
NICE project (IST-2001-35293)

Natural Interactive Communication for
Edutainment

NICE Deliverable D5.2b

Dialogue management and response planning
for the NICE fairy-tale game

18 November 2004

Authors

Johan Boye, Joakim Gustafson and Mats Wirén
Voice Technologies, TeliaSonera

Project ref. no. IST-2001-35293

Project acronym NICE
Deliverable status Internal

Contractual date of
delivery

1 Nov 2004

Actual date of
delivery

18 Nov 2004

Deliverable number D5.2b

Deliverable title Second prototype version of dialogue management and response
planning for the fairy-tale domain

Nature Report

Status & version 5.2

Number of pages 19

WP contributing
to the deliverable

5

WP / Task
responsible

TeliaSonera

Editor

Author(s) Johan Boye, Joakim Gustafson and Mats Wirén

EC Project Officer Mats Ljungqvist

Keywords Dialogue management, response planning, dialogue systems

Abstract (for
dissemination)

Table of Contents

1 Introduction.. 1
1.1 Definitions and scope... 1

2 Input and output .. 3
2.1 Tokens .. 3
2.2 Dialogue acts.. 4
2.3 Success reports ("performed") ... 7
2.4 Timeouts... 7
2.5 Triggers .. 8
2.6 Overhearing other characters' conversation... 8

3 The internal state of a character... 9
3.1 Domain model.. 10
3.2 Discourse history.. 10
3.3 Agenda ... 10

3.3.1 Goals and goal expansion .. 11
3.3.2 Finding explanations .. 12
3.3.3 Finding suggestions by forward chaining .. 13

4 Reference resolution and focus ... 15
4.1 Representation of anaphora.. 15
4.2 Focus management ... 16

4.2.1 Using the discourse history.. 16
4.2.2 Using domain constraints... 17
4.2.3 Using the agenda .. 18

5 References... 19

 1

1 Introduction

1.1 Definitions and scope

This deliverable outlines the methods used for dialogue management and response generation for
the second fairy-tale-world prototype. The scenario of the second fairy-tale prototype is described
in deliverable D1.2b, Section 2.

The term dialogue management appears frequently in the literature on spoken-dialogue systems,
although there does not seem to be any commonly accepted definition of what it really is. In the
following, we will adhere to the definition of Traum and Larsson (2003), who consider dialogue
management to comprise the following functions within a spoken-dialogue system:

1. updating the dialogue context on the basis of interpreted communication (both that produced by
the system and by other communicating agents, be they human “user” or other software agent)

2. providing context-dependent expectations for interpretation of observed signals as communicative
behavior

3. interfacing with task/domain processing [...] to coordinate dialogue and non-dialogue behavior
and reasoning

4. deciding what content to express next and when to express it.

Traum and Larsson (2003)

A server in the NICE fairy-tale system handling dialogue management in the above sense will
henceforth be referred to as a dialogue manager. There are two such dialogue managers in the
second prototype, one per fairy-tale character. The functionality of these two dialogue managers
are somewhat different, reflecting the fact that the personalities of the two fairy-tale characters
are supposed to be different. Moreover, the functionality of any dialogue manager varies over
time, reflecting supposed changes in the characters’ knowledge, attitudes and state of mind.
However, when considered at an appropriate level of abstraction, most of the functions any
dialogue manager needs to be able to carry out remain constant regardless of the character or the
situation at hand. As a consequence, the dialogue management software in the NICE fairy-tale
system consists of a kernel laying down the common functionality, and scripting code modifying
the dialogue behaviour as to be suitable for different characters and different situations. The
dialogue management kernel is the topic of this deliverable, whereas dialogue scripting is
described in deliverable D1.2b.

The term response generation can be understood in a broader or a narrower sense. In the broader
sense, it comprises all the processing required from the decision-making on what responses to
generate, up to the manifestation of the responses as utterances, facial expressions, and body
movements. In the narrower sense, response generation is taken to be equal the decision-making
process only (essentially function 4 on Traum’s and Larsson’s list above). It is in this narrower
sense we will use the term in this report. That is, we will be concerned with the process of
generating tokens abstractly representing actions and utterances a fairy-tale character is supposed

 2

to do and say. These tokens are appended to the output stream of the character. How to generate
actual utterances and animations from these tokens is the topic of deliverable 3.7.

