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Chapter 3

The speaker verification systems

3.1 Introduction

This chapter describes the speaker verification research systems used in this thesis:
a text-dependent (sub-)system based on word-level hidden Markov models (HMM),
a text-independent (sub-)system based on Gaussian mixture models (GMM), and
a score level combination of the two. The HMM system, and variants of it, are
used stand-alone in Chapter 8 that compares different prompting strategies, and
Chapter 9 that looks at variance estimation techniques for HMMs. The combined
system is used as a component in the PER system and is used for experiments
in Chapter 7 on robust error estimation techniques, and Chapter 10 with various
results from the PER system and data collected with it.

All speaker verification research systems used in this thesis are built on GIVES,
a generic framework for speaker verification systems developed by the author at
KTH Center for Speech Technology (CTT). This framework is shortly described.

In addition to the research systems described in this chapter, a commercial
speaker verification system has also been used. Results for this system are included
in Chapters 7 and 10 in addition to results from the research systems. For reasons
of proprietary interests the design of this commercial system cannot be described
here, nor may the identity of the system be disclosed.

3.2 Notation and common features

The HMM and GMM subsystems share several features. These features are de-
scribed in this section together with some notation used later. In the following, the
letter ξ will be used to refer to a subsystem, with ξ = H for the HMM subsystem
and ξ = G for the GMM subsystem.

1



2 Chapter 3. The speaker verification systems

3.2.1 Feature extraction

The input signal1 is pre-emphasized and divided into one 25.6 ms frame every 10 ms.
A Hamming window is applied to each frame. 12-element2 mel-frequency cepstral
coefficient (MFCC) vectors are then computed for each frame using a 24-channel,
FFT-based, mel-warped, log-amplitude filter bank between 300-3400 Hz followed by
a cosine transform and cepstral liftering. Both subsystems use these MFCC vectors,
while their use of energy terms, delta features and feature post-processing differ,
mainly as a result of the subsystems having been optimized rather independently
during separate threads of development (see also Section 10.2.1).

3.2.2 Classifier units

Classifiers in both subsystems share a basic classifier unit structure. Refer to a
classifier unit in subsystem ξ as ψ = ξu, where u is an index that uniquely identifies
the classifier unit within the subsystem. This classifier unit has one target model
and two gender-dependent background models. Target models represent the voices
of particular speakers (legitimate users of the system, or clients), while background
models represent the voices of universal groups of speakers, in this case male and
female speakers. Background models are used for two purposes: as seed models
during the training phase, and for score normalization during the verification test
phase.

Each classifier unit ψ defines one or more likelihood functions P ψ(O|λ) used to
evaluate the similarity between an observation sequence O and the model λ. In
the following, λψ will denote parameters of the target model for a particular target
speaker (the client whose identity is claimed during an enrollment or test session)
while λ

male
ψ and λ

female
ψ will denote parameters of the two background models in

classifier unit ψ.
The data and operation of classifier units within the system are independent

of each other during both the training and verification test phases: units share no
model parameters and the data processing within one unit takes no input from the
processing in other units. Units may operate on the same part of input speech,
though.

3.2.2.1 Training phase

Assume that all relevant word repetitions and their boundary locations in the en-
rollment speech are known from the output of an automatic speech recognizer3.

1at 8 kHz sampling rate (see Section 5.2 for particulars about the on-site PER system)
2does not include the 0’th cepstral coefficient
3cf. Section 5.6 for the procedure used in the PER system
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Denote all valid4 enrollment data from a given enrollee

O
enroll

=
⋃

w∈W

{Ow,1, . . . ,Ow,Rw}

where w is a word in the application vocabulary W
5, Ow,r = {o

(w,r)
1 . . .o

(w,r)
Nw,r

}
is the observation sequence corresponding to the r’th valid repetition of word w
(a word segment), Nw,r is the length of that observation sequence, and Rw is the
number of valid repetitions of word w.

Since classifier units may be trained on different subsets of the data, introduce

O
enroll

ψ to denote the subset of O
enroll

used to train unit ψ. Rather than training
a target model directly from this data, an adaptation procedure is used. While the
actual adaptation method depends on the implementation of the classifier unit, the
first step in the adaptation procedure is the same for all classifier units. Based on
the enrollment data, one of the two background models is selected as a seed model

λ
gseed

ψ

ψ , using an automatic gender detector

gseed
ψ = arg max

g∈{male,female}

Pψ(O
enroll

ψ |λgψ). (3.1)

That is, if the male model fits better to the data, the male model is chosen, otherwise
the female model is chosen. Note that no a priori information about the gender of
the enrollee is used in this selection, and that gender selection in one classifier unit
is independent of other classifier units in the system.

