
 NICE project (IST-2001-35293) 
 
 
 

 
 
 

Natural Interactive Communication for 
Edutainment   

 

Natural language understanding for the 
NICE fairy-tale game 

 

NICE Deliverable D3.5b 
28 November 2004 

 

Authors 

Johan Boye, Joakim Gustafson and Mats Wirén 
Voice Technologies, TeliaSonera, Sweden 



 
Project ref. no. IST-2001-35293 

Project acronym NICE 
Deliverable status  Restricted 

Contractual date of 
delivery 

1 November 2004 

Actual date of  
delivery 

28 November 2004 

Deliverable number D3.5b 

Deliverable title Natural language understanding for the NICE fairy-tale game 

Nature Report 

Status & version  

Number of pages 19 

WP contributing  
to the deliverable 

WP3  

WP / Task  
responsible 

LIMSI/TeliaSonera 

Editor  

Author(s) Johan Boye, Joakim Gustafson and Mats Wirén 

EC Project Officer Mats Ljungqvist 

Keywords  Natural language understanding, parsing, semantic interpretation 

Abstract (for 
dissemination) 

 

 



Table of Contents 
 

1 Introduction............................................................................................................................1 
1.1 Definitions and scope.......................................................................................................1 
1.2 Robustness........................................................................................................................1 
1.3 Structure ...........................................................................................................................2 

2 Semantic representation formalism......................................................................................3 
2.1 Requirements and basic approach....................................................................................3 
2.2 User utterances .................................................................................................................4 
2.3 Dialogue acts....................................................................................................................4 
2.4 Formal syntax...................................................................................................................7 
2.5 Normalization...................................................................................................................8 
2.6 Higher-order functions and representation of ellipsis ......................................................8 

3 Parsing ...................................................................................................................................10 
3.1 Semantic constraints.......................................................................................................10 
3.2 Pattern-matching phase ..................................................................................................11 
3.3 Rewriting phase ..............................................................................................................12 

3.3.1 Object merging.......................................................................................................12 
3.3.2 Constraint inference ...............................................................................................13 
3.3.3 Filtering ..................................................................................................................14 
3.3.4 Abstraction.............................................................................................................15 

3.4 Domain-dependent rewriting phase ...............................................................................16 
4 Parsing multimodal input ....................................................................................................18 
5 References.............................................................................................................................19 





 1 

1 Introduction 

1.1 Definitions and scope 

This deliverable describes the natural- language understanding component for the NICE fairy-tale 
game. For the overall scenario of the game, see deliverable D1.2b, Section 2. 

By “natural- language understanding” we mean the interpretation of user utterances, one by one, 
in the course of a dialogue with an embodied character of the system. Since the dialogue involves 
references to characters, objects and relations in a 3D world, each utterance must ultimately be 
interpreted both in its relevant dialogue and fairy-tale world context. Hence, natural- language 
understanding is a mapping from an input utterance to a context-dependent representation. 

More specifically, each input utterance is available in the form of an N-best sentence hypothesis 
provided by the speech recognizer. We divide the process of natural- language understanding into 
parsing, which we take to be a mapping of the utterance to an intermediary, context-independent 
semantic representation, and contextual interpretation, in which references pertaining to the 
dialogue context are resolved. The latter phase involves trying to resolve anaphoric expressions 
such as pronouns and elliptic utterances in a specific dialogue context. It requires an algorithm 
for maintaining and updating the set of most salient objects that can be the targets for anaphora 
resolution. Such an algorithm is often referred to as a focus management algorithm. 

This deliverable describes the semantic representation formalism, the parsing algorithm, and the 
principles for contextual interpretation. However, since focus management is tightly integrated 
with dialogue management, we have chosen to present our method for focus management in 
deliverable 5.2b (the deliverable on dialogue management in the NICE fairy-tale game). In 
addition, contextual interpretation takes into account the result of input fusion of linguistic and 
graphical input. This aspect is described in deliverable  D3.6 (the multimodal input understanding 
module). 

Before proceeding, we should note that the terminology used here is not altogether compatible 
with Figure 1.1.2 in Deliverable D3.3, showing the overall NICE system architecture: What is 
there referred to as “natural- language understanding” corresponds to our notion of parsing above.   
Consequently, our notion of contextual interpretation is part of the dialogue manager’s tasks as 
depicted in Figure 1.1.2. 