The output tokens generated by the dialogue manager are produced, at least in part, as a reaction
to tokens received on an input stream. The tokens on the input stream represent the user’s
utterances and graphical gestures, as well as events in the virtual world. World events that
generate tokens are, for instance, an object coming into the field of vision of the character, or that
the character has completed an action initiated in the past. Input events updates the internal state
of the character, i.e. the character's representation of the state of the world and the state of the
dialogue.

A useful analogy, then, might be to see the dialogue manager as the brain of the character, the
tokens received on the input stream as sensory input fed into the brain by the nervous system, and
tokens on the output stream as impulses propagated from the brain to other parts of the body (this
analogy is not perfect, as for instance the actual words of utterances are parsed and generated
outside the dialogue manager).

In order to make the above discussion more concrete, we need to be more specific on the
following issues:

• How is the internal state of a character defined?
• What is the nature of the input tokens, and how do they update the internal state?
• What is the nature of the output tokens, and how are they generated from the input state?

The rest of the deliverable is devoted to answering these questions.

The method for dialogue management described here is a development of the methods used in
our previous systems (Boye et al 1999, Bell et al 2001, Gustafson et al 2002). The work
described here is also influenced by the so-called information-state approach to dialogue
management (Traum and Larsson 2003), as well as by the language ABL (Mateas and Stern
2002).

 3

2 Input and output

2.1 Tokens

The output tokens generated by the dialogue manager are of two kinds:

Name Explanation
convey <dialogue act> Convey the message expressed by <dialogue act>. The dialogue act

will be turned into words by the Natural Language Generation module,
and then an utterance will be produced using speech synthesis and
animation.

perform <action> Perform the action represented by <action>.
Figure 1. Types of input tokens to the dialogue manager.

Although not shown in the table, each output token has an associated ID tag, making the tokens
uniquely referrable. The output tokens are translated into XML messages before being sent to the
receiving module.

The input to the dialogue manager consists of a stream of tokens representing utterances,
gestures, and events in the fairy-tale world. The various kinds of tokens are shown in the table
below:

Name Explanation
nluInput <dialogue act> The user has said something, and <dialogue act> is the representation

of that utterance.
ifInput <dialogue act> The IF module (Input Fusion module) has come to a result
recognitionFailure The user has said something unrecognizable.
unparsable The user has said something which was recognized by the speech

recognizer but not given an ana lysis by the NLU module.
performed <ID> The action with id tag <ID> has been completed.
trigger <ID> The (body of the) character has walked into a trigger with id tag <ID>.
timeout <type> A timeout has occurred. The <type> field indicates what kind of

timeout has occurred (see below).
overheard <dialogue act> The user has said something to another character, or another character

has said something to the user. The representation of that utterance is
<dialogue act>.

Figure 2. Types of output tokens to the dialogue manager.

 4

2.2 Dialogue acts

The kind of user utterances the system can interpret can be categorized as follows:
• Instructions : "Go to the drawbridge", "Pick up the sword", etc.
• Domain questions : "What is that red object", "Where is the sword", "How old are you",

etc.
• Giving information: "I'm fourteen years old", etc.
• Stating intentions : "I will give you the ruby", etc.
• Confirmations : "Yes please", "Ok, do that", etc.
• Disconfirmations : "No", "Stop!", "I didn't say that", etc.
• Problem reports and requests for help: "Help", "What can I do?", "I don't understand",

"What should we do now?", "Do you hear me", etc.
• Requests for explanation: "Why did you say that?", "Why are you doing this", etc.

The tokens representing utterances take the form of dialogue acts, tree-structured expressions that
represent the semantic and pragmatic contents of the utterance1. Dialogue acts are thoroughly
discussed in deliverable D3.5b, but for the convenience of the reader we will include a small
discussion here.

Instructions are represented by means of request expressions, e.g.:

request(user, cloddy, pickUp(cloddy, axe))

Here, the topmost symbol (request) indicates the type of dialogue act, the first argument (user)
indicates the character issuing the dialogue act, whereas the second argument (cloddy) indicates
the intended recipient of the dialogue act. These components are present for all types of dialogue
acts. The third component (pickUp(cloddy, axe), in this case) indicates the propositional contents of
the dialogue act, in this case the action of picking up the axe. The general form of a request takes
the form:

request(xcharacter, ycharacter, zaction)

where the superscripts indicate type constraints on the arguments.

