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Abstract— We propose a novel human-robot-interaction
framework for the purpose of robust visual scene understand-
ing. Without any a-priori knowledge about the scene structure,
the task of the robot is to correctly enumerate how many
objects there are in the scene and segment them. Our approach
builds on top of state-of-the-art computer vision, segmenting
stereo reconstructed point clouds into object hypotheses. This
process is combined with a natural dialog system. By putting a
‘human in the loop’ and exploiting the natural conversation of
an advanced dialog system, the robot gains knowledge about
ambiguous situations beyond its own resolution. Specifically,
we are introducing an entropy-based system allowing the robot
to detect the poorest object hypotheses and query the user
for arbitration. Based on the information obtained from the
human-to-robot dialog, the scene segmentation can be re-seeded
and thereby improved. We present experimental results on
real data that show an improved segmentation performance
compared to segmentation without interaction.

I. INTRODUCTION

Current robots are capable of autonomously completing
many objectives that are challenging both in perception
and manipulation. Recent examples are towel folding [1],
unloading a dishwasher [2] or preparing the ingredients for
a cheese’n’ham omelet [3]. However, autonomous behavior
is still only possible under many assumptions and within a
controlled environment. A key challenge in robotics is to re-
lax previously made assumptions and thereby enable a robot
to act in new situations and handle increased uncertainty.

One way to achieve this objective is to put a ’human in
the loop’ and to allow the robot to learn from him or her.
The specific problem that we are considering in this paper
is scene understanding in which the robot has to correctly
enumerate how many objects there are in the scene and
segment them accurately. This capability can ease several
different subtasks like recognition [4], grasp planning [5] or
learning models for previously unseen objects re-usable for
later re-recognition. Furthermore, by introducing a ’human
in the loop’, new labels or symbols can be introduced online
and grounded in the current percept.

The paper at hand moves towards this goal by combining
state-of-the-art computer vision with a natural dialog system.
In our previous work [6] an embodied robotic system aims
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Fig. 1. Depiction of the different stages of the scene understanding.
Top: Point cloud from stereo matching with bounding boxes (BBs) around
segmented objects and their hue histograms. Left segment containing two
objects has a higher entropy in hue and 3D point distribution and is therefore
considered more uncertain. Middle: Initial labeling of the segments. Left
segment is re-seeded by splitting BB in two parts based on human dialog
input. Bottom: Re-segmented objects. Three objects are correctly detected.

to segment a scene into several objects by exploring it with
an active vision system. Dependent on how close objects
are to each other or how similar they are in appearance,
some of them might be incorrectly grouped together or split
into several parts. The dialog system allows a human to
rapidly refine the model of a complex 3D scene. Through that
approach, we harness the strengths of ‘bottom up’ automated
processing with the ‘top down’ decision making power of a
human operator. The resulting refined scene model forms the
basis for a general symbol grounding problem [7].

An example of the scene refinement process is shown in
Fig. 1. Given an initial scene segmentation provided by the
vision system, we first identify the most uncertain object
hypotheses through an entropy-based approach. The human
operator is queried to provide information about whether this
initial segment contains one or more objects and how those
objects are positioned with respect to one another. If the
initial segmentation is incorrect, the process is run again with
new seed points respecting the user’s input.

This paper is organized as follows. The next section dis-



cusses related work and provides an overview of the system.
Afterwards, the vision module is described followed by the
dialog system. Section V describes the interaction logic and
entropy based hypothesis system. Finally, Section VI shows
several instances of interactions and the resulting improved
scene labelings.

II. RELATED WORK AND CONTRIBUTIONS

Interactive segmentation methods have gained a lot of
attention recently. One approach addressing this problem, is
to let the robot interact with the scene, e.g., through pushing
movements and then use motion cues for verifying or refining
object hypotheses [8], [9], [10]. These papers focus on the
question of what knowledge can be gained from observing
the outcomes of robotic actions. An open question is how
to select the action that provides the greatest amount of
information.

