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Abstract 
Bayesian  Networks  are  a  particular  type  of
Graphical  Models,  providing  a  general  and
flexible  framework  to  model,  factor,  and
compute joint  probability  distributions among
random  variables  in  a  compact  and  efficient
way. 

For  speech  recognition,  a  BN permits  each
speech frame to be associated with an arbitrary
set  of  random variables.  They can be used to
augment  well-known  statistical  paradigms
such  as  Hidden  Markov  Models  by
decomposing each state into several  variables,
outside  acoustics  representing  for  instance
articulators  or  speech  rate.  Factoring  joint
probability  distributions  may  potentially  lead
to  more  meaningful  state  representations  as
well  as  more  efficient  processing.  Bayesian
networks have also been applied for language
modeling.

Bayesian networks are rather new in the field
of  automatic  speech  recognition.  Within  the
scope  of  a  term  paper,  we  provide  an
introduction to their main properties and give
some examples of their current use. 

1. Introduction 

1.1 Purpose and Scope
The purpose of this paper is to provide a first
introduction to Bayesian Networks (BNs), with
some  examples  of  their  use  in  Automatic
Speech Recognition (ASR). 

'Introduction' is indeed a keyword – on one
hand, it should be possible to follow the paper
without  any  particular  familiarity  with  the
subject; on the other, anyone who wishes just a
little bit more than a high-level view will have
to dig in the references, or the references of the
references.

Given  the  very  limited  scope,  the
presentation  of  the  theoretical  foundations  is
mostly absent. For the same reason, there are no

discussions  at  all  of  algorithms  or
implementational  details.  While  many  of  these
subjects – learning algorithms, for one – certainly
are  central  and  interesting  (and,  in  some  cases,
huge), only some pointers can be given here.

1.2 Organization
The paper is organized as follows. In Section 2, the
problem  of  statistical  speech  recognition  is  very
briefly summarized, and a typical current system
based  on  HMMs  (Hidden  Markov  Models)  is
outlined.  Some recurring shortcomings of such a
system are mentioned. 

Section 3 presents Bayesian Networks (BNs) in
general.  First,  it  introduces  Graphical  Models
(GMs),  which  represent  stochastic  processes  as
graphs in a flexible and unifying way (for instance,
well-known statistical  machinery such as HMMs
may also be readily represented as GMs). Then it
turns to BNs, the particular subtype of GMs which
is  the  main  topic  of  this  paper,  their
representation, and their usage. Finally, it outlines
Dynamic  BNs  (DBNs),  an  extension  of  BNs  to
handle  time  series  (such  as  speech  signals)  and
sequences.

Section 4 tries to tie (D)BNs and ASR together.
First,  some  advantages  of  DBNs  to  the  current
method of  choice,  HMM, are commented,  and a
way  of  expressing  HMMs  as  DBNs  is  shown.
Finally,  some  examples  of  how  BNs  have  been
used  in  recent  approaches  to  DBN-based speech
recognition  are  given:  for  representing
articulators, pitch/energy, and language models.

1.3 DBN-ASR Researchers
Bayesian networks have only very recently been
applied  to  ASR.  While  the  field  is  exciting  and
rather active (Zweig's seminal PhD thesis, Zweig
(1998), is one of the most cited papers on ASR in
the latest years),  most things remain to be done,
and it  is  too early to identify any best practices.
Much of the groundwork has been done at UCLA,
Berkeley. Researchers with particular interest and
important publications in the field include among
others Geoffrey Zweig, Jeff Bilmes, Khalid Daouid,
Murat Deviren, Karen Livescu, Todd Stephenson.
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2. Background 

2.1 Statistical Speech Recognition
The overview given in this section is based on
Holmes & Holmes (2001), Zweig (1998), Zweig
& Russell (1998), Bilmes (1999), Deviren (2004).
However,  on  this  general  level,  comparable
presentations could be found in most any work
on ASR.

