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Abstract 
 
Over the last decades it has become increasingly popular to adopt inspiration from knowledge on human 
language skills in applications within speech technology. It has proven to be successful in some aspects, such as 
signal processing in automatic speech recognition1 (ASR) but the overall performance is still far behind that of 
humans. Perhaps problems within speech technology can be solved with improved engineering but a closer 
collaboration between technology and cognitive science might lead to insight on more fundamental principles 
involved in language processing that could turn out useful in speech technology. 

1. Introduction  

This paper presents a theoretic discussion of problems concerning automatic speech recognition and how 
knowledge about human speech perception is used as inspiration for finding solutions to these problems. 
Automatic speech recognition is used in many applications today and it works well provided the acoustic setting is 
adequate and it does not encounter new or unexpected input. Humans however, have an astonishing skill for 
coping with such situations; if we do fail in our speech perception task we have the ability to recover by creating 
hypotheses of what is being uttered and if we encounter new situations we have the capacity to learn. This 
remarkable ability to perceive and understand speech has given rise to inspiration when designing ASR systems. 
Knowledge about human speech perception is in some aspect incorporated in every state of the art system (for 
example in speech processing products from CISCO, AT&T, Apple and Microsoft to mention a few) but some 
pieces are still missing since the improvement is marginal. Simulating humans’ ability to perceive speech is a 
brilliant idea, but problems seem to arise when this ability is taken out of its context and implemented in an ASR 
system. It becomes obvious that there is a lot more to speech perception than signal processing. Speech 
perception in humans2 is a skill that takes years to achieve and the process is intertwined in the cognitive web 
and highly dependent on sensory input other than the auditory. Is it really necessary to simulate the entire realm 
of human intelligence in order to make systems that perceive speech satisfactorily or should speech technology 
be primarily concerned with finding the best shortcuts and settle with systems that are almost good enough? 

First a brief summary of the basic architecture of current automatic speech recognition systems (section 2) and 
an introduction to various problems concerning ASR (section 3) that will serve as a framework within which 
speech processing will be considered throughout the paper. This is followed by an overview of how automatic 
speech processing could be viewed in light of human speech perception (section 4). This matter is then discussed 
in more detail in relation to theories and ideas on speech technology and theories on learning and development in 
general (section 5). Finally, some new trends within cognitive science and robotics that concerns speech 
perception are presented (section 6). The concluding remarks (section 7) summarise the paper and provide some 
speculations on the future of ASR.  

2. Brief ASR overview 

There are various types of ASR systems, ranging from one speaker recognisers to multiple speaker recognisers 
and from specific domain systems (such as digit recogniser or timetables) to large vocabulary systems. There 
used to be a distinction between continuous speech and discrete speech recognition, but as a consequence of a 
more demanding market and more powerful computational recourses most of today’s systems are designed to 
recognise continuous speech. The task of any ASR system is translating continuous acoustic signals to 
linguistically intelligible representations of speech. The techniques used in current ASR systems for conducting 
this task can be described in three basic steps. First, feature extraction, methods for analysing and describing 
acoustic signals as discrete segments labelled according to their acoustic properties. Second, pattern recognition, 
where acoustic models are used to calculate transition probabilities between acoustic segments according to a 
pronunciation lexicon. Third, linguistic scoring, statistical grammar models according to vocabulary and syntax 
rules are used for calculating probabilities of word sequences. 

 

                                                 
1 Throughout the paper I will discuss aspects of Automatic Speech Recognition in general and use the term ASR, but include many aspects of ASU 
(automatic speech understanding) in this label. 
2 Indeed other mammals too are excellent in perceiving speech, but in this paper I will focus on the human ability to perceive in order to 
understand a linguistic message.  
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2.1 Signal analysis 

