Available online at www.sciencedirect.com

sc.ence@p.“u@

Speech Communication 48 (2006) 335-353

SPEECH

i COMMUNICATION
ELSEVIER

www.elsevier.com/locate/specom

Robust spoken language understanding in a computer game

Johan Boye *, Joakim Gustafson, Mats Wirén

TeliaSonera R&D, Rudsjoterrassen 2, 13680 Haninge, Sweden
Received 22 December 2004; received in revised form 23 June 2005; accepted 27 June 2005

Abstract

We present and evaluate a robust method for the interpretation of spoken input to a conversational computer game.
The scenario of the game is that of a player interacting with embodied fairy-tale characters in a 3D world via spoken
dialogue (supplemented by graphical pointing actions) to solve various problems. The player himself cannot directly
perform actions in the world, but interacts with the fairy-tale characters to have them perform various tasks, and to
get information about the world and the problems to solve. Hence the role of spoken dialogue as the primary means
of control is obvious and natural to the player. Naturally, this means that robust spoken language understanding
becomes a critical component. To this end, the paper describes a semantic representation formalism and an accompa-
nying parsing algorithm which works off the output of the speech recogniser’s statistical language model. The evalua-
tion shows that the parser is robust in the sense of considerably improving on the noisy output of the speech recogniser.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Spoken language understanding; Robust parsing; Robustness; Dialogue systems; Conversational systems; Computer
games; Animated characters

1. Introduction

Computer games provide an excellent applica-
tion area for research in spoken dialogue technol-
ogy, requiring an advance of the state-of-the-art
on several fronts. Speech input is already used in
some commercial computer games as a supplement
to the mouse and keyboard, but to date very few
commercial games are using voice commands as

* Corresponding author. Tel.: +46 70 5866724.
E-mail address: johan.boye@teliasonera.com (J. Boye).

the primary means of control (Lifeline, released
in 2004, is one example). More advanced spoken
dialogue would have the potential to greatly enri-
chen computer games. For example, it would allow
players to refer to past events and to objects cur-
rently not visible on the screen, as well as interact-
ing socially and negotiating solutions with the
game characters.

A problem which has to be overcome when
designing and implementing such a game is to
achieve an acceptable level of spoken input under-
standing, while at the same time giving the player

0167-6393/$ - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2005.06.015

mailto:johan.boye@teliasonera.com

336 J. Boye et al. | Speech Communication 48 (2006) 335-353

the impression that he can express himself freely.
In order to maximise recognition performance,
the only viable option is to use a statistical lan-
guage model, trained on input from as many users
as possible. But then it is necessary to have a
robust method of extracting the meaning from the
word strings delivered by the speech recogniser,
to handle disfluent input and recognition errors.

This paper describes the methods for spoken
language interpretation used in the NICE fairy-
tale game. The game scenario of the fairy-tale
game is basically that of a player interacting with
embodied fairy-tale characters in a 3D world via
spoken dialogue (in Swedish), as well as graphical
gestures via a mouse-compatible input device, in
order to solve various problems. The fairy-tale
characters communicate with the player using
spoken dialogue and gestures. The appearances
of the characters, their voices, actions and ways
of expressing themselves all contribute to giving
the player the impression of fairy-tale characters
with distinct personalities. The game is intended
for young users (9-15-year olds), and the develop-
ment of the game has been highly iterative. Several
versions of the game have been tried on young
users, upon which the data has been analysed
and used to improve all aspects of the game.

The robust parsing algorithm, which is the main
subject of this paper, proceeds in two steps: a
domain-dependent pattern-matching phase and a
domain-independent rewriting phase. The output
of the parser is a typed, tree-structured expression
representing the utterance. Previous systems based
on pattern matching have been restricted to pro-
ducing relatively simple semantic structures, such
as variable-free slot-filler lists. Unfortunately, such
structures are not suitable as input to a dialogue
manager in our domain, which involves informa-
tion-seeking utterances, commands and simple
negotiation, and where there is also abundant ref-
erence to objects in the 3D world as well as in the
discourse. Thus, our system produces more com-
plex semantic structures, tailored to capture the
kind of information contained in utterances col-
lected in our domain. Still, our semantic structures
are much less complex than general-purpose, logic-
based approaches, thereby allowing for efficient
and robust processing. Our evaluation also shows

that the parser is robust in the sense of consider-
ably improving on the noisy output of the speech
recogniser (see Section 5).

In sum, the contribution of the paper is a novel
combination of pattern-matching and rewriting
which allows for a trade-off between the simple
semantic structures typically generated by pat-
tern-matching parsers and the complex structures
generated by general-purpose, linguistically-based
parsers. In particular, this trade-off allows us to re-
tain the advantages of pattern-matching systems in
terms of efficiency and robustness, while capturing
the contents of the great majority of utterances
manifested in our domain.

2. Game scenario

The scenario and characters are loosely inspired
by the fairy-tale universe of H.C. Andersen. The
game begins in H. C. Andersen’s house in Copen-
hagen in the 19th century. Andersen has just left
on a trip, and has asked one of his fairy-tale char-
acters, Cloddy Hans, to guard his fairy-tale labo-
ratory while he is away. The key device in the
laboratory is a fairy-tale machine, which nobody
except Andersen himself is allowed to touch
(Fig. 1). On a set of shelves beside the machine,
various objects are located, such as a key, a ham-
mer, a diamond and a magic wand. By removing
objects from the shelves, putting them into suitable
slots in the machine and pulling a lever, one lets
the machine construct a new fairy-tale in which
the objects come to life.

Just before the user enters the game, Cloddy
Hans has got the idea of surprising H. C. Andersen
with a new fairy-tale on his coming back. There is
a problem, however: Each slot is labelled with a
symbol which tells which type of object is sup-
posed to go there, but since Cloddy Hans is not
very bright, he needs help from the user with
understanding these. There are four slots, which
are labelled with symbols denoting “useful”,
“magical”, “precious” and ‘“dangerous” things,
respectively. Which object goes in which slot is
sometimes more obvious (provided you under-
stand the symbols), like the diamond belonging
in “precious”, and sometimes less obvious, like

J. Boye et al. | Speech Communication 48 (2006) 335-353 337

Fig. 1. The first scene: Cloddy Hans standing beside the shelves with objects, and in front of the fairy-tale machine.

the knife belonging in ‘“‘useful” rather than
“dangerous”.

The first scene thus develops into a kind of “put-
that-there” game, where it is the task of the user to
instruct Cloddy Hans; tell him where to go, which
objects to pick up and where to put them down,
etc. If the user does not understand what to say,
Cloddy Hans will encourage him or her, give sug-
gestions, and eventually take matters into own
hands. Because the initial scene is task-oriented in
a straightforward way, the system is able to antici-
pate what the user will have to say to solve it. The
real purpose is not to solve the task, but to engage
in a collaborative conversation where the player
familiarises himself with the possibilities and limita-
tions of the spoken (multimodal) input capabilities.

In the second scene, the player enters the actual
fairy-tale world for the first time, together with
Cloddy Hans. The fairy-tale world is a large 3D
virtual world (parts of it can be seen in Fig. 2).
At the beginning of the second scene, Cloddy Hans
encourages the player to explore the immediate
surroundings on the small island. While wandering
about and looking around, the player discovers
that the objects that were put in the fairy-tale ma-
chine in the preceding scene are now lying scat-
tered in the grass. Although it is not completely
clear to the player at this point, these objects will

actually constitute valuable assets when solving
various tasks in the world.