2.1.1 Overview
Human speech perception can be thought of as
the  mapping  of  an  acoustic  time  signal  to
meaningful  linguistic  units.  Following  this
view,  Automatic  Speech Recognition (ASR)  is
the task of defining an association between the
acoustic signal and the linguistic units in such a
way that it can be implemented on a computer.

The  acoustic  signal  holds  strong  random
components, and perhaps it is only logical that
most recent approaches employ a probabilistic
framework.  The  question  to  be  answered  by
such  a  system  is  "what  is  the  most  probable
linguistic  representation  W,  given an acoustic
waveform A?", or, more mathematically put, to
find W* = arg maxw P (W|A). By Bayes' rule and
by considering P(A) as a constant, this formula
may be rewritten as 

)()|(maxarg*)|(maxarg* WPWAPWAWPW ww ===

In  doing  so,  the  problem  is  split  into  two
independent  subproblems,  which  may  be
attacked  separately:  one  acoustic  (estimating
the  a  posteriori  probability  P(A|W)  of  a
particular sequence of acoustic observations A,
given a sequence of linguistic units W) and one
linguistic (estimating the a priori probability of
W,  P(W).  This  approach is  known as 'source-
channel model'.

Figure 1. A generic statistical ASR system (from Bilmes
(1999)). 

2.1.2 A typical statistical ASR system
Figure  1  illustrates  the  general  method  used  by
most  statistical  speech  recognition  systems.  The
speech  signal  A  is  sampled,  and  the  waveform
representation  is  converted  to  a  set  of  feature
vectors,  one  for  each  time  slice  (typically
windows of 20-40 ms width, sampled each 10-20
ms).  The  features  (generically  named  X  in  the
figure  and  treated  as  a  random  variable)  are
chosen to compactly capture as much as possible
of the linguistically relevant features present in the
waveform,  while  at  the  same time discarding as
much as  possible  of  the  irrelevant  ones  (dialect,
speech  rate,  voice  quality,  age  and  sex  of  the
speaker,  etc).  Long-established  feature  vectors
include  linear  predictive  coding  coefficients
(LPCCs);  more  recently,  the  human  auditory
system has influenced more perceptually relevant
representations  such  as  mel-frequency  cepstrum
coefficients (MFCCs).

In  the  next  step,  the  feature  vectors  are
evaluated against each acoustic utterance model M
in a model database, pre-built from an annotated
speech  corpus  during  a  training  phase.  The
evaluation  against  acoustic  models  yields  a
number  of  likelihoods  p(X|M),  which  are
combined with the prior linguistic probabilities p
(M) of each utterance. For some applications, the
most probable combination of these two is taken
as  the  target  (i.e.,  the  intended  linguistic
representation W from Section 2.1.1); for others, a
number of high-scoring candidates may be kept to
be later evaluated on a discourse level (not shown
in Figure 1).

The  suitable  design  of  the  acoustic  model
database  depends  on  the  application.  For  small
vocabularies,  the  models  may  correspond  to
words or even entire utterances. For larger,  real-
world  vocabularies  (perhaps  several  tens  of
thousands of words), the models will  necessarily
have to be composed by submodels, for instance
on  syllable  or  allophone  level.  The  latter
representation  is  flexible  and  theoretically
compact  –  any  utterance  in  a  language  can
typically  be represented symbolically  with  40-60
allophones  –  but  transitions  between  allophones
involve many difficult  approximity influences.  A
typical strategy is to include the transition phases
into  the  submodels  (as  in  diphone  or  triphone
models).  This  partly  solves  the  coarticulation
problem,  but  only  at  the  cost  of  increased
perplexity.
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The  evaluation  against  the  acoustic  models
does not usually happen directly. Instead, most
methods  use  one  or  more  hidden  (i.e.,  non-
observable)  variables  to  represent  the  current
state  of  the  speech  generation  process  (the
pronunciation  model),  and  maintains  a
probability distribution for each observation in
a given state (the acoustic model). 

