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Abstract 

This paper discusses some of the chal-
lenges in building a robot that is supposed 
to autonomously navigate in an urban envi-
ronment by asking pedestrians for route di-
rections. We present a novel Wizard-of-Oz 
setup for collecting route direction dia-
logues, and a novel approach for data-
driven semantic interpretation of route de-
scriptions into route graphs. The results in-
dicate that it is indeed possible to get peo-
ple to freely describe routes which can be 
automatically interpreted into a route graph 
that may be useful for robot navigation. 

1 Introduction 

Robots are gradually moving from industrial set-
tings into our daily lives. This change from con-
strained, well-controlled environments into situa-
tions where objectives and situations may radically 
change over time means that it will be next to im-
possible to provide robots with all necessary 
knowledge a-priori. Even if robots are able to learn 
from experience, sufficient information will not 
always be available in the environment to fill the 
knowledge gaps. Humans, however, are a rich 
source of information. If robots are equipped with 
the knowledge of how to extract this information, 
it will give them a powerful means to improve 
their adaptability and cope with new situations as 
they arise. 

The purpose of the IURO project1 – a successor 
of the ACE project (Bauer et al., 2009) – is to ex-
plore how robots can be endowed with capabilities 
for extracting missing information from humans 
through spoken interaction. The test scenario for 
the project is to build a robot that can autono-
mously navigate in a real urban environment and 
enquire human passers-by for route directions (see 
Figure 1).  

 

  
Figure 1: ACE, the precursor to IURO (left) and a de-

sign draft of the IURO robot (right). 
 

One of the central challenges in this project is that 
of interpreting the spoken route directions into a 
semantic formalism that is useful for the robot. In 
this paper we present a feasibility study where we 
explore a novel approach to data-driven semantic 
interpretation in this setting. For this study, we do 
not address the problems of automatic speech rec-
ognition, but will base the experiments of tran-
scriptions. We present a novel Wizard-of-Oz setup 
that is used to collect initial data on human-robot 
route descriptions. This serves to validate whether 
it is at all possible to make people describe a route 
                                                           
1 Interactive Urban Robot (www.iuro-project.eu) 

SemDial 2011: Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue, pages 19–27.
Los Angeles, California, 21–23 September 2011.
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in a way that is understandable to a robot. A do-
main model of route graphs based on previous re-
search in the area has been developed and the col-
lected data has been annotated according to it. A 
data-driven semantic chunking parser which util-
izes the domain model is then applied to explore 
whether the route graphs can be automatically ex-
tracted from the route descriptions.  

2 Dialogue for route directions 

The task of the IURO robot is quite different from 
a robot which is supposed to do as told by a human 
instructor. For the IURO robot, the route directions 
retrieved from human interlocutors are only possi-
ble means for accomplishing the task; there is no 
end in itself in following them. If the input from a 
human interlocutor doesn’t contribute to the ro-
bot’s solving of the task, the robot may (in a polite 
way) turn to another human, which makes the task 
much more feasible. This is very different from 
assistive robots, which are supposed to respond 
and react to all requests from the user. 

Studies on human-human dialogue with an error 
prone speech recognition channel have shown that 
humans that have a very clear goal of the interac-
tion may accurately pick out pieces of information 
from the speech recognition results that are rele-
vant to the task (even when the speech recognition 
accuracy is very poor), and ask relevant task-
related questions to recover from the problem 
(Skantze, 2005). Experiments on automated call-
routing have also shown that the system may give 
positive backchannels (such as “mhm”) to get 
more input from the user, even if the system only 
understands parts of what has been said (Gustafson 
et al., 2008). In order to increase the acceptability 
of the direction-giving dialogues among the human 
interlocutors, we will use a non-committal dia-
logue strategy where the system produces feedback 
that has the purpose of progressing without reveal-
ing lack of understanding. 

This approach calls for techniques for robust in-
tegration and selection of input modalities, as well 
as accurate confidence scoring, so that the system 
may pick out the pieces of information that it can 
actually understand. The system may also combine 
descriptions from several humans, to derive a more 
solid hypothesis. 

