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VOWEL CLASSIFICATION BASED ON ANALYSIS-BY-SYNTHESIS!

Rolf Carlson? & James Glass®

Abstract

In this paper, we report on a sequence of experiments designed to explore the use of
analysis-by-synthesis methods for speech recognition and speech analysis in gen-
eral. An intermediate representation of the speech signal is formulated in terms of
speech-synthesis-like parameters.

Using a multi-layer perceptron as a common classifier, we have performed sev-
eral vowel classification experiments based on these parameters. The results of the
experiments indicate that we are able to obtain the same classification performance
as a more traditional spectral representation using nearly an order of magnitude

fewer dimensions.
We have also developed a speaker normalization procedure that improves clas-
sification rate compared to the one we obtain with a simple male/female normali-

zation.
In our last set of experiments, we have studied the influence of the context on

the classification results. The best classification results in our experiments were
achieved by a combination of default formants and labels specifying the context to-
gether with speaker normalization of the automatically measured synthesis pa-

rameters.

INTRODUCTION

Currently, approaches to speech recognition and synthesis tend to differ significantly
due mainly to the different requirements of the speech decoding and encoding proc-
esses. Since speech recognizers must decode all possible acoustic realizations of un-
derlying phoneme sequences, researchers have resorted to statistical methods within
a loosely structured framework to model phonemes. Coarticulatory variation is often
modelled by incorporating large numbers of context-dependent units into the lexi-
con.

In contrast, speech synthesizers are typically required to generate a small number
of intelligible realizations of an underlying word sequence. Most text-to-speech syn-
thesizers currently manipulate a small number of parameters in a highly constrained
manner to produce speech. Coarticulation is modelled by explicitly formulated rules
which operate on these parameters.

In this work, we are attempting to combine the strengths of both approaches to
develop a system that uses a small inventory of parameters, but has the capability of
producing the wide variety of realizations which are found in natural speech. Given
an acoustic representation of the speech signal and a phoneme sequence, the system

IThis is an expanded version of a paper presented at the International Conference on Spoken
Language Processing, October 12-16, 1992, Banff, Canada

2Names in alphabetic order. A
3Spoken Language Systems Group, Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, U.S.A.
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should be able to adjust its internal parameters to effectively produce a replica, or
copy of the input, and provide a probability (or distortion error) that such an output
was indeed produced by the sequence.

ANALYSIS-BY-SYNTHESIS

In general, an analysis-by-synthesis approach attempts to describe the acoustic rep-
resentation, ¥, with some synthetic representation, 5, which is generated from a set

of parameters, ¥, and a synthesis model, f(), where § = f(3). Although the nature
of the modelling has varied, this type of approach has been used previously for per-
forming automatic analyses of the speech signal (Bell et al., 1961; Olive ,1971) and for
speech recognition (Blomberg, 1989; Blomberg et al., 1988). The acoustic and syn-
thetic representations have typically been in the spectral domain.

For automatic analysis of speech, it is desirable to find a value for y which opti-
mizes the match between ¥ and § in some way. In the past, recursive procedures
have been used to minimize the distance between these representations, although
this problem could be cast in a more stochastic framework as well. For phonetic
classification, for instance, we might choose to find a parameter vector for each

phone o which maximizes the conditional probability p(¥ | o).

In the work we describe here, we have focused our attention on vowel classifica-
tion in order to constrain the synthesis modelling problem. During the analysis step
we attempted to find a single solution for the parameter values, y, for each segment.
The following sections describe the synthesis and analysis components in more de-
tail.

SYNTHESIS MODEL

The acoustic and synthetic representations consisted of spectra spaced on a Bark
frequency scale, and the underlying synthesis parameters consisted of the first four
formants, a higher-pole correction factor, as well as a source model parameter and a
simple estimate of transmission channel characteristics. The higher pole correction
consisted in the first phase of a sequence of formants according to a hypothesized
vocal tract length. A synthetic spectral output was generated from the underlying
parameters using a cascade speech production model.