2.2 HMM-based systems

2.2.1 Properties of HMM-based systems
In  an  ASR system  based  on  Hidden  Markov
Models  (HMMs),  the  predominant  technique
for the last decades, two variables are used for
each  time  slice:  one  visible  Ot (for  the
observation at time t)  and one hidden Qt (for
the system's state at time t). The latter is usually
identified  with  the  current  phonetic  unit.  In
addition  to  the  (stationary)  observation
probabilities  associated  with  each  of  the  N
states,  an HMM keeps a representation of the
initial  state  probability  P(s1)  and  the  state
transition probabilities,  P(st+1|st)  for  each state
(also stationary; as in all Markovian models, the
state  is  assumed  to  be  independent  of  the
previous history).

The joint probability P(q, o) of a certain state
sequence  q  =  q1q2q3...qT given  a  certain
observation  sequence  o  =  o1o2o3...oT may  be
written

)|()|()|()(),(
2
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There  are  efficient  (O(n2))  algorithms  for
training  the  parameters  (the  observation  and
transition  probabilities  and  the  initial  state
probabilities); for computing the probability of
a certain observation sequence; and for finding
the  most  probable  state  sequence  given  an
observation sequence (Rabiner 1989).

2.2.2 Weaknesses of HMM-based systems
There  are  many  existing  HMM-based  ASR
systems,  some  of  them  commercial,  which
exhibit  good  recognition  performance  in
conditions  closely  resembling  those  of  the
training  settings.  However,  in  more  varying
conditions, they are generally not very robust,
and  performance  may  decrease  drastically
when  facing  common  real-world  (real-word?)
phenomena,  such  as  noisy  environments,
differing  speech rates,  dialectal  variation,  and

non-native  accents  (Holmes  &  Holmes  (2001),
Zweig (1998)).

While many state-of-the-art systems with some
success  employ  different  adaption  techniques  to
overcome  such  difficulties,  there  are  arguably
certain inherent restrictions to the entire approach.
Most  importantly,  HMMs  encode  all  state
information  in  just  one  single  variable  –  to  a
HMM-based system, speech is  little  more than a
finite  sequence  of  atomic  elements,  each  taken
from a (likewise finite) set of phonetic states. This
view  excludes  potentially  important
generalizations  about  the  peculiarities  of  the
speaker  –  temporary  ones,  such as  position  and
movement  of  the  articulators  (lips,  tongue,  jaw,
voicelessness,  nasalization,  etc),  as  well  as  more
permanent, such as the speaker's  sex and dialect
(Zweig (1998)).

3. Bayesian Networks 

3.1 Graphical models

3.1.1 What is a graphical model?
In a graphical model (Whittaker 1990; sometimes
called "probabilistic graphical model"), a stochastic
process  is  described  as  a  graph.  The  graph
contains a qualitative part, its topography, and a
quantitative part,  a set of  conditional  probability
functions. In fact, the entire model can be thought
of  as  "a  compact  and  convenient  way  of
representing a joint probability distribution over a
finite set of variables" (after Bengtsson (1999)).

The nodes in a graphical model represent a set
of  (hidden  or  observed)  random  variables  X  =
{X1...Xn},  whose  ranges  may  be  continuous  or
discrete. The edges encode the central concept of
conditional independence between variables. 

3.1.2 Conditional independence
If  A,  B,  C are random variables,  A is  said to be
conditionally independent of C given B (written A┴C|
B) iff P(A|B, C) = P(A|B); intuitively, this means
that  if  we  know  B,  the  evidence  of  C  does  not
influence our belief in A. Exactly how conditional
independence  is  asserted  in  the  edges  of  a
graphical model may vary. See Section 3.2 for an
example from Bayesian networks, and Stephenson
(2000) or Murphy (2001) for useful overviews. 

