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1 Introduction

Automatic speech recognition (ASR) is the process which a computer inter-
prets human speech into some kind of meaningful representation. Usually,
the task for the automatic speech recognition is to identify the correct word-
sequence. Speech recognizer is used in different applications for example
simple command-control programs, transcription and speech understanding.

A good automatic speech recognizer should be able to recognize spon-
taneous continuous speech and should not require the speaker to break up
their speech into discrete words. The task of recognizing speech from news-
papers or news broadcast with a state of the art speech recognition systems
can be done with accuracy higher than 90 percent. The accuracy drops
significant when using spontaneous speech, due to the fact that the acous-
tic and language models usually have been built using written language or
speech from written language [9].

This term paper is a literature review in the area of automatic speech
recognizer and we will investigate different techniques to incorporate syn-
tactic information into the speech recognizer. How can a speech recognizer
benefit from syntactic information? Is it possible to integrate a parser?

The paper is organized as follows. We begin with a brief overview of
automatic speech recognition. Section 3 investigates different methods of
integrating language models. Finally, the paper ends with conclusions.

2 Automatic speech recognition

Speech recognition is a complicated task and have to deal with many dimen-
sions of difficulties. The first step is to extract a number of features from
the acoustic signal. The feature extraction has to be robust to acoustic vari-
ation but sensitive to linguistic content. Hence, the recognizer has to deal
with various kinds of acoustic environments (surrounding noise and quality

1



of the microphone) and different speaker (genders, ages and health condi-
tions). The speech signal is cut up in frames, a time slice around 10 ms. For
each frame a feature vector is extracted with appropriated parameters [10].

The feature vectors are handed over to the classification module, these
features are used to differentiate among the phonemes that are spoken for
each word. Furthermore, the phonemes allow the recognizer to identify
words.

The state of the art speech recognition systems of today use Hidden
Markov Models (HMMs) to model this classification module. HMM is a
statistical model used in many applications in Language technology. Markov
models are state-space models that can be used to model a sequence of
random variables that are not necessarily independent. The probability of
each state is only dependent on immediately preceding state. In an HMM,
we do not know the state sequence that the model passes through, but only
the output sequence which is a probabilistic function of it. The generation of
a random sequence of states Q = {q1, q2...qn} is then the result of a random
walk in the chain and of a draw at each visit of a state [10, 14].

In speech recognition the statistical model consists of an acoustic model
and a language model.This term paper will concentrate on the language
model and how syntactic information can help the speech recognizer, see
next chapter. First a brief overview of the acoustic model is done.

2.1 The Acoustic model

The feature analysis of the speech signal continuously generates feature vec-
tors, which are fed into a recognition process of matching with reference
patterns. Usually the acoustic models are HMMs trained on sub-word units
such as phonemes (about 44 phonemes are used to represent all English
words). A sequence of phonemes builds up a word in a pronunciation dic-
tionary. It can contain information about different pronunciation variants
of the same word [10].

The realization of one and the same phonemes depends on its neighbor-
ing phones. Therefore the context needs to be incorporated into models.
Triphone models are often used, which consider the preceding and succeed-
ing phone.

An automatic speech recognition system (with or without a language
model) operates in two phases. It must first train the models, during this
phase the system learns the reference patterns representing the different
speech sounds and store the model in an appropriate representation. Usually
probability for each distinct example is stored. Second phase, the recognition
phase, during which an unknown input pattern is identified by using the
stored models.
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3 The Language model

For small vocabularies, the acoustic models can be enough to recognize the
speech with sufficient accuracy. However, for large vocabularies the system
needs to take linguistic knowledge into account. The purpose of a language
model is to allow all possible word sequences, but penalize the word sequence
which is incorrect or impossible in the language. A common way to mod-
elling various natural language phenomena is to estimate the distribution
among them, to capture regularities in a Statistical Language Modelling
(SLM). Let a sequence of K words be denoted by W = w1, w2, ..., wK and
the sequence probability P (W ).

