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I. SPEECH RECOGNITION

AUDITORY MODELS AND ISOLATED WORD RECOGNITION*
Mats Blomberg, Rolf Carlson, Kjell Elenius, and Bjorn Granstrom

Abstract :

A straightforward isolated word recognition system has been used to
test different auditory models in acoustic front end processing. The
models include BARK, PHON, and SONE. The PHONTEMP model is based on
PHON but also includes temporal forward masking. We also introduce a
model, DOMIN, which is intended to measure the dominating frequency at
each point along the ‘basilar membrane.” All the above models were
derived from an FFT-analysis, and the FFT processing is also used as a
reference model. One male and one female speaker were used to test the
recognition performance of the different models on a difficult vocabula-
ry consisting of 18 Swedish consonants and 9 Swedish vowels. The re-
sults indicate that the performance of the models decreases as they
become more complex. The overall recognition accuracy of FFT is 97%
while it is 87% for SONE. However, the DOMIN model which is sensitive to
dominant frequencies (formants) performs very well for vowels. Three
different metrics for measuring the distance between speech frames have
been tested: city-block, Euclidean, and squared (Euclidean without tak-
ing the square root). The Euclidean seems to give a slightly better
performance. Reducing the number of channels in the FFT processing
clearly shows that performance increases with the number of channels.

Introduction

The use of auditory models as speech recognition front ends has
recently attracted a great deal of interest. The underlying assumption
is that a good model of the auditory system should generate a more
natural and efficient representation of speech compared to ordinary
spectum analysis. However, we have to keep in mind that only some of
the peripheral processes of sound perception are included in most exist-
ing models. In this paper we will discuss some standard spectral trans-
formations of the acoustic information and also a model based on the
dominant frequency concept. We will also evaluate the performance of the
different representations in the context of a standard speech recogni-
tion system.

Auditory models
Basic research has resulted in several models of the peripheral
auditory processing. The elaboration of Zwicker and Feldtkeller (1967)
of the loudness and the Bark concept has become more or less standard in
psychacoustics. Other models, including lateral inhibition and time
dependent mechanisms, have been created elsewhere. The development of
methods for similarity rating of speech spectra has been of interest in

¥ This 44 an expanded vernsion of a papern presented at the Symposium on
'Tnvariance and Variability of Speech Processes', MIT, Oct. 8-10, 1983.
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many research groups, Plomp (1970), Pols (1970), Bladon and Lindblom
(1977), and Carlson and Granstrom (1979). At the same time, efforts have
been made to include knowledge of the auditory system in practical
applications, Schroeder et al. (1979) and Lyon (1982). Klatt (1979,
1982a, 1982b) has discussed physiologically related spectral representa-
tions in models for lexical access and speech recognition systems. New
models of the peripheral auditory system are developed based on neuro-
physiological results, Chistovich et al (1979, 1982), Sachs and Young
(1980), Sachs et al. (1982), Delgutte (1980, 1982), Dolmazon (1982),
Goldhor (1983), and Seneff (1983). This positive development make us
believe that in the future we could use these kinds of models as the
first analyzing steps in a speech recognition system.

In the present paper we try to elaborate some of the basic facts of
the auditory mechanisms in the context of such a system. In Fig. 1 we
present the different models/transformations that we have used in the
current experiment. A pure sinusoid and a vowel are used as test stimu-
1li to illustrate some alternative representations in the ampli-
tude/frequency domain. Fig. 2 gives examples of computer-generated
spectrograms based on some of these models.

The speech signal is first filtered through a sampling filter of
6.3 kHz and digitized at 16 kHz. An FFT-spectrum is calculated every 20
ms using a 25 ms Hamming window. The line spectrum is then transformed
in the frequency domain by adding energies to get 300 Hz wide channels.
This will reduce the influence of the fundamental frequency on the
spectrum and is done in 74 overlapping channels from O to 7.7 kHz using
a linear frequency scale. The result of this processing is seen in Figs.
la and 2a (FFT).

If we use a Bark scale and a bandwidth of one Bark, we will have a
psychoacoustically more relevant representation (BARK, Fig. 1b). The
Hamming window is set to 10 ms with a sampling frequency of 16 kHz to
facilitate a fast response for frequencies higher than 2 kHz, and to 20
ms with a sampling frequency of 4 kHz for frequencies lower than two
kHz. The reduction to lower sampling frequency gives a better frequency
resolution for the following transformation into the Bark scale. This
transformation is used in this and all the following models, while the
summation into one Bark bands is only done in this model.

