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Abstract

This paper discusses some of the chal-
lenges in building a robot that is supposed
to autonomously navigate in an urban envi-
ronment by asking pedestrians for route di-
rections. We present a novel Wizard-of-Oz
setup for collecting route direction dia-

logues, and a novel approach for data-
driven semantic interpretation of route de-
scriptions into route graphs. The results in-

The purpose of the IURO projéet a successor

of the ACE project (Bauer et al., 2009) — is to ex-
plore how robots can be endowed with capabilities
for extracting missing information from humans
through spoken interaction. The test scenario for
the project is to build a robot that can autono-
mously navigate in a real urban environment and
enquire human passers-by for route directions (see
Figure 1).

(S

ut.

dicate that it is indeed possible to get peo-
ple to freely describe routes which can be
automatically interpreted into a route graph
that may be useful for robot navigation.

1 Introduction

Robots are gradually moving from industrial set-Figure 1: ACE, the precursor to IURO (left) andea d
tings into our daily lives. This change from con- sign draft of the IURO robot (right).

strained, well-controlled environments into situa-

tions where objectives and situations may radicall@ne of the central challenges in this project & th
change over time means that it will be next to imef interpreting the spoken route directions into a
possible to provide robots with all necessargemantic formalism that is useful for the robot. In
knowledge a-priori. Even if robots are able to tearthis paper we present a feasibility study where we
from experience, sufficient information will notexplore a novel approach to data-driven semantic
always be available in the environment to fill thénterpretation in this setting. For this study, de
knowledge gaps. Humans, however, are a rigiot address the problems of automatic speech rec-
source of information. If robots are equipped witlognition, but will base the experiments of tran-
the knowledge of how to extract this informationgcriptions. We present a novel Wizard-of-Oz setup
it will give them a powerful means to improvethat is used to collect initial data on human-robot
their adaptability and cope with new situations a®ute descriptions. This serves to validate whether
they arise. it is at all possible to make people describe derou

! Interactive Urban Robot (www.iuro-project.eu)
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in a way that is understandable to a robot. A denation at a time, but it may also allow the human
main model of route graphs based on previous r& describe the route more freely, while the robot
search in the area has been developed and the cebponds with encouraging backchannels. This is
lected data has been annotated according to it.sAmewhat similar to the -call-routing domain,
data-driven semantic chunking parser which utilwhere the user is often asked to describe the prob-
izes the domain model is then applied to explodem in a free way, and relevant concepts are ex-
whether the route graphs can be automatically etxacted using data-driven methods (Gorin et al.,

tracted from the route descriptions. 1997). However, whereas the semantics of utter-
_ _ ) ances in the call routing domain is typically repre
2 Dialoguefor routedirections sented as a “bag of concepts”, the semantics of

route descriptions is highly structured and cannot

The task of the IURO robot is quite different fro e .
a robot which is supposed to do as told by a hurrq%? treated in this way. A central requirement af ou

instructor. For the IURO robot, the route directon odel is also that it should be able_to generalise
. ) some extent when encountered with unseen data,
retrieved from human interlocutors are only possi-

ble means for accomplishing the task; there is r}?ond to be able to back off to more general con-

end in itself in following them. If the input frow epts, without breaking the conceptual structure.

human interlocutor doesn’t contribute to the ro\-Ne therefore need a domain model (ontology)

, . . -~which defines concepts on different levels of speci

Dot soing of e sk e robot (1 & gty and speciies how they may be sructured
y ; ) . and we need a data-driven semantic interpreter

much more feasible. This is very different from

C . which takes this domain model into account.
assistive robots, which are supposed to respond

and react to all requests from t_he user. 3 Representing navigational knowledge
Studies on human-human dialogue with an error

prone speech recognition channel have shown that common way of representing navigational

humans that have a very clear goal of the interaknowledge is theoute graph which is a directed

tion may accurately pick out pieces of informatiomgraph that represents one or several possible ways

from the speech recognition results that are relef reaching a goal from a starting point. However,

vant to the task (even when the speech recognititime details of this representation have varied)ypar

accuracy is very poor), and ask relevant taskiepending on what level of knowledge it is sup-

related questions to recover from the problemposed to represent.