The player soon encounters the first problem.
Together with Cloddy Hans, he is trapped on a
small island, from which he can see the marvels
of the fairy-tale world—houses, fields, a wind mill,
and many more things—but they are all out of
reach. A deep gap separates him from these won-
ders. There is a drawbridge, which can be used
for the crossing, but it is open, and the handle that
operates it is on the other side. Fortunately, a girl,
Karen, is standing on the other side (Fig. 3).

Karen has a different kind of personality com-
pared to Cloddy Hans. Instead of having Cloddy
Hans’s positive attitude, she is sullen and uncoop-
erative, and refuses to close the drawbridge. The
key to solving this deadlock is for the player to
find out that Karen will comply if she is paid:
she wants to have one of the fairy-tale objects that
are lying in the grass on the player’s side of the gap
(which object she wants will change each time the
game is restarted). Thus, it is the task of the player
to find the appropriate object, and use this object
to bargain with Karen.

The following is a manual transcription of an
excerpt from a dialogue between a user, Cloddy
Hans and Karen. When the excerpt begins, Cloddy
Hans and the user are standing at one side of the

338 J. Boye et al. | Speech Communication 48 (2006) 335-353

.. ... b T

Fig. 2. The second scene: a small part of the fairy-tale world. The player and Cloddy Hans start off on the small island on the left-hand

side.

Drawbridge in initial state

Drawbridge in end state

Fig. 3. The second scene: Cloddy Hans and Karen at the gap and the open drawbridge.

gap, while the camera is showing Karen standing
on the other. The user is trying to convince Karen
to lower the bridge, while Cloddy Hans is mak-
ing some side comments, triggered by Karen’s
utterances.

Player: Open the bridge .. . could you lower the
elevator?

Karen: If T am to lower the bridge, I want some-
thing in return.

Cloddy: Maybe she will lower the bridge if we
give her something nice.

Player: Yes take this take Cloddy’s sword.
Karen: If you can’t offer something better then
forget it...I saw some shiny stuff fall down
from the sky a while ago.
Player: ... yes...
Cloddy: Girls like shiny things, don’t they?
Player: OK Cloddy, fetch the lamp then.

(The camera swings back to show Cloddy
Hans.)
Cloddy: I can only hold one object at a time.
Player: OK, drop the sword.
(Cloddy Hans drops the sword on the ground.)

J. Boye et al. | Speech Communication 48 (2006) 335-353 339

Cloddy: Do you want me to go to the lamp?
Player: Yes.
Cloddy: OK, T'll do that.

(Turns around and walks over to the lamp.)
Player: Pick up the lamp.

Cloddy: OK, I'll do that.

(Picks up the lamp.)

Player: Go to ehh what’s her name ehh go to
that girl ...

Cloddy: Do you want me to go to Karen?
Player: Yes, go to Karen.

Cloddy: I am already on my way.

(Starts walking. When Cloddy Hans reaches
the bridge, the system triggers on this event,
and swings the camera over to show Karen.)
Karen: What did you bring for me?

Player: You can have this lamp that Cloddy
has.

Karen: What a piece of junk! Dump it in
another fairy-tale.

The fairy-tale character with whom the player is
talking is always in camera (i.e. is shown on the
screen). The player can control the camera by say-
ing the name of a character. For example, by say-
ing “Cloddy”, the camera swings over to show
Cloddy Hans. This is also the way for the player
to change dialogue partner.

The system can also initiate a camera change
and a change of dialogue partner, by triggering
on certain events. For instance, whenever Cloddy
Hans reaches the gap, the camera automatically
swings over to show Karen, and Karen starts talk-
ing. There is also a possibility for a character to
make side-comments (without being in camera).
In the example above, Cloddy Hans triggers on
certain utterances by Karen to provide hints to
the user (“Maybe she will lower the bridge if we
give her something nice”, “Girls like shiny things,
don’t they?”).

3. Semantic representation formalism

3.1. Dialogue acts

Utterances are represented by tree-structured
expressions, called dialogue acts. As an example,

the dialogue act representing the user saying to
Cloddy Hans; “Pick up the axe’:

request(user, cloddy, pickUp(cloddy, axe))

Here, the topmost symbol (request) indicates the
type of dialogue act, the first argument (user) indi-
cates the character issuing the dialogue act,
whereas the second argument (cloddy) indicates
the intended recipient of the dialogue act. These
components are present for all types of dialogue
acts. The third component (pickUp(cloddy, axe),
in this case) indicates the propositional contents
of the dialogue act, in this case the action of pick-
ing up the axe. The general form of a request takes
the form:

character _ character action)diabgueACt

Y yZ

where the superscripts indicate type constraints on
the subexpressions. The pickUp action can be fur-
ther decomposed into

request(x

(Xcharacter thing)action

pickUp ,Y

i.e. the first argument must be a character (who is
doing the picking up), and the second argument is
a thing (which is picked up).

Anaphoric utterances are represented by means
of typed lambda abstractions. For instance, con-
sider the utterance “Pick it up”. The meaning of
this utterance is obviously depending on the con-
text in which it is said (i.e. what “it” is referring
to). Therefore it is reasonable to assert that the
meaning of the utterance “Cloddy Hans, put it
down on the table” is a function, mapping the rel-
evant part of the dialogue context to an expression
of the type dialogueAct. Thus:

Ly™"e request (user, cloddy, pickUp(cloddy, y))

(We assume familiarity with the lambda calculus
(see Hindley and Seldin, 1986), and its use in nat-
ural language semantics (see e.g. Jurafsky and
Martin, 2000 chapter 15)). This expression denotes
a function taking a thing as argument returning a
character as the result (its type is written
thing — dialogueAct). Functions of several argu-
ments are represented with nested lambda abstrac-
tions, e.g. “Put it down” is

AxNEpyloaton request (user, cloddy, putDown(cloddy,x,y))

340 J. Boye et al. | Speech Communication 48 (2006) 335-353

Domain questions are represented by means of
ask expressions, e.g. “What color is the ruby?” is:

Ax" ask (user, cloddy, x[ruby.color = x])

Here the expression within square brackets indi-
cates domain constraints imposed on the possible
instantiations of x (in this case that x should be
the color of the ruby).

Granting of information is represented by tell
expressions, e.g. “I'm fourteen years old” is:

tell(user, cloddy, 14[user.age = 14])

The offer construction is used for bargaining, e.g.
the user saying to Karen “I will give you the ruby”
is

offer(user, karen, ruby)

Confirmations and disconfirmations are repre-
sented by confirm and disconfirm expressions,
respectively, e.g. “Yes, do that” is:

AxAialoBueAct confirm (user, cloddy, x)

Requests for help and explanations are repre-
sented by askForSuggestion and askForExplanation
expressions, respectively, e.g. “What should we do
now?” is

AxialogueAct 4ok ForSuggestion (user, cloddy, x)

Fig. 4 summarizes the types of dialogue acts to
which user input will be mapped in the fairy-tale
game, and the types of their arguments. The type
niceObject is a superset of all other types in the
system.

The possible actions the system can reason
about is listed in the table below. The first argu-
ment is always the character performing the
action; the remainder of the arguments are the
other role-players of the action:

Name Argument structure

goTo gOTO(Xcharacter’ ypIaCé)

pickUp pickUp(xeharacter, ythmg_) |
pUtDOWn pUtDOWn(xCharaCter, ythmg’ Zlocatlon
giveTo giveTo(xcharacter’ thing’ Zcharacter)
raiseDrawbridge raiseDrawbridge(x“"2<t")
lowerDrawbridge lowerDrawbridge(x"2"<t")

Objects of other types (character, place, thing,
location, etc.) are represented by argument-free
terms (e.g. cloddy, knife, atMachine).

