover, the
position of a given cluster containing similar tracks is likely
to vary between executions of the traditional SOM algo-
rithm, as shown in Figures 2a-2d. We believe this scenario
has a negative impact on the user experience. In order to
alleviate the situation, we introduce AnchoredSOM, a vari-
ation on the traditional SOM algorithm.

3.2.1 AnchoredSOM

AnchoredSOM allows users to choose the locations of ‘an-
chor’ data points on the SOM, which correspond to tracks
in the music collection. The anchors will attract similar
tracks to their neighbourhoods. AnchoredSOM consists of
four stages, detailed below:

• Stage 0. This stage is analogous to the initialization
of the traditional SOM. In AnchoredSOM, however,
node weight vectors are initialized with feature vec-
tors randomly chosen from the high dimensional fea-
ture space. This approach speeds up the convergence

of the SOM algorithm.

• Stage 1. In this stage, only feature vectors of the
anchors are presented to the SOM for i1 iterations.
Both the initial learning rate,L0, and the initial neigh-
bourhood size, σ0, have high values to cause sig-
nificant changes to the weight vectors of the entire
SOM.

• Stage 2. Only feature vectors of the anchors are
presented to the SOM for i2 iterations. In stage 2,
however, the initial learning rate, L0, and the ini-
tial neighbourhood size, σ0, are low to bring small
changes to localized areas of the SOM.

• Stage 3. For each of the i3 iterations, the input of the
entire feature set to the SOM is followed by m occa-
sions on which only the anchors’ feature vectors are
presented to the SOM. The input of anchors’ feature
vectors for m successive times within one iteration
keeps the weight vectors of nodes surrounding the
anchors’ nodes similar to the anchors’ feature vec-
tors.

In our implementation, we employed the Euclidean dis-
tance for measuring the similarity between feature vectors.
Learning and neighbourhood functions are exponentially-
decaying with time. The values for the number of itera-
tions, initial learning rate and initial neighbourhood size
were empirically determined. The size of the grid is based
on the number of tracks in the music collection.

Figures 2e-2h show that AnchoredSOM lends itself to
setting the positions of clusters containing similar music.
AnchoredSOM performs better with genres that are dis-
tinct and well-localized, such as the classical genre. With
acoustically diverse genres, such as the pop genre, the tracks
will be more loosely dispersed on the grid.

3.2.2 Number of Anchors

A pilot study was conducted to determine the number of
anchors that would be used in SoundAnchoring. Partici-
pants were told that we had designed an interface able to
organize their entire music collection on a 2D grid in a
logical manner. They were also told that information was
being collected regarding the number of music genres peo-
ple needed to organized their collections. Participants re-
ceived a sheet of paper containing a 10x10 grid and a table
to make colour-genre associations.

Firstly, individuals had to complete the table with the
minimum set of genres they deemed necessary to cate-
gorize their collection effectively. Some major categories
were presented but they were encouraged to add more gen-
res if any genres were unrepresented. After picking the
genres, participants were asked to colour the squares next
to the genres using a set of crayons. Later, participants
were asked to choose one square of the grid to act as the
centre point of each genre. Similar tracks would be grouped
around that square. Glass tokens were provided to help
participants space out the chosen squares before colour-
ing them. Most participants chose five categories and thus
SoundAnchoring uses five anchors of different genres.
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Traditional SOM algorithm

(a) 1st execution (b) 2nd execution (c) 3rd execution (d) 4th execution

AnchoredSOM

(e) 1st execution (f) 2nd execution (g) 3rd execution (h) 4th execution

Figure 2: Topological mapping of clusters containing classical tracks, in blue. Traditional SOM, subfigures a-d: the
location of the classical cluster varies drastically with each execution of the algorithm. AnchoredSOM, subfigures e-h: the
same white-marked anchor track was used to maintain the position of the classical cluster in (e, f). When the same anchor
track is placed on a different node, the other classical tracks remained clustered around it (g, h).

3.3 Visualization

The output of AnchoredSOM is employed to generate a
visualization of the music collection. In our implementa-
tion, interactions with the music collection are based on the
Apple Cocoa Touch API (Application Programming Inter-
face). In order to get to the final screen, which contains
the music space, users go through a sequence of screens
and make choices that influence the organization and the
appearance of the music space. The sequence of screens
aims to lower the cognitive load on the user.

In SoundAnchoring, colours convey information on gen-
res. As user studies have shown no basis for universal
genre-colour mappings [21], SoundAnchoring allows users
to make genre-colour associations using seven palettes, de-
rived from Eisemann’s work [22]. Eisemann built asso-
ciations between colours and abstract categories such as
‘capricious’, ‘classic’, ‘earthy’, ‘playful’, ‘spicy’, ‘warm’,
etc. The aforementioned categories referred to moods that
each colour grouping evoked when utilized in advertise-
ments, product packaging and print layouts. The colours of
each grouping created by Eisemann were chosen from the
Pantone Matching System, a de facto colour space stan-
dard in publishing, fabric and plastics. These predefined
colour palettes give users some freedom to assign colours
to genres and have a positive bearing on the aesthetics of
the music space visualizations.

Classifying music by genre is challenging, as there is of-
ten overlapping between genres and disagreement on the
label set used for classification [23]. Genres, however, are
usually employed to narrow down the number of choices
when browsing music for entertainment reasons [24]. There-

fore, genres provide users with a familiar vantage point to
start exploring their music collections.

After selecting a colour palette and building genre-colour
associations, users choose five anchors from the music col-
lection and place them on the grid. The anchors’ feature
vectors and locations are presented to AnchoredSOM, along
with the feature vectors of the other tracks of the music
collection. AnchoredSOM then maps the tracks to nodes
of the SOM.

3.3.1 Interaction with Music Collection

The SoundAnchoring interface (Figure 3) displays the en-
tire music collection on a grid. Users interact with the mu-
sic collection using different gestures.

By tapping on one of the nodes of the grid, users will
see a list of tracks mapped to that node by AnchoredSOM.
Single-tapping on the track gives audio feedback. Double-
tapping on the track adds it to the playlist. This action is
similar to building a playlist by selecting tracks individ-
ually in text-based interfaces. With the SOM, however,
acoustically similar tracks will be either in the same node
or in neighbouring ones.

Instead of listing the tracks of a certain node and adding
tracks to the playlist individually, users can alternatively
moving one finger over the grid to add multiple tracks to
the playlist. As the user performs this gesture, known as
‘sketching’, SoundAnchoring randomly adds one track of
each node activated by the user’s finger to the playlist. The
user also receives aural and visual feedback while sketch-
ing. Excerpts of the randomly chosen tracks cross-fade
with each other as the user moves the finger across nodes as
a way of providing auditory feedback to users. The opac-
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Figure 3: SoundAnchoring interface. Tapping on a node
reveals tracks that have been mapped to that node. Genre
buttons allow users to limit the number of genres dis-
played on the music space. Playlists can be built by se-
lecting tracks individually or ‘sketching’ on the surface,
which causes SoundAnchoring to randomly choose one
track from each node.

ity of the nodes that have been activated oscillates for a few
seconds giving the impression of a trail on the grid.

Finally, genre masks refine the use of genres as a famil-
iar vantage point to explore music libraries. Genre but-
tons coloured according to the genre-colour associations
previously made are employed to filter genres that are dis-
played. If a genre is filtered out, both the colour assigned
to that genre and the tracks belonging to it disappear from
the grid. Consequently, these tracks are not listed when
the user taps on a node. Furthermore, sketching across
nodes does not add tracks from the filtered-out genre to the
playlist. Therefore, genre masks give users more flexibility
to explore the music space.

4. EVALUATION

For evaluation we conducted a user study in which each
one of the twenty-one participants (eleven females and ten
males) performed tasks in two systems with the same vi-
sual interface: SoundAnchoring (SA), which allows indi-
viduals to determine the position of anchors on the mu-
sic space, and a Control System (CS), which loads pre-
calculated maps generated using the traditional SOM algo-
rithm.

The study took place in a prepared office room. Soun-
dAnchoring and the Control System were loaded in two
iPads 2. Participants were randomly assigned to start work-
ing with either SA or CS to compensate for learning ef-
fects.

