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Abstract

Smiling during speech production has been shown to result
in perceptible acoustic differences compared to non-smiling
speech. However, there is a scarcity of research on the per-
ception of “smiling voice” in synthesized spontaneous speech.
In this study, we used a sequence-to-sequence neural text-to-
speech system built on conversational data to produce utter-
ances with the characteristics of spontaneous speech. Segments
of speech following laughter, and the same utterances not pre-
ceded by laughter, were compared in a perceptual experiment
after removing laughter and/or breaths from the beginning of
the utterance to determine whether participants perceive the
utterances preceded by laughter as sounding as if they were
produced while smiling. The results showed that participants
identified the post-laughter speech as smiling at a rate signif-
icantly greater than chance. Furthermore, the effect of con-
tent (positive/neutral/negative) was investigated. These results
show that laughter, a spontaneous, non-elicited phenomenon in
our model’s training data, can be used to synthesize expressive
speech with the perceptual characteristics of smiling.

Index Terms: speech synthesis, text-to-speech, smiling voice,
smiled speech

1. Introduction

There are many well-documented functions of smiling in inter-
personal communication. A smile can influence a speaker’s per-
ceived desire for cooperation[1] as well as their perceived trust-
worthiness [2], competence [3], extroversion, sympathy, kind-
ness, and attractiveness [4]. And smiling is not merely a visual
phenomenon-it creates changes in speech that can be perceived
by listeners. The features associated with smiling voice include
greater pitch height and pitch range [5, 6], and higher formant
frequencies for some vowels [7, 8]. These audible character-
istics allow smiling voice to mirror at least some of the social
functions of smiling even in the absence of visual cues (e.g.,
conveying trustworthiness in virtual agents [9]).

With the advancements of conversational Al allowing for
more nuanced interactions than ever before [10], synthetic
voices of conversational agents need to become more realis-
tic and versatile, displaying character, and complex conversa-
tional capabilities. In the area of expressive speech synthe-
sis, there has been a relatively recent shift of research interest
from synthesizing speech reflecting specific emotion categories
or dimensions, towards unsupervised approaches of synthesiz-
ing “speaking styles” [11, 12]. These data-driven approaches
have benefited from the availability of audiobooks, which con-
tain a higher variability of speaking styles than traditional TTS
corpora, but are lacking explicit annotation found in corpora
of specifically recorded emotional speech. Less attention has
been given to the interpretability and perceptual effect of syn-
thesized styles using unsupervised methods. On the other end
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of the spectrum, various systems have been proposed for in-
terpretable and intuitive control of prosodic features such as
melody, rhythm, [13], pitch range, phone duration and spec-
tral tilt [14]. However, for more stylistic characteristics, the
gap between controllability and interpretability still remains to
be closed. Thanks to recent advances in deep learning which
have resulted in more robust systems both in text-to-speech
and in speech processing tools for annotation and segmenta-
tion, spontaneous speech synthesis has made a leap forward in
terms of naturalness and appropriateness for certain contexts
[15]. As corpora of spontaneous speech have become avail-
able targets for text-to-speech, we are no longer restricted to
modeling speaking styles in audiobooks, which are mostly a
result of colorful reading, such as the speaker imitating charac-
ters. Real-world spontaneous speech data contains a myriad of
speech phenomena that reveal the speaker’s cognitive state, atti-
tude stance, etc., which are represented in a variety of acoustic-
prosodic and segmental features. Much of the research in spon-
taneous speech synthesis to date has been focused on model-
ing and understanding the use of hesitations such as uh and um
[16, 17] and breathing [18], with many styles and phenomena
left to be explored, both in terms of synthesis and perception.

This paper focuses on synthesizing a specific voice style,
namely amused speech following laughter in a spontaneous
monologue, which we refer to here as “smiling voice”. We pro-
pose a context-driven method for synthesizing speech following
laughter, using state-of-the art neural TTS built entirely from
spontaneous conversational speech. In the training data, laugh-
ter (short affect burst) is not explicitly elicited, emerging as part
of the spontaneous delivery contributing to the narrative. The
perceptual effect of smiling voice is explored in different con-
texts, using sentences with positive, negative and neutral senti-
ment.

