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Abstract. This paper presents a dialogue framework designed to cap-
ture human-robot interactions enriched with human-level situational aware-
ness. The system integrates advanced large language models with real-
time human-in-the-loop control. Central to this framework is an interac-
tion manager that oversees information flow, turn-taking, and prosody
control of a social robot’s responses. A key innovation is the control in-
terface, enabling a human operator to perform tasks such as emotion
recognition and action detection through a live video feed. The operator
also manages high-level tasks, like topic shifts or behaviour instructions.
Input from the operator is incorporated into the dialogue context man-
aged by GPT-4o, thereby influencing the ongoing interaction. This allows
for the collection of interactional data from an automated system that
leverages human-level emotional and situational awareness. The audio-
visual data will be used to explore the impact of situational awareness
on user behaviors in task-oriented human-robot interaction.
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1 Introduction

LLM-based systems have significantly enhanced the capabilities of conversational
systems [1]. However, for effective situated human-robot interaction, these sys-
tems still face limitations in situational understanding, such as interpreting mul-
timodal cues related to the user’s emotional state or recognizing when a user has
completed a task-fulfilling physical action. Emotion-aware systems can detect
and respond to users’ emotional states, fostering more empathetic and adaptive
communication [2]. Context-awareness is essential for developing collaborative
robots capable of assisting humans in physical tasks. Beyond understanding spo-
ken instructions, these robots must recognize meaningful, goal-directed actions
[3]. Accurate recognition of users’ affective and attitudinal states requires inte-
grating multiple modalities [4]. To build effective recognizers, it is necessary
to collect ecologically valid interactional data. Emotional speech corpora can be
derived from three primary sources, each with varying degrees of naturalness:
acted, induced, or spontaneous emotions [5].
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This paper presents a dual-control dialogue framework that combines a state-
of-the-art LLM with real-time human decision-making. The system enhances
human-robot interaction data collection by incorporating human-level contex-
tual awareness and decision making, enabling more contextually appropriate
conversations. It allows social robots to adapt their behavior based on the user’s
emotional state and task-related actions. An interaction manager optimizes re-
sponse times and a TTS system with prosody control ensures emotionally appro-
priate responses. A human operator supplements the LLM with information on
user emotions and task actions, and makes high-level decisions including sending
system instructions aimed at eliciting emotional user responses.

2 Related work

Despite significant advancements in conversational systems, enhancing their emo-
tional and contextual understanding could greatly improve their effectiveness.
Previous research has often focused independently on either emotional recog-
nition or situational context. For example, one emotion-aware chatbot utilized
sentiment analysis to tailor responses based on the user’s emotional state [6].
Another system integrated visual, spatial, and linguistic information to improve
understanding in human-robot interaction [7]. However, the combined integra-
tion of emotional and situational contexts remains an underexplored area that
could significantly enhance conversational quality. Today’s LLMs have also been
shown to be as effective as human third-person annotators of emotional state
using text alone [8]. However, the efficiency of emotion detection has been found
to be sensitive to the prompts used [9]. Moreover, fully understanding a user’s
emotional state requires access to the situational context. The Kuleshov effect
illustrates how viewers derive different emotional interpretations of facial expres-
sions depending on situational context [11]. This suggests that reading emotions
is akin to reading the situation at hand, which can serve as an affordance for ac-
tion by robots engaged in situated interactions with humans. In a study on enjoy-
ment detection in human-robot interaction, a multimodal LLM (Google Gemini
1.5 Pro with video access) outperformed a text-only LLM (GPT-4) in detecting
low enjoyment [10].Both LLMs outperformed the human annotator baseline in
correlating with users’ self-reported enjoyment scores. To build effective spoken
dialogue systems, collecting representative interactional data is crucial. Tradi-
tionally, data collection has relied on the Wizard-of-Oz (WoZ) method, where a
human operator controls parts of the dialogue system [12]. Today’s LLM systems
are advanced enough to eliminate the need for a human operator in the initial
data collection phase [13]. However, refining LLM prompts by simulating both
sides of the interaction before gathering human-machine interaction data has
proven essential [14]. However, to develop robust systems capable of handling
user reactions to communication breakdowns and unexpected behaviors, it is
essential to collect real data where such events occur in a structured manner. In
an enhanced WoZ study, a human operator monitored a task-oriented dialogue
between two participants that communicated via lip-synced avatars [15]. The
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operator’s role was to send instructions to both participants in order to to guide
the dialogue or provoke specific interactional phenomena like hesitations and
misunderstandings. In another study, a human wizard controlled a social robot
that guided a user through the process of making spring rolls [16]. The wizard’s
role was limited to deciding when to give the next pre-prepared instruction, while
the robot was intentionally programmed to fail at predetermined points, simu-
lating typical robot malfunctions like disengagement, incomplete instructions,
lack of response, repetition, and incorrect guidance.