 

1.2 Robustness 

The input to the parsing algorithm is the output from the recognizer. Because the dialogue 
scenario in the NICE fairy-tale game encourages the user to speak spontaneously, the input to the 
parser is noisy, i.e. it contains erroneous words due to disfluent speech or leakage in the 
recognizer’s langague model. An important consideration in the design of the parsing algorithm 
was that it be robust, i.e. it should capitalize on whatever structure is present in the input, and 
degrade gracefully on noisy input. 



 2 

1.3 Structure 

The rest of this deliverable is organized as follows: The semantic formalism to which utterances 
are mapped is described in Section 2, parsing in Section 3, and multimodal parsing in Section 4.  



 3 

2 Semantic representation formalism 

2.1 Requirements and basic approach 

To begin with, we are interested in defining a language L for representing the semantic–pragmatic 
contents of utterances. As outlined above, we assume that user utterances are analysed in two 
steps: 
 

1. Parsing: The surface structure of an utterance is mapped to an expression a ∈ L which 
represents its meaning independently of the (discourse and world) context. 

2. Contextual interpretation: a is mapped to another expression b ∈ L which is a function of 
a and the context C (which in turn is a function of the incoming event-stream S).  

 
It is convenient to define L to be able to represent both the context- independent meaning of an 
utterance (the output of step 1 above) and the result of contextual interpretation of the same 
utterance (the output of step 2). In this way, contextual interpretation can be defined as rewriting 
rules operating on expressions in L.  
 
There are several requirements that we would like to put on L: 
 

1. Adequately expressive with respect to the task: If u1 and u2 are different user utterances, 
and there exists at least one context C in which u1 and u2 should result in different 
responses from the system, then u1 and u2 should be parsed to different expressions in L. 
Otherwise, they should be parsed to the same expression. The reason for this is that we 
want to avoid an overly expressive semantics in order to facilitate robust parsing. 

2. Structured: Expressions in L should be tree-structures so that expressions can be nested 
and subexpressions identified within bigger expressions. For instance, one dialogue 
participant might accept a request from the other participant; then this nesting (of a 
request speech act within a accept speech act) should be reflected in the structure of the 
expression representing the utterance. 

3. Partially ordered according to information content: The result of the parsing procedure 
should be able to degrade gracefully on noisy input. That is, L must not be an “all-or-
nothing” language. In particular, L must be able to represent also incomplete, fragmentary 
utterances by allowing for underspecification of bits of the semantic analysis. To this end, 
we assume an “information”-ordering < defined on all expressions of L such that a < b iff 
a contains less information than b. 

4. Minimal commitments with respect to parsing approach: Basically, we would like L to 
be designed in such a way that it allows for fast and robust parsing of input utterances.  
However, we want to be able to experiment with different approaches to robust parsing, 
and we also do not want to exclude the use of domain- independent, general-purpose 
techniques. We would thus like L to make minimal commitments with respect to the 
design of the parser. 

5. Suitable also as a representation of system utterances: When trying to resolve anaphoric 
expressions such as pronouns and ellipses, it is an advantage if all utterances of the 



 4 

evolving dialogue context (those of the user as well as those of the embodied characters) 
have a common representation. Hence, we would like L to be able to represent system 
utterances as well. Taking this one step further, we would also like L to be able to serve as 
a source representation for surface text generation. 

 
To systematically assemble the meaning of an utterance from the meanings of its parts, and to do 
so while taking the context into account, we will use lambda calculus as “glue language”. 
Basically, the usefulness of the lambda calculus stems from the fact that it allows us to treat 
constituents as either functions or arguments in building up a meaning representation. As we 
shall see later on, it is also compatible with all of the requirements above. In particular, it is 
highly useful from the point of view of underspecification of elliptic, contextual and other 
information, and thus fits well both with handling of utterances in continuous dialogue and with 
robust parsing of potentially noisy input. For an additional argument for favouring an approach 
based on lambda calculus instead of unification-based grammar, see Blackburn and Bos (2003). 
 

2.2 User utterances 

Another set of requirements arises from the repertoire of user utterances which the system must 
be able to interpret and distinguish from one another. They can be classified as follows: 
 

• Instructions : "Go to the drawbridge", "Pick up the sword", etc. 
• Domain questions : "What is that red object", "Where is the sword",  "How old are you",  

etc. 
• Giving information: "I'm fourteen years old", etc. 
• Stating intentions : "I will give you the ruby", etc. 
• Confirmations : "Yes please", "Ok, do that", etc. 
• Disconfirmations : "No", "Stop!", "I didn't say that", etc. 
• Problem reports and requests for help: "Help", "What can I do?", "I don't understand", 

"What should we do now?", "Do you hear me", etc. 
• Requests for explanation: "Why did you say that?", "Why are you doing this", etc. 