2. Related work

‘While much of the research on smiling voice has involved nat-
urally produced speech, there have been a few investigations
of smiling voice in synthesized speech. Lasarcyk and Trouvain
[19], for example, synthesized four different German vowels
using articulatory synthesis, and applied combinations of three
different parameters to these vowels which correspond to the
effects of smiling on articulation: raised f0, spread lips, and
raised larynx. They found that higher fO resulted in a greater
degree of perceived smiling for all vowels. Both spread lips and
a raised larynx influenced vowel formant frequencies as well as
the perception of smiling, but this effect was different for dif-
ferent vowels. The vowels /a:/ and /y:/ were perceived as more
smiley when synthesized with spread lips, while /i:/ showed no
difference and /u:/ was considered less smiley with spread lips.
The vowels /a:/ and /i:/ were perceived as more smiley with a
raised larynx, but this parameter had no effect on the other vow-
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els.

Another approach [20] used HMM-based synthesis to allow
for a controllable degree of smiling in synthesized speech. Two
models were created using recordings of neutral and smiling
speech from one actor. For the recordings of smiling speech,
the actor was instructed to smile and “sound happy” but not to
laugh. A new model with controllable degrees of smiling was
created by using a weighted-sum interpolation between the neu-
tral and smiling models, with a degree of smile that varied ac-
cording to the weights used. The evaluation showed that higher
weights resulted in synthesized speech that was perceived as
smiling to a greater degree, but also less natural.

In terms of synthesizing amused or happy-sounding speech,
generating laughter is another important issue. Some previous
approaches attempting to combine laughter and smiling voice
have synthesized these two components independently from one
another and then combined them. An HMM-based approach in
[21], for example, inserted vowels produced while laughing into
smiling speech generated with a different method, and the ap-
proach of [22] inserted phrase-sized “affect bursts” using con-
catenative speech synthesis. A more recent effort to synthesize
laughter [23] employed a sequence-to-sequence neural text-to-
speech system, with the goal was to create natural-sounding
laughter which could then be integrated with a model for smil-
ing speech.

In contrast to the approaches described above, our method
of producing smiling voice neither explicitly manipulates
acoustic parameters, nor does it use data that was explicitly
elicited while smiling. Rather, we employ a context-driven ap-
proach on spontaneous data, generating smiling voice by syn-
thesizing speech following laughter in one integrated model.

3. Database and synthesis
3.1. Spontaneous speech corpus

The TTS corpus was created from the audio recordings of the
Trinity Speech-Gesture Dataset (TSGD) [24], which is com-
prised of 25 impromptu monologues by a male actor, on av-
erage 10.6 minutes long. The recordings were performed over
multiple recording sessions by a male speaker of Irish English.
The actor is speaking in a colloquial style, spontaneously and
without interruption on topics such as hobbies, daily activities,
and interests. During the monologues, he addresses a person
seated behind the cameras who is giving visual, but no ver-
bal feedback. Because a large part of the monologues involve
story-telling, the actor often engages in retelling entertaining
anecdotes, which naturally elicit laughter followed by the im-
pression of amused, smiling voice, the synthesis of which is the
focus of the current paper.

3.2. Annotation

To create a TTS corpus, the recording was transcribed using
ASR and subsequently manually corrected to contain as few er-
rors as possible, and to ensure that all filler words are accu-
rately transcribed. In order to maximize the utterance length in
the corpora and to enable insertion of inhalation breaths in the
TTS, we used a data augmentation method called breathgroup
bigrams, which essentially consists of segmenting a speech cor-
pus into stretches of speech delineated by breath events, and
then combining these breath groups in an overlapping fashion
to form utterances no longer than 11 seconds [18] (see Figure
1). This method also makes it possible to learn contextual in-
formation beyond respiratory cycles during TTS training. Aside
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Figure 1: [llustration of the breathgroup-bigram utterance

structure [18] applied to create the TTS corpus from continu-
ous recordings of spontaneous speech. Breath events are high-
lighted in grey.

from filled pauses such as uh and um, the ASR transcription was
enhanced with manual annotation of laughter, style breaks and
silent pauses, the latter indicated with a comma. Both the filled
pauses and laughter were transcribed using ARPABET phones.
No new characters were introduced outside the standard. If
a laughter involved ingressive airstream and was directly fol-
lowed by more speech, the last voiced inhalation was annotated
as breath event.