This paper presents a vision system where, through the
use of dialog, the robot gains knowledge about ambiguous
situations beyond its own resolution. Human input is not a
new concept in object segmentation and scene understanding.
Several previous systems have used it to guide automated
processing or restrict the search space of algorithms both im-
proving efficiency and decreasing false positives [11], [12],
[13]. GrabCut [14] and Lazy Snapping [15] are probably the
most related works on interactive segmentation. They require
the user to operate a mouse either for selecting a region
containing the object in the image or for drawing its rough
outline. In this paper, we aim for human-robot interaction
using only natural dialog and no additional tools. Thereby,
we are moving closer to how humans naturally interact with
one another in such situation.

Several unique challenges exist when designing a frame-
work for human robot interaction using computer vision.
One of them is to minimize the iteration time of the vision
component of such a system. This processing must be rapid
enough as to not induce a large lag in the system increasing
the mental load on the user [16]. As most state-of-the-
art vision algorithm for scene understanding run in tens of
minutes or hours per scene [17], [18], [19] they would be
unacceptable for any ‘human-in-the-loop‘ system. This paper
proposes the use of a novel graph-cuts based multi-object
segmentation algorithm [6], which is capable of providing
acceptable responsiveness in the proposed algorithm.

Another design challenge is to minimize the necessary
interaction between the autonomous system and the human
operator. This means maximizing the value of each inter-
action to obtain the greatest discriminatory information. A
very common approach to this kind of problem is to make a
decision that maximises the expected gain in information or,
equivalently, minimises the uncertainty in the system [11],
[20]. In this paper, we use the concept of entropy to char-
acterize the quality of any object hypothesis. This helps in
guiding the dialog system to resolve the most challenging
and ambiguous segments first.

System Overview

Our robotic platform is the 7-joint Armar III robotic
head [21], as depicted in Fig. 2. The stereo head carries
four Point Grey Dragonfly cameras grouped in two pairs, a
peripheral and a foveal one. These are parts of an existing
vision system [22] that uses attention in the peripheral view
to direct cameras towards nearby regions of interest. After
gaze re-direction, such regions are placed in fixation in the
foveal view. Binocular disparities are calculated and a 3D
point cloud reconstructed. The resulting point cloud is then
clustered by performing an initial segmentation that groups
points with similar color traits [6].

The dialog system allows a human operator to provide
responses to the robot’s questions in a natural manner. The
robot can be interrupted and corrected in mid-utterance
allowing the operator to avoid the latencies associated with
traditional dialog call and response conversation patterns.

The main contributions of this paper lie in the scene
analysis module that seeks to bridge the vision and dialog
module. It fulfills two tasks: (i) it determines areas of the
scene that are the poorest object hypotheses and seek human
arbitration, (ii) it translates the human input to a re-seeding
of the segmentation process. An overview of the system and
the interconnection between its modules is shown in Fig. 2.

III. VISION SYSTEM

The initial segmentation of the point cloud into object
hypotheses and background is performed using a Markov
Random Field (MRF) graphical model framework. This
paradigm allows for the identification of multiple object
hypotheses simultaneously and is described in full detail
in [6]. Here, we will only give a brief overview.

As described in the previous section, the active humanoid
head uses saliency to direct gaze. The same salient fixation
points serve as seed points that we project into the point
cloud to create initial clusters for the generation of object
hypotheses.

For full segmentation we perform energy minimization in
a multi-label MRF. We use the multi-way cut framework
as proposed in [23]. An MRF is a graph with two sets of
costs for assigning a specific label to a node: unary costs and
pairwise costs.

In our case, the unary cost describes the likelihood of
membership to an object hypothesis’ color distribution.
This distribution is modelled by Gaussian Mixture Models
(GMMs) as utilized in GrabCuts [14]. For each salient region
one GMM is created to model the color properties of that
object hypothesis.

