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ABSTRACT
Engaging embodied conversational agents need to generate expres-
sive behavior in order to be believable in socializing interactions.
We present a system that can generate spontaneous speech with
supporting lip movements. The neural conversational TTS voice is
trained on a multi-style speech corpus that has been prosodically
tagged (pitch and speaking rate) and transcribed (including tokens
for breathing, fillers and laughter). We introduce a speech anima-
tion algorithm where articulatory effort can be adjusted. The facial
animation is driven by time-stamped phonemes and prominence es-
timates from the synthesised speech waveform to modulate the lip-
and jaw movements accordingly. In objective evaluations we show
that the system is able to generate speech and facial animation that
vary in articulation effort. In subjective evaluations we compare
our conversational TTS system’s capability to deliver jokes with a
commercial TTS. Both system succeeded equally good.
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1 INTRODUCTION
There is a rich history in the development of embodied conver-
sational agents (ECAs) designed to engage in spoken interactions
with users [9]. Early examples include the astronomy guide Gandalf
[50], the desktop agent PPP persona [1], the virtual tutor Steve [39],
the publicly available August [17] and the real estate agent REA [8].
In recent years, ECAs have been employed in various applications,
such as museum guides [5, 26, 44], educators [3, 19, 60], computer
game characters [16, 40], and virtual companions [6, 7, 52]. There
is also a recent trend to explore humour in virtual agents and social
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robots [34], where some even work towards a robot theatre where
robots can track the audience response to their jokes [22]. This
trend stems from humor being found to promote engagement and
increase motivation to follow the advice of coaching ECAs [33].
Zhang et al. investigated how humor styles influence the percep-
tion of joke-delivering robots [62]. They selected 20 jokes in five
styles (Affiliative, Self-enhancing, Self-defeating, and Aggressive)
from famous comedians and the Jester joke dataset, finding that
robots telling self-defeating jokes received higher scores and more
laughter detected from the users.

Numerous studies have examined the perception of different
voice types for interactive agents [41]. Social robots and ECAs typ-
ically use the same kind of TTS as voices assistants, which are
designed for simple, transactional interactions where users ask
questions or issue commands, and the agent responds verbally or
performs actions. As a result, these TTS voices aim to emulate a
neutral, warm, and informative speaking style. However, to de-
velop more amusing and opinionated conversational characters,
it is crucial to incorporate more engaging vocal performances in
their TTS voices [2]. In real-world scenarios, conversational agents
must adapt their speaking styles according to the situation, such
as speaking more clearly to securely convey messages or varying
vocal effort to deliver dramatic or engaging content. Lindblom’s
H&H theory posits that human speech production is influenced
by physiological economy constraints [30], with hypo-articulated
speech requiring minimal articulation effort and hyper-articulated
speech maximizing clarity. One study found that neural TTS under-
performed in speech intelligibility in noisy environments compared
to the clearer concatenative TTS [11].

In the current study, we have developed a neural conversational
TTS system capable of controlling the articulatory effort of its syn-
thesized speech. Furthermore, we have integrated an avatar with
lip movements that are coherent with the generated speech, consid-
ering both phonetic content and articulation effort. We conducted
objective evaluations where we generated 100 sentences in different
manners of speaking and measured the results automatically. To
assess its effectiveness subjectively we decided to conduct a very
demanding task - the Ebert test, as detailed below. We utilized the
large language model GPT-4 [35] as a joke generator. Subsequently,
we generated 16 word pun jokes with a self-defeating twist that
required our amusing conversational character to transition from
hyper-articulation to hypo-articulation.

The Ebert Test: If the computer can suc-
cessfully tell a joke, and do the timing and
delivery as well as Henny Youngman, then
that’s the voice I want! —Roger Ebert, 2011
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Figure 1: Animation tracks (solid lines) and targets (dots) for jaw opening and retraction-rounding for a conversational TTS
utterance, showing larger movements in the first (hyper-articulated) part and smaller in the last (hypo-articulated) part.

2 RELATEDWORK
In a study comparing the likability of human speech with TTS
voices of the robot Sophia and IBM Watson [27], TTS voices were
perceived negatively, often characterized as too smooth or lacking
comprehension. Conversely, natural voices garnered positive feed-
back for their prosody, paralinguistic, and extralinguistic cues, such
as audible breathing and smiling voice. A recent study investigated
the perceived personality in a virtual agent controlled by human
speech and gestures or using TTS and state-machine-like anima-
tion [49]. Extroversion was mainly communicated through motion,
while speech influenced agreeableness and emotional stability.