Conditional  independence  assertions  are
extremely  important.  First  and  foremost,  they
allow local inferences. This means that calculations
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of  joint  probability  distributions  of
conditionally independent subsets of variables
can  be  performed  separately,  reducing
complexity.  Furthermore,  such  conditionally
independent subsets can be combined to form
complex structures in a modular way. 

Disciplined use of conditional independence
assertions  whenever  depencies  aren't  strictly
necessary (with the definition of 'necessary' to
be decided by the task at hand) will  result  in
sparse networks,  i.e.,  networks with relatively
few edges per node. This will in itself create at
least three important advantages compared to
fully-connected models (Bilmes (2000)): 

• sparse network structures have fewer
computational and memory requirements; 

• sparse networks are less susceptible to noise
in training data (i.e., lower variance) and
less prone to overfitting (the smaller the
freedom – here, number of random variables
– the less risk that meaningless regularity in
the data will be treated as significant); and 

• the resulting structure might reveal high-
level knowledge about the underlying
problem domain that was previously
drowned out by many extra dependencies. 

3.1.3 Properties and subtypes of GMs
GMs are very versatile. Combining useful traits
from graph theory and probability theory, they
offer  an  intuitive,  visual  representation  of
conditional  independence,  efficient  algorithms
for  fast  inference,  and strong representational
power.  In  Michael  Jordan's  words,  they
"provide  a  natural  tool  for  dealing  with  two
problems  that  occur  throughout  applied
mathematics and engineering – uncertainty and
complexity" (Jordan (2004)). 

Many  important  current  models,  such  as
HMMs, can be expressed as particular instances
of  GMs;  and  a  central  algorithm  such  as  the
Baum-Welch  algorithm  for  HMM  training  is
just  a  special  case  of  GM  inference  (Bilmes
(2000)).  Indeed,  the GM framework is  flexible
enough  to  subsume  many  existing  important
techniques and by its proponents it is greeted as
a  unifying  statistical  framework,  greatly
facilitating experimentation with new statistical
methods (not only for ASR). Toolkits for GMs

which  permits  such  experimentation  are
increasingly  available;  for  ASR,  see  Bilmes  &
Zweig (2002).

There  are  many  different  types  of  GMs,  each
with  a  different  formal  semantic  interpretation
and  a  concomitant  different  idea  of  the  way
conditional independence is encoded in the graph
topology.  Broadly,  GMs  can  be  divided  into
subclasses according to the graphs they are built
upon:  the  most  important  are  undirected  GMs,
where edges denote correlation (Markov random
fields);  and  directed  acyclic  GMs,  where  edges
informally  denote  causality  (Bayesian networks).
The  former  type  is  popular  among  physicists,
while  the  second  is  much  used  in  AI  and,
increasingly,  ASR research (Murphy (2001)).  The
rest  of  this  paper  will  only  deal  with  Bayesian
networks.

3.2 Bayesian networks

3.2.1 What is a Bayesian network?
A Bayesian network is a particular kind of GM: a
graph where  the  each node denote  one  random
variable Xi ∊ {X1,  X2,  ...,  Xn}  and the (absence of)
edges  imply  conditional  independencies.  The
hallmark of  a BN is that it  is built on a directed
and  acyclic  graph.  To  each  variable,  a  prior
conditional  probability  distribution is  associated.
Most of the theory for BNs is due to Pearl (1988).

Figure 2 gives an example of a simple Bayesian
network, consisting of three binary (T[rue]/F[alse])
variables with associated probabilities. 

In  this  BN,  the  random  variable  A  is
conditionally dependent on B, but not on C, i.e. P
(A|B,  C)  =  P(A|B).  Another  way of  formulating
the  same  fact  is  to  say  that  the  value  of  C  is
irrelevant  for  the  local  probability  P(A,  B).  The
table  specifies  the  conditional  probability
distribution of each node Xi for each combination
of  values  of  its  immediate  predecessors,  which
more commonly are known as the node's  parents.
In  this  paper,  the  parents  of  a  given  node  are
denoted Pa(Xi), following Stephenson (2000).

