Ecological Language Acquisition via Incremental Model-Based Clustering

Giampiero Salvi

KTH CSC TMH giampi@kth.se

Nov. 2005

Introduction

Interspeech 2005

Part II

Mismatch Child/Parent Voice Frame Based Processing? Clustering Time Sequences The Visual Channel Conclusions

Denes and Pinson (1993)

Denes and Pinson (1993)

Denes and Pinson (1993)

Denes and Pinson (1993)

- Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - the infant is naïve: no innate linguistic knowledge

- Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - the infant is naïve: no innate linguistic knowledge
- Aim (long term): mathematical modelling of the learning process
 - acoustic features classification
 - time integration into meaningful sequences
 - integration of acoustic/visual information

A D > A B > A B > A B >

- Background: ecological theory of language acquisition (Lacerda et al., 2004)
 - the infant is naïve: no innate linguistic knowledge
- Aim (long term): mathematical modelling of the learning process
 - acoustic features classification
 - time integration into meaningful sequences
 - integration of acoustic/visual information
- ► Aim Interspeech 2005 (Salvi, 2005): acoustic features classification
 - unsupervised
 - incremental

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Acoustic features

Equally spaced windows of speech

Assumption

Method

Model-Based Clustering (Fraley and Raftery, 1998)

- data modelled as mixture of probability distributions
- each distribution represents a cluster
- each data point belongs to each cluster with a certain probability
- model parameters estimated via Expectation Maximisation
- different models compared via Bayes information criterion (BIC)

Method

Model-Based Clustering (Fraley and Raftery, 1998)

- data modelled as mixture of probability distributions
- each distribution represents a cluster
- each data point belongs to each cluster with a certain probability
- model parameters estimated via Expectation Maximisation
- different models compared via Bayes information criterion (BIC)

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

- Incremental Model-Based Clustering (Fraley et al., 2003)
 - introduced for large datasets

1. start with a MCLUST model

- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

- 1. start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- set the current best model and go back to 2

Experimental settings

Data (ex1, ex2, ex3, ex4, ex5)

- ▶ 12 minutes from the MILLE corpus
- child directed speech (1 mother talking to her child)
- Mel frequency cepstral coeffs computed every 10ms + differences of first and second order

Experimental settings

Data (ex1, ex2, ex3, ex4, ex5)

- ▶ 12 minutes from the MILLE corpus
- child directed speech (1 mother talking to her child)
- Mel frequency cepstral coeffs computed every 10ms + differences of first and second order
- experimental factors
 - dimensionality of the data: from 3 to 39 dimensions
 - ▶ frame length: from 200msec to 3sec

problem: there is no reference (at the moment)

- problem: there is no reference (at the moment)
- relative evaluation:

- problem: there is no reference (at the moment)
- relative evaluation:
- time evolution of number of clusters
 - dependency with number of feature coefficients
 - dependency with frame length

- problem: there is no reference (at the moment)
- relative evaluation:
- time evolution of number of clusters
 - dependency with number of feature coefficients
 - dependency with frame length
- agreement of classification in different conditions
 - variation of information (Meilă, 2002)

(日) (四) (日) (日)

 $\mathbf{V}I(C,C') = H(C|C') + H(C'|C)$

Results

Example

6_																							
5-																							
4 -	1.0		10															n	d.				
3-	14	P								1.00	,		(. 3		1.41	1	11	17			
2 -	1.144	A belease	in de									in e	41	in		***		ŵ	No	A	in.h	Mr.	4
1	1.1	0000000	14					ù	1112	22		22	244	Ω	99	111	TIN)	Ħ	Ħ			NUL I	
0		hannahan	WW	ww	٨٨٨٨	مممم	۸A	٨A	www	Ŵ	VVV	₩₩	ŶŶŶ	~~~	w	1	ww	₩	₩	₩₩	H	6 04-0-	
1m9 0	0.02 0.	04 0.06	0.08	0.10	0.12	0.14	ο.	16	0.18	0.20	0.	2	0.24	0.26	0.	.8	0.30	0.	32	0.3	4 0	.36	0.38
tra			eh					v															8:
£ 50	43 10		45	83	97	102	90	10	92	98	18 16		86		91	14	63	91		57			86
	4 46		68	28	49	86	49	76		92	18		83	85		8	18	85	67	33			83
E100 24			31	60	42	74	79	6.4		68		58	62	19	38	58				38	14	62	48

◆□> ◆圖> ◆注> ◆注>

Mismatch Child/Parent Voice

Mismatch Child/Parent Voice

► ASR with children

Mismatch Child/Parent Voice

- ASR with children
- Normalisation
 - VTLN: Vocal Tract Length Normalisation
 - Adaptation: hard in this context

(日) (同) (日) (日)

Mismatch Child/Parent Voice

- ASR with children
- Normalisation
 - VTLN: Vocal Tract Length Normalisation
 - Adaptation: hard in this context
- Relative Features

(a)

Acoustic Features

Acoustic Features

・ロト ・聞ト ・ヨト ・ヨト

Acoustic Features

Consequences

 \Rightarrow

 \Rightarrow

Sequence recognition (HMMs)

simpler relation acoustic categories/ linguistic units

Clustering Time Sequences

Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian

Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian

イロト イポト イヨト

・ロト ・ 理ト ・ モト ・ モト

▶ No one-to-one relation acoustic/visual info

- No one-to-one relation acoustic/visual info
- Reinforcement Learning
 - perform match at higher levels (pseudo-words or -phrases)

(日) (四) (日) (日)

Perform visual/acoustic match on the Markov chain Acoustic Event

Visual Event

Perform visual/acoustic match on the Markov chain Acoustic Event

Visual Event

Perform visual/acoustic match on the Markov chain Acoustic Event

Visual Event

Perform visual/acoustic match on the Markov chain Acoustic Event

Visual Event

The Final Question

Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?

The Final Question

- Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?
- in the first case: model based clustering and growing Markov chains are separate processes.

The Final Question

- Are the acoustic blocks (categories) in a language learned out of their statistical occurrence or out of their contrastive use?
- in the first case: model based clustering and growing Markov chains are separate processes.
- in the second case: need to integrate everything

Bibliography

http://www.speech.kth.se/~giampi

- Denes, P. B. and Pinson, E. N. (1993). The Speech Chain: Physics and Biology of Spoken Language. W. H. Freeman.
- Fraley, C., Raftery, A., and Wehrensy, R. (2003). Incremental model-based clustering for large datasets with small clusters. Technical Report 439, Department of Statistics, University of Washington.
- Fraley, C. and Raftery, A. E. (1998). How many clusters? which clustering method? answers via model-based cluster analysis. *Computer Journal*, 41(8).
- Lacerda, F., Klintfors, E., Gustavsson, L., Lagerkvist, L., Marklund, E., and Sundberg, U. (2004). Ecological theory of language acquisition. In *EPIROB*, pages 147–148.
- Meilă, M. (2002). Comparing clusterings. Technical Report 418, Department of Statistics, University of Washington.
- Salvi, G. (2005). Ecological language acquisition via incremental model-based clustering. In *Interspeech*, pages 1181–1184.

(白) (四) (三) (三)

Typeset with IAT-Y (c) 2005 Giampiero Salvi