P (W ) = {P (w1, w2, ..., wK) =
K∏

k=1

P (wk|w1, ..., wk−1)}

This probabilistic language model will generate a huge number of probabil-
ities and the training data available isn’t enough to build adequate model.
Instead more simplified n-gram model is usually implemented, where n is
a small number and n − 1 denotes how many previous words should be
included in the model.

P (W ) =
K∏

k=1

P (wk|wk−N+1, ..., wk−1)}

Usually bigram (n = 2) models or trigram (n = 3) models are used [10].
In a typical application, the purpose of an n-gram language model may

be to constrain the acoustic analysis, guide the search through various (par-
tial) text hypotheses, and/or contribute to the determination of the final
transcription [1, 2]. The SLM techniques using n-grams are the most popu-
lar choice. These approaches do not take advantage of the fact that what is
being modelled is language, it may as well be a sequence of arbitrary sym-
bols [15]. Furthermore, n-gram language models are fast and robust and can
be seen as weighted finite state automata. However, n-gram modelling have
problems to capture even relatively local dependencies that exist beyond
scope of model [16].

The research community have proposed many solutions to exploit lin-
guistic knowledge for enhancing or replacing the n-gram language models.

To compare different language models the researchers often use the term
perplexity, which is a measurement of quality of a given language modelling
technique. Perplexity can be interpreted as the average branching factor of
the language according to the model, a value between 1 and infinitely large.
The better the model, the lower the perplexity [15].
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3.1 Integration into the recognizer

There are different ways to integrate the language models with speech recog-
nition systems. Harper suggest a classification of three categories [7, 8]:

• Tightly-coupled: the language and acoustic models are highly inte-
grated and not separable, which makes it difficult to evaluate the
models independently. It is hard to scale up the the system and it
tends to be hard to understand. However, a tightly-coupled design
can directly reduce the search space of the acoustic model.

• Loosely-coupled: the language and acoustic models are developed in
isolated modules, which makes it easier to train and evaluate them
independently. A difficulty of this design is that it is hard to determine
how the models should interact with it each other and the language
model cannot directly reduce the search space of the acoustic model.

• Semi-coupled or moderately integrated, falls in between the previous
two and the language models can be used to guide search in the acous-
tic models. Problem with this design is that it may require communi-
cation in both direction and can be difficult to engineer.

Wachsmuth report another categorization of different couplings or inte-
gration of parsing [17]:

• Two-stage: a view of the system as a loosely-coupled two-stage process.
First a classical HMM-based recognizer generates n-best hypotheses.
In the second phase the parser rescores the results.

• Compiled: constraints imposed by a grammar is complied into the
recognizer, usually finite state machines. This approach is tightly-
coupled and has the same properties.

• Word-prediction, make use of a parsing algorithms. The parser can be
used to predict allowed successor words for a given word sequence.

• Word-verification: the recognizer is synchronized on word-level with
the parser. Every extension of a hypothesis chain is scored by the
parsing module.
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3.2 Parsing

To develop a speech recognition system which makes use of syntactic infor-
mation produced by a parser in a tightly-coupled or semi-coupled fashion,
it has to meet few requirements [17]:

• an efficient interaction between the parser and recognizer has to be
developed.

• the parser must be able to process the input incrementally, which
means that it can only generate results depending on information that
has been generated so far.

• to combine statistical and declarative constraints, a scoring mechanism
has to be developed for the parser which has a good match with the
statistical recognizer.

Kita and Ward have tried semi-coupled approach to incorporate LR pars-
ing into the SPHINX speech recognition system in the early nineties. LR
parsers read their input from left to right and generate a rightmost deriva-
tion and perform two kinds of actions: shifting a symbol onto the stack and
reduction of the stack without reading any symbol. The parser is guided
by a parse table. SPHINX uses HMMs of phonemes and words (built up
by concatenating phoneme models). The SPHINX-LR system incorporates
a stack to keep track of constituents built up during the parse. A stack is
associated with each path and the path is abandoned if the system fails to
update the stack, which means that no rule has been found in the parse ta-
ble. The SPHINX-LR system improved the sentence accuracy from 69.3% to
78.7% compared with the original SPHINX system, but the word accuracy
droped from 94.1% to 85.5% [13].

