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I Background: ecological theory of language acquisition
(Lacerda et al., 2004)

I the infant is naïve: no innate linguistic knowledge

I Aim (long term): mathematical modelling of the learning
process

I acoustic features classi�cation
I time integration into meaningful sequences
I integration of acoustic/visual information

I Aim Interspeech 2005 (Salvi, 2005): acoustic features
classi�cation

I unsupervised
I incremental
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Acoustic features
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Assumption

Acoustic feature vectors independently drawn from mixture of
Gaussian distributions
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Method

I Model-Based Clustering (Fraley and Raftery, 1998)
I data modelled as mixture of probability distributions
I each distribution represents a cluster
I each data point belongs to each cluster with a certain

probability
I model parameters estimated via Expectation Maximisation
I di�erent models compared via Bayes information criterion

(BIC)

I Incremental Model-Based Clustering (Fraley et al., 2003)
I introduced for large datasets
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Algorithm

1. start with a MCLUST model

2. get new data

3. adjust old model to new data

4. divide new data into well and
poorly modelled points

5. try a more complex model, if better
BIC set as best and go back to 4

6. set the current best model and go
back to 2
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2. get new data

3. adjust old model to new data

4. divide new data into well and
poorly modelled points

5. try a more complex model, if better
BIC set as best and go back to 4

6. set the current best model and go
back to 2
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Experimental settings

I Data (ex1, ex2, ex3, ex4, ex5)
I 12 minutes from the MILLE corpus
I child directed speech (1 mother talking to her child)
I Mel frequency cepstral coe�s computed every 10ms +

di�erences of �rst and second order

I experimental factors
I dimensionality of the data: from 3 to 39 dimensions
I frame length: from 200msec to 3sec

http://creativecommons.org/licenses/by-sa/2.0/


Experimental settings

I Data (ex1, ex2, ex3, ex4, ex5)
I 12 minutes from the MILLE corpus
I child directed speech (1 mother talking to her child)
I Mel frequency cepstral coe�s computed every 10ms +

di�erences of �rst and second order

I experimental factors
I dimensionality of the data: from 3 to 39 dimensions
I frame length: from 200msec to 3sec

http://creativecommons.org/licenses/by-sa/2.0/


Evaluation

I problem: there is no reference (at the moment)

I relative evaluation:

I time evolution of number of clusters
I dependency with number of feature coe�cients
I dependency with frame length

I agreement of classi�cation in di�erent conditions
I variation of information (Meil�a, 2002)

VI (C ,C ′) = H(C |C ′) + H(C ′|C )

H(C’)

VI(C,C’)

H(C|C’) H(C’|C)

H(C)

I(C,C’)

http://creativecommons.org/licenses/by-sa/2.0/


Evaluation

I problem: there is no reference (at the moment)

I relative evaluation:

I time evolution of number of clusters
I dependency with number of feature coe�cients
I dependency with frame length

I agreement of classi�cation in di�erent conditions
I variation of information (Meil�a, 2002)

VI (C ,C ′) = H(C |C ′) + H(C ′|C )

H(C’)

VI(C,C’)

H(C|C’) H(C’|C)

H(C)

I(C,C’)

http://creativecommons.org/licenses/by-sa/2.0/


Evaluation

I problem: there is no reference (at the moment)

I relative evaluation:

I time evolution of number of clusters
I dependency with number of feature coe�cients
I dependency with frame length

I agreement of classi�cation in di�erent conditions
I variation of information (Meil�a, 2002)

VI (C ,C ′) = H(C |C ′) + H(C ′|C )

H(C’)

VI(C,C’)

H(C|C’) H(C’|C)

H(C)

I(C,C’)

http://creativecommons.org/licenses/by-sa/2.0/


Evaluation

I problem: there is no reference (at the moment)

I relative evaluation:

I time evolution of number of clusters
I dependency with number of feature coe�cients
I dependency with frame length

I agreement of classi�cation in di�erent conditions
I variation of information (Meil�a, 2002)

VI (C ,C ′) = H(C |C ′) + H(C ′|C )

H(C’)

VI(C,C’)

H(C|C’) H(C’|C)

H(C)

I(C,C’)

http://creativecommons.org/licenses/by-sa/2.0/


Results
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Example

File: /afs/md.kth.se/tmh/proj/speech/mille/data/splitDante040311/snd0008.wav   Page: 1 of 1   Printed: Fri Apr 08 20:25:28
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Mismatch Child/Parent Voice

PARENTCHILD

I ASR with children

I Normalisation
I VTLN: Vocal Tract Length Normalisation
I Adaptation: hard in this context

I Relative Features

http://creativecommons.org/licenses/by-sa/2.0/


Mismatch Child/Parent Voice

PARENTCHILD

I ASR with children

I Normalisation
I VTLN: Vocal Tract Length Normalisation
I Adaptation: hard in this context

I Relative Features

http://creativecommons.org/licenses/by-sa/2.0/


Mismatch Child/Parent Voice

PARENTCHILD

I ASR with children

I Normalisation
I VTLN: Vocal Tract Length Normalisation
I Adaptation: hard in this context

I Relative Features

http://creativecommons.org/licenses/by-sa/2.0/


Mismatch Child/Parent Voice

PARENTCHILD

I ASR with children

I Normalisation
I VTLN: Vocal Tract Length Normalisation
I Adaptation: hard in this context

I Relative Features

http://creativecommons.org/licenses/by-sa/2.0/


Acoustic Features

Frame Based
File: sx352.WAV   Page: 1 of 1   Printed: Mon Dec 05 09:01:39
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Acoustic Features

Segment Based
File: sx352.WAV   Page: 1 of 1   Printed: Mon Dec 05 09:01:39
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Acoustic Features

Landmark Based
File: sx352.WAV   Page: 1 of 1   Printed: Mon Dec 05 09:01:39
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Consequences

File: sx352.WAV   Page: 1 of 1   Printed: Mon Dec 05 09:01:39
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⇒ Sequence recognition
(HMMs)
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⇒
simpler relation

acoustic categories/
linguistic units
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Clustering Time Sequences

Acoustic vectors independently drawn from mixture of gaussian
distributions
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Modeling time evolution with Markov chains
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Modeling time evolution with Markov chains
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Modeling time evolution with Markov chains
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The Visual Channel

PARENTCHILD
LightwavesEye

I No one-to-one relation acoustic/visual info

I Reinforcement Learning
I perform match at higher levels (pseudo-words or -phrases)
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The Visual Channel

Perform visual/acoustic match on the Markov chain

Visual Event
Acoustic Event
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The Final Question

I Are the acoustic blocks (categories) in a language learned out
of their statistical occurrence or out of their contrastive use?

I in the �rst case: model based clustering and growing Markov
chains are separate processes.

I in the second case: need to integrate everything
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