A psychoacoustic masking filter (Schroeder et al., 1979), rather
than a sharp bandpass filter, together with equal loudness curves (phone
curves), has been used to derive a phon/Bark plot (PHON, Figs. lc, 2b,
and 4a). We argue that the visual impression of Fig. 2b has a much
closer relation to the perceived sound than the FFT representation.
Note the reduced emphasis on the fricative and the position of the very
important second formant in the middle of the spectrogram. The percep-
tually prominent lowest formant is also visually enhanced.

The phon/Bark representation has been transformed to a sone/Bark
representation which often is claimed to give a better description of
the percieved loudness (SONE, Fig. 1d).
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Fig. 2. Three alternative spectrograms of the sentence
/ala fUgar oda.../. See text for details.
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In Fig. le, an alternative model (DOMIN) is introduced. It is based
on our earlier work on vowel perception (Carlson and Granstrdm, 1975,
1979) and explores the possibility of temporal analysis in the auditory
system (Sachs et al., 1982). The model uses the masking filter intro-
duced in Fig ure lc to find which frequency dominates each point along
the "basilar membrane." The dominant frequency is plotted along the y-
axis while the x-axis still corresponds to the Bark scale. It may be
seen that the sinusoid generates a step in the curve. If the stimulus
consists of a number of resonances or cut-off frequencies, they will all
generate steps in the curve. The width of the step will be dependent on
the amount of masking or dominance.

The superimposed narrow peak in Fig. le presents the same informa-
tion in histogram form, i.e., the y-axis is now the interval along the
Bark scale that is dominated by a certain frequency. Intuitively, this
could be regarded as the number of neurons that respond to the same
dominant frequency.

Fig. 2c¢ incorporates the histogram representation of Fig. le with
the phon/Bark analysis. The formants are emphasized and the resonances
during the occlusion of /b/ may be observed. Since the frequency-
dependent analysis makes the bandwidth narrow at low frequencies, the
first harmonics are well marked while they disappear at higher frequen-
cies in favor of formants. The intonation and the formant pattern can be
studied in the same representation.

The auditory models described so far in this paper are static even
if time is used as a parameter. No temporal masking effects have been
taken into account. This kind of effects are obvious candidates for
future developments of speech recognition front ends. Zagoruiko and
Lebedev (1975) have indicated positive results by including such effects
in a speech recognition system. Hence, the last model, PHONTEMP, is
introduced. It is based on the PHON model and includes also a forward
masking function with a time constant of 40 ms. At the onset of a
signal in a PHON analysis channel we get an extra excitation of up to 15
phon depending on the size of the step. The effect is illustrated in
Fig. 3. The sinusoid in Fig. 3a is processed either by the BARK model,
Fig. 3b or by the PHONTEMP model, Fig. 3c. It could be seen how the
masking filter broadens the response, especially in the beginning where
the onset effects take place. After the onset the response is adapted
to a constant excitation. When the signal ends, a forward masking effect
takes place. This is simulated by a simple low pass filter with a time
constant of 40 ms. Fig. 3d gives an alternative picture where only
unmasked frequencies are plotted. The white area in the time and fre-
quency domain shows what is masked by the stimulus. The grey area is
uneffected and has a base level corresponding to spontaneocus activity.
Fig. 4 gives an example of natural speech processed by the differenc
models: PHON, Fig. 4a, PHONTEMP, Fig. 4b and in Fig. 4c with a proces-
sing corresponding to Fig. 3d. The same sentence as in Fig. 2 has been
used. Tt could be seen how some of the transitions are emphasized and
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Fig. 4. Three alternative spectrograms of the sentence
/ala huger > da.../. See text for details.
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how the formants dominate the surrounding. The forward masking effect
could be seen in the stop gap at the end of the spectrogram.

The recognition system

The recognition system is based on ordinary isolated word recogni-
tion techniques using pattern matching and dynamic programing (Elenius
and Blomberg, 1982). The Euclidean metric is normally used for calcula-
tion of distances between word patterns. The intention with this recog-
nition system is not to get the best possible performance; what we
intend is a flexible, standard framework to compare different recog-
nition preprocessors and recognition strategies.