(Skantze, 2005). Experiments on automated call- _ ,

routing have also shown that the system may givel Topological and metric route graphs

positive backchannels (such as “mhm”) to geiccording to Bauer et al. (2009), tapological
more input from the user, even if the system On'bbute graphis a directed graph where nodes repre-
understands parts of what has been said (Gustafs@ht intersections on the route and edges straight
et al.,, 2008). In order to increase the acceptgbilipaths which connect these intersections. If metric
of the direction-giving dialogues among the humagoordinates are assigned to the nodes (for example
interlocutors, we will use a non-committal diaty the use of sensory data)netric route graphs
logue strategy where the system produces feedba@nstructed, which the robot may use to derive dis-

that has the purpose of progressing without reveaénces and angels in order to follow the route
ing lack of understanding. graph.

This approach calls for techniques for robust in-
tegration and selection of input modalities, aslweB.2 Conceptual route graphs
as accurate confidence scoring, so that the systg{fjje the topological and metric route graphs are
may pick out the pieces of information that it calysef| for representing a route from a bird’s eye
actually understand. The system may also combi

Y _ Brspective and to guide the robot's locomotion,
descriptions from several humans, to derive a mo. Rey are not representative for how humans de-
solid hypothesis.

_ scribe routes. Thus, eonceptual route graplis
The robot may use a controlled dialogue strategy,eqeq that can be used to represent human route

where the human is asked for one piece of infOfgcrintions semantically. In the scheme proposed
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by Mdiller et al. (2000), conceptual route graples ar A route graph instance can be illustrated with a
similar to topological graphs in that nodes reprezonceptual tree, where nodes represent concepts
sent places where a change in direction takes plaa®d edges represent arguments. An example repre-
and edges connect these places. The route gragmtation is shown in Figure 3.
may be divided intaoute segmentswhere each
segment consists of an edge and an ending nc ST

. . . @ traveldist: Distance (0..1)
where an action to change direction takes plac 7
Conceptually, each segment consists of the follov

ing components: | |

Between Through
i @ landmark: Landmark (0..2) | |@ landmark: Landmark (0..1)
» Controllers: A set of descriptors that ensures
that the traversal along the edge is maintaine | |
. . . Along Pass
These may be |nd|Cat0rS Of the travel dIStanC‘ @ bend: DirecEZn(O..l) - lalndmark: Ifas;dmm'k(ﬂ..])
and important landmarks to keep track of (e.g e )

“continue for 100 metets* go through the tun-
nel’, “you should have a large building on yout -
left”). & st Lot 1)
» Routers: A set of place descriptors that helps tu

identify the ending node. Figure 2: The conceptdMTROLLER and its subtypes.
» Action: The action to take at the ending node in

order to change direction.

Segment  \segment

Note that Controllers, Routers and Actions are n
in themselves mandatory components for eac
segment, but that at least one of them is require )
This representation has been further developed [ | & ] [ | [Cows | [ |
Mandel et al. (2006), which applied it to a corpu / socten
of route descriptions involving 27 subjects, an

showed that it had good coverage for the variot
types of descriptions in the corpus. Purber ot rorery

Y
| Integer [500] | [ Meterlnit ‘ [ Red |

Segment J | Segment ‘

‘ Street | |Distance| | Church ‘ | Right ‘ | Street | ‘ Left |

3.3 A domain model for route descriptions

. . igure 3: A conceptual route graph represeritiatipw
The dialogue framework that we use in the IUR6 the street for five hundred meters up to eh the red

project is Jindigo (Skantze & Hjalmarsson, 2010). chyrch then go right cross the street and turr left
Jindigo is a Java-based framework for implement-

ing incremental dialogue systems. The framework A Wizard-of-Oz data collection

provides methods for defining domain models (a

simple form of ontology) for limited domains in anAt this stage in the project the robot platfornma
XML format. The domain models are then comyet ready for human-robot interaction. Thus, we
piled into Java classes. A type hierarchy is Spe(have to start to collect preliminary data on human-
fied, where each concept type may have a set r@|b0t route direction dialogue by other means.
typed attributes. For example, there is a generidere have been several approaches to such data
concept IANDMARK, which is subtyped by a-  collections. Kyriacou et al. (2005) present an ex-
VERSABLE, which is in turn subtyped by the con-Periment where subjects are given the task of giv-
cepts SREET and LAWN. LANDMARK is also sub- iNng navigational instructions to a small robot in a
typed by BILDING, which is in turn subtyped by Miniature city. This is somewnhat different from the
CHURCH. As another example, the type hierarchjJRO setting, since the subject can see the whole
of CONTROLLER is shown in Figure 2. We cur- City from a bird’s eye perspective when giving the