ANALYSIS PROCEDURE

The problem of matching the acoustic and synthetic representations essentially in-
volves searching over the entire parameter space. In order to reduce the amount of
computation required during this stage, we have incorporated several restrictions
into the search procedure. Although these restrictions do not guarantee an optimal
solution to the search, we have found that they work well in practice. A gradient-
descent procedure was used to minimize the error between the input and the syn-
thetic spectral representations. The error metric consisted of a weighted Euclidean
distance emphasizing spectral peaks. A fixed step-size was used during the search
which effectively quantized the parameter space. This allowed us to precompute the
spectral changes resulting from perturbing a parameter one step in either direction.
The resulting spectra could then be synthesized simply by adding in this perturba-
tion, rather than by being completely regenerated from the parameters themselves.

18
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One of the problems with any stepwise-optimal algorithm is the possibility of
settling on a local optimum in the parameter space. We have found that we can re-
duce this problem by using a two-pass procedure. In the first pass, the source pa-
rameter was kept constant, allowing the formant frequencies and higher-pole-cor-
rection factors to vary. The error spectrum was used to update a channel-specific
spectrum. During the second pass, the vocal tract length and the channel character-
istics were kept constant while the source parameter was allowed to be optimized.

We have investigated several different methods for initializing the gradient-de-
scent optimization including both top-down and bottom-up procedures. In the for-
mer case, we provide an estimate of the parameters based on the underlying phone
identity of the segment. In the other case, where the identity is unknown, we have
found that starting from several different seed points in the parameter space
(including a simple uniform tube) produces essentially the same results in terms of
matching error and classification performance. Fig. 1 illustrates the distance distri-
butions resulting from different types of synthesis procedures. As expected, the syn-
thetic spectra based on a simple uniform tube produced the largest distances, while
spectra derived from default parameter values, where the phone identity was
known, showed improved performance. However, it is interesting to note that the
performance drastically improves after optimization and that there is little difference
between spectra initialized based on top-down default synthesis parameters com-
pared to those initialized bottom-up from several seed starting points.

VOWEL CLASSIFICATION  Distance distribution

for all training vowel

Using a multi-layer per-
ceptron as a common clas-
sifier (Leung, 1989), we * 1
have performed several

vowel classification experi-
ments. Sixteen vowels were
chosen as test material. The
vowels were extracted
from the phonetic labels in
the TIMIT database (Zue, T
& al., 1991). The original
acoustic phonetic labels 1
were used with no cor-
rection.

The training and test
material used in all ex-
periments was exactly the
same as was reported in Fio. 1. A comparison of distance distributions for alternative
studies by Leung (1989) synthesis procedures.
and Meng & Zue (1991),
see Fig. 2. The training data consisted of sentences uttered by 500 speakers. One
third of the speakers were females. No adjustments were made for dialect. Sentences
from 50 different speakers were selected to be the test material. Five sentences from
each speaker were used as speech material. We thus had 2,500 training sentences
(more than 20,000 vowels) and 250 test sentences (more than 2,000 vowels).

Distance between synthetic and input spectra
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After a se-
quence of test
runs, we settled
for one layer of
64 hidden units.
The experiments
using very few
input parame-
ters performed
equally well for
fewer hidden u-
nits but for the
larger input vec-
Fig. 2. Results from the experiments by Leung (1989) and Meng & Zue (1991). tors, the number
Synchrony envelope and mean rate response are different representations in the had to be in-
auditory model developed by Seneff (1985) ' creased for op-

timal perform-
ance. All results reported in this paper are means of five experiments. The means
have a standard deviation of about 0.2% in the results.