To develop style-specific TTS, researchers often use corpora
with specific speaking styles. This method was employed to create
unit-selection TTS voices with distinct personalities for animated
characters in a speech-enabled computer game [18]. Another ap-
proach involves using a large corpus containing varied speaking
styles and automatically detecting a given number of Global Style
Tokens (GST) and then categorize these by listening to them [58].
Style tokens have also been used for emotional TTS [53], training
the system on voice actors who read drama scripts manually tagged
for emotions (happiness, sadness, anger, or neutral). However, as ar-
gued byMarge et al. [31], it is not obvious that it is possible to extend
style tokens from book reading or acted emotions to the kinds of
communicative functions [59] you would need in human-machine
interactions. Efforts have been made to create a TTS corpus closer
to a conversational speaking style by recording an actor reading
chatbot scripts [61]. However, spontaneous conversational speech
has been found to be more varied in pitch and speaking rate than
scripted conversational speech [28]. Some systems are trained on
a large number of speakers speaking in a range of styles, where
the manner of speaking is controlled using a reference audio that
is given as input along with the text [10, 29]. However, it can be
difficult to chose the set of reference audios to use given a specific
situation. The neural conversational TTS system presented in this
paper was trained on a corpus of a male speaker who either read
texts in a clearly articulated manner or was the moderator in casual
three-party interactions [25]. This combined corpus of read and
spontaneous speech of the same speaker contains a range of verbal
behaviours. We have then developed a method where we can both
mix the speaking styles and control the prosodic realization.

Embodied conversational agents need to have lip movements
that are synchronized and coherent with the synthesized speech.
Taylor et al. trained a deep neural network on a large audio-visual
dataset containing a single actor reciting 2543 phonetically diverse

sentences in neutral tone [48]. Given speech and the phonetic tran-
scription, the system generates lip movements that represent the
phonetic content of the speech, but not the manner of speaking.
JALI is an animator-centric workflow for the automatic creation of
lip-synchronized animations [14]. They introduce the JALI viseme
field with a lip and a jaw axis. This is used to capture speaking
styles like mumbling, screaming and normal conversation. In re-
cent years, there have been notable advancements in multimodal
systems capable of generating speech accompanied by non-verbal
behaviors such as co-speech gestures [57] and facial expressions
with synchronized lip movements [20]. Additionally, high-fidelity
talking systems based on neural radiance fields have emerged, ex-
emplified by the work of Guo et al. [15]. However, one limitation of
these systems is their rendering time, which currently takes approx-
imately 12 seconds per frame on an RTX 3090 GPU. This rendering
delay poses a challenge for real-time conversational applications
where instantaneous generation is crucial. While real-time alter-
natives like NVIDIA Audio2Face [51] exist, they typically require
extensive training data of around 60 minutes per actor. Fortunately,
recent advancements by Pan et al. [36] present a promising lip sync
system that can be trained on smaller datasets. In our paper, we
introduce a flexible lip sync system capable of adapting to various
facial rigs. This means that the system can drive any blendshape-
based rig used in virtual agents or robots. Moreover, our method
offers explicit control over articulation effort, which means that
we can make the lip movements hyper or hypo clear, in order to
match different speech styles and allow this to be manipulated. This
flexibility enables manipulation in research settings. Notably, our
approach is training-free and addresses a common use-case that is
often overlooked in virtual agent and social robot applications.

