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� Background: ecological theory of language ac-
quisition (Lacerda et al., 2004)
• the infant is näıve: no innate linguistic knowledge

� Aim (long term): mathematical modelling of the
learning process
• acoustic features classification

• time integration into meaningful sequences

� Aim (this study): spectral features classification
• unsupervised

• incremental
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� Model-Based Clustering (Fraley and Raftery,
1998)
• data modelled as mixture of probability distributions

• each distribution represents a cluster

• each data point belongs to each cluster with a certain
probability

• model parameters estimated via Expectation Maximisa-
tion

• different models compared via Bayes information crite-
rion (BIC)

� Incremental Model-Based Clustering (Fraley
et al., 2003)
• introduced for large datasets
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3. adjust old model to new data
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5. try a more complex model, if better BIC
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Experimental settings)
a

� data (ex1, ex2, ex3, ex4, ex5)
• 12 minutes from the MILLE corpus

• child directed speech (1 mother talking to her child)

• Mel frequency cepstral coeffs computed every 10ms +
differences of first and second order


snd0044.wav
Media File (audio/wav)


snd0063.wav
Media File (audio/wav)


snd0068.wav
Media File (audio/wav)


snd0127.wav
Media File (audio/wav)


snd0138.wav
Media File (audio/wav)



Experimental settings)
a

� data (ex1, ex2, ex3, ex4, ex5)
• 12 minutes from the MILLE corpus

• child directed speech (1 mother talking to her child)

• Mel frequency cepstral coeffs computed every 10ms +
differences of first and second order

� experimental factors
• dimensionality of the data: from 3 to 39 dimensions

• frame length: from 200msec to 3sec

snd0044.wav
Media File (audio/wav)

snd0063.wav
Media File (audio/wav)

snd0068.wav
Media File (audio/wav)

snd0127.wav
Media File (audio/wav)

snd0138.wav
Media File (audio/wav)



Evaluation)
a

� problem: there is no reference (at the moment)



Evaluation)
a

� problem: there is no reference (at the moment)

� relative evaluation:



Evaluation)
a

� problem: there is no reference (at the moment)

� relative evaluation:

� time evolution of number of clusters
• dependency with number of feature coefficients

• dependency with frame length



Evaluation)
a
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� relative evaluation:

� time evolution of number of clusters
• dependency with number of feature coefficients

• dependency with frame length

� agreement of classification in different conditions
• variation of information (Meilǎ, 2002)

VI(C,C ′) = H(C|C ′) + H(C ′|C)

H(C’)

VI(C,C’)

H(C|C’) H(C’|C)

H(C)

I(C,C’)



Results)
a
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time in s (1 s = 100 samples) 
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nvars = 39
nvars = 24
nvars = 12
nvars = 6
nvars = 3

variation of information 3 6 12 24 39
3 0 0.358 0.435 0.471 0.488
6 0 0.376 0.428 0.460

12 0 0.366 0.407
24 0 0.320
39 0
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effect of frame length (n vars = 39)

time in s (1 s = 100 samples) 

# 
cl

us
te

rs

frame len = 20
frame len = 50
frame len = 100
frame len = 200
frame len = 300

variation of information 20 50 100 200 300
20 0 0.215 0.228 0.253 0.252
50 0 0.195 0.241 0.238

100 0 0.236 0.219
200 0 0.222
300 0



Results)
a

� example

File: /afs/md.kth.se/tmh/proj/speech/mille/data/splitDante040311/snd0008.wav   Page: 1 of 1   Printed: Fri Apr 08 20:25:28
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a

� Incremental model-based clustering is a good
candidate to model incremental learning
• gives stable results in different conditions (frame length,

dimensionality)

• the number of clusters increases with new data

• the rate of increase is larger for high dimensional acoustic
features

• an asymptote is reached at low dimensionality

• the variation of information can be used to compare
classifications

• probabilistic framework: easier for time integration



Conclusions)
a

� Incremental model-based clustering is a good
candidate to model incremental learning
• gives stable results in different conditions (frame length,

dimensionality)

• the number of clusters increases with new data

• the rate of increase is larger for high dimensional acoustic
features

• an asymptote is reached at low dimensionality

• the variation of information can be used to compare
classifications

• probabilistic framework: easier for time integration

� use IMClust to interpret production and percep-
tion data from children studies
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Meilǎ, M. (2002). Comparing clusterings. Technical Report 418, Department of Statistics, University

of Washington.

http://www.speech.kth.se/~giampi