The seed model is then used as a basis for target model adaptation as described
for each of the two subsystems below.

3.2.2.2 Verification test phase

To test a claim for a given target identity put forward by a claimant speaker,
a test utterance is first collected. Again assuming all relevant word repetitions
and their boundary locations are known from the output of an automatic speech

recognizer, a test utterance with L words is denoted O
test

= {O1 . . .OL}, where

Oi = {o
(i)
1 . . .o

(i)
Ni
} is the vector sequence corresponding to the i’th word segment

in the utterance. Denote as w(i) the word spoken in segment i. The exact function
used by classifier units to score a test utterance given an identity claim varies
between units, but it always has the form

zψ = F
(

O
test

|λψ, gψ(O
test

)
)

, (3.2)

4assuming the application somehow checks collected utterances for validity; see for example
Section 5.5 for the procedure used in the PER system

5for example W = {0, . . . , 9, name} as in the PER system
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where λψ is the model created for the target identity from the target’s enrollment
data, and

gψ(O
test

) = argmax
g∈{male,female}

Pψ(O
test

|λgψ) (3.3)

is a gender detector like the one used in the training phase, but it uses test data
instead of enrollment data to make the gender selection.

This method of selecting a background model has been referred to as an uncon-
strained cohort by other authors (Ariyaeeinia and Sivakumaran, 1997). It differs
from the traditional cohort method (Higgins et al., 1991; Rosenberg et al., 1992) in
that the selection is based on similarity to a test segment rather than to enrollment
data. However, our method differs slightly from both the traditional cohort method
and the unconstrained cohort method in that the competing models are only two
and represent groups of speakers (genders) rather than individual speakers.

3.3 The text-dependent HMM system

The HMM subsystem is text-dependent and operates in a prompted mode with
digit string utterances only6. Except for how background models are selected dur-
ing the test phase, the system is the same as the baseline system described and
tested in (Melin et al., 1998) and (Melin and Lindberg, 1999). In this section, the
design of the HMM subsystem is described relative to the common subsystem fea-
tures described in Section 3.2. The modified background model selection method
is described and evaluated.

3.3.1 Feature extraction

The basic 12-element MFCC vector (Section 3.2.1) is extended with the 0’th cepstral
coefficient (frame energy). Cepstral mean subtraction is applied to this 13-element
static feature vector, and first and second order deltas are appended. The total
vector dimension is 39.

3.3.2 Classifier units

The HMM subsystem contains ten classifier units ψ = H0 . . .H9, one classifier
unit per digit word. Models are continuous word-level left-to-right HMMs with
16 Gaussian terms per phoneme in the represented word distributed on two states
per phoneme7 with an eight-component Gaussian mixture observation probability
density function (pdf) per state. Gaussian components have diagonal covariance
matrices. The choice of 16 terms per phoneme is based on development experiments
on Gandalf data in preparation for previous work (Melin et al., 1998), while their
partitioning into two states with eight terms each is somewhat arbitrary as shown

6it ignores the name parts of enrollment and test data in the PER case
7Swedish digit words have between two and four phonemes per word.
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by Bimbot et al. (2000). Denote the target HMM in classifier unit Hw for a given
client as λHw = {cw,mw,σ

2
w,Aw} where cw, mw and σ

2
w are vectors of all mixture

weights, mean values and variance values, respectively, and Aw is the matrix of
transition probabilities.

3.3.2.1 Training phase

A target model λHw for the word w and a given client is trained on all Rw
valid examples of the word spoken during the client’s enrollment session8. That

is, training data O
enroll

Hw
for classifier unit Hw is a subset of O

enroll
such that

O
enroll

Hw
= {Ow,1, . . . ,Ow,Rw}, where observations are 39-dimensional feature vec-

tors as described in the previous section.
Given the training data, one of the gender-dependent background models is

first selected as a seed model using a gender detector (Eq. 3.1). The seed model is
then used as a basis for target model training: transition probabilities and variance
vectors are left as they are, while mean vectors and mixture weights are trained
from the data. Training is performed with the Expectation Maximization (EM)
algorithm to optimize the Maximum Likelihood (ML) criterion

(ĉw, m̂w) = arg max
(cw ,mw)

P (O
enroll

Hw
|cw,mw,σ

seed
w

2
,Aseed

w ), (3.4)

where σ
seed
w

2
and A

seed
w are the fixed variance and transition probabilities taken

verbatim from the seed model λ
gseed

Hw

Hw
. The seed means and mixture weights are

used as starting values in the first iteration of the EM algorithm (Rosenberg et al.,
1991).