As seen above, the semantic expressions may
also include expressions that constrain the set of
possible values for a variable or a set of variables,
for example:

x.color = red

Name Argument structure

request request(Xcharacterl ycharacterl Zaction)

ask ask(Xcharacterl ycharacterl ZniceObject)

tell teII(Xcharacter’ ycharacter, zniceobject)

offer offer(Xcharacter, ycharacter, Zthing)

conﬁrm conﬁrm(Xcharacter’ ycharacter’ Zd\'alogueAct)
disconfirm disconfirm(xcharacter ycharacter - dialogueict y
askForAttention askForAttention(x&haradter ycharacter y
askForSuggestion askForSuggestion(xhredter, yeharadter pdialoguedct)
askForExplanation askForExplanation(xcheracter, ycharacter - dialogueAct y

Fig. 4. Types of user dialogue acts.

J. Boye et al. | Speech Communication 48 (2006) 335-353 341

In general, if a is an expression of type t, and ob-
jects of type t have an attribute att of type s, and b
is an expression of type s, then

aatt=>b

is a well-formed constraint.
3.2. Contextual interpretation

As shown above, underspecified utterances are
represented by means of lambda abstractions,
where the lambda-bound variables act as place-
holders for the missing information. The functional
lambda expression representing the utterance ‘“‘Put
it down’’;

Axthingjylocation request (user, cloddy, putDown (cloddy, x,y))

has two missing pieces of information; the thing x
to be put down, and the place y at which to put it
down. The dialogue management component of
the system is often able to retrieve such informa-
tion from the preceding dialogue. Consider the
dialogue excerpt:

1. User: “Cloddy Hans, please pick up the axe and
go to the shelf.”

2. Cloddy Hans: “OK, I'll do that” (Picks up the
axe and walks over to the shelf.)

3. User: “Now put it down.”

Here utterance 3 is represented by the lambda
expression above. Utterance 1 is represented by a
sequence of two expressions:

request(user, cloddy, pickUp(cloddy, axe))
request(user, cloddy, goTo(cloddy, shelf))

The missing information in utterance 3 can now
be retrieved by searching the expressions repre-
senting utterance 1 for sub-expressions of the
appropriate types. To obtain the final interpreta-
tion, the lambda expression of utterance 3 is then
applied first to axe, and then to shelf, as follows:

((AxAy.putdown(cloddy, x, y) axe) shelf)—
(Ay.putdown(cloddy, axe, y) shelf)—
putdown(cloddy, axe, shelf)

Ellipses are represented by means of higher-or-
der functions. Consider the example:

1. User: “Cloddy Hans, please pick up the axe.”
2. Cloddy Hans: “OK” (picks up the axe)
3. User: “Now the hammer”.

In utterance 1, the user wants Cloddy Hans to
do something with the hammer, but it is not possi-
ble to infer what dialogue act the user is perform-
ing without taking the dialogue context into
account. Thus a context-independent representa-
tion of this utterance must represent the dialogue
act by a function, as follows:

Xfthingﬂdialogue,act (f ha mmer)

The parameter f is to be bound to a function that
takes as argument the information present in the
utterance (hammer), and returns the appropriate
dialogue act. Constructing this function is the task
of the dialogue management component of the sys-
tem. To this end, it uses a technique reminiscent of
Dalrymple et al. (1991). In this example, the repre-
sentations of preceding utterances are searched in
reverse chronological order, to find an expression
of type dialogue act with a subexpression of type
thing. In this case, the representation of utterance
1 is such an expression:

request(user, cloddy, pickUp(cloddy, axe))

Then functional abstraction (reverse functional
application) yields an expression of the appropri-
ate type thing — dialogue_act:

Ay™""" request (user, cloddy, pickUp(cloddy, y))

This is actually the function we are looking for,

since
(kfthingﬂdialogueiact'(f hammer) thhi"g.request

(user, cloddy, pickUp(cloddy, y)))—

(Ly™""€ request(user, cloddy, pickUp(cloddy, y))

hammer) —

request(user, cloddy, pickUp(cloddy, hammer))

i.e. “Pick up the hammer”.

342 J. Boye et al. | Speech Communication 48 (2006) 335-353

4. Robust parsing

The robust parsing algorithm consists of two
phases, a pattern matching phase and a rewriting
phase. In the first phase, a string of words is scanned
left-to-right, and a sequence of semantic con-
straints, triggered by syntactic patterns, are accu-
mulated. The input to this phase is the 1-best
hypothesis from the speech recognizer (for a discus-
sion related to this, see Section 5.4). In the latter
phase, heuristic rewrite rules are applied to the
result of the first phase. When porting the parser
to a new domain, one has to rewrite the pattern
matcher, whereas the rewriter can remain unaltered.

4.1. Semantic constraints

The most common kind of semantic constraint
simply stipulates that the existence of certain ob-
jects of certain types can be inferred from the user’s
utterance. Such constraints are written on the form

object™"*

For instance, the word “hammer” would trigger
the constraint

hammerthne

whereas the phrase “pick up” would trigger the
following conjunctive constraints:

action _ character _ thing
)X %

pickUp(x,y

Disequalities are used to express that two ob-
jects (of the same type) are necessarily different.
For instance, the initial phrase “What is ... ” indi-
cates that the user is asking a question. Thus it
results in the following list of constraints:

diall _act
ask(user, X, y) 1alogue_ac , usercharacter, Xcharacter,

x # user, y*

Obviously, the user is asking someone else than
himself; hence the disequality x # user. As “What
is...” does not give any clue to what the user is
asking about, the type of the third argument is a
variable t.

Equality constraints are used to relate objects
with attributes of other objects. For example, the
initial phrase “Where is...” indicates that the
user is enquiring about the position of some

object. The list of constraints triggered by the
syntactic pattern “Where is ... ” is:

dial _act
ask(user, X, y) lalogue_a , usercharacter7 Xcharacter7

X # user,y

location 'y — 7.position, z*

Here it is possible to infer that the object asked
about is a location; hence the type of y is location
rather than a variable t. Furthermore, it is as-
sumed that this location is the position of some ob-
ject z, whose type we do not know (and therefore
its type is a variable t). However, z must be an
object that has a position attribute.

4.2. Pattern-matching phase

The purpose of the pattern-matching phase is to
generate a list of semantic constraints on the basis
of the syntactic patterns that appear in the input.
Such rules are coded by means of a definite clause
grammar (see e.g. Sterling and Shapiro, 1994,
Chap. 19), as illustrated by the following example':

pickUp_hints([pickUp(X, Y)32ction, character,
yeharacter MoreHints], Tail)—
[take, the],
thing_hints([Y<"2"<**"|MoreHints], Tail).

pickUp_hints([pickUp(X, Y)3ction, xcharacter
yeharacten| Tajl], Tail)—
[take].

thing_hints([hammer™™"€| Tail], Tail)—
[hammer].

thing_hints([sword™"| Tail], Tail)—
[sword].

Basically, the algorithm consists in trying to match
an initial segment of the input with the right-hand
side of such a rule. The rules are tried in the order
they are written. If a match is possible, the seman-
tic constraints on the left-hand side are appended
to the result list, the matched input segment is

! For these rules, we adopt the standard logic programming
convention that expressions with an initial capital letter are
variables.

J. Boye et al. | Speech Communication 48 (2006) 335-353 343

discarded, and the process is repeated with the
remaining input. If a match is not possible, the first
word of the input is discarded, and the process is
repeated with the remaining input.