Feature extraction methods are very sophisticated in the sense that they make use of all acoustic information 
available in the waveform. Steady regions in the speech signal are categorized according to their acoustic 
properties (such as formant locations, nasality, frication, voiced and unvoiced). This is usually done by using 
either Fast Fourier Transform analyses (FFT) that break down the complex waveform into its discrete 
frequency/amplitude components such as harmonics in a speech signal, or Linear Predictive Coding (LPC) that is 
a method for discovering regularities in any time varying data, such as formants in a speech signal. An LPC 
analysis is predictive in the way that it tries to predict the upcoming value based on the hypothesis that any 
sample in the waveform is a direct function of the preceding sample. This reduces the search space considerably 
but the output is a rather crude estimation of resonance components without information about the individual 
harmonics (as in an FFT analysis). But, since harmonics are only interesting for identifying the fundamental 
frequency but not necessarily for discovering formants, LPC is a good solution for defining the characteristics of 
different speech sounds. For a more comprehensive description of techniques for speech processing, see Kent 
and Read (1992), Johnson (2003) or Stevens (1998).  

2.2 Pattern recognition  

No region in the speech signal is truly stable, but rather a reflection of the dynamic vocal tract filter 
configurations. It is therefore necessary to take the acoustic context into account when labeling the segments. 
The acoustic models used in pattern recognition are usually based on this knowledge about speech production 
and reflect the behavior of the articulators. According to these acoustic/phonetic rules (that are either learned 
from training or preprogrammed) Hidden Markov models (HMMs) are used to calculate transition probabilities 
from one acoustic segment to another to convert the segments into phones (or some other appropriate symbol 
such as syllable or phoneme) selected from a pronunciation lexicon (Rabiner, 1989). The original input speech 
signal is now represented by a sequence of phones from the pronunciation dictionary. Each phone comes with a 
context dependent HM model for calculating transition probabilities between different phones. The HMM outputs 
are strings of phones that constitute possible sub-word or word candidates with a certain probability.  

2.3 Language modeling 

This final step is built upon linguistic knowledge. The sequence of word candidates is parsed according to 
language specific rules. Such rules can either be derived statistically from extensive training with similar input 
data or from grammar and syntax specifications of the language in question. These rules constitute a language 
model that, given the adjoining words, calculates the probability of a certain word occurring in that particular 
context and hence determine the most probable word sequence.  

2.4 Optimisation 

Today’s systems do have excellent signal processing modules and built in knowledge sources of the language in 
question, but this is not sufficient for handling the enormous acoustic variety in different input signals. There 
need to be a dynamic component for learning processes that enables the system to adjust to new unexpected 
events. At least when developing an ASR system, training is essential not only for deriving implicit linguistic rules 
that correspond to the nature of input the system is designed for, but more so for gaining insight about the 
acoustic properties of a variety of speech and non-speech signals under different conditions. This strive for 
optimisation is facilitated by the methods used in today’s system, such as Hidden Markov that simplifies learning 
processes by continuously re-evaluating weights during training. However, while stringency punishes tolerance, 
the price paid for flexibility is errors due to generalisations. Built in acoustic speech production models and 
language models that reduce the search space and restrict outputs together with dynamic programming and 
statistical models that offers flexibility to the system constitute the compromise many of today’s ASR systems are 
built upon.  

3. Performance 

The problem facing anyone who is involved in developing an ASR system is how to deal with the fact that one 
linguistic message can come in so many different shapes. Different pronunciations between speakers and within 
the same speaker, but in different situations, are endless in their varieties. The goal of speech technology is 
human-like performance, hence comparisons between machines and human subjects as measurements for 
progress are highly motivated within automatic speech recognition. Lippmann (1997) investigated a number of 
such evaluations and found that error rates were consistently significantly higher in ASR than in humans. 
Although the speech perception performance of humans is the ambition, humans do have exactly the same 
problem as ASR systems but not to the same extent. Noisy background, poor transmission conditions (such as 
distorted frequency over a telephone line), distance, different speaking styles, accents and out of context 
utterances are some examples of where the human listener, just like any ASR system, sometimes fails. Still, if 
pure engineering methods of signal processing are not sufficient for performing speech signal analyses, 
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inspiration has to come from knowledge about human speech perception. Humans have an amazing ability for 
error-recovery and the spoken language works very well for communication. Therefore this is what we are aiming 
at in an ASR system. This requires that the system is flexible enough to readjust phonological representations, 
able to adapt and learn new lexical, syntactic, semantic and pragmatic information as a human can. 