Pairwise costs enforce smoothness between adjacent la-
bels. The pairwise structure of the graph is derived from a
KD-tree neighborhood search directly on the point cloud.
The 3D structure provides the links between points and
enforces neighbor consistency. Once the pairwise and unary
costs are computed, the energy minimization can be per-
formed using standard methods. The α-expansion algorithm
with available implementation [24], [25], [26] efficiently
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Fig. 2. Overview of the System. Left: Armar III Active Stereo Head [21]. Middle: Vision System that obtains stereo images from the cameras and outputs a
segmented point cloud. Right: Architecture of the Jindigo Dialog System. Vision and Dialog System are communicating through a Scene Analysis Module.

computes an approximate solution that approaches the NP-
hard global solution.

For each resulting segment, we compute several different
attributes that will be used by the dialog system to refer to
these object hypotheses. As attributes we choose the most
dominant color, the position of the segment’s centroid in
the world coordinate system and the volume of the aligned
bounding box.

IV. DIALOG SYSTEM

To facilitate interaction in the proposed system, we im-
plement a dialog system as shown in Fig. 2. It is based on
Jindigo – a Java-based open source dialog framework [27].
A typical limitation for dialog systems is that the dialog
proceeds with strict turn-taking between user and system.
The minimal unit of processing in such systems is the
“utterance”, which is processed in whole by each module
of the system before it is handed on to the next. Contrary
to this, Jindigo processes the dialog incrementally, word by
word, allowing the system to respond more quickly and to
give and receive feedback in the middle of utterances [28].

For speech recognition (Recognizer), we use
CMU Sphinx 4 [29] which has been adapted to act as a
Jindigo module. The words are parsed by an Interpreter [30]
which tries to find an optimal sequence of matching phrases
from a predefined grammar. These understood phrases
are then re-interpreted by a Contextualizer [31], based on
the history of the conversation. For example, fragmentary
utterances like “red” and “yeah”, and referring expression
like “it”, can be interpreted given the previous utterances
from both the robot and the user. The contextualized
interpretation of the user’s utterance is then sent to the
Action Manager (AM). The task of the AM is to decide
which step to take next. To make these decisions, the
AM communicates directly with the Scene Analysis (SA)
component. If the AM or SA decides that the robot should
say something, the semantic representation of this utterance
is sent to the Vocalizer. The Vocalizer transforms this
semantic structure to a textual representation, using the
same domain specific grammars that are used by the

Interpreter. The textual representation is then synthesized
using MaryTTS [32]. As the utterance is spoken, the
semantic representation is sent back to the Contextualizer
for system self-monitoring. This way, the next user utterance
may be interpreted in light of the last robot utterance.

Jindigo provides a model for semantic representation using
typed concepts and arguments. For example, there may be a
concept Red which inherits from the concept Color which
in turn inherits from the base class Concept. Each concept
may have a number of typed arguments, which are pointers
to other concepts.

V. REFINING THE SCENE MODEL THROUGH
HUMAN-ROBOT INTERACTION

From the visual scene segmentation as described in Sec-
tion III, we obtain an initial bottom-up analysis of the scene
resulting in several object hypotheses.

The quality of the initial segmentation can vary due to
occlusions, objects that are very close to each other or when
the position and number of seed points does not corre-
spond to the actual objects. The demonstrated system was
configured to handle the most common configurations and
given a corresponding vocabulary for verbal disambiguation.
However, we will show later how our system can easily be
extended to deal with more complex cases.

In the following sections, we will show how user utter-
ances are interpreted and how natural language is generated
using the example dialog shown in Fig. 4. This dialog is
an instantiation of the general dialog loop shown in Fig. 3.
Furthermore in Section V-B and V-C, we propose a method
to (i) rank the object hypotheses in terms of their uncertainty
and (ii) re-segment the incorrect hypotheses.

A. Contextual Interpretation and Generation of Natural Lan-
guage

In a natural dialog about the structure of a scene, objects
may be referred to in different ways. One way is to use
their properties (e.g, the red object or the leftmost object).
To be able to ground these descriptions into the actual objects
that are being talked about, the dialog system must have a



Scene

RequestHold

AssertScene

Resegment

ConfirmScene

Done

RequestResegment
(objID,nobjects)

RequestResegment
(objID,relation)

AssertResegment
(objID,nobjects)

AssertResegment
(objID,relation)

unambiguous

ambiguous relationambiguous object

Legend

SA → AM

AM → SA

SA Decision

Fig. 3. Graph of the dialog loop showing the messages being passed between the action manager (AM) and the scene analysis (SA) module.

representation of the robot’s hypothesis of the set of objects.
Therefore, the initial segmentation of the scene is sent from
the SA component to the AM, including the properties of
objects and their IDs (see Fig. 4, Row 1).