For instance, suppose the input is “take the ehh
hammer”. The first rule is not applicable in this
case because of the inserted ““ehh”, but the second
rule is applicable, since the input begins with
“take”. The following two words (“the” and
“ehh’) are discarded as they do not match any rule.
Finally, the last word “hammer”” matches the third
rule. The accumulated semantic constraints are:

character thing
)

pickUp(x,y), X yi"e hammer

In case the input is “take the hammer”, without
the inserted hesitation “ehh”, the first rule matches
the whole input string. In this case, the variable Y
is set to hammer, and the output is:

pickUp(x, hammer), x"2< hammer""é

As can be seen from these examples, longer syn-
tactic patterns are likely to convey more precise
semantic information, but on the other hand they
are more brittle, as the probability increases that
recognition errors and disfluencies like “ehh’ pre-
vent matching. Moreover, longer patterns are less
likely to occur in the input anyway. Therefore
rules should be ordered as in the example, with
longer patterns appearing before shorter patterns,
so that the parser can capitalize on structure when-
ever present in the input, and degrade gracefully
on noisy input.

Graphical pointing gestures also generate
semantic constraints. If the user clicks on the ham-
mer, the system’s gesture recognizer contributes
with the semantic constraint hammer™ €. Thus,
an utterance ‘“‘pick this up” accompanied by a
click on the hammer results in the same list of con-
straints as above. The only limitation is that the
click must not occur after the user has finished
speaking (in which case the graphical input will
be grouped with the next utterance instead).

In the example above, the presence of the
filler word ‘“ehh” made the parser miss the link
between the hammer and the second argument of
pickUp. However, this link will be recovered in
the second phase of the parsing algorithm, pre-
sented next.

4.3. Rewriting phase

In the rewriting phase, the list of constraints
aggregated in the pattern-matching phase is rewrit-
ten using four rewrite rules: object merging, con-
straint inference, filtering and abstraction.

4.3.1. Object merging

The first rewriting step, object merging,
amounts to unifying objects of the same type.
The rewriting rule can be formulated generally as
follows:

Starting from the left, terms are unified with their
nearest unifiable neighbour to the right.

Here “unifiable” means that the ensuing list of
semantic constraints (after unification) must be
consistent. For instance, in a list containing the
three constraints

Xcharacter7 yt’ y.nextTo =z

x and y are not unifiable, even though the type of y
1s a variable, since a character does not have a
nextTo attribute. However, in the example of the
previous section:

character thing
)

pickUp(x,y), x y"e hammer

y and hammer can be unified, resulting in
pickUp(x, hammer), x"=<t¢" hammert"ine

The object merging process can be controlled by
properly ordering the constraints in pattern
matching rules, and by the use of disequality (#)
constraints. This was demonstrated previously in
the example:

character _ character

dialogue_act
, user , X s

ask(user, x, y)
x # user, y*

where the disequality constraint x # user prevents
unification of x and user.

4.3.2. Constraint inference
Consider the utterance “Go to the hammer”,
giving the following list of constraints:

action _ character thing
)X ;

goTo(x,y yP2 hammer

344 J. Boye et al. | Speech Communication 48 (2006) 335-353

At first, it seems as uncomplicated a sentence as
“Take the hammer”, discussed previously. But
“Go to the hammer” actually poses bigger natural
language understanding problems, because the do-
main encoding is strictly typed so that characters
cannot go to things, only to places. Essentially
the system must reason as follows:

The user wants me to go to some place x.
The hammer is at location y.
So x should be the place which is next to y.

This kind of reasoning is embodied in the fol-
lowing graph algorithm. First create a list of sets
where every expression is put in a set of its own:

{gOTO(X, y)action}7 {Xcharacter}’ {yplace}7 {hammerthing}

Then sets are merged according to the following
rule.

4.3.2.1. Set merging rule. Two sets X and Y should
be merged if X contains an expression x which is a
subexpression of some expression y € Y.

This leaves the following list of sets:

{gOTO(X, y)BCtiOH7 Xcharacter7 yplace}7 {hammerthing}

If there is only one remaining set at this stage, the
algorithm halts. If there is more than one set, we
choose the smallest set and apply the following
rule:

4.3.2.2. Constraint adding rule. Given a set X,
choose an object x and one of its attributes att,
and add to X the expressions x.att=y and y*
(where att’s values are of type t).

If the object denoted by this expression has an
attribute att, we introduce the value of att as a
new expression. In the example, objects of class
thing have an attribute position, whose value is of
type location. This gives us:

{hammer™™& hammer.position = |, [°=%°"}

This set can still not be merged with the other
set in the list, so we choose the same set again
and re-apply the constraint adding rule. Objects
of type location have an attribute nextTo whose
value is of type place. Adding this link gives us:

{hammer"™ hammer.position = |, [°=t°"
l.nextTo = p, pP}

Now the full list of constraints, after applying
object merging (Section 4.3.1), is:

character thin
X) g7

action
)

goTo(x,y yPR hammer

hammer.position = |, °“%" | nextTo =y

The set merging rule would place all these expres-
sions in the same set, and therefore the algorithm
terminates, returning the list of constraints above
as the result. There is now a link from the second
argument of goTo to the hammer; “the place y
which is next to the location | where the hammer
is”.

A depth-first version of the algorithm can be
concisely formulated as follows:

Given a list L of constraints:
while (true) {
perform object merging (section 5.3.1);
put each constraint in L in a set of its own,
producing a list L’ of sets;
apply the set merging rule to L',
producing L”;
if L” contains a single set,
return this set as the result;
else {
choose a set in L”, and an
expression in this set, and apply
the object adding rule;
Let L be the list of all the
constraints
in all the sets in L”;

}

The actual implementation is breadth-first
rather than depth-first, in order to find the shortest
path connecting all constraints. Moreover, the
algorithm only proceeds to a certain depth, to pre-
vent looping.

4.3.3. Filtering

The next step is to filter the list of semantic
constraints by removing all implied constraints. A
constraint c in the list L is implied if

J. Boye et al. | Speech Communication 48 (2006) 335-353 345

e c is a variable-free expression of the form a=b
or a # b or,

e c is an non-variable expression of the form a,
appearing as a subexpression of some other
constraint b® in L.

In the first case, trivially true facts like axe = axe
or axe # hammer are removed. In the second case,
the existence of the object a* is implied by the exis-
tence of the object b®. So for instance, in the list

dialogueAct
)

request(user, cloddy,goTo(cloddy,y))

character

.
)2 cloddy ,user

character | place
Y

goTo(cloddy,y

character character

the three constraints cloddy , user and
goTo(cloddy, y)**°" are implied by the constraint
request(user, cloddy, goTo(cloddy, y))¥i2losueAct,
and are therefore removed. However, the expres-
sion y*'*“®, being a variable, is kept. This results in:

dialogueAct place

request(user, cloddy, goTo(cloddy,y)) Y

4.3.4. Abstraction

The point of the abstraction step is to transform
the list of semantic constraints into a combinator
by binding all free variables. When the dialogue
act is known, this is straightforward. So, for in-
stance, the list of constraints above is transformed
to the following combinator by abstraction on y:

Ly'™"" request(user, cloddy, goTo(cloddy, y))

This expression, of type thing — dialogueAct, is re-
turned as the final answer of the parsing process.

A slightly more complex situation arises if the
dialogue act is not known (i.e. there is no constraint
of type dialogueAct in the list of constraints). Con-
sider, for instance, the elliptical utterance ‘‘the
hammer”, leading to the singleton list

.
hammer™"&

Here, a new function symbol f""& — dialogue_act
has to be introduced, as explained in Section 4.2.
The final result is:

xfthmg—dlalogueAct . (f ham mer)

If the list of semantic constraints contains several
expressions, the same process is repeated. So, for
instance, the list

hammer™"e axethine

is represented as

Xfthingﬁ(thing—diangueAct)] ((f ha mmer)axe)

That is, f should be bound to a function which is
applied to hammer, returning a function which is
applied to axe, returning a dialogue act.