Zue and Goddeau continue the work on using LR parsing and suggest
a probabilistic LR parser. The recognizer keeps track of partial sentence
hypotheses in a priority queue. At each step, the highest scoring hypothesis
is dequeued and sent to the parser, which produces a list of next word
candidates with associated word probabilities [19].

Harper have developed a speech recognition system which is divided
into three loosely-coupled modules. The first module handles the acous-
tic and prosody processing, which selects word candidates and produces a
word graph (directed acyclic graph representing the possible word paths
through the utterance, are generated by postprocessing the word lattice).
The prosodic module rules out word candidates with unlikely stress and
duration patterns and annotates the word graph with information. The sec-
ond module consists of a Constraint Dependency Grammar (CDG) parsing
mechanism, which employs constraint propagation to prune word graphs.
An Spoken Language Constraint Network (SLCN) represents all possible
parses for the sentence hypotheses in a compact form, and is operated on by
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constraints based upon syntactic, lexical, semantic, prosodic and pragmatic
information. The final module merges the previous two modules to obtain
the best sentence hypothesis, by annotating the word graph likelihood in-
formation [7, 11].

Jurafsky are using a probabilistic Earley parser and Stochastic Context-
Free Grammar (SCFG) to produce word transition probabilities at each
frame for a Viterbi decoder [12]. The Earley parsing algorithm has a cubic
time complexity in worst-case scenario on the input length (in this case
number of frames) and this parsing algorithm is too slow. To overcome this
drawback the parser probabilities have to be locally approximated and this
leads to a (suboptimal) approximation.

Chappelier report another way of parsing in a speech recognizer: lattice
parsing. It can be used in both tightly and more loosely coupled systems [5].
In the tightly coupled, the parser takes the phoneme lattice (represents
the output of the acoustic recognizer, it contains a complete record of all
tokens which were not pruned during the recognition process) and a phoneme
grammar as input. In a more loosely coupled system, it parses the word
lattice with some phrase grammar. They have developed a parser [4] which
is able to simultaneously deal with output produced by the acoustic modules
and integrating syntactic models like Stochastic Context-Free Grammars
(SCFG). On an average over all experiments conducted by Chappelier shows
that the loosely coupled system with SCFG improves the results for 35% in
the test case and for 67% of the cases it did at least as well as without
SCFG.

3.3 Other structured language models

It has been proven hard to incorporate linguistic knowledge and integrate
sophisticated methods like parsing [3]. N -gram language models remain the
state of the art, and are used in almost every speech recognition system.
It has been/is frustrating for research community of language models that
n-gram models still is the best way to solve the problem. Around year
2000 seems the effort of creating language models more been focused to
capture nonlocal dependencies without using parsing algorithms, instead of
combining nonlocal syntactic information and n-gram models.

Wu and Khudanpur have tried to create a new language model which
incorporates local n-gram dependencies with long-range dependencies: the
syntactic structure and the topic of a sentence [18]. They use maximum
entropy methods to integrate these dependencies and report substantial im-
provements over a trigram model in both perplexity and speech recognition
accuracy. Furthermore, Chelba and Jelinek investigate a two-pass speech
recognizer, which enables the use of extended distance dependencies [6].
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4 Conclusion

After reading several articles about automatic speech recognition and lan-
guage modelling, I am more confused if whether or not a syntactic language
models improves the speech recognition. It seems that syntactic information
captured by a parser can improve the accuracy, but the improvement is not
as good as the researcher want it to be. The effort to integrate more ad-
vanced language models are too high and overall efficiency of the recognizer
drops. The simple n-gram language models seems to be the best way to
capture the local dependencies in the language and to enhance the models
using a probabilistic model to capture the long-range dependencies.
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