 

2.3 Dialogue acts 

Utterances will be represented by tree-strucured expressions, called dialogue acts. As an 
example, the  dialogue act representing the user saying to Cloddy Hans; “Pick up the axe”: 
 

request( user, cloddy, pickUp( cloddy, axe )) 

 
Here, the topmost symbol (request) indicates the type of dialogue act, the first argument (user) 
indicates the character issuing the dialogue act, whereas the second argument (cloddy) indicates 
the intended recipient of the dialogue act. These components are present for all types of dialogue 
acts. The third component (pickUp(cloddy, axe), in this case) indicates the propositional contents of 



 5 

the dialogue act, in this case the action of picking up the axe. The general form of a request takes 
the form: 
 

request( xcharacter, ycharacter, zaction )dialogueAct 

 
where the superscripts indicate type constraints on the subexpressions. The pickUp action can be 
further decomposed into  
 

pickUp( xcharacter, ything )action 
 
i.e. the first argument must be a character (who is doing the picking up), and the second argument 
is a thing (which is picked up).  
 
Anaphoric utterances are represented by means of typed lambda abstractions. For instance, 
consider the utterance "Pick it up". The meaning of this utterance is obviously depending on the 
context in which it is said (i.e. what “it” is referring to). Therefore it is reasonable to assert that 
the meaning of the utterance “Cloddy Hans, put it down on the table” is a function, mapping the 
relevant part of the dialogue context to an expression of the type dialogueAct. Thus: 
 

λything.request( user, cloddy, pickUp( cloddy, y )) 

 
This expression denotes a function taking a thing as argument returning a character as the result.  
(its type is written thing→dialogueAct). Functions of several arguments are represented with nested 
lambda abstractions, e.g. “Put it down” is 
 

λxthing λylocation.request( user, cloddy, putDown( cloddy, x, y )) 

 
Domain questions are represented by means of ask expressions, e.g. "What color is the ruby?" is: 
 

λxcolor.ask( user, cloddy, x [ruby.color=x]) 
 
Here the expression within square brackets indicates domain constraints imposed on the possible 
instantiations of x (in this case that x should be the color of the ruby).  
 
Granting of information is represented by tell expressions, e.g. "I'm fourteen years old" is: 

 
tell( user, cloddy, 14 [user.age=14] ) 

 
The tell construction is also used for representing statements of intent, e.g. the user saying to 
Karen "I will give you the ruby" is  
 

tell( user, karen, intend( user, giveTo( user, ruby, karen ))) 

 



 6 

Confirmations and disconfirmations are represented by confirm and disconfirm expressions, 
respectively, e.g. "Yes, do that" is: 
 

λxdialogueAct.confirm( user, cloddy, x ) 
 
Requests for help and explanations are represented by askForSuggestion and askForExplanation 
expressions, e.g. "What should we do now?" is 
 

λxdialogueAct .askForSuggestion( user, cloddy, x ) 
 
The table below summarized the types of dialogue acts to which user input will be mapped used 
in the fairy-tale game, and the types of their arguments. The type niceObject is a superset of all 
other types in the system. 
 
Name Argument structure  
request request( xcharacter, ycharacter, zaction ) 

ask ask( xcharacter, ycharacter, zniceObject ) 

tell tell( xcharacter, ycharacter, zniceObject ) 

confirm confirm( xcharacter, ycharacter, zdialogueAct ) 

disconfirm disconfirm( xcharacter, ycharacter, zdialogueAct ) 

askForSuggestion askForSuggestion( xcharacter, ycharacter, zdialogueAct ) 

askForExplanation askForExplanation( xcharacter, ycharacter, zdialogueAct ) 

Figure 1. Types of user dialogue acts 
 
 
The possible actions the system can reason about is listed in the table below. The first argument 
is always the character performing the action; the remainder of the arguments are the other role-
players of the action: 
 
Name Argument structure  
goTo goTo( xcharacter, yplace ) 
pickUp pickUp( xcharacter, ything ) 

putDown putDown( xcharacter, ything, zlocation )  

giveTo giveTo( xcharacter, ything, zcharacter ) 
raiseDrawbridge raiseDrawbridge( xcharacter ) 

lowerDrawbridge lowerDrawbridge( xcharacter ) 

 
Objects of other types (character, place, thing, location, etc. ) are represented by argument-free 
terms (e.g. cloddy, knife, atMachine).  
 



