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Abstract
This paper explores conversational grunts in a face-to-face set-
ting. The study investigates the prosody and turn-taking effect
of fillers and feedback tokens that has been annotated for atti-
tudes. The grunts were selected from the DEAL corpus and au-
tomatically annotated for their turn taking effect. A novel supra-
segmental prosodic signal representation and contextual tim-
ing features are used for classification and visualization. Clas-
sification results using linear discriminant analysis, show that
turn-initial feedback tokens lose some of their attitude-signaling
prosodic cues compared to non-overlapping continuer feedback
tokens. Turn taking effects can be predicted well over chance
level, except Simultaneous Starts. However, feedback tokens
before places where both speakers take the turn were more sim-
ilar to feedback continuers than to turn initial feedback tokens.

Index Terms: prosody, fillers, feedback, suprasegmental, con-
versational grunts

1. Introduction
Conversation is the most common use of speech. Any automatic
dialog system, pretending to mimic a human, must be able to
successfully detect typical sounds and meanings of spontaneous
conversational speech. This task may be implemented as auto-
matic transcription or classification of Dialog Acts (DAs). This
can be done on the lexical level, on the prosodic level [1][2], or
on both [3][4].

The present study investigates conversation grunts, that are
either words like “okey” and “yes” or non-lexical tokens like
“mhm” and “eh” [5]. These conversational tokens can be
roughly divided into those that are interjected into one’s own
speech (fillers) and those that are interjected into the interlocu-
tor’s speech (feedback). The filler “um” has been found to be
the 6th most frequent item in the Switchboard Corpus [6] and
back-channels has been found to account for 19 % of the dia-
logue acts in a subset of the same corpus [5]. Feedback tokens
are usually divided into yes/no answers, back-channels and ac-
knowledgments. This study also investigates the prosodic cues
to the perceived attitude of the feedback tokens. In our corpus
the following feedback attitudes have been manually annotated:
dis-preference, news receiving and general feedback. Depend-
ing on the context and prosodic realization, the same feedback
token can have quite different meanings. This means that in or-
der to automatically assign meaning to conversational grunts it
is essential to take into account their context and model their
prosodic realizations. Finally, both fillers and feedback tokens
have been annotated for their turn-taking effect (i.e. who speaks
after a produced grunt): Other Speaker, Same Speaker or Si-
multaneous Starts. Our main hypothesis is that conversational
grunts are carriers of prosodic information, and this study shows
how their prosodic realization signal attitude and turn taking in-
tention.

For classification and intuitive visualization of feedback
and fillers, we use a supra-segmental prosodic signal represen-
tation based on Time Varying Constant-Q Cepstral Coefficients
(TVCQCC) introduced in [7]. The TVCQCC are suitable for
machine learning of varying length segments, and visualization
of common properties shared by multiple segments. It allows
for direct modeling of the F0 region of spectra with less com-
plexity than a pitch tracker. The contribution of the end of the
interlocutor left context for predicting the turn taking effect [8]
is used to boost classification in this study. In addition, we ex-
amine the contribution of a variant of contextual timing features,
which has been shown to be useful in DA recognition [4].

2. The DEAL corpus
This study uses data from the DEAL corpus [9]. It consists of
dialog data recorded as an informal, human-human, face-to-face
conversation. The data collection was made with 6 subjects (4
male and 2 female), 2 posing as shop keepers and 4 as potential
buyers. Each customer interacted with the same shop-keeper
twice, in two different scenarios. The customers were given a
task: to buy items at a flea market at the best possible price.

All dialogs in the DEAL corpus were transcribed or-
thographically including non-lexical entities such as laughter
and audible breathing. Filled pauses, repetitions, corrections,
restarts and cue phrases were labeled manually. The corpus is
rich in fillers and feedback tokens. The feedbacks were gener-
ally single words or non-lexical tokens and appeared in similar
dialog contexts (i.e. as responses to assertions). The feedbacks
are labeled according to their perceived attitudes; news receiv-
ing, dis-preference or general feedback. For this study, only the
tokens which resemble the list of conversational grunts found in
[5] were used. These units have also been referred to as minimal
listener response tokens [10]. Apart from non-word vocaliza-
tions these also include some feedback words where the mean-
ing is heavily dependent on the context and prosody. These are
broadly speaking variations of “okey”, “yes”, and “no”, which
in Swedish are translated to “okej”, “ja” and, “nej”. In spon-
taneous dialogs they often occur in reduced forms like “a” and
“nä” as well as in in-between versions like “njo” and “jaä”.