Background models were trained with the EM-algorithm and the ML criterion.
After initializing models with a single Gaussian per state, Gaussians were split into
2 → 4 → 6 → 8 Gaussians per state and re-estimated with up to 20 EM iterations
after each splitting operation. A fixed variance floor of 0.01 was used, but only
0.1% of all variance parameters received a value less than twice the floor.

3.3.2.2 Verification test phase

The likelihood function implemented by the classifier unit (during the verification
test phase) is the Viterbi approximation of the probability of observation data given
a model, i.e. the probability of observations given the model and the most likely
path:

PHw (O|λ) = max
S∈Ω

P (O|λ,S) (3.5)

where S is a certain path through the HMM λ and Ω is the set of all possible paths.
The notation PHw (O|λ) is used to indicate this is the likelihood function used in
classifier unit ψ = Hw (cf. Section 3.2.2).

8in the PER-system, Rw = 5 (for digits)
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Given a target model and a test utterance, a classifier unit produces an output
score value sHw for each word segment i for which w(i) = w:

sHw (i) =
1

Ni

(

logPHw(Oi|λHw ) − logPHw (Oi|λ
g
Hw

)
)

(3.6)

and for the entire test utterance

zHw =

{

1
LHw

∑

i:w(i)=w sHw(i), LHw > 0

0, LHw = 0
(3.7)

where
g = gHw

(

O
test

Hw

)

is the gender detected for the test utterance in the same classifier unit, Eq. (3.3), and

Ni is the number of observation vectors in word segment i. O
test

Hw
= {Oi : w(i) = w}

is the subset of the test utterance where word w is spoken, and LHw the number of
word segments in this subset (i.e. the number of repetitions of word w).

The score output value zH from the entire HMM subsystem for a test utterance

O
test

H =
{

Oi : w(i) ∈ {0 . . . 9}
}

(the subset of O
test

where a digit word is spoken) is

zH =
1

LH

9
∑

u=0

LHuzHu =
1

LH

∑

i:w(i)={0...9}

sHw(i), (3.8)

where LH is the number of word segments in O
test

H .

3.3.3 Background model selection

The background model selection method in this system is different from the one used
in our previous publications (Melin et al., 1998) and (Melin and Lindberg, 1999),
where the background model was chosen based on similarity to enrollment data like
in the traditional cohort method. The purpose of selecting a background model
based on similarity to the test segment is to circumvent a well-known problem with
traditional cohorts and dissimilar impostors. If the background model is trained on
data “close” to the target speaker, then both the target model and the background
model will be poor models in regions of the sample space “far away” from the target
speaker. Hence, the likelihood ratio test will not be a good test for dissimilar
speakers, such as cross-sex impostors. By selecting the background model that
is closer to the test segment, the likelihood ratio test is more likely to reject a
dissimilar impostor. The advantage of the used method is evident from Figure 3.1,
where same-sex (on the left) and cross-sex (on the right) DET curves are shown
for both methods. These curves are from experiments on the Gandalf corpus with
identical enrollment and test sets as were used in (Melin and Lindberg, 1999).
Results show that the unconstrained cohort method reduces cross-sex imposture
rate considerably, at no loss in same-sex imposture rate.
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Figure 3.1: DET plots for the HMM subsystem with two different methods for
selecting from one of two gender-dependent background models: by similarity to
enrollment data (traditional cohort) or by similarity to test data (unconstrained
cohort). Test data is from the Gandalf corpus with single-session, one-minute en-
rollment and two four-digit test utterances. DET curves are shown for both the
development (dev) and the evaluation (eva) sets. Curves in a) are based on same-
sex impostor attempts, while curves in b) are based on cross-sex impostor attempts.
True-speaker tests are the same in a) and b).