Another way of referring to objects in dialog is by
anaphoric expressions. For example a speaker may say it or
the segment to refer to an object that has just been mentioned.
A dialog system must be able to both understand and
generate such expressions with the help of the dialog context.
Another phenomena where the dialog context needs to be
taken into account is elliptical (or fragmentary) expressions.
These are expressions that lack propositional content, such as
the red one or to the left. The dialog system needs to resolve
these into full propositions, so called ellipsis resolution (e.g.,
the red one should perhaps be understood as the red segment
should be split into two objects given the dialog context).

When the AM receives the initial scene, it starts to describe
the scene, allowing the user to correct anything that is
incorrect. It starts by stating the number of objects using the
CheckScene action (Fig. 4, Row 2). This is transformed
into text and speech by the Vocalizer (Row 3). Since the
robot’s hypothesis is incorrect, the user now corrects the
robot. This utterance is unambiguous and therefore sent as it
is all the way to the SA (Row 5). Notice how the semantic
representation in Row 2 and 5 and the textual representation
in Row 3 and 4 reflect each other. This illustrates how
large parts of the domain grammars may be used for both
interpretation and generation.

The SA requests help with refining the segment that is
most likely to be incorrect (see the next section for how this
choice is made). As can be seen in the example, the SA
only refers to objects by their IDs. The AM then chooses
the best way of referring to the object. It may for example
be by the color (as in Row 7: the green segment) or by
using an anaphoric expression (as in Row 14: the objects)
depending on the current dialog history. The user now replies
with an elliptical (fragmentary) expression (Row 9). Note
that this utterance cannot be fully understood unless the
dialog context is taken into account. This is precisely what
the Contextualizer does - it re-interprets the ellipsis into a

full proposition (Row 11). Thus, the RequestResegment
from the robot combined with the Object from the user is
transformed into an AssertResegment with this Object
as argument. The same principles are applied in the ellipsis
resolution in Row 18 (but where the spatial relation is
replaced instead of the object).

As the scene is refined, the SA sends new scene hy-
potheses to the AM (Row 22). Finally, it will receive a
ConfirmScene message from the AM (Row 27).

B. Identifying Poor Object Hypotheses through Entropy

To bootstrap the process of scene model refinement, the
robot should be able to identify the most ambiguous object
hypotheses and query the user about these first. We propose
an entropy-based system to rank the object hypotheses ac-
cording to their uncertainty. In general, the entropy H[P (X)]
of a distribution over a discrete random variable X with xj
as all M possible values is defined as follows:

H[P (X)] = −
M∑
j=0

P (xj) lnP (xj). (1)

and equivalently for a continuous variable with the inte-
gral. Intuitively, this means that sharply peaked distributions
will have a low entropy while rather flat distribution will
have a relatively high entropy. The maximum entropy is
reached with a uniform distribution and is computed as
Hmax[P (X)] = ln 1/M .

Our observation is that single objects tend to be relatively
homogeneous in an appropriate attribute space. Consider for
example a correctly segmented single object and a segment
in which two objects are contained as in Fig. 1. The hue
histogram of the correct hypothesis will show a narrower
distribution than for the segment containing two objects. The
same holds for the distribution of 3D points which will vary
more in the second segment.