The robot may use a controlled dialogue strategy 
where the human is asked for one piece of infor-

mation at a time, but it may also allow the human 
to describe the route more freely, while the robot 
responds with encouraging backchannels. This is 
somewhat similar to the call-routing domain, 
where the user is often asked to describe the prob-
lem in a free way, and relevant concepts are ex-
tracted using data-driven methods (Gorin et al., 
1997). However, whereas the semantics of utter-
ances in the call routing domain is typically repre-
sented as a “bag of concepts”, the semantics of 
route descriptions is highly structured and cannot 
be treated in this way. A central requirement of our 
model is also that it should be able to generalise to 
some extent when encountered with unseen data, 
and to be able to back off to more general con-
cepts, without breaking the conceptual structure. 
We therefore need a domain model (ontology) 
which defines concepts on different levels of speci-
ficity and specifies how they may be structured, 
and we need a data-driven semantic interpreter 
which takes this domain model into account. 

3 Representing navigational knowledge 

A common way of representing navigational 
knowledge is the route graph, which is a directed 
graph that represents one or several possible ways 
of reaching a goal from a starting point. However, 
the details of this representation have varied, partly 
depending on what level of knowledge it is sup-
posed to represent. 

3.1 Topological and metric route graphs 

According to Bauer et al. (2009), a topological 
route graph is a directed graph where nodes repre-
sent intersections on the route and edges straight 
paths which connect these intersections. If metric 
coordinates are assigned to the nodes (for example 
by the use of sensory data), a metric route graph is 
constructed, which the robot may use to derive dis-
tances and angels in order to follow the route 
graph. 

3.2 Conceptual route graphs 

While the topological and metric route graphs are 
useful for representing a route from a bird’s eye 
perspective and to guide the robot’s locomotion, 
they are not representative for how humans de-
scribe routes. Thus, a conceptual route graph is 
needed that can be used to represent human route 
descriptions semantically. In the scheme proposed 
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by Müller et al. (2000), conceptual route graphs are 
similar to topological graphs in that nodes repre-
sent places where a change in direction takes place 
and edges connect these places. The route graph 
may be divided into route segments, where each 
segment consists of an edge and an ending node 
where an action to change direction takes place. 
Conceptually, each segment consists of the follow-
ing components: 

 
• Controllers: A set of descriptors that ensures 

that the traversal along the edge is maintained. 
These may be indicators of the travel distance, 
and important landmarks to keep track of (e.g., 
“continue for 100 meters”, “ go through the tun-
nel”, “ you should have a large building on your 
left”).  

• Routers: A set of place descriptors that helps to 
identify the ending node. 

• Action: The action to take at the ending node in 
order to change direction. 

 
Note that Controllers, Routers and Actions are not 
in themselves mandatory components for each 
segment, but that at least one of them is required. 
This representation has been further developed by 
Mandel et al. (2006), which applied it to a corpus 
of route descriptions involving 27 subjects, and 
showed that it had good coverage for the various 
types of descriptions in the corpus. 

3.3 A domain model for route descriptions 

The dialogue framework that we use in the IURO 
project is Jindigo (Skantze & Hjalmarsson, 2010). 
Jindigo is a Java-based framework for implement-
ing incremental dialogue systems.  The framework 
provides methods for defining domain models (a 
simple form of ontology) for limited domains in an 
XML format. The domain models are then com-
piled into Java classes. A type hierarchy is speci-
fied, where each concept type may have a set of 
typed attributes. For example, there is a generic 
concept LANDMARK , which is subtyped by TRA-

VERSABLE, which is in turn subtyped by the con-
cepts STREET and LAWN. LANDMARK  is also sub-
typed by BUILDING, which is in turn subtyped by 
CHURCH. As another example, the type hierarchy 
of CONTROLLER is shown in Figure 2. We cur-
rently have about 60 concept types in the domain 
model. 

A route graph instance can be illustrated with a 
conceptual tree, where nodes represent concepts 
and edges represent arguments. An example repre-
sentation is shown in Figure 3.  
 

 
Figure 2: The concept CONTROLLER and its subtypes. 

 

 
Figure 3: A conceptual route graph representing “follow 

the street for five hundred meters up to eh the red 
church then go right cross the street and turn left” 

4 A Wizard-of-Oz data collection 

At this stage in the project the robot platform is not 
yet ready for human-robot interaction. Thus, we 
have to start to collect preliminary data on human-
robot route direction dialogue by other means. 
There have been several approaches to such data 
collections. Kyriacou et al. (2005) present an ex-
periment where subjects are given the task of giv-
ing navigational instructions to a small robot in a 
miniature city. This is somewhat different from the 
IURO setting, since the subject can see the whole 
city from a bird’s eye perspective when giving the 
instructions. Another approach is to let subjects 
watch a video of a route and simultaneously de-
scribe what they see (Rieser & Poesio, 2009). The 
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drawback with that approach is that it might not be 
very representative for how people describe a route 
that is retrieved from memory. 

