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» Background: ecological theory of language acquisition
(Lacerda et al., 2004)

» the infant is naive: no innate linguistic knowledge
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» time integration into meaningful sequences
> integration of acoustic/visual information

SOME RIGHTS RESERVED


http://creativecommons.org/licenses/by-sa/2.0/

» Background: ecological theory of language acquisition
(Lacerda et al., 2004)

» the infant is naive: no innate linguistic knowledge
» Aim (long term): mathematical modelling of the learning
process
» acoustic features classification
» time integration into meaningful sequences
> integration of acoustic/visual information
» Aim Interspeech 2005 (Salvi, 2005): acoustic features
classification
» unsupervised
» incremental
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Acoustic features

Equally spaced windows of speech
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Method

» Model-Based Clustering (Fraley and Raftery, 1998)
» data modelled as mixture of probability distributions
» each distribution represents a cluster
» each data point belongs to each cluster with a certain
probability
» model parameters estimated via Expectation Maximisation
» different models compared via Bayes information criterion

(BIC)

SOME RIGHTS RESERVED


http://creativecommons.org/licenses/by-sa/2.0/

Method

» Model-Based Clustering (Fraley and Raftery, 1998)
» data modelled as mixture of probability distributions
» each distribution represents a cluster
» each data point belongs to each cluster with a certain
probability
» model parameters estimated via Expectation Maximisation
» different models compared via Bayes information criterion
(BIC)
» Incremental Model-Based Clustering (Fraley et al., 2003)
> introduced for large datasets
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Algorithm

B =

start with a MCLUST model
get new data
adjust old model to new data

divide new data into and
poorly modelled points

try a more complex model, if better
BIC set as best and go back to 4

set the current best model and go
back to 2

x2
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Experimental settings

» Data (ex1, ex2, ex3, ex4, exb)
» 12 minutes from the MILLE corpus
» child directed speech (1 mother talking to her child)
» Mel frequency cepstral coeffs computed every 10ms +
differences of first and second order
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Experimental settings

» Data (ex1, ex2, ex3, ex4, exb)
» 12 minutes from the MILLE corpus
» child directed speech (1 mother talking to her child)
» Mel frequency cepstral coeffs computed every 10ms +
differences of first and second order
» experimental factors

» dimensionality of the data: from 3 to 39 dimensions
» frame length: from 200msec to 3sec
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Evaluation

» problem: there is no reference (at the moment)
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Evaluation

» problem: there is no reference (at the moment)

> relative evaluation:
» time evolution of number of clusters

» dependency with number of feature coefficients
» dependency with frame length

» agreement of classification in different conditions
» variation of information (Meila, 2002)

H(C’)
H(C)

VI(C,C') = H(C|C') + H(C'|C)

vI(C,C’)
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Results

effect of dimensionality (frame len = 50)
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Mismatch Child /Parent Voice
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Mismatch Child /Parent Voice

» ASR with children
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Mismatch Child /Parent Voice

PARENT

» ASR with children
» Normalisation

» VTLN: Vocal Tract Length Normalisation
» Adaptation: hard in this context
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Mismatch Child /Parent Voice

PARENT

» ASR with children
» Normalisation

» VTLN: Vocal Tract Length Normalisation
» Adaptation: hard in this context

» Relative Features
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Acoustic Features
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Acoustic Features
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Acoustic Features

Landmark Based
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Consequences
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Clustering Time Sequences

of gaussian

independently drawn from mixture

Acoustic vectors
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Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian
distributions
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Clustering Time Sequences
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Modeling time evolution with Markov chains
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Modeling time evolution with Markov chains
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Modeling time evolution with Markov chains
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The Visual Channel

Feedback
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» No one-to-one relation acoustic/visual info
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The Visual Channel

» No one-to-one relation acoustic/visual info
» Reinforcement Learning
» perform match at higher levels (pseudo-words or -phrases)
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The Visual Channel

Perform visual/acoustic match on the Markov chain
Acoustic Event

Visual Event
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The Final Question

» Are the acoustic blocks (categories) in a language learned out
of their statistical occurrence or out of their contrastive use?
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» Are the acoustic blocks (categories) in a language learned out
of their statistical occurrence or out of their contrastive use?

> in the first case: model based clustering and growing Markov
chains are separate processes.
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The Final Question

» Are the acoustic blocks (categories) in a language learned out
of their statistical occurrence or out of their contrastive use?

> in the first case: model based clustering and growing Markov
chains are separate processes.

> in the second case: need to integrate everything
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