Unknown information is represented by means of lambda abstractions. Thus the utterance "Pick it
up" represented as:

λxthing.request(user, cloddy, pickUp(cloddy, x))

In order to get a full interpretation, the lambda abstraction above has to be applied to an
expression of type thing. How to find such appropriate expressions is the topic of Section 4.

1 The tokens received on the input stream are really XML messages, but internally in the dialogue manager they are
translated into the kind of expressions used here.

 5

Domain questions are represented by means of ask expressions, e.g. "What color is the ruby?" is:

λxcolor.ask(user, cloddy, x [ruby.color=x])

Here the expression within square brackets indicates domain constraints imposed on the possible
instantiations of x (in this case that x should be the color of the ruby).

Granting of information is represented by tell expressions, e.g. "I'm fourteen years old" is:

tell(user, cloddy, 14 [user.age=14])

The tell construction is also used for representing statements of intent, e.g. the user saying to
Karin "I will give you the ruby" is

tell(user, karin, intend(user, giveTo(user, karin, ruby)))

Confirmations and disconfirmations are represented by confirm and disconfirm expressions,
respectively, e.g. "Yes, do that" is:

λxdialogueAct.confirm(user, cloddy, x)

Requests for help and explanations are represented by askForSuggestion and askForExplanation
expressions, e.g. "What should we do now?" is

λxdialogueAct .askForSuggestion(user, cloddy, x)

The table below summarized the types of dialogue acts to which user input will be mapped used
in the fairy-tale game.

Name Explanation
request The user requests that the character should carry out an action
ask The user asks the character a question.
tell The user gives the character a piece of information.
confirm The user confirms a previous dialogue act.
disconfirm The user disconfirms a previous dialogue act.
askForSuggestion The user asks for help on how to proceed.
askForExplanation The user wants an explanation to why the character is doing something (or

is saying something)
Figure 3. Types of user dialogue acts

 6

The fairy-tale characters have an overlapping but not completely identical set of classes of
utterance they need to generate:

• Responses to instructions : either accepting them ("OK, I'll do that") or rejecting them,
("No I won't open the drawbridge!"). Rejections can contain an explanation ("The knife is
in the machine" as a response to "Pick up the knife").

• Answers to questions : "The ruby is red", "The knife is on the shelf", etc.
• Stating intentions , e.g. "I'm going to the drawbridge now".
• Confirmation questions to check that the system has got it right, e.g. "You want me to

go to the shelf, is that right?"
• Clarification questions when the system has incomplete information, e.g. "Where do you

want me to go?", "What should I put on the shelf?", etc.
• Suggestions for future courses of action, e.g "Perhaps we should go over to the

drawbridge?"
• Explanations : "Because I want the axe in the machine".

Acceptance and rejection are represented by accept and reject expressions, respectively. "Ok, I'll
go to the machine" is:

accept(cloddy, user, goTo(cloddy, atMachine))

Confirmation questions and clarification questions use ask expressions. "You want me to go to
the shelf, is that right?" is:

ask(cloddy, user, request(user, cloddy, goTo(cloddy, atShelf)))

The open-ended "What do you want me to do?" (or "I don't understand what you want me to do")
is:

ask(cloddy, user, λxaction.request(user, cloddy, x))

Clarification questions are represented by means of a four-argument version of ask, where the
third argument is the actual question, and the fourth argument is a set of possible answers. For
instance, "Where do you want me to put the sword?" is:

ask(cloddy, user, λxlocation.request(user, cloddy, putDown(cloddy, sword, x)), { })

whereas "Is it the sword or the axe you want me to put on the shelf?" is:

ask(cloddy, user, λxthing.request(user, cloddy, putDown(cloddy, x, shelf)), {sword, axe})

(Sentences such as the one above is useful when reference resolution finds more than one
possible candidate).

 7

Finally, suggestions are represented by suggest expressions. "Perhaps we should go to the
drawbridge" is:

suggest(cloddy, user, goTo(cloddy, atDrawbridge))

The table below summarizes the types of dialogue acts the characters can generate.

Name Explanation
accept The character accepts to perform a requested action.
reject The character refuses to perform a requested action.
tell The character gives the user a piece of information.
ask The character asks the user a question.
suggest The character suggests a future course of action.
explain The character explains why it is doing something (or is saying something)
Figure 4. Types of character dialogue acts

2.3 Success reports ("performed")

Each token generated on the output stream has an associated ID tag. When an action has been
successfully animated, or when an utterance has been synthesized, a message is sent back on the
input stream of the dialogue manager. For instance,

<performed>1.1.2</performed>

is a message telling the dialogue manager that the action with the associated ID tag "1.1.2" has
been animated. Such messages are necessary for the dialogue manager to keep its view of the
world up to date.