 7 

As seen above, the semantic expressions may also include expressions that constrain the set of 
possible values for a variable or a set of variables, for example: 
 

x.color = red 

 
In general, if a is an expression of type t, and objects of type t have an attribute att of type s, and 
b is an expression of type s, then  
 

a.att = b 

 
is a well- formed constraint. See deliverable 1.2 for a listing of the attributes of various classes of 
objects. 
 

2.4 Formal syntax 

The semantic dialogue act expressions informally discussed in the previous section can be gievn 
a rigorous definition, as follows. We assume the following sets to be given:  
 

• A set T of type names. Each type name is a constant that corresponds to a set of semantic 
or pragmatic concepts relevant to the domain. Examples are thing, character, action, 
location, place  

• For each symbol t in T, we assume the existence of a set Vt of variables.  
• A set F of semantic constructor symbols. Each symbol f∈F has a type and a fixed number 

of typed arguments.  We use the notation σ(f ) = (t1, ..., tn, t) to indicate that f has the type 
t, and n arguments with types t1...tn . 

• A set A of attribute names. Each symbol att∈A has a domain type and a range type. We use 
the notation dom(a) to indicate the domain type, and ran(a) to indicate the range type. 

 
The semantic representation language L is now defined as the smallest set that satisfies: 
 

1. If v∈Vt then v∈L and is said to be of type t. 
2. Suppose f∈F and σ(f ) = (t1, ..., tn, t), and suppose a1,...,an are expressions in L of types t1, 

..., tn respectively. Then f(a1,...,an)∈L and is said to be of type t.  
3. Suppose x∈L and is of type t, and y∈L and is of type s. Suppose further that att∈A and 

ran(att)=t and dom(att)=s. Then x[y.att=x] is in L and is of type t, and y[y.att=x] is in L and 
is of type s. 

4. Suppose a∈L and a is of type t, and suppose x∈Vs for some type s. Then λx.a∈L and is said 
to be of type s→ t. 

5. Suppose a∈L and a is of type s→ t, and suppose b∈L and b is of type s. Then (a b)∈L and is 
of type t. 

 
 

  



 8 

2.5 Normalization  

We assume familiarity with the typed lambda calculus (see e.g. Hindley and Seldin 1986), and 
will here only repeat the basic concepts. An expression of the form  
 

(λx.a b) 

 
where λx.a is of type s→t and b is of type s, reduces to the expression a in which all free 
occurrences of the variable x have been substituted for b. The resulting expression, written as 
a[x:=b], is of type t. The process is called β-reduction, and is written 
 

(λx.a b)  →β  a[x:=b] 

 
The expression (λx.a b) is called a redex and the expression a[x:=b] is its contractum. An 
expression without redices is said to be in normal form. Sometimes several reduction steps are 
needed to reach a normal form, as in the example 
 

((λxλy.putdown(cloddy, x, y) hammer) table)  →β   
(λy.putdown(cloddy, hammer, y) table)  →β   
putdown(cloddy, hammer, table) 

 
The inverse of β-reduction is called β-abstraction. Any given expression has an  infinite number 
of different β-abstractions; however, we will only be interested in such β-abstractions that replace 
a subexpression with a new bound variable. For example, there are two such possible β-
abstractions from the expression putdown(hammer, table), namely 
 
putdown(cloddy, hammer, table)    →-1

β      λxlocation.putdown(cloddy, hammer, x) 
putdown(cloddy, hammer, table)    →-1

β      λxthing.putdown(cloddy, x, table) 
putdown(cloddy, hammer, table)    →-1

β      λxcharacter.putdown(x, hammer, table) 
 

 
A lambda expression without free variables is called a combinator. In the following, we will only 
consider expressions without free variables.  
 