In this data collection, we used a Wizard-of-Oz 
setup where the subject first watches a recorded 
video of a route from a first-person perspective. 
The Wizard then initiates a route description dia-
logue with the subject, where the subject has to 
recall the route from memory. (In the present 
study, the subject only got to see the video once, 
but this could be varied in order to simulate vary-
ing experience of the route). During the dialogue, 
both the Wizard and the subject are shown the ini-
tial perspective (as shown in Figure 4), giving 
them an opportunity to talk about visual cues at the 
start of the route. This is intended to resemble a 
real situation to some extent, where the human has 
some more or less vague notion about the route, 
which is likely to trigger disfluencies and errone-
ous descriptions. For each step in the dialogue, the 
Wizard’s interface is updated with controls that 
correspond to the contents of the user’s utterance. 
The robot’s next utterance is automatically selected 
according to a state chart and played to the subject 
using text-to-speech. 

 

 
Figure 4: The Wizard-of-Oz interface used in the data 

collection. 
 
Two types of dialogue strategies were used by 

the Wizard. First, a controlled dialogue strategy, 
where the controllers, routers and actions were 
asked for one at a time by the Wizard. Second, a 
free dialogue strategy where the subject is asked to 
describe the route freely using whatever strategy or 

format he or she deem suitable, with encouraging 
backchannels from the robot. If the subject does 
not continue, the Wizard initiates a specific ques-
tion to the subject about how to continue. A very 
short example is shown in Table 1. In the experi-
ment presented in this paper, we will use data from 
the free dialogues, but the controlled dialogue data 
will be useful when looking at fallback dialogue 
strategies for the robot.  

 
Robot Excuse me, could you help me to 

find my way to the library? 
Human Yes 
Robot Great, how should I go? 
Human Take the first street left 
Robot Yes 
Human Then the second left 
Robot Yes 
 And then? 
Human You are at the library 
Robot Thank you, bye! 

Table 1: An example dialogue in the free dialogue set-
ting, translated from Swedish. 

5 Data-driven semantic interpretation 

In this section, we will explore a novel approach 
for interpreting the route descriptions presented in 
the previous section into the semantic representa-
tions described in section 3.  

5.1 Previous work 

The problem of semantic interpretation of spoken 
utterances – or Spoken Language Understanding 
(SLU), as it is also referred to – is a vital step in 
dialogue system processing. The problem can be 
formulated as taking a speech recognition result 
and produce a semantic representation that can be 
used by the dialogue manager to decide what to do 
next. A simple and robust approach is that of key-
word spotting, where specific words in the input 
are associated with certain concepts or slot-value 
pairs. The drawback with that approach is of 
course that it cannot utilize any syntactic or con-
textual features and that the resulting semantic rep-
resentation is not structured in any way. Grammar-
based approaches which may be applicable to writ-
ten text are often not appropriate, since they are 
poor at coping with disfluencies in spoken lan-
guage and are not robust to speech recognition er-
rors. More robust, grammar-based approaches have 
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been presented (e.g., Skantze & Edlund, 2004). 
However, such approaches still need hand-written 
grammars which are tailored to the domain. 

A promising alternative is to use data-driven 
methods, which do not need any hand-crafted 
grammars, may better cope with the irregularities 
of spoken language, and be more robust against 
speech recognition errors. In Meza-Ruiz et al. 
(2008), a method for SLU using Markov Logic 
Networks is presented, but the resulting semantic 
representations are limited to a set of slot-value 
pairs (i.e., they are not structured). Another ap-
proach is presented by Wong & Mooney (2007), 
where a context-free grammar (CFG) augmented 
with semantic instructions (based on first-order 
logic) is learned. However, the approach assumes 
that the input may be described with a CFG, 
which, as we discussed above, may not be the case 
for speech recognition results. He & Young (2006) 
presents a Hidden Vector State model (an extended 
HMM) which may produce deeply structured se-
mantic interpretations. It is shown to have good 
performance in a travel-booking domain. However, 
it is not clear whether it may utilize an ontology 
and back off to more general concepts in order to 
learn generalizations, which we will aim for in the 
approach presented here. 