rently have about 60 concept types in the domaifstructions. Another approach is to let subjects
model. watch a video of a route and simultaneously de-

scribe what they see (Rieser & Poesio, 2009). The
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drawback with that approach is that it might not bormat he or she deem suitable, with encouraging
very representative for how people describe a roubackchannels from the robot. If the subject does
that is retrieved from memory. not continue, the Wizard initiates a specific ques-
In this data collection, we used a Wizard-of-Ozion to the subject about how to continue. A very
setup where the subject first watches a recordstiort example is shown in Table 1. In the experi-
video of a route from a first-person perspectivenent presented in this paper, we will use data from
The Wizard then initiates a route description diathe free dialogues, but the controlled dialogue dat
logue with the subject, where the subject has teill be useful when looking at fallback dialogue
recall the route from memory. (In the presenstrategies for the robot.
study, the subject only got to see the video once,

but this could be varied in order to simulate vary-Robot Excuse me, could you help me to
ing experience of the route). During the dialogue, find my way to the library?
both the Wizard and the subject are shown the iniHuman Yes

tial perspective (as shown in Figure 4), giving Robot Great, how should | go?
them an opportunity to talk about visual cues at th Human Take the first street left
start of the route. This is intended to resemble @&obot Yes

real situation to some extent, where the human haduman Then the second left
some more or less vague notion about the routeRobot Yes

which is likely to trigger disfluencies and errone- And then?

ous descriptions. For each step in the dialoguee, thHuman You are at the library
Wizard’s interface is updated with controls that Robot Thank you, bye!

correspond to the contents of the user’'s utteranc
The robot’s next utterance is automatically sekkcte
according to a state chart and played to the subjec

using text-to-speech. 5 Data-driven semantic interpretation

%‘able 1: An example dialogue in the free dialogete s
ting, translated from Swedish.

In this section, we will explore a novel approach
for interpreting the route descriptions presented i
the previous section into the semantic representa-
tions described in section 3.

5.1 Previouswork

The problem of semantic interpretation of spoken
utterances — or Spoken Language Understanding
(SLU), as it is also referred to — is a vital step
dialogue system processing. The problem can be
formulated as taking a speech recognition result
and produce a semantic representation that can be

e el o) e ) used by the dialogue manager to decide what to do

(] [t next. A simple and robust approach is that of key-
P word spotting, where specific words in the input

Figure 4: The Wizard-of-Oz interface used in theada &€ @ssociated with certain concepts or slot-value
collection. pairs. The drawback with that approach is of

course that it cannot utilize any syntactic or con-

Two types of dialogue strategies were used ggxtual features and that the resulting semanfie re
the Wizard. First, a controlled dialogue strategyesentation is not structured in any way. Grammar-
where the controllers, routers and actions weRased approaches which may be applicable to writ-
asked for one at a time by the Wizard. Second,!@ text are often not appropriate, since they are
free dialogue strategy where the subject is askedR0Or at coping with disfluencies in spoken lan-

describe the route freely using whatever strategy 8uage and are not robust to speech recognition er-
rors. More robust, grammar-based approaches have
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been presented (e.g., Skantze & Edlund, 2004mple given in Figure 3, which could be chunked
However, such approaches still need hand-writtén the following way:
grammars which are tailored to the domain.