2.4 Timeouts

The Dispatcher module in the NICE fairy-tale system has an awareness of time, and sends
timeout messages to the dialogue manager when a certain amount of time has elapsed since the
latest event of some kind. If, for instance, 30 seconds has passed since the user last said anything,
the following message is sent to the dialogue manager:

<timeout><noInput>30000</noInput></timeout>

The dialogue manager can then take appropriate action. Either the message can be ignored, or the
character can be made to say something ("Hello... are you there?"), or enter idle mode.

 8

2.5 Triggers

Situation-dependent behaviour can be created by means of triggers. A trigger is a virtual box
inserted at a specific position in the virtual world. Whenever (the body of) a character enters it,
the trigger fires, and an message is sent to the dialogue manager:

<trigger name="atTreeTrigger"/>

Triggers are useful to place next to locations of particular interest, so that a certain behaviour can
be scripted (see deliverable D1.2b) whenever the character enters the trigger.

2.6 Overhearing other characters' conversation

A current restriction in the NICE fairy-tale system is that characters will not talk to each other,
they will only talk to the user. Nevertheless, to create a coherent impression, it is sometimes
important that a character A is informed what another character B and the user say to one
another. In particular, this is the case for the scene at the drawbridge (see deliverable D1.2b,
chapter 2.3), where Cloddy Hans needs to be informed what the user and Karin talk about. To
this end, a character may receive messages of the form

<overheard>dialogue act</overheard>

where dialogue act is the representation of an utterance from the user directed to another
character (or the other way around).

The system has a very simple algorithm for determining which character the user is talking to.
Unless the user starts by naming the intended recipient of the utterance ("Karen, ..."), the system
simply assumes that the intended recipient is the same as in the last utterance.

 9

3 The internal state of a character
In the NICE fairytale-world system, the animated characters are moving around in a virtual
world, interacting with their environment as well as with the user. Thus, in contrast to many
simpler existing dialogue systems (such as travel planning systems), the dialogue partner of the
user can not be identified with the system as a whole. Rather, each character appearing in the
virtual world is associated with a dialogue system of its own (albeit that all characters share
certain resources, such as speech recognition). What is important is that each character has its
own internal state, reflecting its past actions and perceptions, and motivating its future actions.
The internal state of a character can not be accessed by another character. The internal state of a
character is also different from the state of the virtual world as a whole, which includes the
position, graphical presentation and physical properties of the characters and the objects
appearing in the virtual world (such as houses, treasures, tools, weapons, magic wands, etc.). The
state of the world as a whole is thus not part of the system modules encoding the behaviour and
internal state of the characters, but is rather kept and updated by the animation system.

Hence, a character in the NICE fairytale world, seen as a dialogue system, is something quite
different from a traditional spoken-dialogue system. A better analogy is a spoken-dialogue
interface to a robot moving about in a physical environment (see e.g. Rayner et al. (2000) and
Lemon et al (2001)). The robot and the NICE character alike do not have complete information
about their environment. They have limited ability to anticipate the effects of a certain action, or
indeed to know whether a certain action is possible to perform at all, since several factors
influencing the outcome of actions are exterior to the system (the robot or character,
respectively). However, to be able to reason at all about actions, the robot/character has to have
an internal model of its environment. Such a model is usually incomplete, i.e. it reflects some but
not all aspects of the environment.

The behaviour of a character is determined by how it reacts to incoming stimuli. Such stimuli are
always triggered by certain events in the system. For instance, when the user speaks in the
microphone, this will ultimately lead to a message from the natural- language understanding
subsystem, containing the analysis of the utterance. A click on the screen results in a message
from the gesture interpretation module. If a certain object in the virtual world has changed
position, this will result in a message from the simulation system, and so on.

Now, in order to make sense, reactions should be contingent not only on the stimulus at hand but
also on preceding interactions, on what is currently shown on the screen, and on what actions are
relevant for solving the current task. Therefore all these things (preceding interactions, visual
context and task context) must be represented in the internal state of the character. How a
character reacts to incoming stimuli, then, should be determined by two things: How incoming
stimuli modifies the internal state of the character, and how the internal state of the character is
used in order to generate its actions and utterances. This observation leads to further questions.
How should the internal state of a character be represented? By which means can we specify
updates of the internal state? And by which means can we specify actions as a function of the
internal state? We will address these issues below.