5.2 The chunking parser 

The chunking parser was introduced by Abney 
(1991), as a variant of a typical natural language 
parser where the syntactical analyser is comprised 
of two stages: the Chunker and the Attacher. The 
task of the Chunker is to convert a stream of words 
into a stream of chunks, which is taken as input by 
the Attacher. The Attacher then adds connections 
between individual chunks, thus producing a parse 
tree. The approach has gained a lot of interest, 
since it can be easily formulated as a classification 
problem, which makes it possible to apply machine 
learning methods (Sang & Buchholz, 2000). How-
ever, the approach has mainly been used for syn-
tactic analysis, and not for semantic interpretation.  

In this paper, we introduce a novel application 
of the chunking parser to data-driven semantic in-
terpretation in limited domains. In this approach, 
the Chunker is given the task of finding base con-
cepts in the sequence of words. The Attacher is 
then given the task of assigning more specific con-
cepts (given the type hierarchy of the domain) and 
to attach concepts as arguments. Consider the ex-

ample given in Figure 3, which could be chunked 
in the following way: 

 
[CONTROLLER follow] [ LANDMARK  the street] [DISTANCE for 
five hundred meters] [ROUTER up to] [FP eh] [LANDMARK 
the red church] [DM then] [ACTION go] [DIRECTION right] 
[CONTROLLER cross] [LANDMARK the street] [DM and] [ACTION 
turn] [DIRECTION left] 

 
As the example shows, this is similar to the 

chunks used in shallow parsing (e.g., a LANDMARK  
roughly corresponds to an NP), but here the chunks 
are semantically motivated. To turn the chunking 
into a classification problem, a common practice is 
to define two labels for each type of chunk: one 
with the prefix B- for the first word in the chunk 
and one with prefix I- for the following words. 
This is illustrated in Table 2.  

 
Word Chunker Attacher 
follow B-CONTROLLER class: ALONG 

landmark: → 
traveldist: → 

the  B-LANDMARK  class: STREET 
street I-LANDMARK  
for B-DISTANCE value: 500 

unit: METERUNIT five I-DISTANCE 
hundred I-DISTANCE 
meters I-DISTANCE 
up  B-ROUTER class: AT  

landmark: → to I-ROUTER 
eh B-FP  
the  B-LANDMARK  class: CHURCH 

property: RED red I-LANDMARK  
church I-LANDMARK  
then B-DM  
go  B-ACTION class: TAKE 

direction: → 
right B-DIRECTION class: RIGHT 
cross B-CONTROLLER class: CROSS 

landmark: → 
the  B-LANDMARK  class: STREET 
street I-LANDMARK  
and B-DM  
turn  B-ACTION class: TAKE 

direction: → 
left B-DIRECTION class: LEFT 

Table 2: The correct output of the Chunker and Attacher 
for the example in Figure 3. 

 
The Attacher does two things. First, it may assign a 
more specific concept class (like class: CHURCH). 
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To allow it to generalise, it also assigns all ancestor 
classes, based on the domain model (i.e., BUILD-

ING for CHURCH; this, however, is not shown in the 
example above). The second task of the Attacher is 
to assign attributes. Some attributes are filled in 
with new concepts (like property: RED), while oth-
ers are attached to the nearest concept that fits the 
argument type according to the domain model (like 
distance: →, which means that the interpreter 
should look for a matching argument in the right 
context). Thus, while the chunking can be de-
scribed as a single-label classification, the attach-
ment is a multi-label classification where none, one 
or several labels may be assigned to the chunk. 

5.3 Machine-learning algorithms 

To implement the classifier, we used the Learning 
Based Java (LBJ) framework (Rizzolo & Roth, 
2010), which has shown competitive performance 
on the CoNLL 2000 shared task (Sang & Buch-
holz, 2000). Two basic types of machine learning 
algorithms were tested: Naive Bayes and Linear 
Threshold Units (LTUs). Only the latter can be 
used for the multi-label learning in the Attacher. 
LTUs represent their input with a weight vector 
whose dimensions correspond to features of the 
input, and outputs a real number score for each 
possible label as output. For single-label learning, 
the label with the highest score is selected. For 
multi-label learning, all labels with a score above a 
certain threshold (which is learned) are selected. 
Three types of LTUs were tested: Sparse Percep-
tron, Sparse Avaraged Perceptron (Collins, 2002) 
and Sparse Winnow (Littlestone, 1988).   