All the auditory models are derived from FFT processing. In each
representation, 74 parameters are used, which are evenly sampled along
the different frequency scales. When a word is detected, it is linearly
normalized to 40 sample points in time. This ‘normalize and warp  tech-
nique was used because it reduces the processing needed for dynamic
programing (Myers et al., 1980). A word is, hence, described by 40 para-
meter vectors, each having 74 elements. The time normalization violates
what we know about speech perception but the effects on the recognition
performance are small as may be seen below under "results". A more
correct time normalization should probably reduce the influence of
stable segments while emphasizing the transitional segments. It would
be tempting to apply a perceptual time dimension rather than a normal-
ized physical dimension. This has not been explored in this experiment
but has been dealt with earlier, Elenius and Blomberg (1982). The
method used by Kuhn et al. (198l1), where the sampling points are chosen
sO that they all contain the same amount of spectral change, may also be
seen as a step towards a perceptual time representation.

In the experiment, each reference word is built from seven utter-
ances during a learning phase. The first learning sample of each word is
used for a dynamic time alignment of the second one and a mean is
calculated. The third utterance is warped to this mean and then added
to the reference and so on. Each word added to the reference is weight-
ed so that all learning words have equal influence on the resulting
template. The reason for using several words for each template is that
using only one word gives a rather poor and varying recognition result
as is shown later under "results".

Vocabulag

Two vocabularies were tested. One consisted of the nine long
Swedish vowels in an hvl-context and the other of 18 Swedish consonants
in an aCa-context. What really was tested, since the context is con-
stant, was the consonant and vowel discrimination ability of the system,
though there was no segmentation into phonemes of the words used. The
recordings were made in a relatively quiet office room and reduced the
problem in detecting the end points of the utterances.

Each vocabulary was read 31 times by one male and one female speak-—
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er. Seven repetitions of each word were read in a normal way and were
used to build the reference templates. The test utterances were read in
four different ways: normally, slowly, rapidly, and emphatically. Six
utterances for each speaking style made a total of 24x18=432 test words
for the consonants and 24x9=216 test words for the vowels. The reason
for varying the manner of speaking was to increase the error rate in
order to make the differences between the models more pronounced.

Experiment

The recognition performance of the different auditory models has
been tested and compared to the FFT processing using the vocabulary
presented above. We have also explored some specific characteristics of
the recognition system; the method of building each reference template
from several words and the effects of the linear time normalization. We
have also tested three different metrics for calculating the difference
between speech frames; city-block, Euclidean, and squared metric. Fi-
nally we have reduced the number of parameters of the FFT processing by
increasing the bandwidth of each channel. This is analogous to using a
filter bank with a decreasing number of channels.

Results
Before presenting the recognition performance of the different
auditory models we give the results concerning the details of the recog-
nition system.

Different number of words per reference.

In this section we present results of varying the words to build
each reference template. Using the seven learning words as references
directly, one at a time, results in recognition rates between 78% and
85% for the FFT processing of the consonants of the male speaker. Thus,
the variation is quite large as argued earlier. The mean is 81%. In-
creasing the number of words per template from one to seven gives
accuracies according to Fig. 5.
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Fig. 5 NUMBER OF WORDS PER REFERENCE

It may be seen that increasing the number of words per reference
gives a substantial increase in performance, especilally when going from
one to three words. The results were achieved by permuting only seven
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different learning lists but the effect is quite pronounced and also in
agreement with our experience.

Time normalization and speaking style.

We will present some statistics on variations due to the different
kinds of speaking style. The “slow’ words were about 25% longer than
the normal ones, the ‘rapid’ words were about 25% shorter, and the
‘emphatic’ words were about 10% longer. Changing the manner of speaking
may also influence the speech spectrum. The error distribution according
to speaking style over all models (except PHONTEMP) of the male conso-
nants were; normal 21% of the errors, slow 20%, rapid 30%, and emphatic
29%. Thus, the rapid and emphatic readings caused about 50% more errors
than the normal and slow readings. The fact that the slow readings
perform as well as the normal ones indicates that the effect of the
linear time normalization on the recognition results is small and proo—
ably neyligible.

Auditory models.

The recognition results of the different auditory models are dis-
played in Table I. The recognition performance of each model is shown
separately for consonants and vowels for each speaker. The mean of each
model is also given.

MODEL VOWELS CONSONANTS MEAN
MALE FEMALE MALE FEMALE

FFT 29 96 95 97 97
BARK 99 95 92 95 95
PHON 96 21 88 91 92
PHONTEMP 95 85 82 38 88
SCHE 91 93 B2 83 87
DOMIN 99 99 20 o0 94

¥

Table I. Recognition accuracy of FFT processing and different auditory
models in per cent.

The FFT based recognition is surprisingly accurate especially for
consonants, 97.5% for vowels and 96% for consonants. The number of
parameters (74), however, is greater than what is normally afforded in
speech recognition systems. Furthermore, the intervocalic position of
the consonants by-passes the end point detection probleni.