4.4. Domain-dependent rewriting phase

We started Section 5 by claiming that the rewrit-
ing phase is domain independent, and thus does not
need modification when moving to a new domain.
Nevertheless, it can be very useful also to be able
to define domain-dependent rewriting rules for
resolving those types of underspecifications that
are always resolved in the same way in the domain.

Such heuristic rewrite rules are expressed as
combinators a°. If the resulting expression b from
the previous rewriting process is of type s — t,
then b will be applied to a. As an example, con-
sider the utterance:

Ehh...put down ehh...let’s see the pencil

The parsing algorithm just presented yields the
following result:

Kfactionﬂdialogue_act)\’Xcharacterleocation
(f putDown(x, pencil, z))

This expression adequately represents all under-
specifications in the utterance: Someone should
put down a pencil somewhere, and the user is say-
ing something about it. However, there are several
reasonable assumptions we can make in order to
simplify this expression, namely:

1. The user is making a request to Cloddy Hans.
2. Cloddy Hans is the one who should put down
the pencil.

The point here is that these assumptions are
made without considering the dialogue context.
This can be done, since at least in the first scene
of the game (see Section 2), Cloddy Hans is the
only character present, and the scenario is
all about the user instructing him where to put
various things. So the two heuristics (1) and (2)

346 J. Boye et al. | Speech Communication 48 (2006) 335-353

above are domain-specific rather than dialogue-
context-specific.

The first heuristic, that an utterance about an
action is a request to perform that action, can itself
be expressed by a combinator:

i dialogue_act
Ax*<t°" request (user, cloddy, x)“* 8"

Applying our expression to this heuristic combina-
tor yields:

(xfactlon — dialogue_act)\‘Xcharacter }\‘Zlocatlon'(f put-

Down(x, pencil, z)) Ax*<Ho"

X)) —

.request(user, cloddy,

h locati i
pxcharacter) Flocation - () x@HOM request(user, cloddy,

x)) putDown(x, pencil, z)) —
pxcharacter jglocation request(user, cloddy, put-
Down(x, pencil, z))

The second heuristic, that the user is talking to
Cloddy Hans, can be expressed simply as the fol-
lowing combinator:

character

cloddy

Applying our expression to the cloddy combinator
yields:

(Axcharacter jzlocation yaquest(user, cloddy, put-
Down(x, pencil, z)) cloddy)—
A Z'°%t°n request(user, cloddy, putDown(cloddy,
pencil, z))

The final expression is taken to be the (context-
independent) interpretation of the user’s utterance.
The last parameter z might be bound as a result of
context-dependent processing (see Section 3.2).

5. Evaluation
5.1. Corpora and data-collection methodology

To evaluate the parser, we used 3400 utterances
from our corpora collected at four different occa-
sions over a S5-month period (Bell et al., 2005).
The subjects were children, aged 9-15. At the first
data collection occasion, the subjects played the

first scene only. At the second occasion, the sub-
jects played the first scene, and then were allowed
to explore the fairy-tale world together with Clod-
dy Hans. At the two last occasions, the subjects
played two entire scenes, including the negotiation
with Karen in order to cross the bridge. The 3400
utterances contain 810 unique words and 11,925
tokens, of which 1715 tokens are outside the sys-
tem’s present vocabulary of 525 words (i.e. the
out-of-vocabulary rate is 14.4%).

To allow for extended user sessions where the
player was able to explore the scenarios without
being hindered by occasional errors due to imper-
fect speech recognition or understanding, the sys-
tem was run in supervised mode. This meant that
a human operator was supervising the interaction
from behind the scene, and had the opportunity
to interfere and correct the speech recognition re-
sult whenever he judged that the original result
would seriously disturb the progression of the dia-
logue. He was also allowed to edit the system’s re-
sponse back to the user before this was output in
cases where it would likewise have disturbed the
progression of the dialogue.

It should be emphasized that the purpose of
using supervised mode in the data collection was
purely to ensure that the game (and hence the dia-
logue) was moving forward in those cases where
there was otherwise a risk that it would be stalled
or that repetitious errors would occur. Most
importantly, all performance figures presented
here are based on the recognition results obtained
before any editing by the human operator. Hence,
there is no “‘contamination’ of the figures from the
point of view of measuring the quality of parsing
as such (since the domain of parsing is limited to
single user turns). Actually, we believe that if
supervised mode has any effect on the difficulty
of the parsing task, it is rather to make it harder,
since what supervised mode does is to occasionally
“help” a fairytale character to address the player
in a more coherent and intelligent fashion than
would otherwise have been possible.

5.2. Units of measurement

Naturally, the quality of the results delivered
by the parser, and ultimately the degree of

J. Boye et al. | Speech Communication 48 (2006) 335-353 347

understanding of an utterance, is contingent on the
quality of the input delivered by the speech recog-
nizer. The quality of this input is estimated by the
standard measures of sentence accuracy and word
accuracy, whereas the quality of the final results
are measured in terms of semantic accuracy and
concept accuracy. By semantic accuracy we mean
the proportion of utterances where the output of
the parser exactly matches the correct analysis.
Semantic accuracy can thus be seen as the seman-
tic analogue of sentence accuracy. In contrast,
concept accuracy is based on the number of
semantic units that are substituted, inserted and
deleted, and can thus be seen as the semantic ana-
logue of word accuracy (Boros et al., 1996).

In order to calculate concept accuracy, we need
a rigorous definition of a ‘“‘concept”. For all
semantic expressions (except lambda abstractions),
we will consider a “concept” to be a node in the
tree making up the semantic expression. For
instance, the expression

ask_for_attention (user, cloddy)

can be seen as a tree with the root node labeled
ask_for_attention, and two leaf nodes labeled user
and cloddy, respectively. So this expression has
three concepts, but for the purpose of calculating
concept accuracy, we will not count user (the first
argument of a dialogue act), since it is always as-
sumed that the dialogue act originated from the
user.” Hence for expressions that are not lambda
abstractions, the number of concepts equals the
number of nodes in the tree making up the expres-
sion, minus one.

For lambda expressions, we simply do the same
calculation for the body of the expression. For in-
stance, the expression

Axtine request (user, cloddy, pickUp(cloddy, x))

2 This is not true for nested dialogue acts, however, as in one
example from our corpus; “Tell Karen to lower the bridge”,
represented as:

request(user, cloddy, request(cloddy, karen, windDown(karen))).

Here, the user is requesting that Cloddy Hans make a request,
so the first argument of the second request is cloddy, not user.

is considered to have the concepts present in the
body of the lambda expression, namely request,
user, cloddy, pickUp, cloddy, x™'"&. Out of these,
we include all concepts except user for the purpose
of calculating concept accuracy.

An error occurs when a concept ¢ appears in the
semantic analysis of the input, but the correspond-
ing place in the correct semantic analysis is occu-
pied by a different concept d. If neither ¢ or d are
variables, the error is a substitution; if ¢ is a vari-
able but not d, the error is a deletion; if d is a
variable but not ¢, the error is an addition.

5.3. Basic results

When constructing the set of 3400 correct anal-
yses, altogether 509 utterances (15%) were judged
not to be representable within the semantic for-
malism. These unrepresentable utterances ranged
from fragments that could mean just about any-
thing (e.g. “Was it”’), through unanticipated
requests (e.g. “Kill the girl’) and musings (“7
thought as much”), to complicated counterfactual
statements (“If you had taken the sword earlier
you would have been able to cut the cloth to pieces
now’). Note that some of these unrepresentable
utterances are not only problematic for the parser,
but also pragmatically very difficult, which means
that it is not always possible for the system to
produce a coherent response.