100

Leung Meng and Zue

Synchrony +Mean + Duration + Phonetic Mean Synchrony  Both
Envelopes Rate Context Rate Envelopes

BASE-LINE EXPERIMENTS

The results from the first experiments can be seen in Fig. 3. The first bars labelled
Bark Spectrum use simple Bark spectra (80 points) computed over the initial, medial
and final part of each vowel (3+80=240 parameters). The spectrum was initially com-
puted with a standard 256 point DFT every 5 ms with a 9.4 ms Hamming window.
The result 62.5% correct classification is comparable to the ones achieved by Leung
(1989) and Meng & Zue (1991) using the same material. However, the result is

slightly lower than the results they a-

100 _ chieved using an auditory model.
H top choice .

o O toptwochocss [ gy 70 The next experiment labelled Formants

L, T has a very simple representation. Three
v formant values measured with the
™ analysis-by-synthesis method and pooled
" over each third of the vowel are used as
° input (3+3 = 9 parameters). Despite the

Bark  Forments Beseline Baseline NormalizedNormaizea drastic reduction of parameters, we still
Spectrum Hele-Female " obtain a reasonable result of 56.6% correct.

The Baseline experiment has some ad-
ditional parameters. We have added the
formant amplitude and also an estimate of
the formant transition speed in the three
parts of the vowel (3+9 = 27 parameters).
The result 62.6% is comparable to our
initial experiment. The speed parameters will give information about both
diphthongization and also a little context information. This type of additional
information on the dynamic aspects of the segment has also been explored by, for
example, Seneff (1986). The amplitude and the slope information make about the
same contribution to the over all improvement.

Fig. 3. Classification results. The first three
conditions contain information from within
the segment while the latter three conditions
also incorporate additional adaptation infor-
mation.
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SPEAKER NORMALIZATION

Speaker-dependent vowel normalization is a classic problem in speech research. One
of the most studied speech corpora is the Peterson-Barney data collected as early as
in 1952 (Peterson & Barney, 1952). In a study, Syrdal (1986) approached the speaker-
normalization problem from a perceptual point of view. Similar work has been pur-
sued by Traunmdiller (1981). From a classification point of view, Huang & Lippman
(1987) reported 80% correct classification for the ten vowels and 67 speakers in the
Peterson-Barney data using an MLP classifier similar to ours.

The vowel normalization problem has been extensively studied by Fant (1975) es-
pecially from an articulatory perspective. These studies mainly used isolated vowels
or vowels in well specified contexts. The work was focused on the male and female
difference expressed as group means. One important conclusion from these studies
was that correction factors are vowel dependent. The first formant frequency of open
back vowels is more sex-dependent than that of high front vowels. This can be ex-
plained by the asymmetric relations in cavity size between female and male vocal
tracts. The pharynx cavity tends to be more similar for the two groups than the
mouth cav1ty We attempted to extend this work by regarding each speaker as hav-
ing a unique vocal tract.

The TIMIT database is a good source for studying speaker normalization since
two sentences (SAl and SA2) are produced by all speakers. (SA1l: “She had your
dark suit in greasy wash water all year.” and SA2: "Don’t ask me to carry an oily rag
like that.”) We used our analysis-by-synthesis procedures to estimate each subject’s
vowel space and vocal tract length (i.e., higher pole correction), as shown in Fig. 4.
Three compensation factors for the first three formants were calculated and the for-
mant values normalized, Fig. 5. The classical method to linearly transform the for-
mant frequencies along the Bark scale was compared to a simple calculation of a
frequency ratio. We found no support for increased performance by using the audi-
tory based method so we settled for the latter method. Similar results have been
reported by the Austin group (Yang, 1990).

Besides the frequency transformations that we have discussed so far, we also have
to consider the size of the vowel space. It is clear by studying from our analysis that
speakers use different levels of clear speech during the collection of the speech cor-
pora. Some speakers tended to speak very reduced while others were more ambi-
tious to reach their targets. The issue of clear and sloppy speech has been addressed
by many researchers. The distinction between hyper- and hypo-speech has specifi-
cally been addressed by Lindblom (1990). Vowel studies by van Son & Pols (1989)
and Gopal, Manzella, & Carey (1991) show the different strategies that a speaker can
use.