To test the hypothesis of entropy being a good indicator
for the quality of object segmentation, we formalise it as
binary classification problem. In this paper, we compute the
entropy for each initial object hypothesis over a number of
different attribute histograms. Let N be the set of points in



1 SA → AM Scene(objects:[ Object(id:32
color:Green ...) Object(id:47
color:Yellow ...)])

2 AM→Voc CheckScene(Scene(nobjects:2))

3 Voc→User
“I think there are two objects”

4 User→Rec
“No there are three objects”

5 Int→Con→AM→SA AssertScene(Scene(nobjects:3))

6 SA→AM RequestResegment(
object:Object(id:32) nobjects:2)

7 AM→Voc RequestResegment(
object:Object(color:Green)
nobjects:2)

8 Voc→User
“So, should I split the green segment?”

9 User→Rec
“No, the yellow one!”

10 Int→Cont NegFeedback Object(color:Yellow)

11 Cont→AM AssertResegment(
object:Object(color:Yellow)
nobjects:2))

12 AM→SA AssertResegment(
object:Object(id:47) nobjects:2)

13 SA→AM RequestResegment(
object:Object(id:47)
relation:TopOf)

14 AM→Voc RequestResegment(
object:Object(ref:Anaphora)
relation:TopOf))

15 Voc→User
“Are the objects on top of each other?”

16 User→Rec
“No, next to each other”

17 Int→Cont NegFeedback NextTo

18 Cont→AM AssertResegment(
object:Object(ref:Anaphora)
relation:NextTo)

19 AM→SA AssertResegment(
object:Object(id:47)
relation:NextTo)

20 SA→AM→Voc RequestHold

21 Voc→User
“Okay, just wait a moment”

22 SA→AM Scene( ... )

23 AM→Voc CheckScene

24 Voc→User
“Is this correct?”

25 Voc→User
“Yes”

26 Int→Con PosFeedback

27 Con→AM→SA ConfirmScene

Fig. 4. Example dialog between human and robot and the information flow
in the system. The second column indicates the currently active system
modules. The third column shows the messages being send between the
modules. SA = Scene Analysis. AM = Action Manager. Voc = Vocalizer.
Rec = Recognizer. Cont=Contextualizer.

a segment and let us define a set of normalized histograms
as follows:

1) 1D histogram P (C) with 30 bins over color hue C.
2) 3D histogram P (N) over the number of 3D object

points N in each voxel (10mm side length) in a grid
over the whole scene.

3) 3D histogram PBB(N) over the number of 3D object
points N within the oriented object bounding box BB.

4) One normalized 1D histogram Px(N), Py(N), Pz(N)
for each axis x, y and z of BB counting the number
of 3D points falling into 10mm wide BB slices along
the respective axis.

Both 3D histograms, P (N) and PBB(N), will be relatively
sparse compared to the 1D histograms. While P (N) reflects
on the size of an object segment relative to the whole scene,
PBB(N) is normalized to the dimensions of the oriented
bounding box and instead measures the complexity of the
3D distribution of points. Px(N), Py(N), Pz(N) break down
this complexity to the single bounding box axes.

The entropy values of these histograms are normalized
with their respective maximum entropy. We use these values
to form a feature vector

fi = (H[P (C)], H[P (N)], H[PBB(N)], H[Px(N)], . . .

. . . H[Py(N)], H[Pz(N)]) (2)

for each object hypothesis i. From a set of example scenes
that are initially segmented, we can extract labeled data
to train an SVM with an RBF kernel for classifying an
object hypothesis as either being correct or not. We use
the probability estimates provided by [33] to rank the object
hypotheses according to their uncertainty.

C. Re-Segmenting Based on User Input

Once a possible candidate for refinement has been identi-
fied, the algorithm proceeds to query the user to determine
two things: (i) Is the current segmentation correct? And (ii)
if not, what is the relative relationships of the objects in the
current incorrect segment. In this paper, we limit the user’s
options for spatial relationships to two objects being either
next to, in front of or on top of one another. We propose
this limited set of configuration to simplify the interaction.
Furthermore, the robustness of the MRF segmentation algo-
rithm eliminates the need for tight boundaries. Despite the
simplicity of these three rules, quite challenging scenes can
be resolved in practice.