2.6 Higher-order functions and representation of ellipsis 

Ellipses are are represented by means of higher-order functions. Consider the example: 
 

1. User:  “Cloddy Hans, please pick up the axe.” 
2. Cloddy Hans:  “OK”  (picks up the axe) 
3. User:  “Now the hammer”. 

 



 9 

In utterance 3, the user wants Cloddy Hans to do something with the hammer, but it is not 
possible to infer what dialogue act the user is performing without taking the dialogue context into 
account. Thus a context-independent representation of this utterance must represent the dialogue 
act by a function, as follows: 
 

λf thing → dialogue_act.(f hammer) 
 
The parameter f is to be bound to a function that takes as argument the information present in the 
utterance (hammer), and returns the appropriate dialogue act. Constructing this function is the task 
of contextual interpretation, and how this is done is explained in deliverable 5.2b, chapter 4. Just 
to that such a function actually exists, we will stipulate that it is 
 

λything.request( user, cloddy, pickUp( cloddy, y )) 
 

since  
 

(λf thing → dialogue_act.(f hammer)  λything.request( user, cloddy, pickUp( cloddy, y )))  →β 

 (λything.request( user, cloddy, pickUp( cloddy, y ))  hammer)  →β 
 request( user, cloddy, pickUp( cloddy, hammer )) 
 
i.e. “Pick up the hammer”. 



 10 

3 Parsing 
The robust parsing algorithm1 consists of two phases, a pattern matching phase and a rewriting 
phase. In the first phase, a string of words2 is scanned left-to-right, and a sequence of semantic 
constraints, triggered by syntactic patterns, are accumulated. In the latter phase, heuristic rewrite 
rules are applied to the result of the first phase. When porting the parser to a new domain, one 
has to rewrite the pattern matcher, whereas the rewriter can remain unaltered. 
 

3.1 Semantic constraints 

The most common kind of semantic constraint simply stipulates that the existence of certain 
objects of certain types can be inferred from the user’s utterance. Such constraints are written on 
the form 
 

object type 

 
For instance, the word “hammer” would trigger the constraint 
 

hammerthing 
 
whereas the phrase “pick up” would trigger the following conjunctive constraints: 
 

pickUp(x, y)action,  xcharacter,  ything 
 
Disequalities are used to express that two objects (of the same type) are necessarily different. For 
instance, the initial phrase "What is..." indicates that the user is asking a question. Thus it results 
in the following list of constraints: 
 

ask(user, x, y)dialogue_act,   usercharacter,  xcharacter,  x≠user,  yt 
 
Obviously, the user is asking someone else than himself; hence the disequality x≠user. As "What 
is..." does not give any clue to what the user is asking about, the type of the third argument is a 
variable t. 
 
Equality constraints are used to relate objects with attributes of other objects. For example, the 
initial phrase “Where is...” indicates that the user is enquiring about the position of some object. 
The list of constraints triggered by the syntactic pattern "Where is..." is: 
 

ask(user, x, y)dialogue_act,   usercharacter,  xcharacter,  x≠user,   ylocation,   y=z.position,   zt 

 
                                                 
1 The algorithm presented here is an extension of that presented in Boye and Wirén (2003 a, 2003 b). 
2 We assume 1-best output from the speech recogniser to be used.  



 11 

Here it is possible to infer that the object asked about is a location; hence the type of y is location  

rather than a variable t. Furthermore, it is assumed that this location  is the position of some object 
z, whose type we do not know (and therefore its type a variable t). However, z must be an object 
that has a position attribute. 
 

3.2 Pattern-matching phase 

The purpose of the pattern matching phase is to generate a list of semantic constraints on the 
basis of the syntactic patterns that appear in the input. Such rules are coded by means of a definite 
clause grammar (see e.g. Sterling and Shapiro 1994, chapter 19). An example of such rules are:3 
 
 pickUp_hints( [ pickUp(X, Y)action, Xcharacter, Ycharacter | MoreHints ], Tail ) -->  
  [ take, the ],  
                       thing_hints( [ Ycharacter | MoreHints ], Tail ). 
  
 pickUp_hints( [ pickUp(X, Y)action, Xcharacter, Ycharacter | Tail ], Tail ) -->  
  [ take ]. 
 
 thing_hints( [ hammerthing | Tail ], Tail ) --> 
  [ hammer ]. 
 

thing_hints( [ swordthing | Tail ], Tail ) --> 
  [ sword ]. 

      
The algorithm is simply to try to match an initial segment of the input with the right hand side of 
such a rule. The rules are tried in the order they are written. If a match is possible, the semantic 
constraints on the left hand side are appended to the result list, the matched input segment is 
discarded, and the process is repeated with the remaining input. If a match is not possible, the 
first word of the input is discarded, and the process is repeated with the remaining input.  
 