3 SYSTEM DESCRIPTION
3.1 Conversational Text-To-Speech system
The conversational TTS was trained using Tacotron 2 with an added
utterance-level prosody control method, similar to [38], and a speak-
ing style control using an 8-dimensional speaker-like embedding,
similar to [54]. In a three-party dialogue corpus the moderator
turns were used as a TTS corpus [25]. These were segmented into
breath groups (stretches of speech delineated by breath events)
using a deep learning-based breath detector [46]. These were then
transcribed using Whisper ASR [37] and subsequently corrected
to ensure accurate transcription of all fillers and repetitions. For
each breath group, we measured the mean f0 and speech rate (ap-
proximated by the peaks of the wavelet matrix) using the Wavelet
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Prosody Analyzer [43]. The mean f0 and speech rates of the breath
groups were normalized by aligning the 1st and the 99th percentile
points of the data to -1 and 1, respectively, while allowing out-
liers to extend beyond that range. At inference it is possible to
extrapolate on the features by going beyond this normalised range,
enabling the model to generate hyper- and hypo articulated speech
using both a limited set of actual training data in this range, but
also relying on the full corpus for robustness. Normalized values
for these two features were appended to each utterance’s encoded
text and passed to the attention and decoder blocks from the pre-
trained model. A model is first initialised on a pre-trained read
speech model, and trained for 70k iterations on the corpus with two
embeddings, indicating whether the utterance is from the read or
spontaneous part of the corpus. This model is then further trained
including the prosodic features for an additional 100k iterations. We
used a HiFi-GAN [24] vocoder fine-tuned on the same corpus for
383k iterations on the top of the published model. Data collection
is further described in Sec. 4.1.

3.2 Speech Animation with Adjustable Effort
We introduce a new, pseudo-biomechanical algorithm for generat-
ing speech animation. This algorithm offers a straightforward yet
effective approach to account for co-articulation with adjustable
articulatory effort by minimizing energy while maximizing adher-
ence to articulatory targets. By varying the weight between these
(often conflicting) goals, it is possible to produce speech animation
with varying degree of clarity, in line with Lindblom’s H&H theory
[30] where articulatory effort (here: the required energy) stands
in proportion to informational requirements (here: adherence to
targets). The algorithm requires no training data and can be applied
to different facial rigs. The input to the speech animation algorithm
is a time-stamped phoneme sequence. In our experiments, this is
derived from a phoneme recognizer based on wav2vec2.0 [4]. We
use five high-level parameters to describe visual speech targets
and articulatory motion. Drawing inspiration from Öhman’s model
of coarticulation [32], which proposes to view articulation as the
superposition of continuous vowel motion and rapid consonant ar-
ticulations, we use two parameters for vowel articulation: jaw [0..1]
(degree of jaw-opening) and retraction-rounding [−1..1] (negative
values correspond to lip retraction, positive values to lip rounding),
and three parameters for consonant articulations: bilabial [0..1]
(where 1 means lip closure, regardless of state of jaw), labiodental
[0..1] (lower lip/upper front teeth contact + raised upper lip) and
dental [0..1] (parted lips + elevated tongue), see Fig. 2

For each phoneme, and for each parameter, a tuple 𝑡,𝑤 describes
articulatory target position and a weight that dictates the impor-
tance of the target. As an example, the consonant k may be either
rounded or retracted and will therefore have a weight of 𝑤 = 0
for the retraction-rounding parameter. In the case of the bilabial
consonant b, the bilabial parameter target 𝑡 = 1 is paired with a
weight of 𝑤 = ∞ ensuring that the target will always be reached
for this phoneme. To synthesize a new animation 𝑥𝑖 , a target se-
quence 𝑡𝑖 is formed by placing targets on a timeline according to a
provided time-stamped transcription, along with the corresponding
target weights𝑤𝑖 . We approximate articulatory effort by the total
acceleration summed over an articulatory parameter trajectory 𝑥𝑖

as 𝐸1 =
∑
𝑖 |𝑥𝑖−1 + 𝑥𝑖+1 − 2𝑥𝑖 |. We approximate information con-

tent loss as a weighted sum of deviation from articulatory targets:
𝐸2 =

∑
𝑖 |𝑥𝑖 − 𝑡𝑖 |𝑤𝑖 and calculate the final parameter trajectory 𝑥𝑖

that minimizes the sum 𝐸 = 𝐸1 + 𝐸2, where the 𝐸1 term effectively
tries to straighten the track while 𝐸2 tries to adhere to the defined
targets as closely as possible. In order to model varying levels of
prominence in the articulation, we can do two things in this model:
1) increase the weight of targets belonging to prominent syllables,
thereby forcing the trajectory closer to the target; and 2) shift the
target to a more extreme position; this applies to the vowel param-
eters (jaw opening and retraction-rounding) which may simply
be scaled up or down. In practice, we use prominence estimates
to modulate both the target weights and the vowel target scaling,
along with a global scaling for hyper-hypo articulation, see Fig. 1.
In our experiments, the generated articulation tracks are be used to
drive the Furhat social robot or its digital twin simulator, but they
can be easily implemented on other facial animation rigs. Videos of
16 sentences generated with our conversational TTS in high or low
articulatory effort and with the standard Furhat lipsync (baseline
in our experiments) and the Amazon Polly TTS voice Matthew can
be found at https://www.speech.kth.se/tts-demos/iva2023/.