A promising alternative is to use data-driveficonrrouer FOOW] [Lanomar the street] disrance fOr
methods, which do not need any hand-craftdd/e hundred meterskfurer UP 0] [p €0] [Lanomark
grammars, may better cope with the irregularitiethe red church]du then] [scrion 90] [birecrion Fight]
of spoken language, and be more robust agaifigiurroier CrOSS] [aowarx the street]dw and] [acrion
speech recognition errors. In Meza-Ruiz et aturn] [precrion €]

(2008), a method for SLU using Markov Logic

Networks is presented, but the resulting semantic As the example shows, this is similar to the
representations are limited to a set of slot-valughunks used in shallow parsing (e.g.,AAbMARK
pairs (i.e., they are not structured). Another apeughly corresponds to an NP), but here the chunks
proach is presented by Wong & Mooney (2007gre semantically motivated. To turn the chunking
where a context-free grammar (CFG) augmentédto a classification problem, a common practice is
with semantic instructions (based on first-ordeto define two labels for each type of chunk: one
logic) is learned. However, the approach assumesth the prefix B-for the first word in the chunk
that the input may be described with a CFG&Gnd one with prefix |- for the following words.
which, as we discussed above, may not be the cadas is illustrated in Table 2.

for speech recognition results. He & Young (2006)

presents a Hidden Vector State model (an extended/ord Chunker Attacher
HMM) which may produce deeply structured se-follow B-CONTROLLER | class ALONG
mantic interpretations. It is shown to have good landmark —
performance in a travel-booking domain. However, traveldist —
it is not clear whether it may utilize an ontology the B-LANDMARK _ | class STREET
and back off to more general concepts in order et I-IANDMARK :
learn generalizations, which we will aim for in the for B-DISTANCE _ | value:500
approach presented here. five I-DISTANCE unit: METERUNIT
hundred | |-DSTANCE
5.2 Thechunking parser meters | |I-DSTANCE
up B-ROUTER class AT
The chunking parserwas introduced by Abney | o I-ROUTER landmark —
(1991), as a variant of a typical natural languagesh B-FP
parser where the syntactical analyser is comprisgethe B-LANDMARK class CHURCH
of two stages: th€hunkerand theAttacher The | red [-LANDMARK property. RED
task of the Chunker is to convert a stream of worgshurch I-LANDMARK
into a stream of chunks, which is taken as input byhen B-DM
the Attacher. The Attacher then adds connection§© B-ACTION class TAKE
between individual chunks, thus producing a parse. direction —
tree. The approach has gained a lot of interesfight B-DRECTION _ | class RIGHT
since it can be easily formulated as a classificati| €SS B-ONTROLLER | class CROSS
problem, which makes it possible to apply machine landmark —
) the B-LANDMARK class STREET
learning methods (Sang & Buchholz, 2000). Ho
- street I-LANDMARK
ever, the approach has mainly been used for SYg B-DM
tactic a_naIyS|s, and not for semantic interpretatio B-ACTION Class TAKE
In this paper, we introduce a novel application directior: —s
of the chunking parser to data-driven semantic inyeft B-DIRECTION class LEFT

terpretation in limited domains. In this approach

ﬁl’_able 2: The correct output of the Chunker and cktéat

the Chunker is given the task of finding base co for the example in Figure 3.

cepts in the sequence of words. The Attacher is

then given the task of assigning more specific con

cepts (given the type hierarchy of the domain) anqhe Attacher does two things. First, it may assign

to attach concepts as arguments. Consider the &ere specific concept class (lileass CHurcH).
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To allow it to generalise, it also assigns all @tge back off to more general concepts, without break-
classes, based on the domain model (i.elLB ing the conceptual structure. To do this, we uge no
ING for CHURCH; this, however, is not shown in theonly the specific words as features, but also their
example above). The second task of the AttacherRart-of-speech and affixes. Thus, the classifiey ma
to assign attributes. Some attributes are filled ifor example learn that the Swedish word “Drott-
with new concepts (likproperty. RED), while oth- ninggatan” (Eng: “the Queen Street”) is BREET,

ers are attached to the nearest concept thahéts given the suffix and context.

argument type according to the domain model (like For the Chunker, the following features were
distance: —, which means that the interpretemused:

should look for a matching argument in the right

context). Thus, while the chunking can be de- Word: The word instance, as well as a window
scribed as a&ingle-labelclassification, the attach-  of the two previous and next words.

ment is amulti-label classification where none, onee Previoustags. The two previous chunking tags.
or several labels may be assigned to the chunk. « \Word affixes The initial 2-4 letters of the
word (prefix), and/or last 3-4 letters of the word
(suffix).