In the tables below, we report sentence accuracy
both with respect to the complete set of 3400 utter-
ances and with the set of 2891 utterances that actu-
ally had a complete semantic representation. For
the set of 3400 utterances, we judged an analysis
to be correct or incorrect as follows: If the parser
failed to produce an analysis for an unrepresent-
able utterance (giving as output “failed_act”), we
took that output as being correct on the grounds
that signalling that no analysis can be produced
is the most that we could reasonably expect the
parser to do in that case. (Following such an out-
put from the parser, the dialogue manager would
then try to repair the dialogue.) On the other hand,
if the parser did produce an analysis for an unre-
presentable utterance, we made the pessimistic
assumption that that output was completely
erroneous.

348 J. Boye et al. | Speech Communication 48 (2006) 335-353

An analogous method was used to determine
concept accuracy. Failure of the parser to produce
an analysis for an unrepresentable utterance is
counted as one instance of correct (the presence
of “failed_act”), whereas the analysis of an unre-
presentable utterance will be counted as one dele-
tion (missing ““failed_act™) plus one insertion for
each additional semantic unit.

The results are shown in Table 1 below. The top
of the table shows the accuracy of the speech rec-
ognizer. 30.6% of the recognized utterances were
perfectly recognized, and the word accuracy was
38.6% (that is, the word error rate was 61.4%).
These very poor figures are largely due to the fact
that the subjects were children, and that speech
recognition in particular is much less reliable for
children than for adults. Furthermore, in our data
the recognition results varied a lot between speak-
ers. For some children, recognition was consis-
tently dismal, whereas for others recognition
worked quite well. That is, there was a kind of
“recognize-everything-or-recognize-nothing™ ten-
dency, which explains the fact that the difference
between sentence accuracy and word accuracy is
small. This tendency was further amplified by the
fact that the dialogues were long (the mean length
of the dialogues was on the order of 90 turns). This
allowed the children for which recognition worked
well to gradually learn how to express themselves
within the coverage of the system’s understanding
capabilities, making recognition work even better
for them.

Table 1
Spoken language understanding results

Speech Recognized Transcribed

input (%) input (%) input (%)

Speech recognizer

Sentence accuracy 30.6

Word accuracy 38.6

Parser

Semantic accuracy 48.6 84.8
(all)

Semantic accuracy 49.1 90.2
(representable)

Concept accuracy 53.2 86.4
(all)

Concept accuracy 50.5 92.6
(representable)

The bottom part of the table shows the accu-
racy of the parser. The robustness of the parsing
algorithm can be seen by comparing the first and
second columns. The parser managed to recover
the correct analysis for 48.6% of the utterances,
in spite of the fact that only 30.6% were perfectly
recognized. Similarly, the concept accuracy of
the parser output is 53.2%, although the word
accuracy is only 38.6%. These figures are further
commented in Section 5.5.1.

The third column shows how the parser per-
forms on transcribed (perfectly recognized) input.
Here the semantic accuracy is 90.2% for the utter-
ances that could be represented; that is, the parser
fails to produce the correct analysis for only 9.8%
of the utterances. Basically, the latter figure shows
the coverage leaks, whereas the difference between
90.2% and 84.8% (that is, 5.4%) shows the extent
to which the parser produces unwarranted analy-
ses beyond the scope of the semantic formalism.

5.4. Further experiments

The parser’s performance on transcribed input
can be seen as a “roof” which will never be at-
tained because of the inevitable distorsion of the
input caused by the speech recognizer. A more
realistic “roof” for the parser can be obtained by
looking at N-best output from the speech recog-
nizer, and more specifically the extent to which a
(more) correct hypothesis is present there, as com-
pared to it being the top hypothesis (1-best). To
determine the effects of using N-best output, three
experiments were run. First, sentence and word
accuracy were computed using 10-best output
from the speech recognizer for the set of 3400
utterances. Thus, for word accuracy, the best
hypothesis compared to the transcribed utterance
in terms of the number of substitutions, insertions
and deletions at the word level was picked out
from the 10-best list. The resulting sentence accu-
racy and word accuracy are shown in Table 2.

As could be expected, this “oracle algorithm”
(always picking the best hypothesis) gave a signif-
icant improvement of both sentence and word
accuracy (38% and 42% relative, respectively).
Although the result does not alter the fundamental
picture of the speech recognizer as constituting the

J. Boye et al. | Speech Communication 48 (2006) 335-353 349

Table 2
Speech recognition results using 1-best and 10-best hypotheses

Speech recognizer 1-best (%) 10-best (%)
Sentence accuracy 30.6 42.1
Word accuracy 38.6 55.0

Table 3
Spoken language understanding results for 1-best and 10-best
recognition hypotheses

Parser 1-best (%) 10-best (%)
Semantic accuracy (all) 48.6 65.4
Semantic accuracy (representable) 49.1 66.3
Concept accuracy (all) 53.2 70.4
Concept accuracy (representable) 50.5 72.3

main bottleneck for robust understanding, it still
shows that something may be gained by looking
at N-best rather than 1-best.

In a second experiment, the corresponding re-
sults for the semantic level were computed, shown
in Table 3. Here, the second column shows the re-
sults for the hypotheses whose analyses from the
parser corresponded most closely to the correct
analyses in terms of the number of substitutions,
deletions and insertions of semantic units.

The results again show a significant improve-
ment (between 32% and 43% relative, respectively),
indicating great potential gains by using N-best
rather than 1-best. However, the problem then is
to find a set of effective criteria which can be ap-
plied at run-time, and by which the best candidate
from the N-best list can be found in as many cases
as possible.

An obvious solution is to defer the decision of
which hypothesis is (semantically) best, by sending
analyses of all hypotheses on the N-best list to the
next processing step in the system, which is the dia-
logue manager. The dialogue manager would then
be able to use contextual expectations to find the
best analysis on the list. For instance, if Cloddy
Hans had posed a question to the user in the pre-
ceding turn, the system can sift through the list of
analyses, looking for an expression that seems to
represent an answer to the question. However, ex-
actly how the system may use its knowledge about
the current context is a topic of further research,

and we will evaluate various possibilites in the
future.

5.5. Discussion

5.5.1. Robustness

As can be seen in Table 1, the parser is robust in
the sense that the semantic accuracy of the pro-
duced output exceeds the sentence accuracy of
the input, or alternatively, the concept accuracy
of the produced output exceeds the word accuracy
of the input. A reasonable question at this point is
whether this robustness merely is due to the fact
that semantically important words happen to be
recognized correctly more often than words in
general.

To be able to answer this question, we first need
a definition of what a “‘semantically important”
word is. A reasonable definition, we think, is that
any word that occurs in the pattern of at least
one of the parser’s pattern matching rules is
semantically important (since there is at least one
context in which that word contributes to the
semantic analysis).

Using this definition of semantic importance,
we made the following calculations. Of the
10,206 semantically important tokens that were ut-
tered, 6084 were present in the recognizer’s output
whereas 4122 were missing. The corresponding fig-
ures for all 11,925 uttered tokens are 6777 recog-
nized, 5148 missing. This means that if X is a
semantically important token occurring in the cor-
pus, X has a 60% chance of being correctly recog-
nized, whereas if X is any token in the corpus, X
has a 57% chance of being recognized. This gives
some support to the hypothesis that semantically
important words are being recognized correctly
more often, although the difference is not suffi-
ciently big to explain the robustness effect
altogether.