3.3. Systems

Two systems were trained using the sequence-to-sequence neu-
ral TTS engine Tacotron 2 [25]. The first system uses the stan-
dard Tacotron 2 architecture. The second system implements
an utterance-level prosody control method, similar to [14], to be
able to direct fO and speech rate at inference. Speech rate (syl-
lables/second) over the utterance and mean f0O are normalised,
aligning the Ist and the 99th percentile points of the data to -1
and 1 respectively, and allowing outliers to go outside of that
range. Normalized values for both features are appended to
each utterance’s encoded text and passed to the attention and
decoder blocks from the pre-trained model. In order to fit the
additional features, the input dimension to the attention, LSTM,
projection and gate layers in the decoder are expanded. The ad-
ditional weights added to the model are initialized with zero
values. As such, at the start of the training the model evalu-
ates as the pre-trained model. This method allows for directing
mean fO and speech rate on utterance level based on the natural
distribution of these features in the corpus, as opposed to direct
manipulation.

We used a PyTorch implementation of Tacotron 2, training
each voice using transfer learning for 200k iterations on top of a
pre-trained model trained on the LJ speech corpus [26]. Trans-
fer learning based on a model trained on a large read-speech
corpus has been shown to improve the quality of spontaneous
speech synthesis [15]. For vocoding, the pre-trained universal
model of WaveGlow [27] was fine-tuned for 290k iterations.

3.4. Synthesis of smiling voice

Our hypothesis is that due to the natural occurrence of laughter
in the spontaneous speech corpus, synthesizing a laughter token
followed by a breath event will result in an amused speaking
style, characteristic of smiling voice in the subsequent speech.

"https://github.com/NVIDIA/tacotron2



Our reasoning is that the presence of smiling in speech that fol-
lows laughter introduces acoustic differences from comparable
speech sounds not preceded by laughter, and accurately repro-
ducing these differences will reduce the loss function (MSE)
used to train the synthesizer. The synthesizer’s ability to achieve
these loss-function reductions and “remember” when to pro-
duce smiling speech also across a breath likely relies primarily
on the encoder (rather than the acoustic memory offered by the
autoregression and the LSTM in the decoder), since the encoder
contains several CNN layers ideal for learning short-range de-
pendencies and operates on the phone level, where the smiling
token and the next speech sound are adjacent. To gain an insight
into the perceptual effect of this method, the two systems were
used to create two different conditions of synthesizing smiling
voice. The baseline original Tacotron 2 architecture was used
in the first condition, which we call unconstrained, because it
allows the system to use the proximity of laughter to influence
the rendering without any further constraints. The second con-
dition employs our prosody-controllable architecture. During
inference, we set both the normalized mean fO and speech rate
values to 0, in order to assess whether smiling voice can still be
elicited while directing the system to render a realization close
to the median of the distribution in the corpus for these two
prosodic features. Hence, we call this condition constrained.
We propose this method to help isolate other acoustic-prosodic
features characteristic to smiling speech, to be able to assess
their perceptual impact.

4. Evaluation
4.1. Stimuli

The samples for this experiment were synthesized from 36 utter-
ances that stated an opinion. Twelve of each type of statement
was used: positive (e.g., “T agree with that”), negative (e.g., “I
don’t really agree with that idea”) and neutral (e.g., “It’s fine
with me either way”). These utterances were then synthesized
with the constrained system and the unconstrained system, both
preceded by laughter and without laughter. This resulted in a
total of 144 stimuli with combinations of 3 different parame-
ters: model (constrained/unconstrained), context (laughter/no
laughter) and content (positive/negative/neutral). Laughter and
inhalation breaths were removed from the beginning of each ut-
terance, as we were interested in whether the utterances them-
selves would carry the perceptual characteristics of smiling and
did not want the participants to base their judgments on whether
or not they heard laughter.