For instance, suppose the input is "take the ehh hammer". The first rule is not applicable in this 
case because of the inserted "ehh", but the second rule is applicable, since the input begins with 
"take". The following two words ("the" and "ehh") are discarded as they do not match any rule. 
Finally, the last word "hammer" matches the third rule. The accumulated sematic constraints are: 
 

pickUp(x, y),  xcharacter,  ything,  hammerthing 

 
In case the input is "take the hammer", without the inserted hesitiation "ehh", the first rule 
matches the whole input string. In this case, the variable Y is set to hammer, and the output is: 
 

pickUp(x, hammer), xcharacter, hammerthing 

                                                 
3 For these rules, we adopt the standard logic programming convention that expressions with an initial capital letter 
are variables.  



 12 

As can be seen from these examples, longer syntactic patterns are likely to convey more precise 
semantic information, but on the other hand they are more brittle, as the probability increases that 
recognition errors and disfluencies like "ehh" prevent matching. Moreover, longer patterns are 
less likely to occur in the input anyway. Therefore rules should be ordered as in the example, 
with longer patterns appearing before shorter patterns, so that the parser can capitalize on 
structure whenever present in the input, and degrade gracefully on noisy input. 
 
In the example above, the presence of the filler word "ehh" made the parser miss the link between 
the hammer and the second argument of pickUp. However, this link will be recovered in the 
second phase of the parsing algorithm, presented next. 
 

3.3 Rewriting phase 

In the rewriting phase, the list of constraints aggregated in the pattern-matching phase is rewritten 
using four rewrite rules: object merging, constraint inference, filtering and abstraction. 
 

3.3.1 Object merging 

The first rewriting step, object merging, amounts to unifying objects of the same type. The 
rewriting rule can be formulated generally as follows: 
 

Starting from the left, terms are unified with their nearest unifiable neighbour to the right. 
 
Here “unifiable” means that the ensuing list of semantic constraints (after unification) must be 
compatible. For instance, in a list containing the three constraints 
 

xcharacter,  yt,  y.nextTo=z  

 
x and y are not unifiable, even though the type of y is a variable, since a character does not have a 
nextTo attribute. However, in the example of the previous section: 
 

pickUp(x, y),  xcharacter,  ything,  hammerthing 

 
y and hammer can be unified, resulting in  
 

pickUp(x, hammer), xcharacter, hammerthing 

 
The object merging process can be controlled by properly ordering the constraints in pattern 
matching rules, and by the use of disequality (≠) constraints. This was demonstrated previously in 
the example:  

ask(user, x, y)dialogue_act,   usercharacter,  xcharacter,  x≠user,  yt 
 
where the disequality constraint x≠user prevents unification of x and user. 



 13 

3.3.2 Constraint inference 

Consider the utterance "Go to the hammer", giving the following list of constraints: 
 

goTo( x, y )action,  xcharacter,  yplace,  hammerthing 

 
At first, it seems as uncomplicated a sentence as "Take the hammer", discussed previously. But 
"Go to the hammer" actually poses bigger natural language understanding problems, because the 
domain encoding is strictly typed so that characters cannot go to things, only to places. Essentially 
the system must reason as follows: 
 
  The user wants me to go to some place x. 
 The hammer is at location y. 
 So x should be the place which is next to y. 
 
This kind of reasoning is embodied in the the following graph algorithm. First create a list of sets 
where every expression is put in a set of its own: 
 

{ goTo( x, y )action },  { xcharacter }, { yplace },  { hammerthing } 

 
Then sets are merged according to the following rule: 
 

Set merging rule: Two sets X and Y should be merged if X contains an expression x which 
is a subexpression of some expression y∈Y. 

 
This leaves the following list of sets: 
 
 { goTo( x, y )action ,  xcharacter, yplace },   { hammerthing }  
 

If there is only one remaining set at this stage, the algorithm halts. If there is more than one set, 
We choose the smallest set and apply the following rule: 
 

Constraint adding rule: Given a set X, choose an object x and one of its attributes att, and 
add to X the expressions x.att= y and yt (where att 's values are of type t).  