As a final step, a set of simple heuristic rules are 
used to group the CONTROLLERs, ROUTERs and 
ACTIONs into SEGMENTs (and a ROUTE). Errors in 
the Chunker and Attacher will also result in loose 
concepts, as well as surplus connections and con-
cepts. These are also handled by the heuristic rules, 
so that a full route graph may be constructed. To 
handle numbers (“five hundred”), a simple rule-
driven parser is applied in the attachment stage, 
which would otherwise require a large amount of 
data. 

5.4 Features 

One of the requirements of the interpreter is that it 
should be able to generalise to some extent when 
encountered with unseen data, and to be able to 

back off to more general concepts, without break-
ing the conceptual structure. To do this, we use not 
only the specific words as features, but also their 
Part-of-speech and affixes. Thus, the classifier may 
for example learn that the Swedish word “Drott-
ninggatan” (Eng: “the Queen Street”) is a STREET, 
given the suffix and context.  

For the Chunker, the following features were 
used: 

 
• Word: The word instance, as well as a window 

of the two previous and next words. 
• Previous tags. The two previous chunking tags. 
• Word affixes: The initial 2-4 letters of the 

word (prefix), and/or last 3-4 letters of the word 
(suffix). 

• Part-of-speech, Lemma: The Part-of-speech 
tags and Lemmas of the five-word-window, 
automatically extracted using the software 
Granska (Domeij et al., 1999). 
 

For the Attacher, the following features were used: 
 

• Chunk label: The label produced by the Chun-
ker, as well as a window of the two previous 
and next labels. 

• Lemmas: The lemmas of the words in the 
chunk, both ordered and unordered (“bag of 
lemmas”). 

• Suffixes: The suffixes of the words in the 
chunk. 

5.5 Concept Error Rate 

For the evaluation of automatic speech recognition, 
Word Error Rate (WER) is a common measure of 
performance, where the string of words in the ref-
erence is compared to the string of recognized 
words using minimum edit distance, and the num-
ber of insertions, deletions and substitutions are 
counted (Jurafsky & Martin, 2000). Similarly, 
Concept Error Rate (CER) can been used to evalu-
ate a semantic interpreter. However, this is not en-
tirely straightforward. First, the concepts are tree 
structured, which means that they have to be flat-
tened in a consistent manner. To accomplish this, a 
depth-first traversal of the tree is applied, where 
the order of the concepts are preserved if the order 
is important (e.g., the SEGMENT children of a 
ROUTE), and otherwise alphabetically ordered. 
Second, not all concept substitutions should be 
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treated equal. For example, substituting CHURCH 
with BUILDING should not be penalized as much as 
substituting STREET with BUILDING. To handle 
this, the domain model is used in the evaluation, 
where an insertion or deletion gives the error score 
of 1, a wrong base concept gives 1.5, a too specific 
concept gives 1, a too generic concept gives 0.5, 
and a wrong branch in the concept hierarchy gives 
1. The total error score is then divided with the 
number of concepts in the reference and multiplied 
by 100 to derive the CER. Although these error 
scores are quite arbitrary, they might give a better 
indication of the performance than one crude over-
all error score. 

5.6 Data 

The main part of the data used in the training and 
evaluation comes from the Swedish corpus de-
scribed in section 4. In this experiment, we simply 
concatenated the user utterances of each dialogue 
and ignored the Wizard’s utterances, which re-
sulted in a total of 35 route descriptions with an 
average length of 54 words and 24.8 concepts. 
These routes were partitioned into a training set t 
using eighty percent of the route descriptions 
through random selection and a validation set v of 
the remaining twenty percent. In addition to these 
data sets, a separate set w consisting of eight route 
descriptions written down by a single test subject, 
one for each recorded route, was used to indicate 
performance on similar but slightly different data. 
All data was manually annotated with the correct 
chunking and attachment. 

5.7 Results: Chunker 

In general, the LTUs performed better than Naive 
Bayes for the Chunking task. The best performance 
was achieved with the Sparse Perceptron learner, 
as shown in Table 3, where the CER for the valida-
tion set (CERV) and the written data (CERW) is 
shown with additive feature sets. It also shows the 
accuracy of the labels assigned by the classifier. To 
compare with, a simple majority class baseline ac-
curacy of 52.77 may be devised by looking at the 
performance of the Naive Bayes classifier with 
only the word instance as feature.  

