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Abstract 

This paper investigates the prosodic patterns of non-lexical 

response tokens in a Swedish call-in radio show. The feedback 

of a professional speaker was investigated to give insight in 

how to build a simulated active listener that could encourage 

its users to continue talking. Possible domains for such 

systems include customer care and second language learning. 

The prosodic analysis of the non-lexical response tokens 

showed that the engagement level decreases over time. 

Prosodic cues to this include change in syllabicity, pitch slope 

and loudness. We have also investigated prosodic alignment, 

to see to what extent the active listener mimic the prosody of 

the callers in his non-lexical response tokens.  
 

Index Terms: listener responses, prosodic cues, turn 

management, prosodic alignment 

1. Introduction 

Today’s spoken dialogue systems are being considered for 

areas and applications beyond simple directory inquiries and 

travel booking – such as social and collaborative applications, 

education and entertainment. These new areas call for systems 

to be increasingly human-like in their conversational behavior. 

In human-human conversations both parties continuously and 

simultaneously contribute actively and interactively to the 

conversation. Listeners actively contribute by providing 

feedback, and they continuously monitor the speaker 

contributions for cues allowing smooth speaker shifts. Their 

feedback indicates attention, feelings and understanding, and 

its purpose is to support the interaction [1]. Listener responses 

can be categorized according to form/function, verbal/non-

verbal lexical/non-lexical and turn/backchannel [2]. Studies on 

listener responses have used terms like response tokens [3], 

backchannel continuers [4], back-channel grunts [5], listener 

vocalizations [6], and feedback morphemes [7]. For a more 

extensive inventory of terms related to listener responses see 

the list in Fujimoto 2007 [2]  

According to Gardner different response tokens have dif-

ferent functions [3]. The bisyllabic “mhm” and “uh-huh” often 

function as continuers. This has also been found for Japanese 

back-channel grunts where multiple syllables indicate a lack 

of anything to say [5]. Monosyllabic “yeah” and “mm” are 

usually are used as acknowledgement or assessment. The pitch 

contour of the non-lexical “mm” determines its meaning. A 

falling pitch is associated with completion and segmentation, 

as well as with unexcitement and low involvement. A fall-rise 

contour makes the “mm” into a continuer like “mhm”. It often 

occurs after pragmatically incomplete turns, and it encourages 

the other speaker to continue talking. A rise-fall contour is 

associated with heightened involvement and interest, as well 

as with assessment of the previous turn. 

According to Ward the important prosodic features of 

conversational grunts are: loudness, height and slope of pitch, 

duration, syllabification, duration and abruptness of the ending 

[5]. Most of these features were used in a study on the prosody 

of acknowledgements and backchannels in task oriented 

dialogues [8]. They found that backchannels in general higher 

in pitch and intensity than acknowledgements.       

2. Background 

In order to develop systems that can achieve the responsive-

ness and flexibility found in human-human interaction, it is 

essential that they process information incrementally and 

continuously rather than in turn sized chunks [9]. Early speech 

synthesizers were reading machines – machines that read 

written text out loud. From then on, the fact that read speech is 

very different than speech in interaction has had little impact 

on speech synthesizers. Conversational grunts, audible breath-

ing and self-corrections are abundant in conversational speech. 

Being less common in read speech, they are systematically 

removed in speech synthesis regardless of synthesis method; 

the rationale being that they do not carry propositional con-

tent, and today’s synthesizers are optimized to transmit the 

propositional content of a message. However, regardless of 

propositional content, they are of immense importance for the 

interactional aspects of conversation, and without them, we 

are left strangely lacking in interactional skills.  

Our group has a long-standing interest in human conversa-

tional behavior and a special interest in its mimicry and evalu-

ation in spoken dialogue systems [10]. We have in a previous 

study examined the benefit of adding conversational grunts in 

a commercial call routing system system [11]. This study 

showed that the addition of backchannel continuers, like 

“mhm” made the customers more talkative in their problem 

descriptions, which facilitated a more fine-grained call 

routing.  