Subjects performed two tasks, with no enforced time lim-
its. Task 1 was conceived to raise awareness for the map-
ping of similar tracks to the same node or neighbouring
nodes of the SOM. Participants were required to tap on one
square of the grid and listen to the tracks of that square,
then its adjacent squares. These steps were repeated with
two other squares, distant from the first square and from
each other. Task 2 was the creation of a playlist. Slips of

paper containing descriptions of different scenarios were
placed face down. Participants were asked to pick one slip
of paper and build a playlist of at least thirty minutes con-
taining a minimum of three genres that would match the
scenario described.

After using each system, subjects rated a set of eighteen
statements using a 6-point scale (from zero to five). Sub-
jects were also encouraged to write about positive and neg-
ative aspects of each system, as well as recommendations
for improvement.

5. RESULTS AND DISCUSSION

The mean values for each statement were calculated and
the statistical significance of the differences between sys-
tems were computed using Fisher’s randomization test [25].
The statements, mean values and p-values are shown in Ta-
ble 1.

In most statements, the mean rate difference is not statis-
tically significant (p > 0.05). A remarkable exception is
statement 10 (“Getting the system to do what I wanted was
easy”), which shows that SoundAnchoring is consistently
evaluated as easier to use than the Control System. How-
ever, most of the results are inconclusive, which necessi-
tates a qualitative analysis of the textual feedback provided
by the subjects.

Overall, both SA and CS were favourable reviewed by
participants as shown by mean rates for statements 4-6, 9,
12, 15 and 18 (Table 1). Words employed to describe both
SOM-based systems: “intuitive”, “easy to use”, “aestheti-
cally appealing”, “interesting”, “flexible”, “user-friendly”,
and “entertaining”. More elaborate comments on the in-
terface included: “easy to sample-listen to songs”, “a fun
way to browse a music collection”, “good for exploring un-
familiar music collections”, “easy to find songs similar to
known ones you like”, “similar songs are actually similar”,
“does a good job of grouping similar music”, “great to ac-
cess songs you have forgotten about” and “nice mapping
from sounds to graphics”.

Comments suggest that participants perceived the visual-
ization of the music collection using SOMs and the group-
ing of acoustically similar tracks as positive. Therefore, the
clustering process was able to retrieve useful information
from the music collection and display it properly. More-
over, the feedback shows that content-based music collec-
tion visualization is an efficient approach to music collec-
tion exploration.

Playlist creation was mentioned in comments such as “It
is easy to build accurate playlists for specific scenarios”,
“Making a playlist becomes fun instead of a chore” and
“easy to take playlist in a new sound direction that suits
your inspiration”. By analyzing user-system interactions
that were logged during the user study, we realized that
most participants added tracks to the playlist by tapping
on each node and selecting tracks individually. This be-
haviour was reflected in comments such as “It can be time-
consuming to make a playlist”, “I wanted to have total con-
trol over the songs added to the playlist, so I had to tap on
all the grid boxes to get to know the songs”. One partic-
ipant particularly liked the sketching gesture for creating
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Statement Mean rate p-value
SA CS

1. Please rate the playlist you created in task 2. 4.2 4.1 0.83
2. The interactions with the interface were natural. 3.8 3.7 1.0
3. I was unable to anticipate what would happen next in response to the actions I performed. 1.2 1.4 0.67
4. The amount of controls available to perform the tasks was adequate. 4.0 4.2 0.22
5. The auditory aspects of the interface appealed to me. 4.3 4.2 0.74
6. The visual aspects of the interface were unappealing to me. 0.9 1.0 0.72
7. It was impossible to get involved in the experiment to the extent of losing track of time. 1.2 1.6 0.39
8. I felt proficient in interacting with the interface at the end of the experiment. 3.6 3.4 0.64
9. The interface was unresponsive to actions I initiated (or performed). 0.8 0.6 0.58
10. Getting the system to do what I wanted was easy. 4.3 3.8 0.03
11. I would consider replacing my current application for music exploration with one based on
the system tested.

2.6 3.2 0.07

12. Learning how to use the system was difficult. 0.8 1.0 0.70
13. I disliked creating playlists with the system. 1.0 1.0 1.0
14. The system is unsuitable for managing and exploring my music collection. 1.7 1.4 0.46
15. I enjoyed exploring the music collection with the system. 4.2 4.4 0.67
16. I can create playlists quickly by using the system. 2.9 3.1 0.54
17. I disliked the playlists created by using the system. 0.8 0.8 1.0
18. Please provide an overall rate for the system. 4.0 4.1 0.52

Table 1: Statements’ mean rates for SoundAnchoring (SA) and the Control System (CS), and p-values. Better rates for
each statement and the statistically significant p-value are shown in bold.

playlists: “Adding songs to the playlist by dragging my fin-
ger on the surface and listening to audio was a really nice
feature I was impressed with”. A slightly different opin-
ion was expressed by another participant: “I really liked to
be able to explore the collection sliding my finger on the
surface but I think it shouldn’t add the songs to the playlist
when I do that. I can add the songs individually later”.
Even though there is some disagreement with regard to in-
teraction, playlist creation using the interface was seen as
enjoyable. Feedback from participants is supported by the
mean rates for statements 1, 13 and 17 in Table 1. There-
fore, the goal of building an interface in which building
playlists would be engaging was achieved.

As for the anchoring mechanism, opinions were in gen-
eral positive. Most participants stated it was useful: “With
anchor songs I knew where to start browsing my music col-
lection”, “Close songs were actually similar to each other
in the version with anchor songs”, “I did like knowing
where my anchor songs were as it was easier to figure out
which types of songs were in the various areas of the grid”,
“Anchor songs helped me decide where to look for songs
suitable to the situation given”, “I would be interested in
using a conventional system (album, artist, title) to ex-
plore my music collection and then selecting the anchors
to browse similar songs”. Only one participant claimed
that “anchoring didn’t help much”. These statements show
that anchors helped participants navigating the music col-
lection. Moreover, subjects were able to adapt the music
collection organization to their individual preferences by
setting the clusters’ positions on the grid. Such conclu-
sions are in agreement with mean rates for statement 10.

Participants also provided invaluable suggestions to fur-

ther improve the user experience provided by SoundAn-
choring. Among these suggestions are a zooming func-
tion to explore more thoroughly areas of the music space
and a search function to locate specific tracks on the grid.
Subjects would also like to add all the tracks of a node to
the playlist with only one gesture. With regard to anchor-
ing, participants would like the interface to recommend an-
chors based on listening habits. Therefore, SoundAnchor-
ing should incorporate more possibilities of interaction to
cater for different ways of exploring music collections, and
learn from users’ behaviour.

6. CONCLUSION

This paper presents SoundAnchoring, a content-based mu-
sic visualization interface that maps the music library to a
2D space. With SoundAnchoring, users play an active role
in the organization of the music space by choosing where
clusters containing acoustically similar tracks will be lo-
cated.

A user study was carried out to evaluate SoundAnchor-
ing. The ability to modify the topology of the music visu-
alization, along with gestural control and other interface-
related features, delivered a positive user experience with
regard to playlist creation. Despite encouraging results,
SoundAnchoring can be improved in several ways. Imme-
diate enhancements comprise the addition of new gestures
suggested by user study participants.

As for future work, we intend to perform an objective
evaluation of AnchoredSOM that takes different feature
sets and algorithm parameters into consideration. A long-
term user study involving a larger number of participants
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could more comprehensively evaluate the real-world ap-
plicability of SoundAnchoring. Further research avenues
include the use of graphics processing units (GPUs) and
cloud computing to improve the performance of the fea-
ture extraction and organization stages.
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[8] A. Rauber and M. Frühwirth, “Automatically analyz-
ing and organizing music archives,” Research and Ad-
vanced Technology for Digital Libraries, pp. 402–414,
2001.

[9] A. Rauber and D. Merkl, “The SOMlib digital library
system,” Research and Advanced Technology for Digi-
tal Libraries, pp. 852–852, 1999.

[10] R. Neumayer, M. Dittenbach, and A. Rauber,
“PlaySOM and pocketSOMplayer, alternative inter-
faces to large music collections,” in Proc. of ISMIR,
vol. 5, 2005.
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ABSTRACT 
In this digital music era, sorting and discovery of songs is 
getting harder and more time consuming than before, due 
to the large pool of songs out there. Many music recom-
mendation system and other similar applications in the 
market make use of collaborative filtering and social rec-
ommendation to suggest music to listeners. However, the 
problem arises when there is not enough information col-
lected for the song, which happens mostly to new and 
less popular music. Other issues include missing or inac-
curate metadata, the need for Internet connection, etc. 