Features AccuracyV CERV CERW 
Word Instance 52.44 83.34 67.50 
+ Word window 71.25 43.76 32.81 
+ Previous tags 87.62 26.50 34.38 
+ Word suffix 88.11 25.15 31.25 
+ Word prefix 88.44 23.93 31.25 
+ POS window 90.55 21.47 32.19 
+ Lemma window 90.39 27.72 30.31 

Table 3: Performance of the Chunker based on the 
Sparse Perceptron learner for additive feature sets. 
 
As discussed in section 4, the method chosen to 

collect the data forces the subject to retrieve the 
route from memory while describing it, which 
gives rise to a lot of disfluencies. To test whether it 
would be beneficial to remove these disfluencies 
from the data, a simple filter was devised which 
removed filled pauses and repetitions from both 
the training and testing data. The results on the 
Sparse Averaged Perceptron learner with full fea-
ture set are shown in Table 4. Interestingly, the 
behaviour of CERV indicates that the filled pauses 
in the spoken data are indeed useful in the chunk-
ing process, while repeated words are not. This is 
in line with previous findings that filled pauses are 
more common at clause boundaries than within 
clauses (Swerts, 1998). As expected, removing 
both filled pauses and repeats appear to make the 
spoken data somewhat more similar to written 
route descriptions according to CERW. 
 

Filter Acc. CERV CERW 
Unfiltered 91.04 25.88 31.56 
No repeats 91.20 25.05 31.56 
No filled pauses 90.71 29.75 35.00 
No filled pauses or repeats 90.20 30.37 28.44 

Table 4: Performance of the Chunker based on the 
Sparse Averaged Perceptron learner with filtered data, 

full feature set. 

5.8 Results: Chunker + Attacher 

The best performance in the Attacher is achieved 
with the Sparse Averaged Perceptron, as shown in 
Table 5. It is important to note that the Attacher 
has to base its classification on the erroneous out-
put of the Chunker. As can be seen, the best per-
formance (25.60) is relatively close to that of the 
Chunker (21.47), which indicates that most errors 
are introduced in the chunking stage.  
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Features CERV CERW 
Chunk label 50.60 68.87 
+ Chunk label window 36.75 67.61 
+ Lemmas 29.52 41.19 
+ Bag of lemmas 26.20 39.94 
+ Suffixes 25.60 40.57 

Table 5: The performance of the Attacher based on the 
Sparse Averaged Perceptron learner, for additive feature 

sets. 
 

For this feasibility study, we have used a relatively 
small amount of data and the question is how much 
room there is for improvement, given that more 
data was provided. Figure 5 shows how the CER of 
the Attacher decreases as more data is added. The 
slope of the curve indicates that the performance is 
likely to improve if even more data is added.  
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Figure 5: The performance of the Chunker and Attacher 

depending on the amount of data used for training. 

6 Conclusions and Future work 

Given the limited amount of data, the results show 
promising performance (25.6% CER on unseen 
data). Most problems are introduced in the chunk-
ing stage, but the results indicate that more data is 
likely to improve the performance. The next step is 
to apply the method to a larger corpus and to an-
other language. The IBL corpus is a good candi-
date here (Kyriacou et al., 2005).  In this experi-
ment, we simply concatenated the user’s utterances 
and did not use the Wizard’s. The performance of 
the chunker is likely to improve if the Wizard’s 
utterances are also taken into account.  

One important step that we have not addressed 
yet is that of automatic speech recognition. Al-
though a lot more errors are likely to be intro-
duced, a data-driven approach for semantic inter-
pretation is much more likely to degrade gracefully 
than a grammar-based approach. This, however, 
will need to be investigated in future studies. An-

other important issue we have yet to investigate is 
that of confidence scores in the interpretation step. 
As discussed in section 2, accurate confidence 
scoring is a vital issue for the approach that we will 
take in the IURO project. There are also other ma-
chine learning approaches that have shown good 
performance in chunking tasks which we will in-
vestigate, such as Hidden Markov Models and 
Conditional Random Fields (Collins, 2002). The 
method should also lend itself to incremental proc-
essing (Schlangen & Skantze, 2011). While some 
features used in the experiment are part of the right 
context, we have not directly addressed the ques-
tion of how much these contribute to the perform-
ance. It is also possible to revise previous output as 
more input is processed (Ibid.). 

As a feasibility study, we think that the results 
indicate that it is indeed possible to get people to 
freely describe routes which can be automatically 
interpreted into a route graph that may be useful 
for robot navigation. We also hope that the novel 
approach to semantic chunking parsing presented 
here will inspire others to similar approaches in 
other domains.  
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