Encouraged by this result we have recently initiated a 

three-year research project that aims at adding human interac-

tional verbal behavior in speech synthesis. The first phase of 

the project deals with conversational grunts by: (1) annotating 

instances of them in corpora of human-human conversations, 

(2) synthesizing the missing tokens using several methods, and 

(3) evaluating the results in a series of experiments comparing 

synthesized versions with the originals as well as evaluating 

their perceived meaning and function. This paper investigates 

the prosody of Swedish non-lexical response tokens.  

3. The active listener database 

In the current study we have analysed response tokens in a 

corpus of 73 calls to a Swedish phone-in radio program. The 

program is called Ring P1, and it allows members of the 

public to call in and share their opinions on current affairs. 

These interactive “letter to the editor”-calls are handled by 

popular Swedish journalists. We have selected six 45-minute 

programs hosted by the most experienced moderator (a blind 

journalist called Täppas Fogelberg). We selected to study his 

response tokens since he is known for being a good listener. 

The structure of this kind of dialogue has been investigated in 

previous studies [e.g. 12]. Phone-in calls are usually initiated 

in an opening phase, where the callers exchange greetings 

with the radio host. In the main phase the callers give their 

opinion about the some urgent topic, during which the radio 

host either provides encouraging feedback or engage in a 

discussion about the topic. This phase is typically one to five 

minutes long (on average about three minutes). In the last 

phase the radio host firmly ends the call by telling the caller 



that they should give room for other callers. This phase is 

usually initiated by a loud high-pitched “Du..” (You..), or by 

the host promptly switching to a completely different, but less 

engaging topic like “So did you watch the Eurovision song 

contest?”. In this study we have selected the main phases of 

73 dialogues - a dialogue corpus of about three hours. During 

the main phase the callers produced on average 22 inter pausal 

units (IPUs) that in half of the cases were followed by speaker 

shifts. In about 80% of these speaker shifts the radio host 

merely produced short backchannel continuers that 

encouraged the caller to continue speaking. This means that 

the radio host mostly acted as an active listener. 

3.1. Data selection and tagging 

Since the recordings of the radio programs are recorded in 

mono the first step was to manually annotate the speech for 

speaker, (where overlapped speech was labelled as both). The 

syllable boundaries of the last three syllables of the caller 

IPUs were manually assigned. The response tokens were 

tagged as lexical (e.g. “ja”, “ok”) or non-lexical (e.g. “mhm” 

and “mm”) and as monosyllabic (“mm” and “ja”) or bisyllabic 

(“mhm” and “jaha”). In the 73 dialogues there where 174 

lexical and 459 non-lexical response tokens, out of which 44% 

were perceived as bisyllabic. In this study the prosodic 

patterns of the non-lexical response tokens “mm” and “mhm” 

have been investigated. For these response tokens pitch 

contour, intensity distribution and syllable boundaries were 

manually labelled. In Table 1 the appearance of the most 

common prosodic contours are visualized in pitch curves 

where the line width indicate the intensity, and the vertical line 

in the bisyllabic fall-rise cases mark the syllable boundaries.  

Table 1. Examples of intensity modulated pitch curves, with 

pitch movement in rows and intensity distribution in columns.  

 early late two peaks even 

fall 

 

  

 

rise  

 

 

 

fall-rise 

    

All response token were also labelled for engagement level, 

where passive corresponds to acknowledgement that the radio 

host is still listening, while active response tokens signal 

interest and encourages the caller to say something more. The 

pitch slope of the loudest part of the pitch curves of the 

bisyllabic tokens correlates closely to the perceived 

engagement of the feedback: 90% of the bisyllabic response 

tokens that had a falling pitch on the loudest syllable were 

perceived as passive, while 80% of the tokens with rising pitch 

on the prominent syllable were perceived as active. In 

bisyllabic response tokens with two intensity peaks or even 

intensity there was a 50/50 split in the engagement ratings. 

The perceived engagement level varied over time, see Table 2.  

Table 2. Percentage of engaged sounding responsive at 

different relative positions in the dialogues. The positions are 

percentage of all caller speech in the dialogue. 

