Ecological Language Acquisition via Incremental Model-Based Clustering

Giampiero Salvi

KTH CSC TMH giampi@kth.se

Nov. 2005

Introduction

Interspeech 2005

Part II

Mismatch Child/Parent Voice Frame Based Processing? Clustering Time Sequences The Visual Channel Conclusions

Denes and Pinson (1993)

Denes and Pinson (1993)

Denes and Pinson (1993)

Denes and Pinson (1993)

- ► Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - ▶ the infant is naïve: no innate linguistic knowledge

- Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - ▶ the infant is naïve: no innate linguistic knowledge
- ► Aim (long term): mathematical modelling of the learning process
 - acoustic features classification
 - time integration into meaningful sequences
 - integration of acoustic/visual information

- Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - ▶ the infant is naïve: no innate linguistic knowledge
- Aim (long term): mathematical modelling of the learning process
 - acoustic features classification
 - time integration into meaningful sequences
 - integration of acoustic/visual information
- Aim Interspeech 2005 (Salvi, 2005): acoustic features classification
 - unsupervised
 - incremental

Acoustic features

Equally spaced windows of speech

Assumption

Acoustic feature vectors independently drawn from mixture of

Method

- Model-Based Clustering (Fraley and Raftery, 1998)
 - ▶ data modelled as mixture of probability distributions
 - each distribution represents a cluster
 - each data point belongs to each cluster with a certain probability
 - model parameters estimated via Expectation Maximisation
 - different models compared via Bayes information criterion (BIC)

Method

- Model-Based Clustering (Fraley and Raftery, 1998)
 - ▶ data modelled as mixture of probability distributions
 - each distribution represents a cluster
 - each data point belongs to each cluster with a certain probability
 - model parameters estimated via Expectation Maximisation
 - different models compared via Bayes information criterion (BIC)
- Incremental Model-Based Clustering (Fraley et al., 2003)
 - introduced for large datasets

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

Experimental settings

- ▶ Data (ex1, ex2, ex3, ex4, ex5)
 - ▶ 12 minutes from the MILLE corpus
 - child directed speech (1 mother talking to her child)
 - Mel frequency cepstral coeffs computed every 10ms + differences of first and second order

Experimental settings

- ▶ Data (ex1, ex2, ex3, ex4, ex5)
 - ▶ 12 minutes from the MILLE corpus
 - child directed speech (1 mother talking to her child)
 - Mel frequency cepstral coeffs computed every 10ms + differences of first and second order
- experimental factors
 - dimensionality of the data: from 3 to 39 dimensions
 - ▶ frame length: from 200msec to 3sec

▶ problem: there is no reference (at the moment)

- problem: there is no reference (at the moment)
- relative evaluation:

- problem: there is no reference (at the moment)
- relative evaluation:
- time evolution of number of clusters
 - dependency with number of feature coefficients
 - dependency with frame length

- problem: there is no reference (at the moment)
- relative evaluation:
- ▶ time evolution of number of clusters
 - dependency with number of feature coefficients
 - dependency with frame length
- agreement of classification in different conditions
 - variation of information (Meilă, 2002)

$$VI(C,C') = H(C|C') + H(C'|C)$$

Results

Example

Mismatch Child/Parent Voice

Mismatch Child/Parent Voice

► ASR with children

Mismatch Child/Parent Voice

- ASR with children
- Normalisation
 - VTLN: Vocal Tract Length Normalisation
 - ► Adaptation: hard in this context

Mismatch Child/Parent Voice

- ASR with children
- ► Normalisation
 - VTLN: Vocal Tract Length Normalisation
 - Adaptation: hard in this context
- Relative Features

Acoustic Features

Acoustic Features

Acoustic Features

Consequences

Sequence recognition (HMMs)

simpler relation acoustic categories/ linguistic units

Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian

Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian

Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian

▶ No one-to-one relation acoustic/visual info

- ▶ No one-to-one relation acoustic/visual info
- Reinforcement Learning
 - perform match at higher levels (pseudo-words or -phrases)

Perform visual/acoustic match on the Markov chain Acoustic Event

Perform visual/acoustic match on the Markov chain Acoustic Event

Perform visual/acoustic match on the Markov chain Acoustic Event

Perform visual/acoustic match on the Markov chain Acoustic Event

The Final Question

► Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?

The Final Question

- ► Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?
- ▶ in the first case: model based clustering and growing Markov chains are separate processes.

The Final Question

- ► Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?
- ▶ in the first case: model based clustering and growing Markov chains are separate processes.
- ▶ in the second case: need to integrate everything

Bibliography

- http://www.speech.kth.se/~giampi
- Denes, P. B. and Pinson, E. N. (1993). *The Speech Chain: Physics and Biology of Spoken Language*. W. H. Freeman.
- Fraley, C., Raftery, A., and Wehrensy, R. (2003). Incremental model-based clustering for large datasets with small clusters. Technical Report 439, Department of Statistics, University of Washington.
- Fraley, C. and Raftery, A. E. (1998). How many clusters? which clustering method? answers via model-based cluster analysis. *Computer Journal*, 41(8).
- Lacerda, F., Klintfors, E., Gustavsson, L., Lagerkvist, L., Marklund, E., and Sundberg, U. (2004). Ecological theory of language acquisition. In *EPIROB*, pages 147–148.
- Meilă, M. (2002). Comparing clusterings. Technical Report 418, Department of Statistics, University of Washington.
- Salvi, G. (2005). Ecological language acquisition via incremental model-based clustering. In *Interspeech*, pages 1181–1184.