We present research on acoustic features to automati-
cally classify songs according to user-friendly and high-
level concepts that indicate social contexts for music lis-
tening, and a prototype application called "SmartDJ". We 
aim to provide novel ways that the user can browse 
her/his music collection, with a player that enhances in-
teraction via a visual feedback, personalised DJ trajecto-
ries, smooth mix transitions and so forth. SmartDJ sorts 
the songs based on similarity by extracting low level fea-
tures, then reducing feature space dimensionality with 
principle component analysis (PCA) and multidimen-
sional scaling (MDS) methods, and plotting songs in a 
GUI for manual or automatic browsing, where song simi-
larity is given by Euclidian distance in a lower-dimension 
song space. Users are able to visualise their music library 
and select songs based on their similarity, or allow the 
system to perform automation, by selecting a list of songs 
based on the selection of the seed song. Users can ma-
neuver with the high-level descriptor on the interactive 
interface to attain the different song space desired. 

1. INTRODUCTION 
Music discovery system is essential for users to explore 
songs from a large collection of music. The idea of 
SmartDJ is to serve as a personal Deejay (DJ) to make the 
selection of song choices for users without having the 
skillset of a DJ. The system automatically generates a 
playlist of songs based on the seed song and/ or user can 
make selection of songs, all based on song similarity. We 
proposed a new and interactive way of visualizing a per-
sonal music library by translating all the songs into a 
song space to provide a form of visual feedback. The 
similarity between the songs is determined by its proxim-
ity.  
In order to achieve the song similarity comparison, signal 
analysis is performed on individual song. Low-level de-
scriptors are extracted for similarity measurement. The 

large dataset is then reduced with the use of dimension 
reduction techniques such as principle component analy-
sis (PCA) and multidimensional scaling (MDS) methods, 
for easy viewing by users. 

The song space model can be adjusted accordingly 
with different inputs from the user to suit the different 
scenarios or needs. 

2. BACKGROUND 
A well-know model that is applicable to the case of our 
song space model is Thayer’s mood model (1989) as de-
picted in Figure 1. Thayer’s mood model divides mood 
into two allegedly uncorrelated dimension vectors: 
arousal and valence [1]. Arousal can be described as the 
energy or activation of an emotion. Low arousal corre-
sponds to feeling sleepy or sluggish while high arousal 
corresponds to feeling frantic or excited. Valence de-
scribes how positive or negative an emotion is. Low va-
lence corresponds to feeling negative, sad or melancholic 
and high valence to feeling positive, happy or joyful.  

 
Figure 1. Thayer’s Mood Model 

Microsoft Research Asia (Liu, Lu, et al., 2003) pro-
posed a method to properly use Thayer’s model for music 
mood classification, in which mood was divided into four 
nominal classes resembling the four quadrants in the 
mood plane spanned by the two vectors. The first quad-
rant (excited & positive) corresponds to ‘happy/ excited’ 
emotion, second quadrant (excited & negative) corre-
sponds to ‘angry/ anxious’ emotion, third quadrant (calm 
& negative) corresponds to ‘sad/ bored’ emotion and fi-
nally the last quadrant (calm & positive) corresponds to 
‘relax/ serene’ emotion. This model is further elaborated 
with the various emotions as labeled on an Arousal-
Valence (A-V) space [2] shown in Figure 2. We can aim 
to apply Thayer’s mood model to our song space model. 
As such we will have a better feel of how the different 
songs are position in the space. Hence, manipulating the 
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song space with different user input and the system can 
then select songs from the right space to suit the needs of 
the user. 

Aside from mood model, many also suggest other 
forms of song classification, genre classification in par-
ticular. Davalos [3] suggests using Linear discriminant 
analysis for dimension reduction so as to project the data 
for optimum class separation. While Clark, Park and 
Guerard [4] suggested Growing neural gas (GNG) as a 
form of self-organizing map, Langlois and Marques [5] 
suggested Hidden Markov Models (HMMs) for genre 
classification. Keeping in mind that our objective is to 
project songs into a song space based on similarity and 
not based on genre or other features, the methods sug-
gested can be explored and used as a form of reference 
for our work.  

 
Figure 2. A-V Space Labeled with Different Emotions 

3. PLATFORM 
Matlab R2010b [6] serves as the main platform for devel-
oping the prototype of the song space model. Dimension 
reduction techniques such as PCA and plotting of the 
two-dimensional song space were performed with the use 
of Matlab. MIRtoolbox 1.4 [7] is an essential tool that 
rides on Matlab and is used for low- level features extrac-
tion in our work.  

Max 6 (MSP) [8] is used to develop the GUI for our 
work, which involves interface design, data organization 
and processing. The working model developed from Mat-
lab will be ported over to Max/MSP to serve as the back-
bone for our application, and will work hand-in- hand 
with the user interface. A third party component, ircam-
descriptor [9] is a real-time descriptor analyser for 
Max/MSP. It is capable of performing features extraction 
and other signal processing analysis offline. Therefore, 
this allows songs to be imported to SmartDJ for analysis 
and to plot them onto the song space, without having the 
need of playing the songs unlike in the case of a real- 
time analysis. 

 

4. SONG SPACE DEVELOPMENT 
Similarity between songs is a subjective measure. Many 
software deals with this by defining based on a certain 
genres, artists, etc. And more often recommend songs to 
user based on the popularity of the song (play count) and 

by collaborative filtering, which means that, if listeners 
who like song A, B and C also like song E, then the sys-
tem is likely to recommend song E to other listeners who 
listen to song A, B and C.  

In the case of SmartDJ, it sorts out the similarity of 
songs by first extracting low-level features, such as 
brightness, centroid, roll-off, Mel-Frequency Cepstral 
Coefficient (MFCC), etc. This in total makes up 28 fea-
tures, which is inclusive of the 13 MFCC coefficients. All 
features were extracted with the use of MIRtoolbox 1.4.  

4.1 Features Extraction 

A corpus of 310 songs was used in the training dataset. 
The audio files are in lossless WAVE format, encoded in 
linear pulse code modulation (PCM) of 16 bits in stereo 
channels with a resulting audio bit rate of 1411200 bit/s. 
Only an excerpt of 30 seconds of the middle segment of 
the songs was examined. The middle segment of the song 
was a sensible choice, as intuitively, it is where the gist of 
the song is, and in most cases it is the chorus of the mu-
sic. Even though this may not always be the case, but 
most of the time true. Davalos however chose to analyze 
the first 30 seconds [3] of the song. The audio signal was 
then down-sampled to 22050Hz [10], which is similar to 
the case of Arenas-Garcıa, Petersen, and Hansen (2007). 
Even though the experiment was conducted in an ideal 
scenario, but in actual fact during implementation, users 
might be more prone to mp3 files due to its smaller file 
size and compactness. But further investigation will have 
to be done to determine if the end result will be affected, 
which will not cover in this paper. 

4.2  Dimension Reduction 
The large dataset collected from the corpus is then re-
duced in dimension and projected onto a two- dimen-
sional song space as a form of visual feedback to the user. 
The similarity between the songs can be determined from 
the plot with similar songs being situated near each other 
and songs that are very different being plotted far away 
from one another. In order to reduce the dataset into a 
two-dimensional plot, dimension reduction techniques 
have to be employed. In our case, we chose principle 
component analysis (PCA) and multidimensional scaling 
(MDS) methods, where song similarity is given by 
Euclidian distance in a lower-dimension song space. With 
PCA, the highest variance is retained in the first and sec-
ond principle component (PC) respectively, giving it the 
greatest spread. Hence, as shown in Figure 3, the data is 
plotted with PC2 against PC1, in order to retain most of 
the information. 

With the 28 features, the percentage variability for the 
first two and three PCs account for only 24.99% and 
32.43% respectively, which is fairly poor. To overcome 
overfitting issue and to improve the variability explained, 
the features employed were further streamline to nine 
spectral shapes features. The song space model obtained 
from spectral shape features is shown in Figure 3. 
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Figure 3. Song Space Model with spectral shape features. 