 10

In the NICE fairy-tale game, the internal state of a character contains the following components:
• the domain model; the set of known objects in the environment. This also includes other

characters, as well as the user (which is seen as a character). The objects are interrelated
structured entities, as described in Section 3.

• the discourse history, which is a data structure representing past interactions.
• the agenda, which is a data structure that encodes the current goals and planned future

actions of the character.

3.1 Domain model

The domain model is represented as a set of interrelated objects, as described in deliverable 1.2.
In the NICE fairy-tale system, each object in the domain is implemented by a Java object.
Therefore, a component of the internal state of any character is a mapping from the names of
objects in the domain model to the actual Java objects that implement them, i.e. a list of the form

(name, object reference)

For instance, if there is an object in the domain model called the “axe”, then there is a pair

(axe, <object reference>)

where <object reference> is a reference (pointer) to the Java object implementing axe.

3.2 Discourse history

A discourse history is a data structure encoding the past utterances exchanged beween the
character and the user. Here utterances are coded as dialogue acts using the semantic formalism
described in deliverable 3.5b, section 2. The main use for the discourse history is reference
resolution; in order to understand utterances like "Go there" or "Do it now", the dialogue manager
has to be able to infer the intended interpretation of "there" and "it" by reasoning about earlier
utterances. In the second prototype, dialogue acts are simply kept in reverse chronological order
in a flat linear list.

3.3 Agenda

An agenda is a data structure with associated operations, encoding the current goals and planned
operations of a character, and the relationships between them. Here, a goal is an proposition G
about the domain, of the form defined in Section 5.1. The goal is said to be satisfied if G is true,
and unsatisfied otherwise. Goals are the motivating and driving force behind the operations of a
character, i.e. everything a character says or does, it does for the purpose of satisfying some goal.
An operation means either conveying a message to the user, or performing a (physical) action,
such as picking up or putting down something, moving to a specific spot, pointing at an object,
etc.

 11

An agenda can be characterized abstractly without reference to a particular implementation, as
something that supports the following operations:

• addGoal(P), where P is a proposition.
• removeGoal(P), where P is a proposition.
• nextOperation(). Returns the next operation the character should carry out. Here

"operation" refers to either a convey token or a perform token (see Section 2.1).

In the second prototype of the fairy-tale game, the agenda is represented as a set of trees. Updates
to the agenda are specified by means of a set of rules, written in a special scripting language,
defined in deliverable D1.2b, Section 4.

3.3.1 Goals and goal expansion

When goals are being added to the agenda (by means of the addGoal operation), they are
represented as trees with one node only. For instance, when the goal carrying(axe) is added, it is
represented by the node:

.
(we will let goals be represented by squares). If this goal is selected for satisfaction, it is
expanded by the help of a goal satisfaction rule (see deliverable 1.2, section 4). For instance, we
may use the goal satisfaction rule

satisfy(carrying(x character, ything) (
satisfy available(y);
satisfy freeHands(y);
satisfy standingAt(x, y.position.nextTo);
perform pickUp(x, y) ;
)

in order to produce the tree

where circles represent operations to be carried out. The tree structure represent the motivation
for each operation and subgoal; for instance, the operation perform(pickup(cloddy, axe)) is to be
carried out in order to satisfy the goal carrying(axe).

standingAt(cloddy, axe.position.nextTo)
freeHands(cloddy)

holding(cloddy, axe)

carrying(cloddy, axe)

perform pickUp(cloddy, axe)
available(axe)

 12

The algorithm then proceeds to the leftmost node of the tree (i.e. leftmost in the post-order of the
tree). If this node is a goal, it checks whether the goal is already satisfied, in which case the node
is pruned, and the next node is visited. In the example above, the first node visited is
available(axe). We assume that the axe is available (i.e. it is yet not put in the fairytale machine),
so this goal is satisfied and is therefore removed from the tree. Assume that the first unsatisfied
goal encountered is standingAt(axe.position.nextTo), where the expression axe.position.nextTo
evaluates to atShelf. Since the goal is not satisfied, it has to be expanded, using another goal
satisfaction rule. A relevant rule is:

satisfy(standingAt(xcharacter, yplace)) perform goTo(x, y);

Then the following tree is a possible expansion:

Now the first node (in the post-order of the tree) is an operation, which is then the next action to
be carried out (in this case, for Cloddy Hans to go to the shelf).