3.4 The text-independent GMM system

The GMM subsystem is inherently text-independent, though in this thesis it is used
in a prompted, text-dependent way in the sense that enrollment and test utterances
are always composed of words from the same vocabulary9. Background models are
still used text-independently, however. The GMM-specific modules for the GIVES
framework were initially developed as part of a student project (Neiberg, 2001), and
then extended by Neiberg in conjunction with CTT’s participation in the 1-speaker
detection cellular task in the NIST 2002 Speaker Recognition Evaluation (NIST,
2002). Experiments on a PER development set of Gandalf data (Section 10.2.1)
were then used as the basis for selecting the particular configuration of the GMM
subsystem used in this work. This section describes the design and configuration
of the subsystem in detail. It is included for completeness since the GMM system
is used in the thesis and because not all parts of the description were published
elsewhere.

9proper name and digits in the PER case



8 Chapter 3. The speaker verification systems

3.4.1 Feature extraction

The basic 12-element MFCC vectors (Section 3.2.1) are RASTA-filtered (Hermansky
et al., 1991) and first order deltas are appended. The total vector dimension is 24.

3.4.2 Classifier unit

The GMM subsystem contains a single classifier unit ψ = G0, where target and
background models are 512-component Gaussian mixture pdfs with diagonal co-
variance matrices, also known as GMMs (Rose and Reynolds, 1990; Reynolds,
1995). Denote the parameters of the target GMM in the classifier unit as λG0

=
{ck,mk,σ

2
k}
K
k=1, where ck is the weight and mk and σ

2
k the vectors of mean and

variance values of mixture term k, and K = 512 is the number of terms10 in the
model

p(o|λG0
) =

K
∑

k=1

ckφ
(

o|mk,σ
2
k

)

. (3.9)

φ() denotes the multivariate normal density function.

3.4.2.1 Training phase

A target model λG0 for a given client is trained on all valid enrollment data from

the client, i.e. O
enroll

G0
= O

enroll
with observation vectors being 24-dimensional fea-

ture vectors as described above. Note that observation vectors from non-speech
segments are not included in training data (provided word boundaries are correctly
estimated).

Given the training data, one of the gender-dependent background models is first
selected as a seed model using a gender detector (Eq. 3.1). The target model is
then created from the seed model using the following maximum a posteriori (MAP)
like update formulas (Reynolds et al., 2000):

ck =
(

αkηk/N + (1 − αk)c
g
k

)

γ (3.10)

mk = αkEk(o) + (1 − αk)m
g
k (3.11)

σ
2
k = αkEk(o

2) + (1 − αk)
(

σ
g
k

2
+ m

g
k

2)
−m

2
k (3.12)

where
αk =

ηk
ηk + r

(3.13)

is a data-dependent adaptation coefficient with relevance factor r = 16,

γ =
1

∑K

k=1 ck
(3.14)

10“term” and “component” are used interchangeably in this thesis when referring to the terms
of the sum in (3.9)
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assures target model weights sum to unity, and11

ηk =

N
∑

n=1

ηk,n (3.15)

Ek(o) =
1

ηk

N
∑

n=1

ηk,non (3.16)

Ek(o
2) =

1

ηk

N
∑

n=1

ηk,no
2
n, (3.17)

where

ηk,n =
ckφ
(

on|m
g
k,σ

g
k

2)

∑K

l=1 clφ
(

on|m
g
l ,σ

g
l

2) (3.18)

is the a posteriori weight of mixture term k given an observation vector on and the

seed model. Training data O
enroll

G0
have here been viewed as a single vector sequence

O = {o1 . . .oN} with

N =
∑

w∈W

Rw
∑

r=1

Nw,r (3.19)

where Nw,r is the length of the observation sequence from the r’th valid repetition
of word w, and W is the vocabulary (cf. Section 3.2.2.1).

Background models were trained with the EM-algorithm and the ML criterion.
First a gender-independent “root” GMM was initialized from a VQ codebook and
then trained on pooled male and female data with eight EM iterations. Centroids
of the VQ codebook were initialized from 512 equidistant (in time) training vectors
and then trained with the generalized Lloyd algorithm (e.g. Gersho and Gray,
1992) using the Mahanalobis distance measure. The root GMM was then used as
the starting point for training a male GMM on male data and a female GMM on
female data with three iterations for each gender model.

3.4.2.2 Verification test phase

The classifier unit is tested on all available speech segments in a test utterance, i.e.