Results from the first three PCs account for 51.05%, 
72.87% and 81.64% (See Figure 4) of the variance re-
spectively. A sharp bend at the second PC indicates that 
the variability explained by the third PC onwards is not as 
significant. Hence, a two-dimensional plot with the first 
two PCs is employed in our model. 
 

 
Figure 4. Percent variability explained by the first 6 
PCs. 

4.3 Song Space Model 
A general trend of the song placement can be noticed 
from our song space model. The typical Pop, Rock and 
Techno songs take up the first quadrant (upper right). We 
would consider this quadrant to contain songs with higher 
danceability and are generally high, bright and nosier. 
Songs that are dark but rich in audio content takes up the 
second quadrant (upper left) and they are songs that are 
generally more Acoustic and Country. Songs from artists 
such as Taylor Swift, Jason Mraz and Bruno Mars tend to 
appear more often in this quadrant. Music that is dark and 
generally more melancholy takes up the third quadrant 
(lower left). They are songs that are more instrumental 
and jazzier for example songs from artists like Adele and 
Kenny G tend to appear in this quadrant. Finally, the 
fourth quadrant (lower right) contains songs that are gen-
erally melancholy but with a faster beat. Examples in-
clude Jazz and Country music with a hype. This division 
into the four quadrants draws back the relation to 
Thayer’s mood model (Figure 1), which similarly catego-
rizes the mood plane into four main sectors spanned by 
the two vectors. This suggests that the song space can be 
classified in terms of emotional mood and user can select 

the type of music on the song space based on their social 
context.  

From the general trend observed above, we observed 
that as song progresses along the horizontal axis, it moves 
from a “quieter” zone to a “nosier” zone. And in terms of 
genre, this means that songs change from Jazz, Acoustics 
and light-hearted Country songs to Rock, Techno, Pop 
and House music. Thus, x-axis (PC1) corresponds to the 
noisiness of a song. The vertical axis increases in energy 
level as it progresses from bottom to top. Jazz music is 
generally located at the bottom, while Pop music is gen-
erally located at the upper half of the song space. Thus, y-
axis (PC2) relates to the massiveness or heaviness of a 
song. This analysis is supported by the features’ loadings 
as shown in Figure 3. It can be seen that the loadings for 
features like flatness, rolloff, zero crossing rate (ZCR), 
centroid and brightness lie closer to the horizontal axis, 
and they measure the amount of high frequency energy 
and how much the signal oscillate. Thus it corresponds 
with our analysis by saying that the horizontal axis is a 
measure of how noisy, or saturated with high-frequency 
content, the music is. Also the loadings of density and 
RMS point in the direction close to the positive y-axis 
while loadings of low energy and absolute silent ratio 
(ASR) point in the negative y-axis direction. Hence, cor-
responds with our analysis with the vertical axis being a 
measure of the amount of energy or how massive/ heavy 
the music is.  

5. SMARTDJ INTERFACE 
The idea of interface design for SmartDJ is focused on 
non-DJ users who utilise SmartDJ as their daily music 
player without too much hassle. The simplicity and inter-
activity is the design focus for SmartDJ.  
 

5.1 Soundbar Mode 
Soundbar Mode allows the user to simply play tracks 
with minimum action required. The Soundbar mode 
comes with three main panels for basic operation. 
SmartDJ panel provides trigger buttons for effect automa-
tion such as auto-crossfading and party mode. Visualiser, 
playlist editor and advanced setting are located under 
Features tab for triggering the pop-up window according 
to user’s need.  

 
Figure 5. Soundbar Mode 

The main music player control includes essential controls 
and information to provide the ease of use to amateurs. 
Essential controls such as previous song, play, next song, 
loop, shuffle and additional information provide basic 
control for the music player. Information such as current 
playing track information and upcoming track are in-
cluded to provide information feedback to the users. Up-
coming track information tab that paired with next button 
to provide instant reselection for user who is not satisfy 
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with the next song. He/she can change the upcoming 
track until he/she finds the desired song to cue. 

5.2 DJ Mode 

DJ mode is created to simulate the interface of conven-
tional DJ software with simplified features for the non-DJ 
users such as cross-fader, volume, speed, pitch and para-
metric equaliser for individual play desk to perform man-
ual manipulation. Users are able to achieve beat synchro-
nization manually but changing the speed of both deck 
individual to match the song speed of both. Furthermore, 
the pitch of song can be maintained as original by ma-
nipulating the pitch slider. These manual features give 
better interaction without increase the difficulty of using 
SmartDJ. 

Effects such as beat synchronisation and song structure 
detection can be applied on DJ mode. Beat synchronisa-
tion helps to match the speed of song for both tracks for 
the ease of song transition where it gives better song tran-
sition effect when both BPMs of song are nicely matched. 
Key lock feature allows the system to maintain the pitch 
of song while changing the speed. Song structure detec-
tion is the concept applies for finding best mixing points 
for users. Song structure detection separates song into 
different part such as verse, chorus, intro and outro. This 
information can be used for users to perform manual 
crossfading at desired point or serves as reference for the 
automation to pick the appropriate point for mixing. Cur-
rently, this component is considered as a part for future 
development. 

 
Figure 7. DJ Mode 

6. INTERACTIVE FEATURES 
The interface design for SmartDJ is focused on non-DJ 
users who utilise SmartDJ. The objective of developing 
SmartDJ is to create a new way of interaction between 
the users with music player. Therefore, interactive fea-
tures are the main focus of the SmartDJ development. 
Song Space Visualiser and Smart Equaliser are the main 
features that emphasise on user interactivity. Advance 
Setting Panel provides further adjustment for the system 
to suit the users’ need better. 

6.1 Song Space Visualiser 

Song Space Visualiser creates a new way of interaction 
between user and music player by providing a visual 
feedback regarding to the song similarity of songs that 
added into SmartDJ. 

The analysed result after dimension reduction will then 
plot into smaller dimensional song space. This visual 
feedback helps the users to understand that what are the 

similar songs around the seed song. Alternatively, 
SmartDJ is able to select the subsequence songs based on 
seed song automatically if the users choose to activate the 
automation.  

This is inspired by the work of CataRT [11] and Mu-
sicBox by Anita Lillie [12]. CataRT is a real-time sound 
synthesis system that allows display the corpus of songs 
data on a space based on its proximity in descriptor space. 
The concept of MusicBox is one step further from 
CataRT and closer to our idea. It projects a large corpus 
of songs in a space and the model can be adjusted by fil-
tering different descriptors. Song Space Visualiser aims 
to improve the idea into a potential application that comes 
with higher usability, higher user interactivity and higher 
user friendliness.  

The 3 different interfaces then evaluated by group of 
people who are amateur users that use music player very 
often. They verify these programmes based on the accu-
racy of the presentation, user interactivity and user friend-
liness. The result is SmartDJ scored the better overall 
score in terms of user interactivity and user friendliness. 

In SmartDJ, there are 2 song spaces, which displaying 
the relationship of BPM against key of songs (Song 
Space 1) and the relationship of song similarity (Song 
Space 2). These 2 song spaces are formed by 5 dimension 
data, which include BPM, key, Brightness, Noisiness and 
Heaviness. With different dimension arrangement, these 
2 song spaces provide different visual feedback to the 
user.  

 
Figure 1. Song Space Based on BPM and Key 

 
Figure 2. Song Space Based on Similarity 

In the background, K-th Nearest Neighbour used to 
choose songs that are closest to the seed song with the 
inputs provided by the user. User can define the number 
of song selection as well to include more songs for the 
system to perform filtering. The system will have a 
higher chance to locate the best candidate to prevent the 
system falls into a loop where the seed song and selected 
song will keep playing repeatedly.  

In order to overcome this issue, SmartDJ introduces 
Social Input as input parameter of song space for user to 
define direction for the song selection system to select 
subsequent songs based on seed song as center point. The 
social input can be categorised into 4 stages, which are 
slight increment, huge increment, slight decrement and 
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huge decrement that can help to define how the system 
should choose the subsequent song across the song space. 

 
Figure 3. Social Input Panel 

6.2 Smart Equaliser 

Smart Equaliser creates a new approach for users to ma-
nipulate the equalization setting. There are 3 types of 
equaliser interface to suit different kinds of user.  

Firstly, a set of parametric equalization is included for 
basic adjustment of low, mid and high frequencies.  