When the auditory-inspired transformations of the speech spectra
grow more complicated (BARK-PHON-SONE-PHOWTEMP), the recognition results
deteriorate progressively for both consonants and vowels. The DOMIN,
which is a model of a rather different kind, does not follow this
general tendency. The performance for vowels is excellent, but for

10.
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consonants it is no better than the PHON representation. This is under-
standable in the light of the function of DOMIN. In this model, all
emphasis is put on the frequency location of prominent regions (for-
mants) which are known to form a good basis for vowel identity deci-
sions. This point is strongly supported by our earlier experiments on
vowel perception and model predictions of perceptual distance, Carlson
and Granstrom (1979). In the DOMIN model, all loudness information is
disregarded, which makes the discrimination between consonants problem-
atic, especially if they have the same place of articulation. For the
SONE model, the difference between performance on vowels and consonants
is considerable. The low score for consonants is possibly due to the
amplitude transformation involved. The relatively weak consonant seg-
ments tend to be disregarded in the distance calculation. In a pilot
experiment, not reported here, an ad hoc combination of the PHON and
DOMIN models was used with quite promising results.

Distance calculations.

Three different kinds of metrics have been explored; city-block,
Euclidean, and squared distances. City-block means adding the absolute
values of the difference between the parameters of two compared speech
frames. Squared means adding the square of the differences. By taking
the square root of the squared sum, we get the Eucliden metric. The
squared metric punishes large differences much more than small ones.
The metrics have been tested for the consonants of the male speaker for
all processings except PHONTEMP. The experiment is done with only every
third of the calculated parameters for each model since the spacing
between the parameters is one third of their bandwidth. For the DOMIN
model we have taken the arithmetic average over three parameters instead
of just sampling every third. This will smooth the effects of steps in
the DOMIN representation which otherwise would cause problems.

MODEL VOWELS CONSONANT'S
CB EU SQ CB EU sQ
FFT 99 99 99 92 95 96
BARK 97 99 98 82 92 91
PHON 95 96 95 88 88 85
SONE ’ 87 92 87 80 81 78
DOMIN 99 99 97 93 92 94

Table II. Recognition accuracy for different distance metrics; city-
block (CB), Euclidean (EU), and squared (SQ). Male speaker, consonants,
25 parameters.

Comparing the Euclidean results with those of Table I shows that
reducing the number of paraweters from 74 to 25 does not impede the
recognition performance. This is not very surprising taking into ac-

11.
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count the redundancy due to the overlap between channels in the 74
parameter case. The differences between the different metrics are not
very pronounced. However, the Euclidean metric seems to perform somewhat
better. It is the best, or among the best, in eight cases of ten while
the corresponding count is three for both other methods.

Reducing the number of parameters.

1f we reduce the number of channels in the FFT filter bank by
increasing the bandwidth of the filters, the overall recognition rate
decreases, as may be seen in Fig. 6. he new parameters are calculated as
the energy sum over 3, 6, 12, and 25 ‘original’ parameters resulting in
a total of 25, 13, 7, and 3 new parameters.
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These results do not conform with those of Dautrich et al. (1983)
who reported decreasing accuracy for increasing number of filters.
However, they used non-overlapping filters, and as the number of chan-
nels increased, the bandwidth decreased, making the filter outputs
sensitive to variations in fundamental frequency, especially for high
pitched female voices. '

Conclusion

We have found that the difference between the different kinds of
metrics used is very small though the Euclidean seems to be slightly
better. The results achieved by varying the number of channels in the
FFT model clearly show that increasing the number of parameters also
increases the recognition performance.

It is obvious from our experiment concerning the auditory models
that the unqualified assumption does not hold - auditory models used as
speech recoynition front ends will not consistently improve perform—
ance. Several plausible explanations for our results could be mentioned.

All models are based on the FFT analysis. The data will be smeared

12.
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in frequency and time depending on the chosen approach.

- The models describe only a few selected ways in which the human
auditory system processes data. They may be based on too specific
experiments, capturing ways of processing the signal that is not
very important for speech processing and missing those that are.

- There is no match between the human-modeled primary analysis and
the rest of the recognition system. If this match is required, the
modeling could pay off only if the decision making part of the
program models the way the central nervous system looks at the
sensory data. '

All these explanations may contain some truth. This should, of
course, not hold us back from the interesting fields of auditory model-
ing and speech perception. It might, however, be premature to include
our fragmentary knowledge of the auditory system in today’s speech
recoynizers.
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