4. Speech perception as inspiration  

In the brief ASR overview above the speech recognition process seems very technical, but inspiration from human 
speech perception pervades many of the methods used in today’s systems. Knowledge concerning anything from 
how the ear transmits the acoustic signal to semantic interpretation is implemented to recreate what hopefully is 
the intended phonological underlying representation of the input signal. The reasoning is this: Since the 
characteristics of language originate from constraints due to the human speech production- and speech 
perception apparatus (Lindblom, 2000), developing a system with the same constraints might facilitate the 
process of uncovering the raw signal to get to the fundamental linguistic message.  

4.1 Signal analysis in human periphery hearing  

In many aspects some general parallels can be drawn between the methods used in acoustic signal analysis and 
human speech perception. LPC for example, was developed for efficient tracing of regularities in the signal, such 
as broad spectral peaks. In the same way humans (and many other mammals too for that matter) are very 
sensitive to spectral regularities in the signal such as formant locations when distinguishing between different 
speech sounds. Statistical methods such as HMM for calculating transition probabilities also work pretty much the 
same way as a skilled language user that exactly knows what a particular speech sound should sound like in 
relation to adjoining sounds. Another example is the well known logarithmic Decibel conversion of sound 
pressure. Sound pressure is usually expressed in Pascal which is a linear scale, but when it comes to speech 
perception Decibel is a more suitable scale since it represents the nonlinear relation between sound pressure and 
the perceived loudness. There are other similar scales for perception of loudness which are also used in 
applications of speech perception, such as the Sone-scale (Stevens, 1957) that is purely based on empirical data 
from a number of subjects.  

  
Figure. 1 (above) Human ear. From 
Sonesson & Sonesson, 1993.  

Figure. 2 (right) Average sound pressure 
gain in the human ear. From Pickles, 
1988. 

 Indeed, also the initial acoustic analysis of the speech signal can be viewed as the function of the peripheral 
auditory system (see figure 1). The acoustic signal gets modulated when entering the external ear canal which 
has the same filter functions as an acoustic tube closed at one end (the eardrum) and open at the other. Due to 
these resonance properties of the ear canal, but also resonance properties of the head, the torso and the ear 
conch, some frequencies in the signal will be amplified, for example frequencies around 2-3 kHz gain about 15-20 
dB (see figure 2 and Pickles, 1988). The pressure gain curves in figure 2 indicate how different frequencies are 
weighted to achieve the perceived subjective loudness. This relation between frequency and loudness can be 
expressed in terms of the Fletcher-Munson equal-loudness curves where hearing-thresholds for all frequencies in 
the range of human hearing capabilities (approximately 0.025-20 kHz) are estimated. This phenomenon is 
something that early was considered in ASR (Itahashi and Yokoyama, 1976) and Fletcher-Munson equal-loudness 
curves are today incorporated in some of the most common methods for speech analysis. One of these is 
Hermansky’s (1990) Perceptual Linear Prediction (PLP) where this asymmetrical sensitivity at deferent frequencies 
is imitated by subtracting these hearing thresholds from the input signal. The result is a signal that appears like a 
signal that has passed through the human outer-ear. Since characteristics of speech sounds are mainly defined 
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by frequencies around 1-4 kHz, this is a relevant perceptually-based method for capturing central information in 
the speech signal. 

The signal undergoes some changes when travelling through the chain of bones in the middle-ear as well, but 
these transformations have little impact on the actual speech perception process. In the inner-ear on the other 
hand is where the spectral analysis of sound takes place. The basilar membrane (see figure 3) in the shell-shaped 
cochlea (see figure 1), is the headquarter of frequency analysis. In some respects the function of the basilar 
membrane could be compared to that of a Fourier Transform (Yates, 1993). One end of the basilar membrane is 
stiff and responds to high frequency oscillations, further down the membrane gets softer and responds to low 
frequency oscillations. Thousands of tiny hair cells along the membrane (in the organ of Corti, see figure 4) 
transform these oscillations to impulses to the auditory nerve. The signal has been analysed in its frequency 
components and the information is sent to the brain for further investigation.  