In this paper, we present a dual-control dialogue framework for collecting sit-
uated interactions between humans and a social robot. The framework includes
a human-in-the-loop operator who monitors the interaction and sends real-time
instructions to the dialogue manager (GPT-4o), dynamically adjusting its behav-
ior. By observing the user’s facial expressions and physical actions, the operator
provides the dialogue manager with emotional and situational awareness. Dur-
ing task-oriented activities, such as cooking, the operator can instruct the LLM
to proceed to the next step once the user completes a task. To elicit emotional
reactions, the operator can also induce controlled challenges, such as instructing
the LLM to misunderstand user input or refuse requests.

3 System Architecture

We have developed a plug-and-play dialogue framework that allows for easy mod-
ule exchange, including large language models for dialogue management, speech
recognition, speech synthesis, voice conversion, a social robot, and a wizard in-
terface. These can be run either locally or via APIs to servers, as seen in Fig 1.

Fig. 1. The dual-control dialogue architecture
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In the dual-control dialogue framework dialogue management is based on
GPT-4o, guided by persona and task prompts. The prompts directs the system
to act as a chatbot capable of engaging in social and task-oriented interactions.
The responses are instructed to be conversational in style and to make use of
fillers and emotional reactions, such as self-reproach and humor. Additionally, the
system is asked to assess the emotional states of both the user and the chatbot,
and to adjust the chatbot’s speaking style accordingly, varying the speaking rate
from very slow to very fast, and the pitch from very low to very high. An Inter-
action Manager is introduced to control information flow, turn-taking, and the
prosodic realization of the system’s output. One challenge with server-based dia-
logue managers like GPT-4o is the variability in response times, which can range
from half a second to three seconds, depending on the query and server load. To
reduce turn-taking delays, the Interaction Manager generates turn-taking fillers
while awaiting GPT-4o’s response. This is managed by three timers: the first
triggers a short filler (e.g., "Uh") after half a second, the second generates filler
phrases (e.g., "Let me see...") after one second, and the third produces elaborated
phrases like "That was a hard question!" after two seconds, each with increasing
probability. Another turn-taking cue the system makes use of is slightly audible
breath sounds that were taken from the original recordings of the TTS voice
actor. To create a believable conversational robot, it is crucial that the prosodic
realization of its output sounds spontaneous and reflects its affective state. The
system uses a local TTS server based on the KTH spontaneous speech synthe-
sizer [17], featuring a male American voice trained on a dialogue corpus of 15
one-hour interactions. This Tacotron2-based TTS system offers explicit control
over speaking style (read/spontaneous speech), mean pitch, and speaking rate
[18]. Default replies and comments are delivered in a clear, conversational style,
while turn-taking fillers are spoken quickly and at a low pitch, indicating that
they are placeholders as the system prepares its response. The Interaction Man-
ager controls prosodic realization in two ways: by default, it uses the prosodic
information generated by GPT-4o alongside its text response to the ASR out-
put of the user’s verbal input. Alternatively, it can base prosodic realization on
measurements of the mean pitch and speaking rate of the last user utterance.
Currently, the system mirrors the user’s prosody, but the goal is to use these
online prosodic measurements to assess the user’s emotional state and adjust the
robot’s verbal output accordingly. To explore the impact of different voices, we
integrated a Voice Converter into the system, using FreeVC—a zero-shot voice
conversion tool that utilizes short speech samples from target speakers [19]. We
modified it to interpolate and extrapolate between two target speakers by using
dual speaker embeddings with adjustable weights. The voice conversion server
enables synthesized speech to be transformed using a target speech sample and
a scaling factor. We also plan to utilize this for speech entrainment experiments
[20], where the system’s voice gradually aligns with the user’s voice over time.
Finally, we have integrated the Furhat social robot platform and enhanced it
with our lipsync system, featuring controllable articulatory effort [21], to better
synchronize with our spontaneous conversational speech synthesis.
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Anyone who has collected human-machine interactions understands the frus-
tration of a system failing to comprehend user utterances or behaviors. Whether
it’s a WoZ setup or the first iteration of a fully automated dialogue system,