In our experiments, we included the standard deviation of the first two formants
for each speaker in an attempt to describe the size of the vowel space. This resulted
in a total of five additional parameters. The vowel space and degree of reduction
will implicitly describe some extra linguistic information. Typical standard deviation
frequency ratios for males and females seem to be of the same size.
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Formant one (Bark)
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Fig. 4.0) Mean formant values for each vowel in the two sentences SA1 and SA2. ARPA symbols are
used. Female means have capital letters. b) The distribution of /iy/, /ae/ and /ao/, ARPA symbols, for

some of the speakers that deviated mostly from the norm.
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Fig. 5. a) Normalized mean formant values for each vowel in the two sentences SA1 and SA2. ARPA
symbols are used. Female means have capital letters. b) Formant values for the speakers in Fig. 4b af-

ter normalization.
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Correction from synthesis
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Fig. 6. Correction factors based on synthesis replica or the given sentences (SA1 and SA2).

Unlike the results reported by Fant (1975), we did not observe any dependencies
of the normalization factors on the vowel identity. It is clear that these effects should
be addressed in a complete normalization model. However, vowel identity appears
to be a secondary effect compared to all the other contextual factors that influence
our results.

The final Normalized Dur experiment is an expansion of the Normalized method
to include the duration of each vowel (33 parameters). The result increased by 1.3%
on both the training and test conditions. This amount of performance increase is in
agreement with the work by Leung (1989). A confusion matrix for the training data
from one of five repetitions is shown in Table I.

The classification result with these new parameters based on the SA sentences can
be seen in Fig. 3 (Normalized 27+5 = 32 parameters). We clearly obtain a better result
compared to the Baseline Male-Female (27+1 = 28 parameters) method where only
one parameter specifying the speaker’s gender is added. Although the gender in-
formation was provided explicitly, we have found that it can be computed quite
accurately given the formant frequency information. A linear transformation along
the Bark scale corresponds to a single adjustment factor which is slightly more in-
formative than just supporting the gender information. We found in the preliminary
experiments that such a normalization contributed to about half of our improved
performance.

SPEAKER NORMALIZATION USING A SYNTHETIC REFERENCE

It is not necessary to use specially deigned sentences to achieve a good estimate of
the speaker-specific vowel space. In addition to the experiments so far reported, we
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used an alternative method to calculate the correction factors. Given that a sentence
has been correctly recognized, we can use a synthetic replica of this sentence as a
reference. Correction factors can then be calculated in order to make the synthesis as
close as possible to the speaker’s pronunciation. In Fig. 6, we compare the correction
factors derived from either the given SA sentences or a synthetic norm. Each point
corresponds to one speaker in the training material. A similar method has been ex-
plored (Blomberg, 1990) to optimize the spectral slope of the voice source.

% | Label| iy ih ey eh ae ahao aa uh uw ow er ay oy aw ux |[#tokens
Correct
89 iy | 89 6 3 T | 2981
64 ih |11 64 412 1 2 . . . . . . . . . 3 2550
70 ey |13 7720 53 . . . . . . .1 . . . 1436
56 eh 13 35% 9 14 . . . . . 2 . . . . 1961
72 ae .. 21372 3 .3 . . . .5 . 2 . 1492
62 ah .5 3162 . 8 . . 5 . 2 . . . 1325
55 ao . . . . . 6552 . 1 9 1 . . . . 1348
76 aa . . . .11057 . . . . 4 . 2 . 1577
18 uh 233 .3 12 . 18 816 3 . . . 5 317
70 uw .6 . . . 11 .27 8 . . . .12 - 362
82 ow . . .t . 65 . . 18 . . . . . 1027
90 er R % . . . 1 1212
76 ay .. 423 4. 9 . . . 7% . .. 1275
80 oy . .1 . . 45 . . . 3 1 38 . . 269
55 aw .. . 112 6119 . . 4 . . .5 . 426
61 ux |17 12 . . . . . . . 5 . 2 . . . 6l 966
70.5 |Totals|111 100 94 99 97 123 68 122 35103 116 102 91 86 78 82 2052