4.2. Acoustic-prosodic analysis

The evaluation samples were analyzed for a number of acous-
tic and prosodic features to determine whether they dif-
fered between model (constrained vs. unconstrained), con-
text (post-laughter vs. no laughter), and/or content (posi-
tive/negative/neutral). Speech rate (syl/sec), mean f0, and fO
variation were measured and compared for the four different
combinations of model and context. In addition, to compare
the conditions in terms of breathiness, we calculated median
smoothed cepstral peak prominence (CPPS, [28]) of all voiced
frames in an utterance. CPPS quantifies strength of the first har-
monic relative to the regression line over the power cepstrum,
with high values corresponding to more modal voice and low
values indicating breathiness. No significant difference was
found in mean f0. However, analysis of variance showed a
significant main effect of context on fO variation. fO variation
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(as measured by the standard deviation of fO per utterance) was
higher for speech following laughter (M=14.49, SD=5.56) than
for speech synthesized without laughter (M=12.27, SD=5.61),
F(1,33) = 4.61, p < 0.05. There was also a main effect of
model on speech rate. The samples synthesized with the un-
constrained model had a higher speech rate (M=5.15, SD=0.96)
than samples synthesized with the constrained model (M=5.08,
SD=1.01), F(1,33) = 7.67, p < 0.05. Finally, analysis of vari-
ance showed a significant effect of model on CPPS in voiced
segments. Samples synthesized with the constrained model had
a higher CPPS (M=12.35, SD=1.70) than samples synthesized
with the unconstrained model (M=11.94, SD=1.57), F(1,33) =
6.86, p < 0.05.

4.3. Naturalness test

The systems were assessed for naturalness based on a web-
based MUSHRA-like listening test. The test involved four ver-
sions of each utterance side by side (post-laughter/constrained,
post-laughter/unconstrained, no laughter/constrained and no
laughter/constrained) in randomized order with a scale for each
item that ranged from 1 (very unnatural) to 5 (very natural).

4.4. Pairwise listening test

The extent to which post-laughter speech sounded like smiling
was evaluated with a web-based forced-choice audio discrimi-
nation task. In one version of the test, stimuli synthesized with
the constrained model were used. The other version used stim-
uli synthesized with the unconstrained model. Otherwise the
setup was identical: smiling and non-smiling versions of each
of the 36 utterances were presented side by side and the task
was to choose which of the two versions sounded the most as if
the speaker was smiling. The samples could be played as many
times as needed. The order in which the two versions were
displayed was randomized, as was the order of the utterances.
The TTS samples used in the experiments are available here:
https://www.speech.kth.se/tts-demos/ssw2021smiling

5. Results
5.1. Naturalness test

Twenty-one participants recruited online via Prolific completed
the test. 54.38% were female and 47.62% were male. A within-
subjects factorial analysis of variance showed that there was no
main effect of content (positive/negative/neutral), context (post-
laughter/no laughter) or model (constrained/unconstrained) on
how natural-sounding participants rated the stimuli. The inter-
action between model and content was significant, F(2,19) =
5.62, p < 0.05, however, simple main effects of content were
not significant for either the constrained or the unconstrained
model. Results are summarized in Figure 2.

5.2. Pairwise listening test

A total of 60 participants were recruited via Prolific, of which
55.9% were female and 44.1% were male. All participants were
native speakers of English. Half (30) received the unconstrained
version of the task while the other half received the constrained
version. One participant from the unconstrained group was ex-
cluded from the final analysis because their completion time
was over 4 standard deviations above the mean.

Participants who heard stimuli synthesized with the uncon-
strained model identified the post-laughter synthesized speech
as smiling 67.62% of the time, while participants who heard
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Figure 2: Results of MUSHRA-like naturalness test on conver-
sational utterances with positive (+), negative (-) and neutral
(0) linguistic content.

stimuli created with the constrained model identified post-
laughter speech as smiling at a rate of 62.55%. Single-sample
t-tests showed that this rate was significantly higher than chance
for both participants who heard stimuli synthesized with the
prosody-constrained model, #(29) = 5.01, p < 0.001, and those
who rated stimuli synthesized with the unconstrained model,
#(28) =10.26, p < 0.001.