dialogue designers often recognize the missing information that would have im-
proved the system’s performance when reading the system logs. The proposed
dual-control dialogue framework addresses this issue by allowing designers to
provide additional information during the interaction. The framework enables a
human operator to monitor ongoing human-robot interactions and use an inter-
face to send real-time instructions to the dialogue manager. The operator’s role
is similar to that of a driving instructor, who can take control when needed, or a
theater prompter, discreetly guiding the interaction. To facilitate this, rules were
added to the initial task prompt, specifying that the operator is present to assist
the system by providing valuable information and guidance. The operator’s in-
put always begins with "Operator:" and the system is instructed not to respond
directly to these inputs but to consider them when generating future responses
to the user. During interactions, the system’s Interaction Manager sends user
input from the speech recognizer, along with the previous dialogue context, to
GPT-4o, which serves as the dialogue manager. The dialogue context is saved
to a file that is shared with the Wizard interface. The Wizard GUI allows the
operator to append instructions to GPT-4o at the end of the shared dialogue
history, influencing the direction and topic of the ongoing conversation or mod-
ifying how subsequent user utterances are handled. One of the operator’s tasks
is to assess the user’s emotional state through the video feed. While GPT-4o
performs automatic emotion recognition based solely on textual information, it
does not account for prosodic cues, facial expressions, or the physical context of
user actions during task-oriented interactions. Although GPT-4o can recognize
emotions in faces from images, this process typically takes around 10 seconds,
making it unsuitable for conversational systems that require quick responses to
maintain user engagement. The operator is responsible for providing the system
with real-time information about the user’s emotional state, such as "The user
looks unsatisfied," and for instructing the system to display specific emotions, for
instance, "Indicate that you are uncertain." Additionally, the operator can use
specific commands to elicit emotional responses from the user, like instructing
the system to "challenge everything the user says," or direct the conversation to
new topics, such as suggesting, "Could you switch the conversation to cooking
instead?" Beyond these functions, the operator enhances the dialogue manager’s
contextual awareness during physical tasks. This may involve acting as a human
detector for goal-directed actions, such as confirming task completion, or guid-
ing the interaction to focus on relevant objects in the user’s environment. While
GPT-4o can describe objects in images, the process is also too slow for real-time
interaction. To address this, the Wizard interface monitors a video feed of the
user’s workspace, silently capturing snapshots and sending them to a separate
GPT-4o server for analysis, without interrupting the ongoing interaction. The
recognized objects are then added to the shared dialogue history for verification.
Figure 2 shows an example dialogue with the system.
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Fig. 2. An example dialogue with the dual-control framework

4 Conclusions and Future Work

In this paper, we introduce a dual-control dialogue framework that enables the
collection of human-robot interactions beyond the capabilities of current state-of-
the-art systems. This is achieved by integrating a large language model, GPT-4o,
with real-time human decision-making and multimodal recognition of a user’s
affective state and task-related physical actions. The system also incorporates
our in-house conversational speech synthesizer with prosody control, allowing for
studies on the impact of different robot voices and speaking styles. This frame-
work will be deployed for human-robot interaction data collection in our smart
kitchen lab (https://www.speech.kth.se/ia-lab/). During these interactions, a
human operator will oversee the flow of the conversation, beginning with a brief
social exchange to establish rapport with the user. The operator will then guide
the system to shift the dialogue toward cooking, discuss the ingredients available
in the user’s workspace, and suggest recipes based on the provided items and
user preferences. Following this, the system will offer step-by-step cooking in-
structions, with the operator assisting by signaling when users complete specific
physical tasks, such as chopping onions or boiling pasta. This enables the system
to proceed to the next instruction seamlessly, without requiring user prompts.
We will collect multimodal data from a range of sensors including Aria glasses
[22]. These makes it possible to track the user’s gaze into a dense point cloud of
the shared environment.
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