O
test

G0
= O

test
. Given a target model and a test utterance, a classifier unit produces

an output score value

zG0
=

1

N test
G0

(

logPG0

(

O
test

G0
|λG0

)

− logPG0,gps
(

O
test

G0
|λgG0

)

)

(3.20)

where N test
G0

is the number of observation vectors in the test utterance and

g = gG0

(

O
test

G0

)

11
o
2 is a shorthand for diag(oo

T) (from Reynolds et al. (2000))
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is the gender detected for the test utterance in the same classifier unit, Eq. (3.3).
zG0 is also used as the output score value of the GMM subsystem, i.e. zG = zG0 .

The likelihood function PG0
(

O
test

G0
|λG0

)

used with the target model is the prob-
ability of test data given the model, i.e.

logPG0

(

O
test

G0
|λG0

)

=
L
∑

i=1

Ni
∑

n=1

log

(

K
∑

k=1

ckφ
(

o
(i)
n |mk,σ

2
k

)

)

(3.21)

where o
(i)
n is an observation vector in the i’th word segment Oi in the test utterance

(cf. Section 3.2.2.2).

A modified likelihood function PG0,gps
(

O
test

G0
|λG0

)

is used with background
models in (3.20). It uses a Gaussian pre-selection (gps) method to reduce the
number of calculations relative to (3.21). Each time (3.21) is evaluated for an ob-
servation vector in segment Oi, the index k of the C = 6 top contributing mixture
terms for that observation vector is stored into an N by C matrix κ

(i), and the
likelihood for a background model is calculated as

logPG0,gps
(

O
test

G0
|λgG0

)

=

L
∑

i=1

Ni
∑

n=1

log





C
∑

j=1

cg
κ(i)(n,j)

φ

(

o
(i)
n |mg

κ(i)(n,j)
,σg

κ(i)(n,j)

2
)





(3.22)
where

λ
g
G0

=
{

cgk,m
g
k, σ

g
k

2
}K

k=1

are the parameters of the background model for gender g.
This gps-method is a modified version of a method suggested by Reynolds (1997)

based on the assumption that a mixture term of an adapted GMM has a relation to
the corresponding term in the GMM it was adapted from (the parent model), such
that the two terms are “close” compared to other terms. Call this a parent relation.
While Reynolds evaluated all mixture terms of a (single) background model and
only selected terms in the target model, we used a variant where all terms of the
target model are evaluated and only selected terms of the two background models.
A similar variant was previously tested with a single background model by Navrátil
et al. (2001), who showed that the modification results in a clock-wise rotation of
the DET curve relative to the original method, i.e. reduced false accept rates at
low false reject rates.

With our use of two background models in gender-detection during the test
phase (Eq. 3.3), evaluating all terms in the target model and only a few in back-
ground models is a logical choice, since more computations are saved compared to
fully evaluating both background models. To allow this, we create both background
models through the adaptation of a common (gender-independent) “root” model
as described above. Analogous to the mentioned parent relation, such background
models have a sibling relation. We assume that siblings have a similar kind of
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closeness relation as parent-child, though weaker in strength. The sibling relation
between background models is needed to use indexes of top-scoring mixture terms
in a target model to pick mixture terms for Eq. (3.22) with both background mod-
els, because the target model has a parent relation to (was adapted from) only one
of the background models (Eq. 3.1).

With our use of Gaussian pre-selection, the number of evaluated mixture terms
is K + 2C per observation vector compared to 3K for a full evaluation of target
model and both background models, a reduction of 66%.

3.5 The combined system

3.5.1 Score fusion

The HMM and GMM subsystems are fused at the score level. The system output
score value, or decision variable, z for a test utterance is a linear combination of
subsystem score values

z = ωHzH + ωGzG. (3.23)

Combination weights ωξ are computed as

ωξ =
1

∑

ζ∈{H,G}(1 − εζ)/σζ
·
1 − εξ
σξ

(3.24)

where εξ and σξ are determined empirically through a development experiment 12

with the individual subsystems, as their respective equal error rate and standard
deviation of observed values for zξ. The rationale for (3.24) is that scores from each
of the subsystems are first scaled to have unit variance (on development data) and
are then weighted such that the subsystem with lower EER gets a higher weight.

3.5.2 Classification

The actual classifier decision is taken by comparing the value of the decision variable
z to a speaker-independent threshold θ:

z

accept
>
≤

reject

θ. (3.25)

The value of the threshold is also determined empirically from a development ex-
periment12.

12cf. Section 10.2 for the PER system
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