Secondly, a typical 13 bands of graphic equaliser that 
is widely used in music players is prepared for users who 
prefer to have greater control yet it is simple to manipu-
late.  

Thirdly, a fully customisable graphic equaliser gives 
more flexible adjustment for individual frequency bands. 
Users can draw a line across the space horizontally to in-
crease or decrease the gain of specific bands. It is the 
most complex version but it also comes with the highest 
potential to discover new equalisation effect for audio 
tracks. 

The algorithm is created by using convolution between 
the music signals with signals obtained from Fast Fourier 
Transform. The number of individual bands is 256 bands 
and equally divided from 20 Hz to 20kHz to give the 
maximum flexibility for the users yet it is not difficult to 
manipulate the music signals. Common equalisation pre-
sets are available for the ease of use while custom setting 
is also available for user to save as their personal prefer-
ences. 

 
Figure 4. Smart Equaliser 

6.3 Advance Setting Panel 

Parameters for song space model, song selection and song 
transition are available for the system to determine a set 
of suitable songs for users. 

The song space model can be varying based atmos-
phere mode which is targeting for the need of users while 
song recommendation is needed based on different sce-
nario such as partying, house music for relaxing, chill and 
calm music before sleep and other possible scenarios. 
Different scenario setting generates the result of different 
space models based on different sets of feature combina-
tion. 

Song selection automation features such as Danceabil-
ity, Grooviness and proximity threshold help to customize 
the behaviour of system while generating playlist based 
on seed songs. Danceability is a high level descriptor that 
referred as the dance-ness of the song that can be defined 
as how significant the beat of the song that will make the 
listener feels like dancing. Grooviness is defined as the 
how the songs in the playlist build up or down the groove 
throughout the playtime.  

7. SMART SONG TRANSITION 
SmartDJ includes song transition features that it helps to 
transit from one song to another. The conventional DJ 
software focuses more on the manual features instead of 
automation. Therefore, we purposed several smart transi-
tion automation techniques inspired by the actual DJ 
skills for song transition. The transition comes in to 
amend where there is no perfect match for subsequence 
song by gradually pitching, adjusting BPM over the 
course of several minutes and creating equalisation mix-
ing to prevent frequency band overlapping with each 
other. 

7.1 Spectral Matching 

Spectral matching is one of the basic DJ skills that apply 
the technique of tuning down the low frequency of cur-
rent song while transiting to the next song. This technique 
helps avoiding the low frequency of both songs to over-
power each other. This technique does not limit to only 
low frequency but mid and high frequency range as well. 
This techniques can simulate the actual DJ action which 
is turning up or down of the parametric equaliser. 

EQ Blend [13] requires some equalization blending. 
The technique focuses on preventing the certain fre-
quency bands of current song overpower the subsequence 
song. For an example, track A is an instrumental track 
with heavily concentrated on mid range of frequency 
spectrum while track B is a vocal track, mixing these 2 
songs together will cause the frequency overpowering 
issue on mid range frequency band. DJs have to tune 
down the desired frequency band to make room for the 
next song to come in. 

7.2 Beat Matching 

Beat synchronization is another essential techniques that 
commonly used by DJs to do song transition. 3% rule ap-
plies where the tempo difference between 2 songs is 
within 3% when we change the tempo of the song. Two 
songs in F Minor that have BPM of 130 and 131 can be 
harmonically mixed together because the tempo differ-
ence is less than 3%. This helps to maintain the original 
pitch of the song without changing the speed signifi-
cantly. Moreover, a purposed technique, “Modus Match-
ing” helps to select the corresponding BPM for subse-
quence songs when there is not suitable songs fall within 
the 3% region. It selects the following song by twice or 
half of the tempo. [14] 
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7.3 Tonality Matching 

The purpose of tonality matching is to ensure the transi-
tion can be done musically smooth. The concept of har-
monic mixing is to ensure the song will be harmonically 
compatible based on certain conditions such as same key 
(Tonic), relative Major/Minor ket, sub-dominant key 
(Perfect 4th) and dominant key (Perfect 5th). This in-
volved in musical context where a song in Cm can be eas-
ily compatible with other songs with same key, its rela-
tive major D#/Eb, its sub-dominant Fm or its dominant 
Gm. [15] 

A matrix of weights that representing the proximity be-
tween tonalities applies to select the subsequence songs 
with best harmonic matching possible. This matrix can be 
derived based on Camelot Wheel Chart [16] that shows 
the similarity between different keys.  

 
Figure 5. Camelot Wheel Chart 

8. CONCLUSION 
SmartDJ, other than a music player with DJ features, we 
proposed a novel way in which user can browse his/her 
music collection. With the implementation of the song 
space model, songs projected onto a Song Space Visual-
iser allows user to better understand the relationship be-
tween the music and to make a known song selection to 
better fit their current listening context. And with the DJ 
transition effects and automatic song selection, music lis-
tening will no long be the same.  

The objective of SmartDJ project is not just about de-
veloping a prototype but creating potential commercial 
product or at least it prepares ground for commercial ap-
plication. Therefore, our project focuses on developing 
the front end (user interface) and back end (features ex-
traction and dimension reduction) concurrently to create a 
new way of interacting with music. There are additional 
features can be included for further development such as 
song structure detection and user rating system to further 
enhance and complete the software functionality. 
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ABSTRACT

This paper intends to reveal some of the properties and
possibilities for sound analysis combining the Fourier and
Mellin transform. First, the general transforms are defined
and it is introduced how these signal and spectrum repre-
sentations relate to each other. Second, a central property
of Mellin-based form of the Fourier transform; its affine
scaling, which leads to the concept of a joined, logarith-
mic time/frequency-axis is introduced. Third, the concept
of a time-frequency continuum that is perpendicular to the
logarithmic time-frequency axis is introduced. Next is dis-
cussed how information guides itself through the time-fre-
quency continuum and how components link and move to-
gether depending on their spectrum and signal character-
istics. Finally, an attempt is made to connect the special
features that characterize this analysis method to other sig-
nal analysis methods.

1. INTRODUCTION

The question of balancing between a time domain or fre-
quency domain description is a fundamental issue in var-
ious areas like the design of band-limited oscillators, the
description of wave-propagation, directional hearing, the
modeling of excitation mechanisms, or the problem of sound
source separation in general. Instead of focusing on one of
these applications, this paper aims to reveal a general con-
cept that direct this balancing. This is done by exploring
the properties of a signal modeling concept intermediate to
the Fourier and Mellin transform that puts the paradigm of
time-frequency trade-off in a different perspective.

The Mellin transform essentially warps frequency con-
tent in conjunction with time. Its abstraction is generally
promoted for its power to smoothly rescale and stretch ei-
ther time or frequency content while preserving magni-
tude characteristics in the other domain. These elegant
options are seen as accommodating abstractions for con-
trolling our analysis, but they will not be the object of
our investigations. What is often considered merely an in-
termediate form in the processing path to the Mellin ab-
straction; -the exponentially sampled signal and spectrum
representations- are our real object of interest. In particu-
lar the intimate link of the exponential time representation
with the exponentially sampled spectrum representation is
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rarely recognized, but it will proof here to be a crucial
element in time-frequency thinking. The practical imple-
mentation of exponential time/frequency sampling is is far
from trivial.

2. FOURIER AND MELLIN TRANSFORM

In Fourier analysis it is possible to present a function in
the time domain or the frequency domain and to convert a
function in the time domain to the frequency domain and
vice versa with help of the Fourier transform and it’s inver-
sion. The Fourier transform F of a function g(t) is defined
as:

F{g(t)} = ĝ(f) =

∫ ∞
−∞

g (t) e−i2πftdt (1)

The Mellin transformM of a function g(x) is defined as:

M{g(x)} = ĝ(s) =

∫ ∞
0

g (x)xs−1dx, s ∈ C

(2)

The Mellin transform is closely related to both the Laplace
transform and the Fourier transform. Substitution of e−t in
(2) for the variable x gives the Laplace transform L of the
function g(e−t):

L{g(e−t)} = ĝ(s) =

∫ ∞
0

g
(
e−t
)
e−stdt (3)

Since the Laplace transform can be seen as an extended
form of the Fourier transform defined in (1), by substitut-
ing i2πf for the variable s in (2) the Fourier transform of
g(e−t) is derived:

F{g(e−t)} = ĝ(f) =

∫ ∞
0

g
(
e−t
)
e−i2πftdt (4)

The Laplace transform and the Fourier transform that are
derived from the Mellin transform are now both defined as
an unilateral or one-sided transformation. Both transforms
can also be defined as a bilateral or two-sided transforma-
tion by extending the limits of integration to all real num-
bers.