4 METHOD
4.1 Speech synthesis corpus
Developers of conversational systems should ensure that the TTS
voices they use are trained on ecologically valid data [2]. Our long-
standing goal is to build social robots capable of engaging in multi-
party interactions. To achieve this, we require data to train models
that generate appropriate speech, facial gestures, and gaze behav-
iors. Consequently, we have recorded a corpus in which the same
male American speaker acted as a moderator in 15 one-hour, three-
party interactions [25].

In these recordings, the moderator and two participants were
assigned the task of decorating an apartment using a GUI on a
large touch screen. The recordings took place in a motion capture
lab, where all participants wore headset microphones, eye-tracking
glasses, and gloves, and were filmed by three video cameras. All
channels were synchronized and timestamped using the Farmi
framework [21], ensuring that all aspects of the multi-party inter-
action were captured effectively, see fig. 3.

Figure 2: The 5 parameter model for the lip synchronization.

https://furhatrobotics.com
https://www.speech.kth.se/tts-demos/iva2023/
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In each interaction, the moderator first engaged in small talk
with the participants before introducing the task at hand. He then
assumed the role of an interior decorator, offering suggestions on
how to decorate the apartment and providing instructions on using
the GUI for this purpose. Occasionally, he adopted a self-directed
speaking style while contemplating design options or commenting
on the users’ progress. As the moderator switched between small
talk, instructions, advice-giving, and casual commentary, the re-
sulting corpus encompassed a wide range of spontaneous speaking
styles. In total, the conversational TTS corpus contains 5 hours
and 40 minutes of moderator speech. To facilitate the generation of
hyper-articulated speech, the TTS corpus was supplemented with
2 hours and 30 minutes of clear speech, in which the moderator
read sentences from the CMU Arctic [23] and newspaper texts. The
total TTS corpus spans approximately 8 hours.

4.2 Joke delivery generation
Typically, TTS voices are evaluated using mean opinion scores
(MOS), where generic sentences suitable for reading aloud are syn-
thesized. However, this approach tends to favor neutral, warm, and
informative speaking styles, which are best suited for reading news
or engaging in transactional interactions with voice assistants. In
this paper, our goal is to evaluate a conversational TTS voice capa-
ble of expressing different attitudes while speaking. As mentioned
earlier, the ultimate test for an expressive TTS voice would involve
delivering jokes with the appropriate timing and intonation. We
challenged ourselves by selecting joke delivery as the speech syn-
thesis evaluation task. Instead of using existing jokes from corpora
like the Jester joke dataset, we decided to generate the jokes to be
synthesized using the large language model GPT-4. The prompt
used for generating the joke candidates was: "Can you invent words

Figure 3: Picture from the data collection where the modera-
tor and two participants are decorating an apartment.

Table 1: The style and prosody controls used for the articula-
tion efforts. Input values are based on normalized utterance-
level averages for f0 and speech rate, where -1 corresponds to
the 1st percentile in the corpus and 1 to the 99th percentile.

Articulation Read/Conversational Pitch Speech rate
hyper 80/20 0 to 1 -2.0 to -1.0
normal 20/80 -0.5 to 0.5 -0.5 to 0.5
hypo 0/100 -2.0 to -1.0 1.0 to 2.0

that do not exist and then describe what they mean in a fun and
entertaining manner?". We also generated self-defeating comments
for each joke, using the following prompt: "Can you give a sarcastic
comment as a response to this joke?". Examples of the jokes are listed
in Table 2.