To begin the re-segmentation, the extents of the original
segment are calculated to produce an object aligned bounded
box. This bounding box is then divided in half along one
of the three axes based upon the human operator’s input.
Once the bounding box is divided the initially segmented
points are relabeled and new Gaussian Mixture Models for
the region are iteratively calculated as in [14]. A new graph
is constructed based upon the probability of membership to
these new models. Energy minimization is performed for the
new regions and repeated until convergence. This process
is effectively attempting to find the most stable set of n
mixture models for these points, where n is the number of
user specified objects in the region.

In a similar manner, the more rare situations in which two
object hypotheses have to be merged can be dealt with. The
3D points initially labeled with two different labels would
be re-labeled to carry just one. The implementation of this
case is considered as future work.

VI. EXPERIMENTS

In this section, we will show that through the interaction
of a robot with a human operator, the resulting segmentation
is improved and that this interaction is made more efficient
through the use of an entropy based selection mechanism.
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There exist only a few databases containing RGB-D data,
e.g. in [34]. However, they are targeted at object recognition
and pose estimation instead of segmentation and therefore
usually contain scenes with single objects. Therefore, we
recorded 19 scenes containing two to four objects in specif-
ically challenging scenes, see Fig. 5(a). Reconstructing the
point cloud and obtaining the seeding for the initial segmen-
tation is done through the active vision system described
in Sec. II. Instead of exhaustively reconstructing the whole
scene, it uses attention to fixate on salient points in the scene.
For these particular examples, we weighted those attention
points higher that are closer to the green table. An example
point cloud for the first scene is shown in Fig. 1.

In the recorded scenes, objects are hard to separate from
each other due to similar appearance or close positioning.
There is one incorrectly segmented pair of objects in each
of the 19 scenes. Each scene is labeled with human ground
truth, thereby separating each object perfectly.

A. Identification of Incorrect Object Hypotheses

We proposed an entropy-based system to select most
uncertain object hypotheses to be confirmed by the user.
For evaluation, we captured and labeled 264 examples 127
incorrect (positive) and 137 correct (negative) hypotheses i
and computed the feature vector fi as described in Eq. 2.

The data is randomly divided into a training and a test
set. The training set contains 25 positive and 25 negative
examples, the test set 214 examples. The complete set
was randomly divided five times and the aggregated results
appears as a receiver operating characteristic (ROC) curve in
Fig. 5(b). As can be seen from the plot and the area under the
curve of AUC=0.98, the classifier is easily able to distinguish
between correctly and incorrectly labeled examples in this
dataset.

B. Improvement of Segmentation Quality

To validate the technique, we present experimental results
designed to display its performance on the 19 scenes in
the data set. We compared the resulting total segmentation
accuracy before and after interaction with the human operator
on the mislabeled segments.

The graph in Fig. 6(a) displays two bars for each segment.
Both display the total classification rate for all object points
in the segment as compared to the hand labeled ground truth.
The first bar in each set is with the aid of human input in
the proposed framework, while the second is without.

The increase in performance of approx. 33.25% on average
is attributable to the correct labeling of an object initially
missing from the segmentation or incorrectly split. A con-
fusion matrix for a typical under-segmentation can be seen
in Fig. 6(b) and the resulting correction achieved through
interaction in Fig. 6(c). This exact process is highlighted
in the flow of Fig. 1 where the correct segmentation of an
initially undetected object is shown.

VII. CONCLUSIONS

We proposed a novel human-robot-interaction framework
for the purpose of robust visual scene understanding. A
state-of-the-art computer vision method for performing scene
segmentation was combined with a natural dialog system.
Experiments showed that by putting a human in the loop,
the robot could gain improved models of challenging 3D
scenes when compared with pure bottom-up segmentation.
Furthermore, through an entropy-based approach the interac-
tion between human and robot could be made more efficient.

As future work, we would like to address the problem of
how to represent objects efficiently in the working memory
and label them with symbols that are convenient for a human
operator. Furthermore, we want to conduct user studies with
non-expert user to gain more insight into interaction patterns
for this specific task. Additionally, it would be interesting
to let the robot iteratively learn a classifier to identify poor
object hypothesis during human-robot interaction.
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