However, psychoacoustic studies have shown that this frequency response in the basilar membrane is more or 
less logarithmic and dramatically influences our subjective interpretation of the speech signal (Gelfand, 1998). 
This frequency resolution can be described in terms of critical bands where each band corresponds to a certain 
continuously increasing frequency width. In contrast to the physically grounded and linear signal analysis 
performed with FFT or LPC, the mapping of frequency in the basilar membrane is not a direct match with the 
acoustic signal. The critical bandwidths can be said to function as filters, which to a certain extent enhance 
certain sounds (for example, our subjective perception of loudness changes when the distance in frequency of 
two signals exceeds such a bandwidth whereas the perceived loudness is even within one critical bandwidth). 
While the critical bandwidth expressed in Hz is quite narrow in the lower frequencies (the soft apical end of the 
basilar membrane, by the helicotrema) and small changes in frequency are detected, further up in frequency the 
bandwidth gets broader and it takes bigger changes in frequency in order to perceive them.  

 
Fig. 3 (above) The path of vibrations in the basilar-
membrane are shown in a schematic view of the cochlear 
duct unrolled. From Pickles, 1988. 

Fig. 4 (right) A cross-section of the organ of Corti. From 
Pickles, 1988. 

The discovery of this nonlinear relation between perceived frequency and Hz gave rise to a couple of perceptually 
based frequency scales called the Bark scale and the Mel scale. One Bark is defined as one critical bandwidth and 
corresponds roughly to a step of constant length along the basilar membrane, i.e. one Bark corresponds to an 
approximately constant number of hair cells in the basilar membrane. The Mel scale is very similar to the Bark 
scale in that it is based on the subjective perception of pitch and transforms the signal to correspond to this 
nonlinear human perception of frequency. This kind of knowledge about frequency resolution in human peripheral 
hearing is something that is used in many of today’s techniques for analysing speech signals. The most popular 
one is the Mel Frequency Cepstrum Coefficients (MFCC) method, where a Mel-scale frequency warp is used for 
converting the input-signal to what is thought to be its auditory representation. In the same way, in the PLP-
analysis (Hermansky, 1990) mentioned earlier, the Bark-scale (the critical band spectral resolution) in used for 
filtering the signal. The techniques are similar except for the exact shape of the frequency-perception curves.  

 4.2 Linguistic knowledge 

Leaving the signal processing step of speech recognition and entering the linguistic modelling more extensive 
descriptions of language rules are implemented in the system. Any parallels to the human speech perception here 
must be drawn to a cognitive level rather than auditory. Extensive work has been done also in this area to 
implement modules of cognitive linguistic capabilities, such as grammar, semantics, pragmatics and syntax in ASR 
systems. Taken together, these components added to the thorough initial acoustic analyses and categorisations, 
fused by final evaluations of suprasegmental aspects such as intonation, speaking rate and speaking style, seem 
like the perfect imitation of the human language skill in such a way that the system uses a number of knowledge 
sources and relevant methods in order to derive the linguistic message embedded in an acoustic signal. 
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Apparently this cannot be true, as mentioned in section 3, humans are still superior to machines in all aspects of 
speech recognition. The majority of scientists involved in speech technology agree that even the performance of 
state of the art systems is far below satisfaction and devote their research, now more than ever, to uncover the 
mystery of speech perception. In the following chapters some of their ideas will be discussed. 

5. Is speech perception a proper model for ASR? 

There is of course the possibility to construct an ASR system on a purely engineering basis, but inspiration usually 
comes from the human language skill. The idea of mimicking the human speech perception process is obviously 
not very farfetched since it is only humans that make use of human language and it is only human language that 
is the application for ASR. Since acoustic spectral representations of speech tells us something about what the 
signal sounds like when produced, auditory spectral representations of speech is probably more suitable if we are 
interested in what the signal sounds like when perceived (cf. Carlson & Granström, 1982). This is a popular view 
today and many of the systems are brilliant copies of every aspect we know about human speech perception. But 
there are still problems within ASR. 