We used the recently proposed So-to-Speak system [47] ] to gen-
erate three different levels of articulation (see Tab. 1). This interface
allows users to generate and interact with hundreds of synthetic
speech samples using multi-dimensionally controllable TTS. The
design displays prosodic feature variations on the axes of an interac-
tive grid, where samples can be played by selecting them. The style
function can be varied interactively, with a slider enabling users to
scroll through grids exhibiting various levels of conversational and
read speech styles. The samples displayed on the grid are playable
upon clicking, and they are marked and colored according to an au-
tomatically generated naturalness MOS score using [12]. The scores
range from 1-5 (with 5 being "completely natural"), and the corre-
sponding colors range from red (1) to green (5). This provides users
with an estimate of how the settings on the controllable features
affect the quality of synthetic speech. The control interface and an
example grid with TTS samples are illustrated in Fig. 4. Using this
interactive tool, one of the authors selected specific ranges of the
controllable features to create three manners of perceptually dis-
tinctly different articulation, hyper-, normal and hypo-articulation,
as presented in Tab. 1. Since the TTS engine is built on Tacotron 2
[42] which is probabilistic at inference, the samples are synthesized
with natural variation within each setting.

Figure 4: An example grid with a sentence synthesized with
7 style settings and 11 prosodic feature steps, totalling 847
unique speech samples. The audios play upon clicking on
a cell. Style slider on top, updates the grid to the requested
style. Colors correspond to estimated MOS scores.
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Table 2: Examples of the GPT-4 invented words, funny descriptions and sarcastic self-mockery

Invented word Description Self-mockery
(Hyper-articulation) (Normal articulation) (Hypo-articulation)

Fail-forward It is the act of failing multiple times, but continuing to learn from your mistakes
and moving forward in a positive direction.

Just what we need, more people failing
their way to success.

Oopsy-daisy Detector It is a device that alerts you whenever you’re about to make a clumsy mistake, by
yelling oopsy-daisy.

Just what we need, more machines to do
the thinking for us.

Procrastinatron 3000 It is a robot that gently encourages you to keep putting off tasks, by offering
endless entertainment, snacks, and distractions.

Finally, a robot that understands my
priorities.

Sassy Stapler It is a cheeky office supply that offers witty comments, as it binds papers together. Because adding more distractions to your
workday is always a great idea.

Schrödinger’s Socks It is socks that are simultaneously mismatched and perfectly paired, depending
on whether you look at them.

Just what we need, more confusion in our
lives.

Hummus Sapien It is a human who loves hummus so much, it’s practically their identity. Just what we need, more people claiming to
be unique by having the same favorite food.

Philosopher’s Stoned It is a state of mind where profound thoughts seem hilarious and deep
simultaneously.

Just what we need, more deep thoughts
that make no sense.

AcciDelight Cake It is a cake that didn’t turn out as expected but still tastes delicious, reminding us
that life’s imperfections can still bring joy.

Nothing like setting the bar low and still
managing to trip over it.

5 OBJECTIVE EVALUATION
In [45] a tool called Starmap is introduced for visualizing and explor-
ing the variety of prosodic styles across a corpus using the dimen-
sionality reduction method t-SNE [55] and normalized utterance-
level means of prosodic features extracted with theWavelet Prosody
Analyzer [43]. As an objective evaluation, we apply this method to
validate the system’s ability to produce varying degrees of clarity
in articulation, With Starmap, it is possible to estimate speech rate
based solely on acoustics, using peaks in the maximum energy
scale, which correlate with the locations of syllables. However, in
conversational speech, particularly hypo-articulated speech, syl-
lables are often reduced or dropped entirely. This can result in a
difference between the number of syllables identified in the speech
samples and the number of syllables in the written prompt used

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
actual nr of syllables / nr of syllables estimated on energy scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0
hyper-articulated
hypo-articulated
normal

Figure 5: Density graphs for dropped syllable ratio: the ratio
of the number of syllables in the input text to the estimated
number of syllables from the signal (using the peaks of the
energy scale) for the 100 synthesis samples in three styles.

as input to the TTS. We can use this metric, the ratio of estimated
versus written syllables, as a measure of how much the prosodic
features (f0, speech rate, and energy) influence the clarity of ar-
ticulation. The same 100 utterances are synthesized in different
articulatory styles, namely normal (middle of the distribution of all
features), hyper-articulated (high f0, slower speech rate, high en-
ergy), and hypo-articulated (low f0, faster speech rate, low energy).
The dropped syllable ratio (DSR) of each style is shown in Fig. 5.
Our hypothesis that hyper- and hypo-articulated speech both signif-
icantly alter the DSR of synthetic speech is confirmed by pairwise
t-tests on the distribution (hyper vs. normal p≪ 0.001, and hypo vs.
normal p ≪ 0.001). The measured prosodic features, as well as the
DSR of the evaluation utterances, are visualized in a t-SNE in Fig. 6.
A two-dimensional Kolmogorov-Smirnov test is performed to verify
that the distribution of hyper- and hypo-articulated utterances are
different from the normal utterances and from each other, The re-
sults confirm that both the hyper- (p≪ 0.001) and hypo-articulated
(p ≪ 0.001) synthesis results in different distribution of prosodic
representation compared to the normal population. The same holds
true between the hyper- and hypo-articulated populations (p ≪
0.001).