3.3.2 Finding explanations

As the agenda encodes causal relationships, it is used to generate explanations for behaviours. To
find relevant explanations, a general rule seems to be to look two levels higher up in the tree. In
the tree above, to find an explanation to why Cloddy Hans is going to the shelf (goTo(cloddy,
atShelf)), it seems too obvious an explanation to look at the node above:

tell(cloddy, user, intend(cloddy, standingAt(cloddy, atShelf)))

verbalized as "Because I want to stand at the shelf". More relevant is

tell(cloddy, user, intend(cloddy, carrying(cloddy, axe)))

verbalized as "Because I want to take/have the axe". This "look-two-levels-above" rule seems to
generate relevant explanations in almost all situations. If going two levels up is not possible, the
explanation is simply "Because you told me to", SHRDLU-style (Winograd 1972).

carrying(cloddy, axe)

standingAt(cloddy, atShelf) perform pickUp(cloddy,axe)

perform goTo(cloddy, atShelf)

 13

3.3.3 Finding suggestions by forward chaining

Above we discussed the expansion of goal satisfaction rules as the one discussed above:

satisfy(carrying(x character, ything) (
satisfy available(y);
satisfy freeHands(y);
satisfy standingAt(x, y.position.nextTo);
perform pickUp(x, y) ;
)

Expansion is a backward-chaining method; the starting point is the goal at the head of the rule,
which is pursued by means of pursuing the subgoals in the body. But it is also possible to use the
rule in the other direction, from the body to the head. Indeed this is possible for every rule of the
form

satisfy(G) (satisfy(G1); ... satisfy(Gn); perform(A))

i.e. where the body consists of a sequence of subgoals with an action at the end. If the subgoals
G1... Gn are already satisfied, the cha racter may suggest to the user that the next action should be A,
with the motivation that G will be achieved. This is in fact how suggest dialogue acts are
generated. In the example, this would amount to Cloddy Hans suggesting that he should pick up
an object an object y, say, the axe (in general, several instantiations of y will be possible;
therefore several suggestions are possible). The motivation is in this case to achieve the goal
carrying(cloddy, axe).

It is possible (although not implemented at this time) to generate sequences of suggested actions
by using this method recursively (this process is often referred to as forward-chaining). The
system then supposes that A has been carried out and that G is satisfied, and looks for rules where
G occurs in the body. If such a rule exists, the process outlined above may be repeated. For
instance, consider the rule

satisfy(inLocation(ything, zlocation)) (
satisfy carrying(me, y);
satisfy standingAt(me, z.nextTo);
perform putDown(me, y, z) ;
)

where me is an expression evaluating to the name of the character (cloddy, in this case). Here the
previously assumed fact carrying(cloddy, axe) is unifiable with a subgoal in the body. Thus it is
reasonable to claim that the original suggested action (of picking up the axe) is contributing to the
goal of placing the axe in z, where z is any location whatsoever.

As can be seen already from this simple example, forward-chaining can result in non-sensical
behaviour if used naively. In the example, there is a number of possible objects to instantiate y in

 14

the first step, and a number of possible locations to instantiate z in the second step. Not all
possible instantiations will make sense in terms of solving an overall goal. If Cloddy Hans
suggested picking up the axe from the shelf in the first step, it wouldn't make much sense to
suggest putting it down on the shelf again in the second step. Therefore, in order to make this
mechanism work in general, goals should be coupled with some metric to show how much their
fulfillment contribute to reaching the overall goal in the scene. Fulfilling some goals might be
actually be counter-productive in this perspective (e.g. putting back the axe on the shelf does not
contribute to getting it into the machine), so such suggestions should be avoided. Devising and
implementing such a metric will be a topic of future research.

 15

4 Reference resolution and focus
One of the most important tasks of the dialogue manager is to interpret utterances in its proper
context. Concretely, this means finding the appropriate interpretations of pronouns, definite noun
phrases, ellipses and similar anaphoric phenomena. Which interpretations are appropriate or not
depends on which objects are currently in focus. Thus the dialogue manager needs to have an
algorithm for computing the set of focussed objects.