 
If the object denoted by this expression has an attribute att, we introduce the value of att as a new 
expression. In the example, objects of class thing have an attribute position, whose value is of type 
location. This gives us: 
 

{ hammerthing,  hammer.position=l,  l location } 
 



 14 

This set cannot still be merged with the other set in the list, so we choose the same set again and 
re-apply the constraint adding rule. Objects of type location have an attribute nextTo whose value 
is of type place. Adding this link gives us: 
 

{ hammerthing,  hammer.position=l,  l location,  l.nextTo=p,  pplace } 
 
Now the full list of constraints, after applying object merging (section 3.3.1), is: 
 

goTo( x, y )action ,   xcharacter,  yplace ,  hammerthing,  hammer.position=l,  l location,  l.nextTo=y 
 
The set merging rule would place all these expressions in the same set, and therefore the 
algorithm terminates, returning the list of constraints above as the result. There is now a link from 
the second argument of goTo to the hammer; "the place y which is next to the location l where the 
hammer is".  
 
A depth-first version of the algorithm can be concisely formulated as follows: 
 
 Given a list L of constraints: 
 while ( true )  { 
  perform object merging (section 3.3.1); 
  put each constraint in L in a set of its own, producing a list L' of sets; 

  apply the set merging rule to L', producing L″; 
  if L″ contains a single set,  

return this set as the result; 
  else { 
   choose a set in L″, and an expression in this set, and apply the  
    object adding rule; 

   Let L be the list of all the constraints in all the sets in L″ ; 
  } 
 } 

 
The actual implementation is breadth-first rather than depth-first, in order to find the shortest path 
connecting all constraints. Moreover, the algorithm only proceeds to a certain depth, to prevent 
looping.  
 
 

3.3.3 Filtering 

The next step is to filter the list of semantic constraints by removing all implied constraints. A 
constraint c in the list L is implied if 

• c is a variable-free expression of the form a=b or a≠b. 
• c is an non-variable expression of the form at, appearing as a subexpression of some other 

constraint bs in L, or 
 



 15 

In the first case, trivially true facts like axe=axe or axe≠hammer are removed. In the second case, 
the existence of the object  at is implied by the existence of the object bs. So for instance, in the 
list 
 

request(user, cloddy, goTo(cloddy, y))dialogueAct ,  goTo(cloddy, y)action ,  cloddycharacter,   usercharacter,  yplace 
 
the three constraints cloddycharacter, usercharacter and goTo(cloddy, y)action are implied by the constraint 
request(user, cloddy, goTo(cloddy, y))dialogueAct, and are therefore removed. However, the expression 
yplace, being a variable, is kept. This results in: 
 

request(user, cloddy, goTo(cloddy, y))dialogueAct,  yplace 
 

3.3.4 Abstraction 

The point of the abstraction step is to transform the list of semantic constraints into a combinator 
by binding all free variables. When the dialogue act is known, this is straightforward. So is, for 
instance, the list of constraints above transformed to the following combinator by abstraction on 
y: 

λything. request(user, cloddy, goTo(cloddy, y)) 
 
This expression, of type thing→dialogueAct, is returned as the final answer of the parsing process. 
 
A slightly more complex situation arises if the dialogue act is not known (i.e. there is no 
constraint of type dialogueAct in the list of constraints). Consider, for instance, the elliptical 
utterance “the hammer”, leading to the singleton list 
 

hammerthing 
 
Here, a new function symbol f thing → dialogue_act has to be introduced, as explained in section 2.6. The 
final result is: 
 

λf thing → dialogueAct .(f   hammer) 
 
If the list of semantic constraints contains several expressions, the same process is used, only that 
the introduced function st with several objects process is repeated. So is, for instance, the list 
 

hammerthing,  axething 
represented as  
 

λf thing→(thing → dialogueAct).((f  hammer) axe) 
 
That is, f should be boud to a function which is applied to hammer, returning a function which is 
applied to axe, returning a dialogue act. 



 16 

3.4 Domain-dependent rewriting phase 

We started section 3 by claiming that the rewriting phase is domain- independent, and thus does 
not need modification when moving to a new domain. Nevertheless, it can be very useful also to 
be able to define domain-dependent rewriting rules used for resolving those types of 
underspecifications that are always resolved in the same way in the domain.  
 
