GSLT NLP-1 course Spring 2005

Report from:
Training a Transformation-Based Tagger with Torbjorn Lager's y-TBL System

Preben Wik
preben@speech.kth.se

The assignment consisted of getting to know, and learning how to use the u-TBL system,
which is a generalized form of transformation-based learning implementation, created by
Torbjorn Lager. Specifically, the task consisted of training a simple transformation-based
tagger for English, using a subset of the Wall Street Journal corpus, annotated with the
Penn Treebank tagset as training data. A relatively small training set was used (ranging
from 7.500-60.000 words), since the purpose of the exercise was just to demonstrate the
technique.

Part A
Installation and testing.
The windows distribution was easy to install, but unfortunately the manual was outdated.
It belongs to an older distribution (version) of the program, i.e. changes have been made
to the distribution without updating the manual. Following the manual I started making a
test script. Here is a summary of the errors in the script:

9% My first script
set training_data="'data/10kW_suc'.
#No such file in the distribution
set test_data='data/2kW_suc'.
#No such file in the distribution
set algorithm="algorithms/brill'.
set templates="templates/brill_templates'.
#No such file in the distribution
[...]
Oh well, this is only noted in case someone wants to update the manual to reflect the
current distribution.

Our task in this exercise was to improve upon the performance of the default test script
that came with the distribution (test.script). A compressed version of the test script
(comments etc. removed) looks like this:

% default test.script

set training_data='data/wsj_7500'".

set test_data='data/wsj_test'".

set algorithm="algorithms/brill'.

set templates="templates/test_templates'.

set score_threshold=6.

set accuracy_threshold=0.5.

set verbosity=2.

learn_rule_seq.

test_rule_seq.

save('rules/test.pl').

write_html_error_data.

Four ways to improve the tagger were suggested in the assignment, and they were all
tested by me.

1. Modify the set of templates.

The fourth line in the test.script: set templates='templates/test_templates'. Points to a file
with the template rules used. It looked like this:
tag:A>B <- tag:C@[-1].

tag:A>B <- tag:C@[1].

tag:A>B <- tag:C@[-1,-2].

tag:A>B <- tag:C@[-1] & tag:D@[1].

tag:A>B <- wd:C@[0].

tag:A>B <- wd:C@[1].

tag:A>B <- wd:C@[0] & wd:D@[-1].

tag:A>B <- wd:C@[0] & tag:D@[-1].

Looking at the original templates that Brill used (Brill 1995- as described in
Jurafsky&Martin), I tried to modify the templates, and came up with a set that looked like
this:

tag:_ > <-wd:_@[-1].

tag:_>_ <-wd:_@[1].

tag:_ > <-wd:_@[-2].

tag:_>_ <-wd:_@[2].

tag:_ > <-wd:_@[-1,-2].

tag:_>_ <-wd:_@[1,2].

tag:_ > <-wd:_@[-1,-2,-3].

tag:_>_ <-wd:_@[1,2,3].

tag:_ > <-wd:_@[-1] & wd:_@[1].

tag:_ > <-wd:_@[-1] & wd:_@]2].

tag: > <-wd:_@[1] & wd:_@[-2].

Testing the new set of templates, leaving everything else from the test script unchanged,
the score accuracy went up a little, (96.3% instead of 96.1%) but since the amount of
training data used in this initial test was so small, the true effect of this modification is at
this point uncertain. I therefore trained the initial template set, as well as the modified
template set with a larger set of training data, to review the effect of this.

2. Increase the size of the training data.

The first line in the script points to the training data:

set training_data="data/wsj_7500".

Four files of training data are available with the distribution. The default with 7500
words, as well as 15.000, 30.000 and 60.000 words.

Leaving everything else from the test script unchanged, the score accuracy went up on
every increase of the training data, indicating what also seems intuitively reasonable, that
accuracy goes up if we have more data to train the tagger on.

data/wsj_7500 - 8 rules added — Recall/Precision/F-score = 96.1% (original)
data/wsj_15000 - 12 rules added — Recall/Precision/F-score = 96.5%

data/wsj_30000 - 38 rules added — Recall/Precision/F-score = 96.9%

data/wsj_60000 - 43 rules added — Recall/Precision/F-score = 97.0%

If the training data was increased and the modified set of templates were used, the result
was different, but not remarkably so:

data/wsj_7500 - 10 rules added — Recall/Precision/F-score = 96.3%

data/wsj_15000 - 18 rules added — Recall/Precision/F-score = 96.4%

data/wsj_30000 - 26 rules added — Recall/Precision/F-score = 96.8%

data/wsj_60000 - 67 rules added — Recall/Precision/F-score = 97.0%

3. Lower the score threshold.

I did two experiments in changing the score threshold. The default was set to 6, and 1
tried with the values 1 and 2, leaving everything else from the test script unchanged:
set score_threshold=6. - 8 rules added — Recall/Precision/F-score = 96.1%

set score_threshold=1. - 196 rules added — Recall/Precision/F-score = 96.0%

set score_threshold=2. - 41 rules added — Recall/Precision/F-score = 96.3%

It is easy to see that more is not necessarily better... Bringing the score threshold down to
1 made the algorithm add 196 rules as opposed to 8 with the default score threshold
setting of 6. In addition to that the recall score actually went down, although marginally,
from 96,1% to 96,0%. The middle way of a score threshold setting of 2 was the one that
scored the best.