Dialogue position Percentage active 

0-24 55% 

25-49 25% 

50-84 13% 

85-100 22% 

Figure 1 shows how the manually tagged pitch contours 

occurred at different phases of the dialogue. As can be seen 

response tokens with rising pitch were most common in the 

first part of the dialogues. 
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Figure 1. Distribution of pitch contours over time. 
 

In order to ensure that the pitch and power measurements on 

the response tokens were correct, the 31% of all tokens that 

were produced in overlap with the caller were removed before 

automatic acoustic analysis was performed. This means that 

we have automatically analysed approximately 300 response 

tokens in our study.  

3.2. Signal Processing 

We use the ESPS pitch tracker and logarithmic power function 

in the SNACK toolkit with default parameters which gives a 

10ms frame rate. From now we refer to log power as intensity. 

Since the manual labels origin from a single channel with two 

speakers, special cautions has to be taken at the beginning and 

end of a speaker change. Small errors in the timing of the 

labels may cause leakage of a few frames from one speaker to 

another which makes the pitch tracking inaccurate. Thus, a 

threshold of 3 consecutive voiced frames is applied at the 

speaker edges; otherwise the frames are thrown away. In 

addition, the first and last voiced frame is always omitted. The 

F0 values are then converted to semitones. Any unvoiced 

frames between voiced frames are interpolated over using 

splines. Then a median filter with a 3 frame window is 

applied, followed by a moving average filter with a 5 frame 

window. This filtering procedure is applied to both the 

intensity and to pitch.  Each feedback is assigned a parameter 

x which is the elapsed time from the start off the dialog 

divided by the total dialog duration. 

3.3. Clustering of prototypical contours 

This study suggests a data-driven intonation model based on a 

modified length invariant cosine transform (DCT). Each 

contour f(n) with N points is parameterized by 
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Both the pitch and intensity contours can effectively be 

parameterized by a few coefficients with this method. It 

should be noted that the normalization makes the 

parameterization independent of speaking rate. This 

representation was shown to produce better extrapolation than 

a conventional polynomial parameterization. 

We want to find prototypical contours as a function of x, 

which is the response token’s relative position in all caller 

speech contributions in the dialog. Instead of uniformly split x 

into beginning, middle and end, an automatic clustering 

method is proposed. Initially, one feature vector per feedback 

is constructed by using the first K DCT coefficients for F0 and 

intensity. The feedback length is also added to the vector. We 

use K = 3 for monosyllabic and K = 5 for bisyllabic tokens. 



Then vector quantization is performed by sweeping x in steps 

of 0.05, from xstart = 0 to xend = min(0.9, xstart + 0.75). Let the 

minimum of the average distortion be found at xmin, then the 

instances xstart < x < xmin form a cluster and the process is 

restarted at xstart = xmin + 0.1 with an updated xend. The number 

of clusters is chosen such that all significant minima in 

average distortion are found. The look ahead of 0.75 is chosen 

to avoid splits at high x values for the first clusters. The 

centroids (mean values) are transformed using inverse DCT, 

stretched to the average duration (the last feature vector value) 

and plotted in Figure 2. 

 

 
Figure 2: Pitch and intensity curves as a function of the 

relative position in dialog. Monosyllabic feedback at the top 

and bisyllabic at the bottom. 

To further characterize each prototypical curve, the mean pitch 

and intensity along with pitch slope are calculated for the 

prototypes and given in Table 3. It should be noted that 

computing mean pitch and intensity from the actual data 

points is mathematically equivalent to computing the first 

DCT coefficient. As can be seen in Figure 2 generally 

monosyllabic feedback tokens have a falling pitch slope. Over 

time both the mean intensity and the mean pitch decreases. In 

the initial phase the second pitch peak is higher in the 

bisyllabic response tokens. Later in the dialogue both pitch 

peaks become more even in height, with a smaller pitch 

movement. The intensity of both peaks fall ever time; where 

the second intensity peak falls more: The effect of this is that 

the bisyllabic responsive in the last phase get have more 

intensity on the first pitch peak which contributes to make the 

responsive sound less engaging.  