3. A Suprasegmental Fundamental
Frequency Representation

Instead of using prosodic features derived from pitch-tracker,
we use a special case of Time Varying Constant-Q Cepstral Co-
efficients (TVCQCC). The filter-bank is based on the Constant-
Q transform with a corresponding Q factor of 1/(21/12

− 1)
or 16.8 which corresponds to the 12 semitones per octave in
a musical scale. Here the filter-bank spans a total of 81 bins
between 60 Hz and 6458 Hz, which is below the Nyquist fre-
quency. Compared to Short-time Fourier Transform (STFT),
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the constant-Q transform has optimal temporal-spectral resolu-
tion for all filters, which means there is no need to optimize the
analysis window length for different applications. A standard
frame shift rate of 100 Hz is used.
The per token average F0 is found by first summing har-

monics for each filter in the semitone scale per frame. The max-
imum number of harmonics to sum over is 12 because beyond
that consecutive harmonics would fall under the same bin. In
order to give a reasonable resolution for high frequencies only
the first 8 harmonics were used in this study An approximation
of F0 to noise separation is used which classifies all frequen-
cies with amplitudes below 10 dB from the highest amplitude
frequency component as noise. So any local maxima above this
threshold occurring in the output of the filter-bank are consid-
ered as tones, which means that the summing starts at the first
index containing non-noise. The per-frame estimated F0 is then
found by the semitone corresponding to maximum of the har-
monic summation. Then the average F0 is found by a power am-
plitude weighted average of the per-frame estimated F0s. This
is motivated by a previous study that found frequencies at higher
intensity levels to be more salient [11], and since it removes the
need for voicing decision. The range is kept within 8 semitones
from the mean frequency, which leads to the assumption of a
maximum F0 variation of 17 semitones. However, this choice
reduces the influence of the first overtone which is located at a
distance of 1 octave.
We propose a supra-segmental parametrization for each to-

ken instead of a frame based representation. The proposed
method provides a suitable way of integrating the information
available in a token into a matrix of fixed size. First the log
time spectrum lX(k, n) for every frame n and every filter k is
obtained. Then, the TVCQCC are calculated by applying a 2 di-
mensional discrete cosine transform (2D-DCT), as follows. For
1 ≤ p ≤ P and 1 ≤ q ≤ Q, (where P andQ are the number of
coefficients in the frequency and time dimension respectively),
the TVCQCC are

T (q, p) =
NX

n=1

KX
k=1

lX(k, n)

N
∗ cos
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2
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„
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The axis of T along q is called the ‘quefrency’ and has a
time dimension. The axis along p is the frequency of quefrency,
which here is referred to as ’meti’ (following the convention of
swapping syllables), and has frequency dimension. This dimen-
sion space is also known as cepstrum modulation spectrum. It
should be noted that the 2D-DCT has been modified so that this
representation is length invariant, which means that the param-
eters are not affected by stretching or compression in time.

4. Experiments
4.1. The turn-taking effect of grunts

In the investigation presented in this paper three types of turn-
taking effects for both fillers and feedback tokens are consid-
ered: Same Speaker, Other Speaker and Simultaneous Start, il-
lustrated in Figure 1. These definitions always use the speaker
who uttered the filler or feedback as reference. Same Speaker
means a non-overlapping floor taking for the reference speaker,
while the Other Speaker condition implies the floor is imme-
diately given back. Simultaneous Start is when both speakers
starts within a 300 ms time-frame from each other. The turn

Figure 1: Proposed turn-taking effect of grunts defined with In-
ter Pausal Units (IPUs).

switches which had laughter or hawks in the intermediate con-
text were all removed. Tokens shorter than 40 ms and tokens
with an estimated mean F0 above 600 Hz were also removed,
but they were very few. The occurrence’s in data of these con-
ditions for fillers and the three feedback attitudes are shown in
Table 1.