The relation between the Mellin transform and the Fourier
transform can be written symbolically as:

M{g(x)}s = i2πf = F{g(e−t)}f (5)

It is from these definitions that the Mellin transform can
be interpreted as the Fourier transform of an exponentially
warped time signal or as a logarithmic-time Fourier trans-
form [1]
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3. TIME AND FREQUENCY SAMPLING

The definitions and relations between the integral trans-
forms from the previous section doesn’t take into account
any later sampling of the variables. The variable f for
which the transformed functional result ĝ(f) is specified
in (4) only specifies a frequency dependent result, where it
does not matter if its plotted along a linear or an exponen-
tial frequency scale. The same frequency variable f reap-
pears in the complex exponent e−i2πft where it is scaled
with the time variable t. The correlation between time and
frequency that this integral transform is representing, is
powered by the parallel development of frequency f and
time t information in this complex exponent. [Note that the
product of time and frequency is caught in the imaginary
part of the complex exponent and in reality is expressing
a phase angle. So, the integral actually sums phase differ-
ences, that are disguised as a sum of products.]

This leads to an ambiguity. Consider a sine signal with
a frequency that changes logarithmically with linear time.
When evaluated on an exponential time-scale, this signal
will show a constant product of time and frequency tf in
the complex exponent. Alternatively, a sine signal now
with a linear frequency dependence on linear time, will
in exponential time have an exponential frequency incre-
ment. If the frequency variable f is also allowed to have
the same exponential increment, this will again lead to a
constant product ft in the exponent. So, the formulation in
(5) expresses a final result on a frequency scale, indifferent
if the frequency term in the integral proceeds linear or ex-
ponentially. Apart from this ambiguity, the Mellin integral
also implies that a change in time offset in relation to the
starting frequency will largely change the outcome of the
integral and thus also the observed frequency content.

3.1 Two forms for the Mellin integral

The correspondence between the Mellin integral and the
Fourier integral seen in (5) lead to the expression of the
transformed result as a function ĝ(f) based in the frequency
domain. This frequency domain function holds a spectrum
representation, but one that is not necessarily comparable
to the spectrum of the signal on a linear frequency axis.
The general formulation of the Mellin integral seen in (2)
offers some powerful abstractions in formulating deriva-
tives of time functions. However in (4), these properties
account for the magnitude information only, but do not ap-
ply to the phase/frequency information as this information
is caught in the imaginary part of the complex exponent
and is thus evaluated as the product −ft against linear
time. For true frequency derivatives that are comparable to
those of the general Fourier representation, but with some
of the Mellin properties, it is necessary to evaluate the ex-
ponentially sampled time function g(et) against exponen-
tially progressing time et and exponentially decaying fre-
quency e−f variables.

ĝ(ef ) =

∫ ∞
0

g
(
et
)
ei2πe

(t−f)
etdt (6)

Formula (6) describes a convolution with an exponentially
frequency sweeping complex exponential. As only the imag-

inary part is involved and magnitude remains the same, this
convolution process is thus comparable to an all-pass fil-
tering. Apart from an offset, a sine wave with an exponen-
tially changing instantaneous frequency over time fi = et,
is essentially identical to a sine wave with an exponentially
changing instantaneous phase φt = et as a function of
time. If now the instantaneous phase φt as it is expressed
in the time domain is taken as the reference for the time
variable, the dependency is reversed and thus t = ln(φt).

Moreover, a sine wave with a constant frequency f can
be observed over exponentially sampled time. If this fre-
quency is taken to be the constant factor, whatever the mo-
ment in time, than still the amount of phase distance trav-
elled at the sampling points will increase exponentially.
The logarithm ln(φf ) of the series of phase φf observa-
tions will show a constant increase, that is directly propor-
tional to the frequency f of the sine wave, so f = ln(φt).
This changes formula (6) into

ĝ(φf ) =

∫ ∞
0

g(φt)e
i2πe(lnφt−lnφf )

etdt (7)

Note that a phase change over time is still frequency, and
a phase change with constant frequency still denotes time,
but time and frequency are now allowed to vary in rela-
tion to each other. Hence, the exponential time and fre-
quency scaling from the Mellin integral can still be main-
tained, without the problematic effect that a shift in time
will change the frequency content. Furthermore, by link-
ing the exponential dependency exclusively to the phase,
only the imaginary part of the complex exponent is warped.
Thus, for the real part of the complex exponent that de-
scribes the amplitude, the exponential behavior is no longer
implicitly linked to exponential time or exponential fre-
quency. A dependency on exponential time is essentially a
logarithmic dependency as the typical natural preset is that
amplitude changes exponentially with linear time or with
linear frequency. The modified transformation in (6) will
thus have properties of all the general integral transforms
that were defined in the previous section. It will have a
property of the Mellin transform for any information that
links to an exponential change in phase, have a property of
the Fourier transform for the frequency and it will have a
property of the Laplace transform for any amplitude infor-
mation that varies exponentially with linear time or linear
frequency. Under these modified conditions the Fourier
transform still works as normal, but the derivatives of a
phase change against time, will now no longer include an
amplitude term as this was contained in the real part of
the integral. The ability to derive on frequency without
a gain change may seem an undesirable concept if ones
intention is to evaluate or to process frequency content on
base of amplitude, but the ability to still evaluate or process
frequency content without changing the amplitude could
prove to be a valuable option.

4. EXPONENTIAL SAMPLING AND THE
MELLIN DOMAIN

An exponentially re-sampled time signal is the starting point
for either one of the two flavours (4) or (6) of the Mellin
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time domain, linear time scale Exponentially sampled log(t)/-log(f) domain frequency domain, lin.-frequency scale 
Sine wave [TS] 

 

exponential sweep [EST]   

 

 
 
 
 

 
exponential sampling direction  exponential sampling direction 

 Reversed exponential sweep [ESF] 

 

Flat spectrum, linear phase [FP] 
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Harmonic series [FHS] 

 
 

Figure 1. Signals in the time domain (left), related ex-
ponentially sampled series (middle) and connected linear
frequency spectra (right).

transform. The two forms clearly separate when the spec-
trum content is to be considered. Formulation (6) essen-
tially converts a logarithmic time representation to a log-
arithmic frequency representation, where both representa-
tions will appear to exist in one and the same exponentially
sampled domain (see Figure 1, middle column). The famil-
iar relationships that exist between the time domain and the
frequency domain are invariable mathematical properties,
but their interpretation is inseparable from the linear incre-
ment by which the information is distributed on either the
time axis or the frequency axis. The exponential sampling
followed by a presentation as a linear sequence gives the
time axis a logarithmic interpretation. That the original
linear association between the data points now proceeds
on this proportional scale can however not be read from
its now linear sequential storage. A Fast Fourier trans-
form (FFT) procedure does not check for the original clock
count and just assumes its time or frequency proceeding
linearly. As a result, the FFT result of any such linear
stored series, that before had the association of a loga-
rithmical time signal representation, will lead to what in
linear FFT terms is considered a frequency domain repre-
sentation comparable to the Mellin formulation (4). This
spectrum is not the logarithmic frequency spectrum of the
logarithmic time signal as in (6).

This Mellin spectrum representation is comparable to a
Mel-frequency cepstrum representation, as it is the linear
Fourier transform of information that is logarithmically dis-
tributed along the dependent axis. This representation will
be referred to as the Exponential Sweep Spectrum [ESS].
As mentioned before, the exponential sampling converts
any narrow frequency band signal, i.e. a sine wave, to
a regular exponential sweep [EST] (see Figure 1). On
the other hand, the exponential sampling of a signal with
a wide frequency band, i.e. a pulse [TP], will remain a
pulse [EP] on the logarithmical-time axis. Both the ex-
ponential sweep [EST], and the pulse [EP] have the same
magnitude distribution in the ESS, they only differ in their
ESS-phase representation. The convolution of an exponen-
tial sweep with an identical, but time reversed exponential
sweep [ESF] will convert the exponential sweep [EST] to
a pulse [EP] in the exponentially sampled domain. This
conversion, that complies to the convolution described in
(6), is actually comparable to a linear scale Fourier analy-
sis, as all constant frequency information is summed into
one component with an offset on the axis that now has the
identity of frequency.