Table 3. Measurements of prosodic prototypes. xstart/xend are 

boundaries of relative position in dialog for each prototype. 

Syll. xstart xend mean F0 F0 slope mean Int. 

1 0.00 0.45 81.7 -20.0 51.7 

1 0.45 0.90 80.1 -5.9 50.7 

1 0.9 1.00 80.6 -7.3 49.7 

2 0.00 0.25 83.2 11.6 55.1 

2 0.25 0.50 81.4 2.8 53.4 

2 0.50 0.85 81.0 1.7 51.4 

2 0.85 1.00 81.2 8.1 50.1 

4. Prosodic alignment 

Humans that engage in dialogue have been found to align to 

their interlocutor’s conversational behavior in many respects, 

e.g. body posture, facial expressions, choice of lexical tokens 

and prosody [13]. In the current study, prosodic alignment in 

intensity and pitch slope were investigated. Initial experiments 

confirmed our assumption that prosodic alignment only occur 

for some of the callers. We decided to only investigate 

prosodic alignment of intensity level and pitch slopes on the 

last syllables. Thus, we pick the last syllable in the caller IPU 

that preceded a feedback and compare it with the last syllable 

in the feedback token. Then the intensity level and pitch slope 

of the last syllable in the feedback is predicted via linear 

regression from the intensity level or pitch slope of the last 

syllable in the preceding caller IPU. This was done for all 

dialogues with four or more non-overlapping non-lexical 

response tokens. Three points is the minimum number to 

detect deviation from a straight line and a higher number will 

cause too much loss of data. By choosing four points enough 

data was available for doing a more detailed analysis. This left 

34 dialogues and 217 response tokens. The dialogues for 

which alignment was detected were merged into an alignment 

set each for intensity level and pitch slope. The criteria was 

quite modest, R2 > 0.2, p < 0.2 (F-test) and β(2) > 0. The 

condition on β encodes the basic assumption of similar 

behavior rather than opposite behavior.  The alignment sets are 

further divided into start, x < 0.33; middle, 0.33 < x < 0.66 and 

end; x > 0.66. We also examine the effect for mono- and 

bisyllabic feedbacks.  

The intensity alignment set contained 10 of 34 dialogues 

and 56 of 217 feedbacks, while the pitch alignment set only 

contained 6 of 34 dialogues and 35 of 217 feedbacks. These 

numbers indicate that prosodic alignment is a rare 

phenomenon in these data, especially for pitch. It also raises 

the question if the result is an artifact of data mining. To test 

this, a random data set was constructed in which the measured 

mean intensity or pitch slopes of the non-lexical response 

tokens and the last part of their preceding turns were replaced 

by random values. The random data points were sampled from 

a N(0,1) distribution and the number of dialogues, drand, for 

which the prosodic alignment criteria hold was calculated. 

This process was repeated 10000 times, and the resulting 

mean and standard deviation for drand was calculated. Then a 

right side, one sample, z-test was done for the number of 

found dialogues in the pitch and intensity alignment sets. The 

p-value was 0.06 for the pitch set and << 0.01 for the intensity 

set. Thus, for the pitch set the alignment is near the detectable 

limit while for the intensity set the found alignment is 

established. The final results are summarized in Table 4. 

Let us first examine the results for the intensity set. The 

R2 value for all feedbacks is 0.25, so a large part of the 

variance comes from other factors. For bisyllabic feedbacks 

the R2 was 0.40 while it was only 0.16 in the monosyllabic 

case. Thus, the intensity alignment is much stronger for 

bisyllabic utterances. The intensity alignment also increases 
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with the relative position in the dialog. It should be noted that 

since a greater share of the feedbacks at the end of the 

dialogue are monosyllabic, while most feedbacks at the start 

are bisyllabic, the overall increase in alignment over dialog 

can not be explained by the distribution of the number of 

syllables. This means that alignment actually increases for 

both monosyllabic and bisyllabic feedbacks over the dialog.  