4.2. Automatic Classification

This section main objectives are: 1) determine if the proposed
prosodic features can discriminate between fillers and feedback
attitude. 2) determine if their turn-taking effect can be predicted
3) determine the contribution of timing features and end of in-
terlocutor left context. Thus, the following tasks were consid-
ered:

Task 1 Fillers vs. Feedback where all attitudes are merged
Task 2a Feedback attitudes (3 classes)
Task 2b Same as 2a but only for the Other Speaker condition
Task 2c Same as 2a but only for the Same Speaker condition
Task 3a The turn-taking effect of feedbacks (Other Speaker /

Same Speaker / Simultaneous Start)

Task 3b Same as 3a, but with Simultaneous Starts removed
Task 3c Same as 3a, but Other Speaker and Simultaneous Start

are merged

Task 3d Same as 3a, but Same Speaker and Simultaneous Start
are merged

Fillers turn-taking effect was not addressed since they too sel-
dom caused a turn shift, resulting in too little training data.
For classification,Q = 8 quefrency and P = 8 meti coeffi-

cients are used which gives a reasonable resolution in frequency
and time. The TVCQCC matrices are converted into vectors by
stacking the rows after each other, then the estimated mean F0
and token length was added. Classification of the resulting vec-
tors is done by using linear discriminant analysis with diagonal
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Figure 2: First three timing features as durations a,b and c.

covariance to ensure robustness, which is critical when the fea-
ture dimension is in the same magnitude as the number of train-
ing samples. The LDA priors are set to equal to avoid a bias
toward speaker or domain dependent behavior. The choice for
evaluation is 8 fold cross-validation on the dialog level.

The timing feature vector has four dimensions, were the
first three are shown as durations of silence or tokens in Figure
2. The fourth is the duration of the gap or overlap (where dura-
tion is assigned a negative value). If the grunt token is in com-
plete overlap, which may be the case for some back-channels,
then the negative duration of the grunt token is used as a back-
off value. All tasks are evaluated with or without timing features
as auxiliary information.

The left-context is the immediate non-silence part of the
interlocutor parametrized by TVCQCC. If the interlocutor is
silent during the segment which partly overlaps the grunt to-
kens’ start in time, then the preceding token is used as context.
If the interlocutor speaks during the partly overlapped segment,
then only the part until the speaker change is used, but if there
exist a preceding token, it is also used as left context. In the
case where the interlocutor left context was included, the TVC-
QCC matrix was simply calculated for the context and added
to the original feature vector which doubles the feature dimen-
sion. Tasks 3a-d are tested with or without the left context of
the interlocutor, while the left-context has no relevance for Task
1 and 2 and just introduced noise which degraded the classifier
performance.

The results are shown in Table 2. A brief look shows an
overall boost if timing features are added while the left-context
boosts turn-taking tasks. Average recall, defined as the aver-
age recall rate of all classes is reported and the corresponding
random guess.

Table 1: Occurrences of tokens relevant for the study.

Type Other Spk. Same Spk. Sim.Start

General F.b. 177 92 22
Dispreference F.b. 30 60 3
News receiving F.b. 31 33 9
Filler 20 148 12

4.3. Plotting Prototypical Spectrograms

In order to facilitate visualization, a way of plotting prototypical
spectrograms was introduced in [7]. Many classifiers, such as
LDA or Naı̈ve Bayes, use a Gaussian distribution as underlying
parametrization. If we want to see what the classifier relies on,
then the multivariate mean value is the natural starting point.
Thus, the basic idea is to take the average TVCQCC of all in-
stances for each class, followed by inverse 2D cosine transfor-
mation. Displaying the essence using the average instead of the
accumulation of frequencies as in [12] has thus different pur-
poses. Figure 3 shows prototypical spectrograms with power

Table 2: Results measured in average recall for all tasks. Stan-
dard deviation is between 1.0-1.3 for all ratios.