4. Change the accuracy threshold.

Finally I tried to experiment with the accuracy threshold changing it from the default
value 0.5 to 0.7 and to 1.0

set accuracy_threshold=0.5. - 8 rules added — Recall/Precision/F-score = 96.1% (original)
set accuracy_threshold=0.7. - 8 rules added — Recall/Precision/F-score = 96.1%

set accuracy_threshold=1.0. - 6 rules added — Recall/Precision/F-score = 96.2%

Changing the accuracy threshold didn’t seem to do much, so I tried the same change of
settings (0.5, 0.7 and 1.0) with a different size of training data — 30.000 words, to see if
the effect would be bigger: using data/wsj_30000

set accuracy_threshold=0.5. - 38 rules added — Recall/Precision/F-score = 96.9%

set accuracy_threshold=0.7. - 25 rules added — Recall/Precision/F-score = 96.8%

set accuracy_threshold=1.0. - 14 rules added — Recall/Precision/F-score = 96.4%

Summing up it seems that the biggest improvements are being made from increasing the
training corpus. The other parameters do have an effect, but not nearly as big as I had
expected. Trying to make a ‘myBestScript’, my guess is to have as big a training corpus
as possible, keep my modified template, lower the score threshold somewhat, and keep
the accuracy threshold moderate. I have made one like this:

set training_data='data/wsj_60000'".

set templates="templates/myTestTemplates2'.

set score_threshold=3.

set accuracy_threshold=0.5.

and got: 146 rules and Recall/Precision/F-score = 97.1%

Finally increasing score threshold to 4 and accuracy threshold 0.7 - I got 126 rules and
97.0 % precision. I'll stick with the 97.1 for part B

Part B

Given the best rule sequence so far, I tried to make a few manual changes to the rules
using the html error analysis tool, write_html_error_data as a guide.
It computes error data and saves it in a HTML-based format in the file error_data.html.

Trying to find general rules that will remove several errors in one stroke, is not an easy
task. Initially I found among other errors - 13 occurrences tagged as IN that should be
RB. Five of these were:

89688: 925 million on sales of about $ 7 billion in fiscal
90703: Allied 's high-yield bonds was about $ 50 million .

91693: analysts say , United generates about $ 1.1 billion in cash
92620: loans , an increase from about $ 3.4 billion of such
93009: to buy Syncor 's for about $ 81.8 million , but

The rule ‘ change IN to RB if the word is ‘about” and the following word is a $-sign’
seemed to make sense.

I added a hand-written rule like:

tag:'IN'>'RB' <- wd:'about' @[0] & wd:'$'@[1] o

The new error_data.html contained - among other errors - 14 occurrences tagged as RB
that should be IN: Among these two of the occurances were the reverse of what I had
corrected with my new rule.

85815: cash investment income to cover about $ 1.4 billion of interest
88718: William Collins PLC , for about $ 1.3 billion to a

Grammar is definitely not my strongest side, and I am not able to see any difference
between the two. is it a case of different persons coding differently, or what?

The special case of last paragraph turned out not to be so special after all.
Similarily: I found 15 occurrences tagged as VBD that should be VBN: among them:

86402: Brazil has so far failed to make a $ 1.6
86922: Pantera 's also failed to pay interest due Sept.
I added the rule:

tag:'VBD'>'VBN' <- wd:'failed'@[0] & wd:'to'@[1] o

and checked the ‘new and improved’ version with the new error_data.html. It contained:
24 occurrences tagged as VBN that should be VBD: among them

90238: a bankruptcy-law filing since it failed to make interest payments in
91602: debt ; Resorts International Inc. failed to meet interest payments on

A similar conflict between JJR and RBR. I added:
tag:'JJR'>'RBR' <- wd:' more' @[0] & wd:'than'@[1] o
with the conflicting new result of occurrences tagged as RBR that should be JJR:

Conclusions:

The manual corrections I've made to the rules has not made any great improvements to
mankind. In my final test-run I came up to 97,3% correctly tagged, which is IMHO a
fairly good improvement over the 96,1% from the test script.

A few questions comes to mind:

The conflicting new result I got from changing the rule set could be a result of conflicting
human coding, but I see that (being ignorant to the finer aspects of grammar-tagging
myself) it could also be a consistent human coding, and these kinds of difficulties could
still occur. So it seems to be a general trend - that was probably an intended part of the
exercise — which is also mentioned as one of the difficulties with the brill-tagger.

The strength that the Brill-tagger has, of being able to - in clear human-readable terms -
point to the errors of the classifier being used, should be a very interesting supplement to
stochastically-based classifiers, such as an HMM speech-recognition system for example.
In such systems the correlations between the weights, are so complicated that it is almost
impenetrable to the naked eye. It would be interesting to look further into.

All in all I found the exercise interesting, and the Brill algorithm, as well as the u-TBL
System good to get to know.