Such heuristic rewrite rules are expressed as combinators as. If the resulting expression b from the 
previous rewriting process is of type s→t , then b will be applied to a . As an example, consider 
the utterance: 

“Ehh... put down ehh... let’s see the pencil” 
 
The parsing algorithm just presented yields the following result: 
 

λf action→dialogue_act λxcharacter λzlocation.(f putDown(x, pencil, z)) 

 
This expression adequately represents all underspecifications in the utterance: Someone should 
put down a pencil somewhere, and the user is saying something about it. However, there are 
several reasonable assumptions we can make in order to simplify this expression, namely: 
 

1. The user is making a request to Cloddy Hans 
2. Cloddy Hans is the one who should put down the pencil 

 
The point here is that these assumptions are made without considering the dialogue context. This 
can be done, since at least in the first scene of the game (see deliverable 1.2b, section 2), Cloddy 
Hans is the only character present, and the scenario is all about the user instructing him where to 
put various things. So the two heuristics (1) and (2) above are domain-specific rather than 
dialogue-context-specific.  
 
The first heuristic, that an utterance about an action is a request to perform that action, can itself 
be expressed by a combinator: 
 

λxaction.request(user, cloddy, x)dialogue_act 

 
Applying our expression to this heuristic combinator yields: 
 

(λf action→dialogue_act λxcharacter λzlocation.(f putDown(x, pencil, z))   λxaction.request(user, cloddy, x)) →β 
λxcharacter λzlocation. (λxaction.request(user, cloddy, x))  putDown(x, pencil, z)) →β 
λxcharacter λzlocation.request(user, cloddy, putDown(x, pencil, z)) 

 
The second heuristic, that the user is talking to Cloddy Hans, can be expressed simply as the 
following combinator: 

cloddycharacter 
 



 17 

Applying our expression to the cloddy combinator yields: 
 

(λxcharacter λzlocation.request(user, cloddy, putDown(x, pencil, z)) cloddy) →β 
λzlocation.request(user, cloddy, putDown(cloddy, pencil, z)) 

 
The final expression is taken to be the (context- independent) interpretation of the user’s 
utterance. The last parameter z might be bound as a result of context-dependent processing (see 
deliverable 5.2b, section 4). 
 
 



 18 

4 Parsing multimodal input 
The NICE fairy-tale system is a multimodal system. In particular, the user can both speak and 
gesture at the screen, either simultaneously or sequentially. To this end, the system contains 
modules for capturing and interpreting gestures as well as performing input fusion, i.e. 
constructing a combined interpretation of the user’s gestures and spoken input (see further 
deliverable 3.6).  
 
The parsing algorithm just presented can actually parse some multimodal input directly. If the 
gestural input amounts to simple references to objects, such references can be turned into 
semantic constraints and parsed along with the verbal input. As an example, consider the 
multimodal utterance: 
 

<user clicks on the hammer>  “Pick this up” 
 
The click on the hammer can be translated into the semantic constraint hammerthing. Together with 
the semantic constraints generated from analysing “Pick it up”, we have 
 

hammerthing,  pickUp(x, y),  xcharacter,  ything 

 
that is, just as if the user had said “pick up the hammer”. 
 
This is not to say that the parser is a replacement for the input fusion module in the system. For 
instance, the parser disregards issues that concern the relative timing of verbal and gestural input. 
When handed a piece of gestural input and a piece of verbal input to analyse, it can construct a 
combined interpretation, but the parser relies on other modules to decide which pieces of input to 
analyse together. (This task is performed by the Dispatcher module, see deliverable 3.6).  
 
 



 19 

5 References 
Blackburn, P. and Bos, J. (2003): Computational semantics. Theoria  18(1): 27–45. 
 
Boye, J., Gustafson, J. and Wirén, M.  (2004a)   Formal representation of domain information, personality 

information and dialogue behaviour for the NICE fairy-tale game. NICE deliverable D1.2b. 
 
Boye, J., Gustafson, J. and Wirén, M.  (2004b)   Dialogue management and response planning for the 

NICE fairy-tale game. NICE deliverable D5.2b. 
 
Boye, J. and Wirén, M. (2003 a): Robust parsing of utterances in negotiative dialogue. Proc. Eurospeech, 

Geneva, Switzerland. 
 
Boye, J. and Wirén, M. (2003 b): Negotiative spoken-dialogue interfaces to databases. Proc. Diabruck 

(7th workshop on the semantics and pragmatics of dialogue), Wallerfangen, Germany. 
 
Hindley, R. and Seld in, J. (1986): Introduction to combinators and λ-calculus. Cambridge University 

Press. 
 
Sterling, L. and Shapiro, E. (1994) The art of Prolog, 2nd edition. The MIT Press.  