Task Timing No Context Left Context Random

1 No 79.8 - 50
1 Yes 82.1 - 50

2a No 47.8 - 33
2a Yes 48.6 - 33

2b No 49.1 - 33
2b Yes 50.4 - 33

2c No 42.9 - 33
2c Yes 45.1 - 33

3a No 39.1 41.2 33
3a Yes 39.7 43.0 33

3b No 63.9 65.3 50
3b Yes 66.0 67.2 50

3c No 64.1 64.9 50
3c Yes 64.8 66.7 50

3d No 62.0 64.7 50
3d Yes 62.8 64.8 50
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Figure 3: Prototypical spectrograms with power amplitude
scale for fillers and feedbacks divided into Other Speaker and
Same Speaker turn-taking conditions. The y-axis shows semi-
tones relative to the average F0 of the token, and the x-axis
shows time in seconds. The dashed lines are energy curves cal-
culated as the sum of all filters from the full frequency range.

amplitude scale for fillers and feedbacks subdivided into their
turn-taking effect. Simultaneous Starts are not shown due to
space constraints. Each spectrogram is stretched to the average
duration to further show the characteristics of each type and the
average F0 is given in Hertz. In addition, the energy calculated
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as the sum of all filters of the full frequency range is plotted in
the same graphs, but scaled to the same maximum for all cate-
gories.

5. Results and discussion
The spectrograms in Figure 3 show notable differences. First,
feedback tokens have a raise in F0 while fillers are flat or have
a slight drop. Fillers has also a lower average F0 compared to
feedbacks. Among the feedback attitudes for the Other Speaker
condition, dis-preference is longer than both News Receiving
and general feedback. News receiving has the highest average
F0 and a strong rise while Dis-preference has the lowest aver-
age F0 and a weaker rise. These findings closely follows the
results for Bad News (Dis-preference) vs Good news (News re-
ceiving) found in English response tokens (with a slightly dif-
ferent definition than Ward) [13]. Feedbacks have shorter du-
ration and a final energy rise in turn initial position compared
to feedback tokens that act as continuers. The intensity curves
for feedback tokens that give back the turn to the interlocutor
indicate that general feedbacks seems to be monosyllabic, news
receiving feedback tend to be bisyllabic while dis-preference
feedback is harder to characterize. While the turn-taking effect
of filled pauses was not examined in any of the classification
tasks, Fillers that are followed a speaker shift seem to have a
lower initial amplitude of voicing that those that are followed
by more speech from the same speaker.

The recall rates for Task 1 as well as the spectrograms in-
dicate a clear difference between filled pauses and feedback to-
kens. Task 2 shows that it is possible to discriminative between
the three feedback attitudes, with better results in cases where
the feedback tokens gives back the turn to the interlocutor. This
is not that surprising since turn initial feedback tokens simply
functions as floor-grabbers, where the attitudinal content can be
communicated later in the turn. The fact that the human anno-
tator could discriminate between feedback attitudes for the turn
initial feedback tokens may be explained by the fact that they
had access to the previous and following turns as well as the
lexical and prosodic realization of the feedback token under in-
vestigation. Task 3a recall rate shows an above chance level for
the three proposed turn-taking effects, but a closer look at the
confusion matrix showed a recall rate below chance for Simulta-
neous Starts. Removing these, as showed in Task 3b gives well
above chance average recall rate, and the left context gives ad-
ditional boost. The boost from the left context may come from
the difference between back-channel eliciting cues, which may
boost Other Speaker decisions, as opposed to phrase-final into-
nation which may boost Same Speaker decisions. Comparing
Task 3c and 3d shows merging Simultaneous Starts and Other
Speaker gives the same results as for Task 3b, while merging Si-
multaneous Starts with Same Speaker condition degrade perfor-
mance. This indicates Simultaneous Starts are preceded by the
same feedback and context realizations as for the Other Speaker
condition, which indicates what we see floor stealing attempts
that are not prosodically signaled by the feedback producing
speaker.

6. Conclusions
In this paper the prosody of conversational grunts has been ex-
plored using a novel supra-segmental signal representation for
the F0-region. The results show clear discriminative ability be-
tween fillers and feedbacks. The proposed signal representa-
tion is shown to be able to discriminate between dis-preference,

news receiving and general feedback grunts, especially if the
feedback producing speaker gives back the floor without non-
overlapping speech, otherwise only smaller prosodic differ-
ences were found. In addition, the contribution of contextual
timing features improve the performance for all tasks. Further,
it is possible to predict the turn taking effect well above chance,
unless there is a Simultaneous Start. For this latter task, using
the left context of the interlocutor boosts performance. These
findings may be used to design a more general detector for these
social interaction phenomenons.
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