To implement the classifier, we used the Learning Part-of-speech, Lemma: The Part-of-speech
Based Java (LBJ) framework (Rizzolo & Roth, tags and Lemmas of the five-word-window,
2010), which has shown competitive performance automatically extracted using the software
on the CoNLL 2000 shared task (Sang & Buch- Granska (Domeij et al., 1999).

holz, 2000). Two basic types of machine learning

algorithms were tested: Naive Bayes and Line#@or the Attacher, the following features were used:
Threshold Units (LTUs). Only the latter can be

used for the multi-label learning in the Attachers Chunk label: The label produced by the Chun-
LTUs represent their input with a weight vector ker, as well as a window of the two previous
whose dimensions correspond to features of the and next labels.

input, and outputs a real number score for eaeh [ emmas: The lemmas of the words in the

possible label as output. For single-label learning chunk, both ordered and unordered (“bag of
the label with the highest score is selected. For |emmas”).

multi-label learning, all labels with a score ab@ve . gyffixess The suffixes of the words in the
certain threshold (which is learned) are selected. :hunk.
Three types of LTUs were tested: Sparse Percep-
tron, Sparse Avaraged Perceptron (Collins, 200%)5 Concept Error Rate
and Sparse Winnow (Littlestone, 1988).

As a final step, a set of simple heuristic rules a
used to group the GNTROLLERS, ROUTERS and
ACTIONS into $GMENTs (and a RUTE). Errors in

5.3 Machine-learning algorithms

For the evaluation of automatic speech recognition,
\Word Error Rate (WER) is a common measure of
performance, where the string of words in the ref-
erence is compared to the string of recognized

fords using minimum edit distance, and the num-

concepts, as well as surplus connchons_and CO¥Er of insertions, deletions and substitutions are
cepts. These are also handled by the heuristis,rul ounted (Jurafsky & Martin, 2000). Similarly

f\o tglat a fulé route“f_graphh n;lay d?e con;trulczted.l @oncept Error Rate (CER) can been used to evalu-
d?‘” € numbers ( |v|_e dqn trﬁ )’tta f}lmpet “: ®3te a semantic interpreter. However, this is net en

fivén parser 1S applied in the attachment sla rely straightforward. First, the concepts arestre
which would otherwise require a large amount g

data tructured, which means that they have to be flat-
: tened in a consistent manner. To accomplish this, a
5.4 Features depth-first traversal of the tree is applied, where

_ _ ) the order of the concepts are preserved if therorde
One of the requirements of the interpreter is thatjs jmportant (e.g., the ESMENT children of a

should be able to generalise to some extent Whgyte), and otherwise alphabetically ordered.
encountered with unseen data, and to be able 4@cond, not all concept substitutions should be
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treated equal. For example, substitutingu€cH Features Accuracyy CERy CERw

with BUILDING should not be penalized as much as\iv\?\;gr:jnj\fm%ew 7512-2”:%4 4833-73; 3627é510
su_bst|tut|ng $REET with . BU|LD|N(_3. To handle_ + Previous tags 87 62 26.50 34.38
this, the domain model is used in the evaluation, \word suffix 88.11 2515 31.25
where an insertion or deletion gives the error escor + Word prefix 88.44 23.93 31.25
of 1, a wrong base concept gives 1.5, a too specifi+ POS window 90.55 2147 32.19
concept gives 1, a too generic concept gives 0.5;Lemma window 9039 2772 3031

and a wrong branch in the concept hierarchy gives Table 3: Performance of the Chunker based on the

1. The total error score is then divided with the Sparse Perceptron learner for additive feature sets
number of concepts in the reference and multiplied

by 100 to derive the CER. Although these error As discussed in section 4, the method chosen to
scores are quite arbitrary, they might give a Ipetteollect the data forces the subject to retrieve the
indication of the performance than one crude overeute from memory while describing it, which

all error score. gives rise to a lot of disfluencies. To test wheihe
would be beneficial to remove these disfluencies
5.6 Data from the data, a simple filter was devised which