The R2 value for all feedbacks in the pitch set is 0.41, which is 

higher than for all feedbacks in the intensity set. The R2 of 

0.51 for monosyllables is higher than the R2 of 0.26 for 

bisyllabic feedbacks. This finding is the opposite of what was 

found in the intensity set. However, one must be careful to 

jump to conclusions. The pitch contour of bisyllabic feedback 

is more complex than for monosyllabic ones. Thus, the finding 

may be explained by the crude parameterization, a simple 

pitch slope. Let’s consider the R2 values for the beginning, 

middle and end. It starts low at 0.25, then increases in the 

middle to 0.56 and drops towards the end to 0.37. If the 

change as a function of position in dialog can be explained by 

the differences in alignment for mono- and bisyllabic 

feedback, then there would have been a peak at the end. The 

drop at the end is contradictorily to the results for the intensity 

set. However, the drop might have been a peak if bisyllabic 

alignment would have been more correctly measured. Another 

possible interpretation is that intensity is aligned more as a 

habit, regardless of engagement, but pitch slope is more 

connected to engagement, which explains the drop at the end, 

but must nevertheless go through a synchronization phase, 

which explains the low R2 value at the beginning. But the 

interpretation of the F0 results should have less importance 

than the intensity results which are more significant.  

Table 4. Prosodic alignment between caller and radio host. 

5. Conclusions 

In this study we have investigated the prosodic patterns of 

non-lexical response tokens in a Swedish call-in radio show. 

The professional active listener mostly responded with 

response tokens at pauses in the callers’ speech. In a study of 

the non-lexical “mm” and “mhm” we have found similar pitch 

contours as for studies on response tokens in English [8] and 

Japanese [5]. A rising pitch is associated with interest and 

encouragement for more speech from the interlocutor, and a 

feedback with falling pitch functions as acknowledgement and 

signals lesser interest. For bisyllabic response tokens it is the 

pitch slope of the loudest syllable that decides which of these 

two engagement levels the feedback signals. The distribution 

of feedbacks with different pitch contours changes as a 

function of dialogue position. The interest-signalling and 

encouraging pitch contours are most common at the beginning 

of the call. Over time the mean intensity of the feedbacks 

decreases, the bisyllabic becomes flatter and the overall pitch 

level decreases. At the very end this pattern changes where the 

mean and slope of the pitch increases slightly.  

We also tried to find signs of prosodic alignment between 

the last syllable in the caller’s speech and the last syllable in 

the succeeding response token. For intensity we found signs of 

alignment of intensity levels in one third of the dialogues, 

while it was harder to detect dialogues with signs of alignment 

of pitch slopes. However, the dataset is too small to draw any 

conclusions, other than that is harder to detect pitch slope 

alignment. 

The implication of our results on conversational speech 

synthesis is that if we want to synthesize conversational grunts 

it is not enough to add the sounds of non-lexical response 

tokens like “mhm” and control the pitch and duration. In order 

to display the different functions and degrees of interest we 

also need to be able to control the intensity level continuously 

on the individual syllables. 
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Intensity alignment set 

Type R2 F-test N β(2) 

All 0.25 0.00 56 0.3 

Mono-syll. 0.16 0.03 29 0.2 

Bi-syl. 0.40 0.00 27 0.6 

All (start) 0.11 0.13 21 0.2 

All (middle) 0.28 0.01 23 0.4 

All (end) 0.36 0.04 12 0.3 

Intensity non-alignment set 

Type R2 F-test N β (2) 

All 0.00 1.00 161 0.0 

Pitch alignment set 

Type R2 F-test N β(2) 

All 0.41 0.00 35 0.4 

Mono-syll. 0.51 0.00 15 0.4 

Bi-syl. 0.26 0.02 20 0.2 

All (start) 0.25 0.07 14 0.3 

All (middle) 0.56 0.02 9 0.4 

All (end) 0.37 0.03 12 0.6 

Pitch non-alignment set 

Type R2 F-test N β (2) 

All 0.00 0.59 182 0.0 