What is valid for a single parallel sweep is also valid for
a sum of parallel sweeps. This property of the formulation
(6) which is called in general the superposition principle
can symbolically written as:

F(s1 + s2) −→ F(s1) + F(s2) (8)

Aside the superposition principle, the homogeneity princi-
ple is also valid. The homogeneity principle can symboli-
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cally written as:

as −→ aF(s) (9)

Due to the linearity of the Mellin transform [2], the convo-
lution of any sum of shifted exponential sinusoid sweeps
with the same basic time reversed exponential sweep that
functions as a kernel [ESF] will pile up all exponentially
warped sinusoids according to their own frequency offset.

The convolution of an exponential sampled signal with
this time reversed exponential sweep kernel is the actual
implementation of the transform (6). Note that a sine wave
with a low frequency will, after its exponentially resam-
pling, reach the fastest movement later, and thus reappear
as an exponential sweep that is more displaced to the right
on the frequency axis. As a result the spectrum has an
opposite directed logarithmic frequency ordering. To be
consistent, also in Figure 1 the exponential sampling from
the linear frequency axis is done from right to left and
the result is that the direction of the corresponding lin-
ear frequency axis is reversed. The pulse [EP] in the ex-
ponentially sampled domain can thus have two interpreta-
tions, that of an exponentially sampled pulse in the time
domain or that of a single frequency band on an exponen-
tially sampled frequency axis. The convolution with the
reversed sweep [ESF] will bring any logarithmically sam-
pled time signal to its spectrum on a logarithmic frequency
axis, while the product of the convolution with the for-
ward version [ESP] of the same sweep will bring any spec-
trum with a logarithmic frequency axis to its logarithmi-
cally sampled time signal. When staying in this exponen-
tially sampled domain, this implementation of the trans-
form thus has an inverse. The sweep [ESF] and its inverse
[EST] both have an ESS with a flat magnitude character-
istic. Both versions of the sweep can be seen as impulse
responses of all-pass filters, with their convolution and de-
convolution properties characterized by the opposite polar-
ity of the phase in the ESS.

Moreover, also the exponentially sampled impulse series
[EGT] and the exponentially sampled harmonic series [EGF]
comprise essentially the same shape, only time reversed.
As a result, both have identical ESS magnitude character-
istics, and phase curves with opposite polarities. This im-
plies that any convolution that is applied along this joint
scale, using either one of the geometric series [EGT] or
[EGF] as an impulse response, will be a magnitude pat-
tern selection process (filtering) that searches periodicity
in both the time domain and the frequency domain at the
same time. This unifies the principle of periodicity detec-
tion over both domains.

5. A JOINED TIME-FREQUENCY AXIS

The relationship between time and frequency, T = 1/f , is
in the Fourier representation generally associated with in-
dependent, perpendicular axes. The exponential sampling
straightens out the 1/x curve and parallels the logarith-
mic time and logarithmic frequency axes. This parallel-
ing means that also other reciprocal relationships between
time and frequency that exist as a Fourier pair unify. An

example of such a proportion is the length of the analy-
sis window in the time domain that curtails the bandwidth
in the frequency domain. This proportion becomes a lin-
ear distance on a shared logarithmic axis. The benefit of
the definition of both the analysis window and the band-
width on the same axis is that no longer the incommensu-
rable relation between time and frequency will be a preset
in the analysis, as it can be optimized by widening in ei-
ther the time or frequency perspective. With the exponen-
tially sampled domain, the notions of zero time and zero
frequency are missing. Both time and frequency values can
still be measured in an absolute sense, but their zeroes are
never reached due to the logarithmic approach. When there
are no scale zeroes to measure against, a transformation be-
comes affine, which means that the order along the scale is
preserved by maintaining a fixed time-frequency product.
This specific property turns up as an extra constraint that
directs the exponential time sampling process. With pro-
gressively larger sampling periods (downsampling), some-
thing has to give in at the Nyquist frequency end. This
means that, for a practical implementation, during the ex-
ponential re-sampling process the frequency range needs
to be progressively band-limited. So, any signal that ap-
pears on the time entry point on the logarithmic time axis
will at that moment be sampled at an extreme high rate and
thus be spectrally rich and full of high frequency details.
Note that this entry point behaves like a sort of zero scale
mark as it connects the logarthmic time scale to a physi-
cal instant that exists in linear time. Over time the wave-
form squeezes by the downsampling while it at the same
time loses high frequency detail by the progressive band-
limiting. The signal will be muted when the lowest fre-
quency components from the complex reach their Nyquist
limit.

6. THE TIME-FREQUENCY CONTINUUM

As mentioned before, the joint time-frequency axis is a
dual representation where the logarithmic time and the log-
arithmic frequency share the same axis. Despite this asso-
ciation, the notions of time domain and frequency domain
remain to exist. The two identities are however not any-
more that strictly incongruent as with the ordinary square-
matrix of the Fast Fourier Transform (FFT). As an extra,
the convolution process that brings the signal from its time
identity to its spectrum identity can be sectioned. This is
realized by using cascaded all-pass filters with impulse re-
sponses that each sweep over the full frequency range, but
in a fraction of the time. For the inverse transform, the
impulse responses are reversed.

This allows a fluent transformation from one to the other
domain identity, with intermediate representations that are
neither a pure time domain nor a pure frequency domain
description. These intermediate representations can be seen
as descriptions where frequency changes with constant time,
or where time sampling changes with constant frequency.
Note that it is possible to pass over the invariant-frequency
or invariant-time horizontal by overdoing with an extra fil-
ter section.
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Figure 2. Magnitude distribution over the time-frequency-
continuum for a sine wave. The black arrow indicates the
exponential sampling direction and entry point for the sig-
nal. The red curve at this intersection shows the logarith-
mic signal magnitude (envelope) along a logarithmic time
axis. The grey arrow marks the exponential sampling di-
rection and entry point when starting from the linear spec-
trum. The red curve at this intersection shows now the
logarithmic spectrum magnitude that at this vertical level
has a logarithmic frequency axis interpretation.

Figure 3 demonstrates how an exponentially sampled sine
wave travels top-down through the time-frequency contin-
uum and thereby integrates to becomes its own narrow
spectral peak representation. At the stages in between it
can not be said that its frequency or time information, sim-
ply because both orderings only exist by their constant sam-
pling along the axis. If the incoming sinusoid would have
had an increasing frequency already on the linear time scale,
than after the exponential sampling its resulting sweep would
have increased faster and the point of focus would have
been reached at an earlier stage in the continuum. So, the
intermediate horizontal intersections have the interpreta-
tion of lines with constant acceleration or deceleration of
phase against time, or the other way around.

6.1 First derivatives

Any signal component with constant frequency that is ex-
ponentially re-sampled over the time line, will have an ex-
ponential increasing instantaneous frequency (see EST in
Figure 1). This constant component behaves as a linear off-
set in the exponent that denotes the center frequency offset
along the scale.

Taking the derivative against linear time will isolate the
frequency as a constant component. This derivative, called
the instantaneous frequency (IF), guides a tangent that lin-
early turns along the logarithmic time axis at the top. The
turning is linear because time and frequency share the same

 
 

 

Figure 3. Magnitude distribution over the time-frequency-
continuum for a pulse.

 

Figure 4. Magnitude distribution over the time-frequency-
continuum for a periodic pulse series.

exponential proportion. Note how in all time-frequency
continuum plots (see figure 2, 3 and 4), beams or rays show
up that, according to this IF-tangent, all focus on desig-
nated spots along the logarithmic frequency axis. For all
the samples along the logarithmic time axis, the propor-
tional phase change over time (the frequency) is constant,
or in other words, the focusing point along the frequency
axis marks where all information along the time axis that
has a constant time frequency product integrates on.