A mixed factorial analysis of variance was carried out to
investigate the effect of content (positive/negative/neutral) and
model (constrained/unconstrained) on the rate of identifying
post-laughter speech as smiling. There were significant main
effects of both content (F(2,56) = 44.25, p < 0.001) and model
(F(1,57) = 6.97, p < 0.05). Participants who heard the prosod-
ically unconstrained samples rated the post-laughter speech as
smiling more often (M=67.62, SD=14.29) than those who heard
the prosodically constrained samples (M=60.46, SD=17.33). In
addition, participants were more likely to rate utterances that
stated positive opinions as smiling (M=74.44,SD=12.17) com-
pared to negative (M=65.96,SD=16.76) and neutral statements
(M=51.55,SD=17.40). Post-hoc tests with the Bonferroni cor-
rection showed that the differences between these means were
all significant (p < 0.01).

Constrained

Unconstrained

H
50%

25% 75% 100%
Figure 3: Results of pairwise listening test, with coloured bars
representing correct identification of smiling voice for utter-
ances of positive (+), negative (-) or neutral (0) linguistic con-
tent produced by each model.
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6. Discussion

As hypothesized, it appears that speech following synthesized
laughter is perceived as smiling, showing that the voice style
we referred to as “smiling voice” conveys some of the percep-
tual aspects of smiling. The content of the utterances (whether
they stated a positive, negative or neutral opinion) seemed to
play a role in how participants performed at classifying post-
laughter speech as smiling: listeners found it easier to discrim-
inate between smiling voice and non-smiling voice when the
content of the utterance was positive. Note that due to the use
of a forced choice test in our evaluation, this does not mean
that positive linguistic content increases the likelihood of per-
ceived amusement in speech, but rather that it improves dis-
crimination between two utterances on the basis of perceived
amusement. This may indicate that, as a consequence of the
context-driven approach, the TTS system was better at generat-
ing utterances that sounded like smiling when the content was
positive. An alternative explanation would be that there is an
effect of congruence between content and perceived emotional
valence, whereby participants had an easier time distinguish-
ing between smiling and non-smiling speech when the content
and expressive characteristics of the synthesized smiling speech
matched. However, participants had the most difficult time dis-
tinguishing between smiling and non-smiling speech when the
linguistic content was neutral, which makes the first possibility
more plausible.

Unlike in some previous studies, smiling speech in this
case was not perceived as less natural than non-smiling speech.
There appears to have been some joint effect of model and con-
tent on perceived naturalness, but since the differences in natu-
ralness between positive, negative and neutral content were not
significant with either model. this is difficult to interpret. The
takeaway is that smiling voice synthesized with our method did
not sound less natural.

In terms of acoustic/prosodic features, there were some dif-
ferences between the constrained and unconstrained model. The
unconstrained model produced breathier speech with a higher
speech rate. However, these differences did not, in turn, seem
to affect discrimination between smiling and non-smiling voice.
Although participants who listened to samples from the uncon-
strained model did have an easier time with the discrimination
task, there was no association between their performance and
the parameters on which the models differed. Rather, fO varia-
tion seems to have had the largest impact on performance at the
discrimination task independent of model, consistent with pre-
vious findings that fO variation is higher in naturally produced
smiling speech [5, 6].

7. Conclusions

By synthesizing speech following laughter, we were able to ex-
ploit a spontaneous phenomenon in our models’ training data to
create the impression of smiling, without affecting the natural-
ness of the speech signal. This was the case even in a prosody-
constrained model that restricted fO and speech rate variation
towards the median in the corpus, although listeners found the
discrimination task more challenging with this model. Due to
the context-driven nature of our method it seems that the lin-
guistic content of the utterances affected the ease of discrimi-
nating between smiling and non-smiling speech. It is not en-
tirely clear, whether this is due to the smiling speech sounding
more like smiling when synthesized from utterances that sug-
gest agreement, the non-smiling speech sounding less like smil-



ing in this context, both, or some other difference between the
stimuli that made the discrimination task easier by making the
stimuli sound more dissimilar.

The fact that the mere proximity of synthesized speech to
synthesized laughter can create an impression of smiling means
that it may not be necessary to synthesize laughter and smil-
ing speech independently, as previous approaches suggest. In-
tegrated into a conversational system equipped with voice style
management modules, this approach could both create smiling
voice that emerges in the context of laughter, and standalone
amused speech (where the synthesized laughter is masked in
the output), thereby improving the dialogue systems’ capability
to engage in informal social interactions.
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