5.1 Improving the technology 

To achieve this human-like speech recognition skill speech technology has gone from signal processing methods 
to artificial intelligence. Spectrogram was a breakthrough and phonetic insights together with modules of higher-
level linguistic competence took ASR to where it is today. Nevertheless, since this does not work to satisfaction 
we have to track down the weak link in the ASR method chain. According to Ney (2003), the strong standing 
component over the years in ASR systems is the usage of statistical methods (such as HMM for acoustic 
matching) but he argues that it is necessary to incorporate proper acoustic/phonetic knowledge in these models, 
this is something we are lacking today. Similarly Lippmann (1997) is of the same opinion that the stage of low-
level acoustic/phonetic analyses is where ASR systems still lack competence and this is where further research is 
needed. It is true that humans have an amazing ability for detailed acoustic analysis, but so do also the ASR 
systems today. One guess would be that it is not necessarily the acoustic analysis that has to be improved, but 
rather the ability to use higher level information for making the correct acoustic analysis. Humans are constantly 
exposed to a variety in acoustic signals that still get the same interpretation (such as same words but different 
speakers) or the same acoustic signals that get interpreted in different ways depending on the context (compare 
for example the phrases lesson five and less than five, Lindblom, pers. comm.). The weak link in this case would 
be the kind of knowledge a system uses in order to decide on the right phonological representation of the signal. 
Batliner et al. (2001) believe that this is the case. Today’s systems use an intermediate phonological level 
(pattern recognition) of description between the abstract function (linguistic representation, such as words in the 
lexicon) and the concrete phonetic form (phonetic features in the speech signal). They argue that better results 
could be achieved if the systems were functioning successfully without such an intermediate level, using instead a 
direct link between the syntactic/semantic function and the phonetic form. Such systems would be able to store 
new knowledge on their own, in a similar way humans do. The intermediate translation to phonologic 
representations is the main problem according to Greenberg (1997) as well. He suggests that instead of focusing 
on finding a few linguistically relevant units (such as phonemes) in the speech signal, the system should be able 
to derive linguistic information from many different sources of information. One single source will not be sufficient 
for deciding on robust representations of linguistic information, but an analysis of many cross correlated 
parameters in the speech signal, ranging from acoustic features of a few milliseconds to suprasegmental features 
stretching over an entire utterance, would be a flexible yet robust method similar to the kind of strategy human 
listeners use for interpreting the speech signal. 

5.2 Non-auditory speech processing in humans 

If we were to forget about the signal per se for a moment and examine other aspects of the speech perception 
task it is immediately obvious that problems concerning decoding a speech signal extend far beyond auditory 
processing. One main difference between an ASR system and a human language user lays in their adaptive ability 
– while the ASR system from the start is a fully equipped speech recognizer, it takes years for a human to 
become skilled in speech perception. On the other hand, humans have throughout the lifespan access to external 
references (and internal) to their linguistic knowledge that enhance the ability to recover from errors and 
continuously learn new speech processing tasks. Humans use multiple sources of information at all times for 
decoding the speech signal, hence a perfect acoustic setting, invariance in the speech signal or a flawless speech 
perception mechanism is not crucial in humans, whereas in ASR it is. Humans have an awareness of the situation 
that might be a topic of conversation and have expectations on what is being uttered and interpretations of 
speech signals are based on such expectations. It is probably not a coincidence that domain-specific ASR systems 
have the best performance rate. The situation in domain-specific recognition is very much like that of humans, 
the system knows from the beginning what linguistic message to expect which makes it easy to spot the 
keywords almost regardless of their acoustic quality. Humans get this information continuously during the lifespan 
from sensory and cognitive sources while an ASR system has to be pre-programmed with this kind of information.  
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Another aspect is the setting during the speech act; humans often have access to other linguistically relevant 
information, such as visual input of the face of the person who is speaking, usually humans don’t have to rely 
solely on the speech signal to solve the signal processing task. Scientists involved in designing dialogue systems 
are well aware of the fact that such information is crucial in many situations for successful speech recognition and 
it becomes more and more common to add a face correlated with speech synthesis systems to enhance 
intelligibility. The other way around, to provide the system with complementary visual input, is not really an 
option for ASR systems since it would involve simulation of yet another enormous dimension of human 
perception, that of visual interpretation. The notion of multiple dimensions however, is relevant when 
constructing human-like ASR systems and needs to be considered in the long perspective. In today’s ASR systems 
all potential linguistic information is squeezed out of the acoustic dimension while humans use information from a 
multiple dimensions. As discussed earlier, many of the up to date systems do include representations of different 
knowledge sources to a certain extent, but there are problems with the linking between the acoustic signal and 
higher-level information.  