6 SUBJECTIVE EVALUATION
To investigate the effect of the proposed methods, we carried out
two online perceptual tests, looking at joke-delivery and audiovisual
speech matching.

6.1 Method
We generated 16 utterances, according to the procedure described in
4.2. We synthesized the new words in a hyper-articulated speaking
style, the funny descriptions with an expressive prosodic realisation
and the self-defeating comments in a hypo-articulated speaking
style. In addition to the conversational TTS voice, the utterances
were also synthesized using a commercial TTS voice. In the joke-
delivery task, we asked subjects to listen to synthesized jokes (audio
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Figure 6: t-SNE visualization of the distribution of the
prosody of 100 synthesized utterances in three styles, based
on utterance-level normalized mean values of duration, f0,
energy, speech rate (syl/s) and the dropped syllable ratio
(DSR).

only) and rate how well the joke was delivered on a 5-point scale
from poor delivery to great delivery. Each subject received the 16
jokes, 8 in each voice. The pairing of joke and voice was randomized
between subjects, as was the presentation order. At the end of the
experiment, we asked follow-up questions about their experience
with speaking machines such as Alexa or Siri, what they based their
ratings on, if they believe computers should have human traits such
as humor or sarcasm, as well as if they had general comments on
the study.

For the audiovisual speech matching task, we presented anima-
tions rendered with the virtual Furhat robot of the same 16 utter-
ances, and asked subjects to rate how well the lip movements match
the speech on a 5-point scale from not matching at all to perfect
match. The animations were generated by the speech animation
method presented in section 3.2, and using a baseline method (the
Furhat systems built-in lipsync). We used the same two voices as in
the joke-delivery test, and generated videos representing all four
configurations of speech animation method (new vs baseline) and
voice (commercial vs conversational). Each subject was presented
with 16 animations, four in each configuration. Pairing of joke and
configuration was randomized between subjects, as was the pre-
sentation order. For each of the tests, we recruited 70 subjects on
the Prolific crowd-worker platform for the task. An attention check
was used in the middle of the sequence. Median completion time
was 5:30 minutes and subjects received a 1.50 GPB compensation.

6.2 Results
Ratings from the two experiments were analysed by means of a
one-way ANOVA and a post-hoc Tukey multiple-comparisons test
for statistical significance. In the joke delivery task, the mean rating
and 95% confidence interval for the commercial and conversational
voice was 2.5± 0.1 and 2.6± 0.1 respectively, but the difference was
not statistically significant. Results from the audiovisual speech
matching task are shown in Fig. 7 top. The conversational TTS + new
animation configuration got the highest rating, and the commercial
TTS + baseline animation the lowest. All differences were significant
(𝑝 < 0.05). The joke-delivery test also contained a set of open
questions. For the question What did you base your rating on?,
intonation was most frequently mentioned, followed by timing,
funniness, human-likeness and clarity, see Fig. 7 bottom. Often they
gave several of these where the most common combinations were
funniness and human-likeness, or intonation and timing. When
computing the average scores per reason both voices got the same
score for all reason accept for clarity, where the commercial TTS
got 3.3 and the conversational 2.7. The lowest score for both (2.2)
was from the users who based their scores on how funny the actual
joke was, and not how it was read. Otherwise the average scores
for both TTS voices were 2.7. In response to the question Do you
think computers should have human traits, like humor and sarcasm?
44 said "yes", 19 "no", and 6 "I dont́ know".