If our starting point instead is the recognized
tokens, we see that of the 11,326 semantically
important tokens occurring in an output string
from the recognizer, 6160 were actually uttered
whereas 5166 were erroneously inserted. The cor-
responding figures for all 13,034 recognized tokens
are 6848 uttered and 6186 erroncously inserted.
This means that if X is a semantically important

350 J. Boye et al. | Speech Communication 48 (2006) 335-353

token occurring in a recognized string, X has a
54% chance of actually having been uttered,
whereas if X is any recognized token, X has a
52.5% chance of actually having been uttered.
Again, semantically important tokens are errone-
ously inserted less often than tokens in general,
although the difference is very small.

Many utterances that have not been correctly
recognized but anyway yield a correct analysis
are indeed examples where semantically unimpor-
tant words have been omitted, inserted or substi-
tuted for other semantically unimportant words.
Examples include “nej jag vill att du ska ta lam-
pan” (“no I want you to take the lamp”), recognized
as “nej jag vill att du ska ta lampan ehh” (“no 1
want you to take the lamp ehh’), or “och nu gdr
du fram till tjejen” (“‘and now you go up the girl”),
recognized as “att det gdr fram till tjejen” (“‘that it
goes to the girl”).

However, there are also some other kinds of
examples. Some utterances contain enough redun-
dancy for the parser to able to recreate the correct
analysis even when recognition errors occur, e.g.
“ja det vill jag” (“yes I want that”), recognized
as “vad det vill jag” (“what I want that”). Here
both “yes” and “I want that” give rise to a con-
firm dialogue act, so the misrecognition of “yes”
does not have a harmful effect. In some utter-
ances, words occurring in a long pattern are mis-
recognized, but there is a shorter pattern yielding
the same constraints that matches instead. An
example is “gd och ldgg det i maskinen da” (“go
and put it in the machine then), recognized as
“och ldgg det i maskinen dda” (“and put it in the
machine then’). Here “go and put it” and “put
it” are taken to mean the same thing, so the mis-
recognition of “go” does not matter. In the exam-
ple “den gdr inte att rora” (“you can’t move it”),
recognized as “‘spring hor inte det dr det” (“‘run
don’t hear it is it”’) , the Swedish verb “ga” is used
in a sense not meaning “go” or “walk”. Since
“ga” is recognized incorrectly, the parser is not
led astray.

Furthermore, the algorithm is robust in the
presence of false starts (like “go go to the
machine”) and clarifications within an utterance
(like “go to it to the machine that is”), and thus it
is robust in the presence of misrecognitions leading

to such constructions (such misrecognitions are
also present in the corpus).

Summing up, the robustness of the parsing
algorithm is to some extent due to the fact that
words contributing to the parser’s semantic output
are recognized more reliably than words in gen-
eral. There are, however, a multitude of other fac-
tors which all contribute to the robustness of the
algorithm.

5.5.2. Shortcomings

As already mentioned, the most common rea-
son for incorrect analyses being produced by the
parser is misrecognition; that essential words are
missing in the input or have been erroneously in-
serted. The remaining problems can be roughly
grouped into different categories, having to do
with lexical coverage leaks, commonly misrecog-
nized words, lexical ambiguities, complex gram-
mar, pragmatic ambiguities, and semantic and
ontological insufficiencies. These categories are
not clear-cut; many utterances can be said to
belong to two different groups.

One group consists of utterances running into
problems caused by semantic and ontological
insufficiencies. This group includes many com-
pletely reasonable utterances that, at present, can-
not be represented within the semantic formalism,
e.g. requests for instructions in specific situations
(“Am I supposed to, you know, pull things?”’,
“How do you usually do this?”’), questions con-
cerning Cloddy Hans’s mental state (“Are you
having a good time?”’), instructions (“Kill her”,
“Pick some flowers”, “Break something”), com-
plex spatial references (“The second last slot™,
“Go to the left, that is, your left”) and various
comments (“I just told you”, “I don’t give a
damn”, “I was just kidding”). But it also contains
completely unexpected input which we will not try
to incorporate into the system’s repertoire. One
boy liked to think of the fairy-tale machine as a
time-travel machine, and tried to explain the con-
cept to Cloddy Hans (“you can use it to travel into
the future and backwards in time”, etc.).

Commonly misrecognized words pose problems
in those cases where the substitution of one word
for another completely alters the meaning of the
utterance, e.g. “What is the fairy-tale machine?”’

J. Boye et al. | Speech Communication 48 (2006) 335-353 351

and “Where is the fairy-tale machine?”’. Here the
Swedish words for “what” (“vad”) and ‘“where”
(“var”) are very similar-sounding, and thus easily
misrecognized.

Lexical ambiguities are rare in this domain, but
point to a fundamental problem to the extent that
they occur. The parsing algorithm is deterministic
and produces one output expression only; hence
it sometimes has to make premature decisions that
eventually turn out to be wrong. An example is
“Varfor gar inte det?” (Why doesn’t that work?/
Why is that impossible?). The word “gar” has
two meanings in Swedish; it may also mean “walk”
or “go”. Therefore the parser falsely triggers on the
two patterns “varfor” and “gar”, and interprets
the utterance as a question about why Cloddy
Hans does not go to some (unspecified) place.

There are a few utterances in the corpus that
seem to call for a more grammatical parsing meth-
od. One such example is “Are all the gadgets that
were lying on the shelf lying on the grass here?”’,
asked by a subject when he entered the second
scene (this utterance is also semantically complex;
a yes/no-question concerning a universally quanti-
fied implication).

Finally, there are some pragmatic ambiguities,
where it is unclear what dialogue act the user is
actually making. An example is “Can you do
that?”, where it is not clear whether the user is
making a request or whether he is enquiring about
Cloddy Hans’s capabilities. However, such utter-
ances would cause problems for any spoken
language understanding method.

6. Related work

Approaches to robust parsing can be divided
into data-driven and symbolic methods, the for-
mer of which have been the focus of a steadily
growing interest during the last decade. One strand
of work in this area deals with syntactic parsing in
the sense of deriving a constituent structure or a
dependency structure (for example, Collins, 1999;
Charniak, 2000; Nivre and Scholz, 2004), but with-
out the specific requirement of producing output
that serves the needs of a dialogue manager. An-
other strand of work, namely, “How may I help

you” type systems, explicitly aims at integrating
robust understanding with a dialogue system, but
with a semantic representation that is limited to
atomic categories. Thus, parsing here corresponds
rather to classification of utterances into a small
set of categories—for example, 15 in the classic
ATT “How may I help you” system (Gorin
et al., 1997), and generally not more than a few
hundred in more recent systems. We are thus not
aware of any approaches that make use of auto-
matic, data-driven methods to derive the kind of
complex semantic structures that are needed by a
dialogue manager in a domain like ours.

Turning to symbolic, rule-based approaches to
robust parsing, one option, pioneered by Ward
(1989), is to rely on pattern matching and to use
a relatively coarse-grained semantic representa-
tion, such as a variable-free slot-filler list. Other in-
stances of work in this shallow-parsing direction
are Jackson et al. (1991) and Aust et al. (1995).

However, conversational applications such as
the one described here tend to require more fine-
grained semantic formalisms in order to suffi-
ciently capture the meaning of user utterances.
For example, variable-free slot-filler lists are not
suitable for negotiative dialogue, in which several
alternative solutions are simultaneously discussed
and compared (Boye and Wirén, 2003b; Larsson,
2002). On the other hand, the computational price
for adopting a general-purpose logic-based for-
malism and general semantic reasoning is likely
to be too high in an application where savvy users
will not accept having to wait for the system to
come back with an answer.