The conclusions to be drawn from all this seem to be that signal processing per se is probably not the critical 
issue, with the engineering skills and insights on human speech processing behind today’s system, signal 
processing shouldn’t be a problem. The knowledge sources, representing the cognitive high-level processes of 
human speech perception, incorporated in many of the systems are also very extensive and well motivated. Once 
again it comes down to the collaboration between signal processing and higher-level interpretation. This however, 
is a scientific domain which is still in its dawning and efforts from a variety of research areas are necessary to get 
a better understanding of what could be summed up as intelligence. 

5.3 Intelligent systems 

Minsky (1985) defines intelligence as looking for causal explanations when failing with a task, and when finding 
them, adding them to the cognitive network of belief and understanding. Intelligent learning develops with 
experience, and since a task-specific programmed system does not have any experience it cannot learn. Minsky 
argues for the necessity of childhood in any intelligent system and questions why we make systems do adult 
tasks before we make them do childish things. This would perhaps be relevant for ASR systems if our demands of 
them are to perform speech recognition in a human-like fashion. The idea however, of raising an ASR system 
from a naïve data processor to a fully equipped language user in order to make it recognise speech satisfactorily 
seems a bit awkward. Nevertheless, the design in today’s systems where modules of different knowledge sources 
are implemented to solve speech processing tasks rests upon traditional viewpoints in the spirit of nativistic 
theories. The reasoning is that unless humans have some form of innate linguistic knowledge, such as a 
genetically programmed module enabling language learning and given the variation in speech, it would be 
impossible for the infant to find any linguistic structure in the varying information flow of the ambient language 
(Chomsky, 1988, Pinker, 1994).  

The reality of such modules of knowledge is not that evident according to Elman (1993) who simulates infants’ 
behaviour in computational network models. He suggests that one does not necessarily has to view the 
information flow as a problem children must struggle with when learning a language, but instead one should view 
variation as an asset. In his view, infants have an immature memory and can therefore only process simple 
sentences and structures (Elman, 1999). This reasoning implies that an infant’s internal representations of 
language are much rougher than adults’ in the sense that they are not focused on categories that will be 
linguistically adequate later on. Elman’s suggestion is that improvement in memory capacities and the acquisition 
of basic phonetic representations allows the infant to process more complex sentences. The input data is also of 
great importance when the initial capacity of a system is limited but matures with time. Elmans network models3 
imply that lack of variation in the information may cause the system to make wrong generalisations and too much 
variation in the information may slow down the learning process until enough data is gathered to make 
generalisations. These findings are in line with results from experiments on sound-meaning connections in infants 
(Koponen et al., 2003). Another simulation of language learning has been done by Rumelheart and McClelland 
(1994). Their model, Parallel Distributed Processing (PDP), learns syntactic rules solely on the basis of statistical 
regularities in the input signal. They chose to investigate English verbs since it is usually claimed that children 
cannot learn their inflections if they have not acquired the rules of regular and irregular verbs. Their PDP model 
takes no notice of this, instead it stores all kinds of verbs in a memory that reinforces similar patterns. After a 
certain amount of input verbs the system finds regularities in the structure of the verbs and generalises them to 
novel verbs. There are no rules that determine the correct inflection but statistical relationships among the base 
forms of the verbs. In their view children do not have to find out the rules that could describe a language in order 
to master it. With this learning model they want to show that rules are all right for describing a phenomenon but 
do not necessarily have anything to do with the underlying processes of that phenomenon. 