7 DISCUSSION
Our work aims to advance the development of social robots and
embodied conversational agents which can serve as companions
or conversational peers. To achieve this goal, we have created an
audiovisual speech generation system for expressive conversational
characters and developed methods to control the manner of speak-
ing with accompanying facial animation. As pointed out byWagner
at al. when we evaluate our TTS systems we need "to assess and take
into account listeners’ application-specific needs and expectations"
[56]. Furthermore, the TTS evaluations should be as contextualized
as possible to the participants. In our study, we choose a com-
panion agent which could provide social company as the context
and joke-delivery as the test case. We found that our conversa-
tional TTS voice performed on par with a state-of-the-art neural
commercial TTS voice in the joke delivery task. Notably, several
participants’ comments revealed that many were impressed by the
unique human-like attributes of the conversational TTS voice. Some
particularly noteworthy general comments include:

"One of the audios sounded very well like a human, I did not
expect this technology to be this far in human mannerisms."

"Some audio tracks sounded quite close to the way humans
deliver a joke! You can still tell they’re computer-generated but
I’m floored by how much more advanced they sound compared
with Siri"

"As time went on, the jokes got funnier despite the quality of
the jokes not getting any better. The absurdity may have had
me rating a bit higher.".

This tells us that while are not up for an Ebert test just yet, we
have might have managed to build a rather capable conversational
voice. This is in line with our long-standing goal of building more
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Figure 7: Subjective evaluation results. Top: Score from the
audiovisual speechmatching task, bottom: joke delivery task,
summary of responses to What did you base your rating on?.

human-like conversational systems [13]. The ability to change the
intonation and articulation effort is crucial in situated interaction
and during error handling and grounding. Finally, we found that
our new speech animation method consistently outperformed the
baseline in the audiovisual speech matching test for both TTS-
voices. We also note that the conversational TTS voice, which is
considerably more varied in speech rate and articulatory effort than
the commercial TTS, also received a higher rating in the multimodal
setting.

8 CONCLUSIONS
We presented a system capable of producing conversational syn-
thetic speech and accompanying facial animationwith an adjustable
degree of clarity of articulation. Since the TTS is probabilistic, the
generated speech has an added natural variation. With this func-
tionality we hope to enable virtual agents to exhibit refined social
behaviors such as mumbling, muttering, attracting attention, being
engaging or talking more clearly during error resolution. A novel
speech animation algorithm that allows control over articulatory
effort, for varying prominence and hyper-hypo speech production,
pairs particularly well with the conversational TTS voice.

In the objective evaluations we show that the system indeed
was able to generate speech that vary in articulation effort with
accompanying lip movements. In the subjective evaluations we
compared our conversational TTS system’s capability to deliver
jokes with a commercial TTS in an audio-only setting. Both system
succeeded moderately good at this task, indicating that today’s TTS
technology is not on comedian-level yet. In a multi-modal context,
we found that the conversational TTS, combined with our novel
speech animation algorithm, provided the best overall subjective
audiovisual coherence. These findings suggest that our system has
potential for creating more natural and engaging conversational
agents.

A key contribution in this paper is the development of a TTS
voice that is not only grounded in ecologically valid data but also
capable of generating spontaneous speech with accompanying lip
movements for ECAs. This was achieved by constructing a voice
for conversational systems that allows for the manipulation of
speaking style, articulatory effort, and prosodic realization. The
TTS voice was trained on a diverse speech corpus, which included
slow, clear read speech as well as conversational interactions from
the same speaker. This training enabled the blending of read speech
with spontaneous conversation, while also providing control over
pitch and speaking rate. Furthermore, the system’s facial animation
is driven by time-stamped phonemes and prominence estimates
derived from the synthesized speech waveform, allowing for the
modulation of lip and jaw movements in sync with the speech.
This adds a layer of realism and expressiveness to the ECAs. In
addition, we developed a GUI for VUI designers, which facilitates
the control of the blend between read and conversational speech, as
well as prosody. This GUI is instrumental in pre-generating system
prompts with precise prosodic realization and offers insights into
the capabilities of the voice in terms of speaking style mix and
prosodic realization. VUI designers can utilize this tool to learn
the optimal mixes and ranges of pitch and speaking rate to pair
with system prompt text for achieving specific pragmatic functions.
Lastly, we introduced a novel evaluation paradigm that transitions
from relying solely on Mean Opinion Scores (MOS) for naturalness
to evaluating the multimodal speech generation system within an
application context. A notable application demonstrated is joke
delivery. In these evaluations we used chatGPT to generate the
jokes, enhancing realism and demonstrating, where the system
was found to be on par with commercial TTS systems in terms of
performance. This showcases the system’s potential for applications
such as stand-up robot performances, and highlights the importance
of evaluating ECAs in real-world contexts.
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