4.1 Representation of anaphora

As explained in deliverable D3.5b, all kinds of anaphoric utterances are represented in a uniform
way, by lambda-abstracted terms. So is, for instance, the user saying to Cloddy Hans "Put it
among the valuables" represented as

λxthing .request(user, cloddy, putDown(cloddy, x, valuableSlot))

where the lambda variable x represents the missing information, in this case the object of type
thing which is to be put in the valuables slot. The missing information may itself be a lambda
term, as in the representation of the elliptic utterance "The hammer":

λf thing→dialogue_act .(f hammer)

(For a more thorough discussion of these examples, see deliverable D3.5b). Thus, the semantic
representation scheme used in the NICE fairy-tale games imposes type constraints on all
expressions and subexpressions. Contextual interpretation therefore amounts to finding (or
constructing) objects of the appropriate types.

The importance of type constraints can be seen from the following example (from the corpus
described in deliverable D2.2b):

1. User: I want you to take the hammer.
2. Cloddy Hans: Okay. [Takes the hammer.]
3. User: Then I want you to go to the machine… and put it in the first tube.

Here, it is obvious that “ it” in utterance 3 corresponds to the hammer because of the way the
particular objects and actions are related in this domain. However, a naive model of reference
resolution without this information might risk associating ” it” with the machine2.

2 In Swedish, “hammer” and “machine” have identical gender, and hence the pronoun agrees grammatically with both of them.

 16

4.2 Focus management

There is no explicit representation of the set of focussed objects in the dialogue manager; rather
objects are retrieved or constructed on a by-need basis, using the internal state.

4.2.1 Using the discourse history

Most anaphora can be resolved by consulting the discourse history in reverse chronological order.
The type constraints filter out unwanted candidates, as in the example below.

1. User: I want you to take the hammer.
request(user, cloddy, pickUp(cloddy, hammer))

2. Cloddy Hans: Okay. [Takes the hammer.]

accept(cloddy, user, request(user, cloddy, pickUp(cloddy, hammer)))

3. User: Then I want you to go to the machine… and put it in the first tube.

request(user, cloddy, goTo(cloddy, atMachine))
λxthing .request(user, cloddy, putDown(cloddy, x, valuableSlot))

The first expression encountered of type thing, when going backwards from the last expression,
is hammer, and the final lambda expression is therefore applied to hammer to get the final
interpretation. This amounts to interpreting the "it" in the last utterance as "the hammer".

Resolution of ellipsis involves constructing a function of the appropriate type. Consider the
following example:

1. User: “Cloddy Hans, please pick up the axe.”
request(user, cloddy, pickUp(cloddy, axe)

2. Cloddy Hans: “OK” (picks up the axe)

accept(cloddy, user, request(user, cloddy, pickUp(cloddy, axe)))

3. User: “Now the hammer”.

λf thing→dialogueAct.(f hammer)

The contextual interpretation problem is now to construct the right expression e of type thing→
dialogue_act, such that the representation of utterance 3 applied to e yields the correctly resolved
expression. This function is constructed using a technique reminiscent of Dalrymple et al (1991).
Suitable candidates can be found by examining the representations of preceding utterances, in
reverse chronological order. What we are looking for, in this case, are expressions of type
dialogue_act which have a subterm of type thing. This is because such expressions can be turned

 17

into expressions of the appropriate type thing→dialogue_act by means of reverse functional
application. In this example, we have

request(user, cloddy, pickUp(cloddy, axe)) →-1
 (λxthing.request(user, cloddy, pickUp(cloddy, x)) axe)

From the above, we can extract the expression (λxthing.request(user, cloddy, pickup(cloddy, x)) ,
which has the appropriate type thing→dialogue_act. This is indeed the correct function since

(λf thing→dialogueAct.(f hammer) λxthing.request(user, cloddy, pickUp(cloddy, x))) →

(λxthing.request(user, cloddy, pickUp(cloddy, x)) hammer) →
request(user, cloddy, pickUp(cloddy, hammer))

i.e. the final interpretation is "Pick up the hammer", as expected.

4.2.2 Using domain constraints

As we have already seen, the domain model comes into play in the type discipline of the semantic
formalism. The fact that a hammer can be picked up, whereas the fairy-tale machine cannot be, is
encoded as a type constraint: hammer is of type thing whereas machine is not, the second
argument of pickUp should be a thing; hence hammer fits into the second argument of pickUp
whereas machine does not. We have already seen how such constraints are used in anaphora
resolution.

Representations of utterances can include domain constraints as well as type constraints. For
instance, "Pick up the red one" is:

λxt .request(user, cloddy, pickUp(cloddy, x) [x.color=red])

Here, reference resolution needs to retrieve an unknown object x of unknown type t. However,
the subexpression [x.color=red] expresses a constraint on the possible values of x and t. Possible
interpretations of t include every type that has an associated attribute color, and possible
interpretations of x include all objects whose color attribute has the value red.