                                                 
3 For exercises in network modelling, see Plunkett and Elman, 1997. 
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Humans develop the skill for language processing in many different stages and it appears to be a long and 
winding road to go from rookie to a flexible, high-performance language user. In ASR systems on the other hand, 
only that final step with knowledge of an adult language user is implemented and perhaps this is where speech 
technology fails. This is the opinion of the new branch of computer scientists and engineers that are involved in 
developing humanoids (robots used for interaction with humans in human environments). We are looking into 
this in next section while asking the question: Is cognitive development something speech technologists should 
be concerned with? 

6. The merging of science and technology 

A theory of mind (specific cognitive ability to understand oneself and others as intentional agents) is believed to 
be unique for humans, just as language and the two of them seem to go hand in hand during the early 
developmental stages in humans. Therefore, in quest for insight on the human language, the infants’ perspective 
is something that is taken into consideration and modelled in the field of developmental, intelligent, humanoid 
robots. In contrast to traditional AI systems, which from the beginning implement different knowledge modules, 
humanoids build their own knowledge during their life span and the knowledge sources get interconnected in a 
functional way. A task-specific system (such as ASR) requires human programmers to fully understand the 
domains of the tasks and to be able to predict them. The developmental approach on the other hand, is 
motivated by human cognitive and behavioural development from infancy to adulthood. With humanoids, 
scientists aim to provide a system with broad and unified developmental skills instead of separate knowledge 
modules. The learning method in a developmental system is simulated by systematic self-organisation processes 
which enable the system to develop its own cognitive and behavioural skills through direct interactions with its 
ecological context (the physical world).  

One example of how this approach may be useful for gaining insight on language learning is a perceptually 
grounded robot developed by Domineys and Bouchers (2004). The system is based on a minimum of pre-wired 
functionalities and learns sound-meaning representations and grammatical constructions by interacting (visually 
and auditory) with its environment. The language learning behaviour observed in the robot seems compatible 
with the early stages of human language acquisition. Another example in the same line is the robot SAIL (Self-
organizing, Autonomous, Incremental Learner) developed by Weng and Zhang (2002). Also here the baseline is 
to program only biological conditions such as memory capacities, vision and a highly sophisticated hearing system 
(Weng and Zhang, 2001). Their overall objective with SAIL is to study how biologically inspired systems 
potentially can develop intelligence through interaction with their environment (Chen and Weng, 2004). The 
collective aim within this branch of science is to get an understanding of the human brain through embodied 
modelling and in the long run be able to construct intelligent systems that are able to function in human 
environments.  

7. Summary 

Is it really necessary to understand every aspect of human intelligence in order to make systems that perceive 
speech satisfactorily? Or should the role of speech technology primarily be about finding the best shortcuts to 
human-like performance with more fine tuned adjustments of the existing systems? As discussed in the beginning 
of the paper, ASR systems today work quite well as long as the acoustic setting is adequate and they don’t 
encounter new or unexpected input. The first step of signal processing as well as the last step of linguistic scoring 
don’t seem to be problematic, rather how to intertwine these processes in a functional way seems to be the 
concern to blame the poor performance (compared to humans). How to solve this problem is the main topic of 
research within ASR. Whether the pursuit of a flawless speech recogniser takes the long route, through the area 
of cognitive development, or continues on the track of refining the existing systems by developing the 
techniques, developmental science and technology are bound to have a closer relationship in the future 
(Greenberg, 2001). In fact, without speech technology, understanding of human speech processing would not 
have reached this far, and without empirical knowledge of human speech processing and insight on the power of 
speech communication, speech technology might not even be justified.  
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