Several attempts at finding a suitable trade-off
by synthesizing the shallow and logic-based ap-
proaches have been made. One possibility is to
“robustify’” some general-purpose linguistic meth-
od, either by homing in on the largest grammatical
fragment (Boye et al., 1999), or on the smallest set
of grammatical fragments that span the whole
utterance (see, for example van Noord et al., 1999
and Kasper et al., 1999). Another possibility is to
extend the pattern-matching approach with the
capability of handling general linguistic rules. For
example, the parser of Milward and Knight
(2001) makes use of linguistically motivated rules,
representing the analysis as a chart structure.

352 J. Boye et al. | Speech Communication 48 (2006) 335-353

Semantic interpretation is carried out by mapping
rules that operate directly on the chart. These rules
incorporate task-specific as well as structural (lin-
guistic) and contextual information. By giving pref-
erence to mapping rules that are more specific (in
the sense of satisfying more constraints), grammat-
ical information can be used whenever available.
However, the semantic representations produced
are still limited to that of variable-free slot-filler
lists. In contrast, Boye and Wirén (2003a,b) put
forward a more fine-grained formalism in which a
type system is used instead of general semantic
reasoning; hence, the system is still much more
restricted than general-purpose logic-based formal-
isms. The parser and semantic formalism pre-
sented here constitute a further development and
application to new domain of that framework.

7. Conclusions

In this paper, we have attempted to tackle
what we believe is a very hard problem, namely,
spontaneous spoken dialogue between children
and human-like characters in a 3D fairy-tale envi-
ronment. The particular problem that we have
dealt with is robust parsing (that is, context-inde-
pendent analysis), but we have also shown how
contextual interpretation is carried out within
our framework.

Not surprisingly, speech recognition is the ma-
jor bottleneck with a word accuracy at just 39%.
Moreover, even if we use an “oracle” to pick the
hypothesis from the 10-best list that comes closest
to the transcription, the word accuracy is still only
55%. These poor recognition figures are due to the
fact that the subjects were children.

So how can we do robust parsing given this bot-
tleneck resulting from speech recognition? The fast
answer is that with a concept accuracy at 53%, the
parser still manages to reconstruct a great deal of
meaning from the very noisy input. Moreover, this
figure is obtained just using 1-best hypotheses. By
using 10-best output from the speech recognizer, it
is possible with the current parser to attain a con-
cept accuracy of 70%. There is thus potentially a
lot to be gained by looking at N-best rather than
1-best.

To sum up, we have described a framework
for robust parsing of spoken utterances which
proceeds in two steps: a domain-dependent
pattern-matching phase and a domain-independent
rewriting phase. Previous systems based on pattern
matching have been restricted to producing
relatively simple semantic structures, such as
variable-free slot-filler lists. Unfortunately, such
structures are not suitable as input to a dialogue
manager in our domain, which involves informa-
tion-seeking utterances, commands and simple
negotiation, and where there is also abundant ref-
erence to objects in the 3D world as well as in the
discourse. Our system instead produces a semantic
representation that constitutes a trade-off between
the simple structures typically generated by pat-
tern-matching parsers and the complex structures
generated by general-purpose, lingusitically-based
parsers. In particular, this trade-off allows us to re-
tain the advantages of pattern-matching systems in
terms of efficiency and robustness, while capturing
the contents of the great majority of utterances
manifested in our domain.

Acknowledgements

This research was carried out within the EU 5th
framework project NICE (IST-2001-35293). The
NICE homepage can be found at http://www.nice-
project.com. The authors would like to thank the
other members of the consortium, in particular
Liquid Media (http://www .liquid.se) for providing
the wonderful 3D virtual world. The authors also
gratefully acknowledge the insightful comments
made by two anonymous reviewers.

References

Aust, H., Oerder, M., Seide, F., Steinbiss, V., 1995. The Philips
automatic train timetable system. Speech Comm. 17, 249-
262.

Bell, L., Boye, J., Gustafson, J., Heldner, M., Lindstrém, L.,
Wirén, M., 2005. The Swedish NICE corpus—Spoken
dialogues between children and embodied characters in a
computer game scenario. In: Proceedings of Interspeech’05,
Lisbon, Portugal.

http://www.niceproject.com
http://www.niceproject.com
http://www.liquid.se

J. Boye et al. | Speech Communication 48 (2006) 335-353 353

Boros, M., Eckert, W., Gallwitz, F., Gorz, G., Hanrieder, G.,
Niemann, H., 1996. Towards understanding spontaneous
speech: word accuracy vs concept accuracy. Proc. ISCLP’96,
1009-1012.

Boye, J., Wirén, M., Rayner, M., Lewin, 1., Carter, D., Becket,
R., 1999. Language processing strategies and mixed-initia-
tive dialogues. In: Proc IJCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Systems, Stockholm,
Sweden.

Boye, J., Wirén, M., 2003. Robust parsing of utterances in
negotiative dialogue. In: Proc. Eurospeech, Geneva,
Switzerland.

Boye, J., Wirén, M., 2003. Negotiative spoken-dialogue inter-
faces to databases. In: Proc. Diabruck (7th Workshop on
the Semantics and Pragmatics of Dialogue), Wallerfangen,
Germany.

Charniak, E., 2000. A maximum-entropy-inspired parser. In:
Proc. NAACL (North American Chapter of the Association
for Computational Linguistics).

Collins, M., 1999. Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. Dissertation, University of
Pennsylvania.

Dalrymple, M., Shieber, S., Pereira, F., 1991. Ellipsis and
higher-order unification. Linguist. Philos. 14 (4), 399-452.

Gorin, A.L., Riccardi, G., Wright, J.H., 1997. How may I help
you?. Speech Comm. 23 113-127.

Hindley, R., Seldin, J., 1986. Introduction to combinators and
A-calculus. Cambridge University Press.

Jackson, E., Appelt, D., Bear, J., Moore, R., Podlozny, A.,
1991. A template matcher for robust NL interpretation. In:
Proc. DARPA Speech and Natural Language Workshop,
Morgan Kaufmann.

Jurafsky, D., Martin, J., 2000. Speech and Language Process-
ing. Prentice Hall.

Kasper, W., Kiefer, B., Krieger, H., Rupp, C., Worm, K., 1999.
Charting the depth of robust speech processing. In: Proc.
ACL.

Larsson, S., 2002. Issue-Based Dialogue Management. Ph.D.
Thesis, Goteborg University, ISBN 91-628-5301-5.

Milward, D., Knight, S., 2001. Improving on phrase spotting
for spoken dialogue systems. In: Proc WISP.

Nivre, J., Scholz, M., 2004. Deterministic dependency parsing
of English text. In: Proc. COLING 2004, Geneva,
Switzerland.

van Noord, G., Bouma, G., Koeling, R., Nederhof, M.-J., 1999.
Robust grammatical analysis for spoken dialogue systems.
J. Nat. Language Eng. 5 (1), 45-93.

Sterling, L., Shapiro, E., 1994. The Art of Prolog, 2nd ed. The
MIT Press, Berlin.

Ward, W., 1989. Understanding spontaneous speech. In: Proc.
DARPA Speech and Natural Language Workshop, Phila-
delphia, USA, pp. 137-141.

	Robust spoken language understanding in a computer game
	Introduction
	Game scenario
	Semantic representation formalism
	Dialogue acts
	Contextual interpretation

	Robust parsing
	Semantic constraints
	Pattern-matching phase
	Rewriting phase
	Object merging
	Constraint inference
	Set merging rule
	Constraint adding rule

	Filtering
	Abstraction

	Domain-dependent rewriting phase

	Evaluation
	Corpora and data-collection methodology
	Units of measurement
	Basic results
	Further experiments
	Discussion
	Robustness
	Shortcomings

	Related work
	Conclusions
	Acknowledgements
	References