The main part of the data used in the training af@moved filled pauses and repetitions from both
evaluation comes from the Swedish corpus dde training and testing data. The results on the
scribed in section 4. In this experiment, we simplyParse Averaged Perceptron learner with full fea-
concatenated the user utterances of each dialogyee set are shown in Table 4. Interestingly, the
and ignored the Wizard's utterances, which r : ehaviour of CER|nd|CateS that the filled pauses
sulted in a total of 35 route descriptions with af! the spoken data are indeesefulin the chunk-
average length of 54 words and 24.8 concept§d process, while repeated words are not. This is
These routes were partitioned into a trainingtsetin line with previous findings that filled pauseza
using eighty percent of the route description§iore common at clause boundaries than within
through random selection and a validationwsef ~clauses (Swerts, 1998). As expected, removing
the remaining twenty percent. In addition to thes@oth filled pauses and repeats appear to make the
data sets, a Separate wOnsiSting of e|ght route SpOken data somewhat more similar to written
descriptionswritten downby a single test subject, foute descriptions according to CgR

one for each recorded route, was used to indicate

performance on similar but slightly different data. LFJir|1tfﬁ:ered éA1C84 CgsR\és CE'Eles

All daFa was manually annotated with the correcty repeats 9120 2505 3156

chunking and attachment. No filled pauses 90.71 29.75 35.00
No filled pauses or repeats 90.20 30.3728.44

5.7 Results: Chunker

~ Table 4: Performance of the Chunker based on the
In general, the LTUs performed better than Naivesparse Averaged Perceptron learner with filtered,da
Bayes for the Chunking task. The best performance full feature set.

was achieved with the Sparse Perceptron learner
as shown in Table 3, where the CER for the valid®8 Results: Chunker + Attacher

tion set (CER) and the written data (CER is The best performance in the Attacher is achieved
shown with additive feature sets. It also shows thgith the Sparse Averaged Perceptron, as shown in
accuracy of the labels assigned by the classifier. Table 5. It is important to note that the Attacher
compare with, a simple majority class baseline agms to base its classification on the erroneous out
curacy of 52.77 may be devised by looking at thgut of the Chunker. As can be seen, the best per-
performance of the Naive Bayes classifier withormance (25.60) is relatively close to that of the
only the word instance as feature. Chunker (21.47), which indicates that most errors
are introduced in the chunking stage.
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Features CERy CERy  other important issue we have yet to investigate is

C'é“h”k 'lf'loet') wind %%(3705 %87-8671 that of confidence scores in the interpretatiop.ste

IL unk label window ; 1 As discussed in section 2, accurate confidence
emmas 29.52 41.19 . . C . .

+ Bag of lemmas 26.20 3994  scoring is a vital issue for the approach that we w

+ Suffixes 25.60 40.57  take in the IURO project. There are also other ma-

chine learning approaches that have shown good
performance in chunking tasks which we will in-
vestigate, such as Hidden Markov Models and
Conditional Random Fields (Collins, 2002). The

For this feasibility study, we have used a reldgive method should also lend itself to incremental proc-
small amount of data and the question is how mu&@$sing (Schlangen & Skantze, 2011). While some
room there is for improvement, given that moréeatures used in the experiment are part of th rig
data was provided. Figure 5 shows how the CER &@ntext, we have not directly addressed the ques-
the Attacher decreases as more data is added. i@ of how much these contribute to the perform-
slope of the curve indicates that the performascednce. It is also possible to revise previous ougsut

Table 5: The performance of the Attacher baseden t
Sparse Averaged Perceptron learner, for additiggife
sets.

likely to improve if even more data is added. more input is processed (lbid.).
As a feasibility study, we think that the results
% - indicate that it is indeed possible to get people t

80 - freely describe routes which can be automatically
interpreted into a route graph that may be useful
for robot navigation. We also hope that the novel
approach to semantic chunking parsing presented

here will inspire others to similar approaches in

70 A

60
50 o
40
30 A

20 - other domains.
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Given the limited amount of data, the results show
promising performance (25.6% CER on unseen
data). Most problems are introduced in the chunk-
ing stage, but the results indicate that more gata
likely to improve the performance. The next step is
to apply the method to a larger corpus and to an-
other language. The IBL corpus is a good candi-
date here (Kyriacou et al., 2005). In this experi-
ment, we simply concatenated the user’s utterances
and did not use the Wizard's. The performance of
the chunker is likely to improve if the Wizard's
utterances are also taken into account.

One important step that we have not addressed
yet is that of automatic speech recognition. Al-
though a lot more errors are likely to be intro-
duced, a data-driven approach for semantic inter-
pretation is much more likely to degrade gracefully
than a grammar-based approach. This, however,
will need to be investigated in future studies. An-
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