If the lambda expression to be resolved includes domain constraints, such as above, it is often
useful to search through the visual context of the character to find the object referred to.
Typically, definite NPs that describe the features of an object ("the red one") translate into
domain constraints (x.color=red). It is a reasonable first hypothesis that the user is seeing the
object on the screen when describing it in this manner.

Since there is (currently) no explicit internal representation of what is visible on the screen, the
visual context of the character is taken to be the set of neighbouring locations to the character´s
current position (see deliverable D1.2 for the representation of the domain model). In the
example, the near vicinity of the character will be searched for red objects. If no such object is
found, the dialogue history is searched instead.

 18

4.2.3 Using the agenda

As already explained in Sections 3.3.2 and 3.3.3, in the case of askForExplanation and
askForSuggestion dialogue acts from the user, the agenda is searched for finding the appropriate
interpretations.

The agenda could also be used for other purposes. The following utterance comes from the
corpus described in deliverable D2.2b:

 User: Where we put the magic wand... there you can put it.

To be able to infer which location the user is referring to, the system needs to search through the
actions the character has carried out in the past. Since the agenda represents this information, it is
possible to extend the system to resolve references such as the one above. This is currently not
implemented.

 19

5 References
Bell, L., Boye, J., and Gustafson, J. (2001). Real- time handling of fragmented utterances. Proc.

NAACL workshop on adaptation in dialogue systems, Pittsburgh, USA.
Boye, J., Gustafson, J. and Wirén, M. (2004) Formal representation of domain information,

personality information and dialogue behaviour for the NICE fairy-tale game. NICE
deliverable D1.2b.

Boye, J., Wirén, M. and Gustafson, J. (2003) Contextual reasoning in multimodal dialogue
systems: Two case studies. Proc. Catalog, 7th Workshop on Formal Semantics and
Pragmatics of Dialogue.

Boye, J., Wirén, M. and Gustafson, J. (2004) Natural Language Understanding for the NICE
fairy-tale game. NICE deliverable D3.5b.

Boye, J., Wirén, M., Rayner, M., Lewin, I., Carter, D. and Becket R. (1999). Language
processing strategies and mixed- initiative dialogues. In Electronic Transactions of
Artificial Intelligence, http://www.ida.liu.se/ext/etai . An earlier version was published in
the Proc. IJCAI workshop on knowledge and reasoning in practical dialogue systems,
Stockholm, Sweden.

Dalrymple, M., Shieber, S. and Pereira, F. (1991) Ellipsis and higher-order unification. Language
and Philosophy, vol 14, no. 4, pp. 399–452.

Gustafson, J., Bell, L., Boye, J., Edlund, J. and Wirén, M. (2002) Constraint manipulation and
visualization in a multimodal dialogue system, Proc. ISCA workshop multi-modal
dialogue in mobile environments, Kloster Irsee, Germany.

Gustafson, J., Boye, J., Bell, L., Wirén, M., Martin, J-C., Buisine, S. and Abrilian, S. (2003)
Collection and analysis of multimodal speech and gesture data in the first fairy-tale
prototype. NICE deliverable D2.2b.

Lemon, O., Bracy, A., Gruenstein, A. and Peters, S. (2001) Information states in a multi-modal
dialogue system for human-robot conversation. Proc. Bi-Dialog, 5th Workshop on
Formal Semantics and Pragmatics of Dialogue, pages 57 – 67.

Mateas, M. and Stern, A. (2002) A Behavior Language for Story-Based Believable Agents. In
Ken Forbus and Magy El-Nasr Seif (Eds.), Working notes of Artificial Intelligence and
Interactive Entertainment. AAAI Spring Symposium Series. Menlo Park, CA: AAAI
Press.

Rayner M., Hockey B.A. and James, F. (2000) A compact architecture for dialogue management
based on scripts and meta-outputs. Proc. Applied Natural Language Processing (ANLP).

Traum, D. and Larsson, S. (2003) The Information State Approach to Dialogue Management In
van Kuppevelt and Smith (eds.) Current and New Directions in Discourse and Dialogue,
Kluwer Academic Publishers.

Winograd, T. (1972) Understanding natural language. Cognitive Psychology, 3(1). Reprinted as
book by Academic Press.