Table I. Confusion Matrix of Training Data for one Normalized Dur Experiment

ADDITION OF CONTEXT SPECIFICATION

In our next set of experiments, we have studied the influence of the context on the
classification result. The context information has basically two types of information
that can improve the classification result. The coarticulation is naturally of major
importance for the actual realization of each phoneme. We have in our experiment
only considered the closest neighbours before and after the vowel in question. How-
ever, the context also carries information on the probability of each vowel depending
on the context. It is hard to separate these two issues in a classification experiment. If
we just give random answers in the no-context classification experiment, we will get
15% correct classification. If we include context information in terms of labels or
parameter values (formants and amplitudes), we will improve the result to 25%.
Thus, we have to be somewhat careful when examining our data and consider the
different types of information that are added to our input representation.

The first experiment (Labels) presented in Fig. 7 has the immediate context added
to the Normalized system in Fig. 3. This experiment assumes that a top-down proce-
dure predicts the correct context. The same is true for the Default Formants system
where the context is described by typical target values. The best classification results
in our experiments, 80.9%, were achieved by a combination of default formants and
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1% e labels together with speaker normali-
% | 28 zation of the automatically measured
209 formant parameters (Default Formants &
bl 768
Labels).
n : In the last
top choice . EZ3 without context
60 1 [l top two choices experiment, we ] with context
. replaced the de-

Labels Detault [;afault Formantss'x Optimized Formants fault formant pa-

Formants Labels
rameters of ad-
Fig. 7. Classification results for the experiments jacent vocalic seg-
which incorporated contextual information. The by thei
first three experiments used top-down information TeNts Dy their op-
while the last one used partly bottom-up. timized value. Al-
though thlS re- Huang (1990) 'Thisexperimenl

sulted in a 2% reduction in performance compared to using _. :
the default formants, it is interesting to note that the context Fig. 8. Comparison of
) ; perceptual data for high
information can, to some extent, be calculated bottom-up font vowels (Huang,
rather than top-down. 1990) and recognition
In a study by Huang (1990), a subset of front high vowels results.
was perceptually evaluated with (81.9% correct) and without .
context (74.5% correct). This should be compared to the result for same subset 80%
and 65% in our experiment. Only the experiments which disregard the context are
noticeably different, see Fig. 8. We can conclude that the context-free representation
in our experiment is missing context information which human listeners are able to
extract from the speech signal even when the phonetic context is excluded. When the
context is added, the classification has greater impact for the simplified re-
presentation compared to the human listeners.

E88R3IBR8E g

FINAL REMARKS

We have in this paper reported on a sequence of experiments exploring analysis-by-
synthesis techniques. We believe that there are several factors that make this ap-
proach attractive. From a speech synthesis and analysis perspective, there is still a
great need for acoustical data expressed in phonetically familiar dimensions in order
to understand and model the kind of variability that can be produced by a wide va-
riety of speakers. We found the speaker normalization procedures that we investi-
gated to be quite successful which is promising also for future work on voice
transformation. In terms of speech recognition, this approach provides a mechanism
to separate variabilities inherent in the speech production process from those due to
speaker characteristics or the acoustic environment itself.

Although we have only presented our work with vowels, our synthesis procedure
works equally well on all vocalic sounds. In addition, we have also developed
analysis procedures to do automatic analysis of fricative and aspirated segments. In
these cases, the synthesis model had to be expanded to include parallel branches that
could be mixed. This creates a need to cast the whole analysis procedure into a more
probabilistic framework to include alternative synthesis models. In our continued
work, we will include a more general model along these lines.
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