Aside the derivative against time of the complex valued
time function, there is also a derivative against frequency
for the complex valued spectrum function. This derivative
represents the group delay (GD). A pulse in time will have
a flat spectrum with a phase spectrum that has a linear in-
creasing term that describes the time-offset of the pulse.
After exponential sampling along the frequency axis this
first linear-phase term changes to an exponentially sweep-
ing phase function (see Figure 1, ESF derived from FP).
The derivative of this function against frequency isolates
this linear offset as a constant factor that represents the
group delay. This means, that all information along the
frequency axis that is phase locked on the same point in
time (and thus has the same group delay) will show beams
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or rays that now focus upward on this specific spot on the
time axis (see Figure 3).

6.2 Binding factors

Both differentials, the IF and the GD, direct how the infor-
mation as being either a time or frequency component, will
focus within the time-frequency continuum. The property
that the grouped components share in time or in frequency,
is a constant fixed product of time and frequency, actually
a fixed product of a time period and frequency distance.
The same product appears in the complex exponential as
eiπtf with either the signal or spectral description.

Note that the phase information, seen as a function of
time or seen as a function of frequency, has in its absolute
sense no further relevance as to precisely carry the differ-
ential (IF or GD) which codes the actual information how
to focus in the time-frequency continuum.

6.3 Sharpness / resolution

The sharpness of the spectral peak at the point where all
time information concentrates on the frequency axis (its
bandwidth) is not determined by the frequency resolution
entailed in the analysis procedure (the all-pass filter im-
pulse response or the Mellin that convolves the signal to
its spectrum), but by the actual width or length of its expo-
sure over the logarithmic time line.

6.4 Second and higher order derivatives

As described in a section above, the derivate along the time
axis known as instantaneous frequency (IF) and deriva-
tive along the frequency axis known as group delay (GD)
both indicate how the information in either representation
will focus on the other axis, or at an intermediate point
within the time-frequency continuum. Information groups
together along either axis on base of a shared linear IF or
GD component or shared tf product. A constant linear
increasing first derivative means a constant second deriva-
tive. Thus a flat second derivative along the time axis
(DIF) or a flat second derivative along the frequency axis
(DGD) indicates that successive information will focus at
some point in the time-frequency continuum. When a first
constant second derivative switches to a different offset
than this marks the appearance of new information in the
time-frequency continuum. A zero DIF or DGD would
mean a lack of directivity to focus. Information that has
a fixed, frequency counterbalanced phase difference along
the frequency axis, or information that is spread over the
time axis and shares a fixed frequency response, will al-
ways have a flat second derivative on its exposure along
the axis. Grouping in either time or frequency means shar-
ing the same offset pattern for the second derivative. This
means that higher order derivatives will report on exclu-
sive binding of different component groups over the con-
tinuum. For this to work, the grouped components need not
to be sequentially ordered. Contributing to the same sec-
ond derivative indicates mutual binding on base of correla-
tion, while binding to a differently grouped second deriva-
tive can be interpreted as independency.

7. RANDOMNESS IN TIME AND FREQUENCY

Having a predominantly flat DIF means having only cor-
related components over time, and as a result only sharp
peaks in the frequency distribution. Having a predomi-
nantly flat DGD means having only correlated components
over frequency that in essence relate to sharp pulses in the
time signal. Randomness can be defined as a zero prone
DIF and zero prone DGD, which implies that both ampli-
tude distributions in time or frequency have, on the aver-
age, not the tendency nor the mass/width to curve accord-
ing to an e−t

2/σ2

or e−f
2/σ2

shape, thus no Gaussian trends
in either domain. The result is that there is no preference
value in either time or frequency that could lead to a cen-
tered value around a mean (see Figure 5). Peaked or pulsed
information may still appear along either the time or fre-
quency axis in the form of uniform randomly distributed
spikes or uniform randomly distributed sinusoids. If the
sharpness of information is not associated with a certain
combined appearance of a correlation over a certain dis-
tance away from its focusing point, than there is random-
ness (see Figure 6). Note that a signal could be synthe-
sized where there is focusing and thus correlation only in
the middle between the pure time and frequency descrip-
tions. It would be hard to characterize such a signal by
using general signal and spectrum analysis methods that
can not explore the options between these domains. One
implication is that it is impossible to pinpoint randomness
and thus noise by a single spectral or time domain descrip-
tion only. A specification of randomness must at least be a
spectra-temporal description.

7.1 Gaussian properties and exponential sampling

When a Gaussian distributed data set is exponentially sam-
pled along its dependent axis, than as a result the former
e−x

2/σ2

shaped distribution will, now on the logarithmi-
cally scaled dependent axis, change to a parabolic shaped
distribution with a bending scaled by −x2/σ2. By calcu-
lating the second derivative, this second order (quadratic)
factor can be isolated as a constant. A distribution can
thus be tested on its non-Gaussianity by testing the aver-
age deviance from this second order parabolic model. This
non-Gaussianity criterion, is an important binding factor
in blind source separation techniques [3] [4]. This crite-
rion complies closely with the earlier described criteria for
independency as a grouped difference or deviance from a
constant second derivative seen with the DIF or DGD. The
Mellin transform is one-sided and for its operation it needs
a complex valued signal at its input. This complex valued
signal can be obtained for example by the Hilbert trans-
form of a real valued signal. In contrast to a real valued
signal that is ideally distributed around a zero mean, the
now complex signal amplitude values distribute around an
all-positive mean, which suits the affine property of the
transform. Testing for non-Gaussianity using a Mellin-like
transform has the advantage that also the third order term,
called the skewness, is able to contribute and that not only
the fourth order term, called the kurtosis, has to be used
for deviance weighting and grouping. Furthermore, with
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Figure 5. Magnitude distribution over the time-frequency-
continuum for pink noise.

the DIF or DGD approach, frequency can be used as an
offset and thus there are no requirements to precise assess
the mean, neither is there a need for having at least one
Gaussian distributed component in a mix before any con-
trasting independent component can be isolated.

8. SHIFTING INFORMATION IN THE
TIME-FREQUENCY CONTINUUM

Sifting information in the TF-continuum The reason why
a peak is able to stand out in the time/frequency contin-
uum, is because somewhere higher up, over some wider
region the phase curve showed a progression that matched
to an exponential incrementing phase curve template. The
sharpness or focussing of a magnitude peak over some width,
is just an acknowledgement of the consistent grouping of
information that is linked along the axis. As amplitude
is preserved all over the continuum, we could choose to
subtract this information at any point where it maximally
peaks along the time axis, or any point along the frequency
axis, or in between, while having in mind that this will be
the point with least effects on other identities in the contin-
uum. Just one isolated spectral peak can be reverse trans-
formed to its related time signal representation. This signal
can again be used as a phase as a function of time template,
a kernel to cross-correlate all other signal information with
and that will produce a maximum spectral focusing for all
signal components that have a comparable frequency de-
velopment with time. Here it is the specificity of the time
progression of the template, the deviance from the nor-
mal, that determines the amount of focusing or isolation
for all other information that is linked to it. As the nor-
mal linear progression of phase with time is non specific,
as this is just frequency, the quadratic progression of phase
with time will be the carrier, where again the higher pow-
ers/derivatives (the ones that specify the non-Gausianity)
determine the amount of success or independence. Note
the generality of the procedure, as one isolated peak on the
time axis can be a template to isolate a spectral phase tem-
plate that can be used to select all frequency information

that has a comparable time development.

9. CONCLUSIONS

Due to the properties of the Mellin transform, the Fourier
transform was reformulated to a transform from phase as
a function of logarithmic time to phase as a function of
logarithmic frequency. Phase is used as a binding factor
that connects both domains as it is basically the same ref-
erence point in both domains. Due to the one-sidedness of
the transform, domain circularity is no longer a feature of
the transformation. Events may occur in the exponentially
sampled time domain, or spectrum components may ap-
pear in the exponentially sampled frequency domain, with-
out any preconditioned necessity for a (periodic) reappear-
ance. The objective of searching for a fundamental peri-
odicity can thus be replaced by a stronger, more flexible
concept, that of a search for repetition, which may even be
a one-time event only. With a sign directed integral, past
and future will keep their annotation and also the notion
of phase is no longer ambiguous as rotational direction re-
mains preserved. A general Fourier description would of-
fer the same options when applied one-sided, but it is the
exponential warped scale that gives this integration the op-
tion to deal with time-variability also. The exponentially
warped phase domain offers a linearization of time and
frequency dependencies and presents a method to resolve
grouped components in a time-frequency continuum based
on their characteristic match to a second order dependency.
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