Note that the BN in Figure 2 does not express
that A and C are totally independent, but only that
B encodes any information from A that influences
C and vice versa. For instance, let A denote "Dan
wears his  coat"  and C "Dan has ice  in  his hair".
While  A  and C are  likely  to  be correlated,  they
might still be conditionally independent given for
instance B, "it is a cold day". 
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B P(B=T) = 0.6 P(B=F) = 0.4
A P(A=T|B=F) = 0.7 

P(A=T|B=T) = 0.2
P(A=F|B=T) = 0.8
P(A=F|B=F) = 0.3

C P(C=T|B=T) = 0.5
P(C=T|B=F) = 0.1

P(C=F|B=T) = 0.5 
P(C=F|B=F) = 0.9

Figure 2. A three-variable Bayesian network (from
Stephenson (2000), with example conditional probability
table added).

3.2.2 Graph topology and causality
The graph topology accounts for the qualitative
part  of  the  BN,  i.e.,  which  variables  are
conditioned  on  which.  The  quantitative  part
consists  of  some  kind  of  numerical  or
functional  representation  of  the  conditional
probabilities involved. For discrete ranges, the
probability distribution is typically stored in a
node probability table; as a collection, these make
up a conditional probability table (such as the one
in Figure 2). For continuous variables, Gaussian
mixtures may be used (Bengtsson (1999)).

The  directed  edges  of  a  BN  provide  an
informal representation of causality – an edge
normally goes from a cause to a consequence.
This  notion  is  useful  for  constructing BNs by
hand or for interpreting automatically derived
BNs. However, the reservation of informality is
important.  While  it  is  true that a given graph
only corresponds to  a certain joint probability
distribution,  the  converse  is  not  true:  a  given
joint probability distribution may be described
with many different graphs (i.e.,  the JPD may
be  factorized  in  many  different  ways).  For
instance, by Bayes' rule P(A|B) = P(B|A)P(A)/P
(B)  some  edges  could  be  reversed  and hence
have  inverted  causal  interpretations
(Stephenson (2000)).

3.2.3 Joint probability calculations
The total JPD of a BN can by the chain rule of
probabilities be expressed as

P(x1, x2, x3, ..., xn) = 
P(x1|x2, x3, ..., xn)P(x2|x3, ... xn)... P(xn-1|xn)P(xn)

However, this form does not consider the possible
simplifications  due  to  assumed  conditional
independencies. If we do, we may from each factor
exclude  all  conditionally  independent  variables,
i.e, only consider the parents Pa(Xi) of each node.
The JPD may then be simplified to

∏=
n

n XiPaXiPxxxP
1

21 ))(|(),,,(  .

For instance, for the simple network in Figure 2,
by  the  chain  rule  the  JPD  P(A,  B,  C)  can  be
calculated  as  P(A|B,  C)P(B|C)P(C).  However,
considering the conditional independence P(A┴C|
B), the JPD may more efficiently be written (and
calculated) as P(A, B, C) = P(B)P(A|B)P(C|B).

Factorizing the JPD in this way, the number of
multiplications will be of order O(n2t), where t<<n
is the maximum number of incoming edges of any
node.  For  sparse  networks,  this  is  much  more
efficient than the chain rule, which requires O(2n)
(Murphy (2001)).

3.2.4 A BN example
Consider  the BN in Figure 3,  only slightly more
complex.  It  consists  of  four  binary  (true/false)
random variables and their associated conditional
probability table (example modified from Murphy
(2001)):

O

D P

F

O: Ann oversleeps P: Ann parks illegally
D: Ann drives too fast F: Ann is fined

O P(O=T) = 0.1 P(O=F) = 0.9
D P(D=T|O=T) = 0.2 P(D=F|O=T) = 0.8

P(D=T|O=F) = 0.05 P(D=F|O=F) = 0.95
P P(P=T|O=T) = 0.4 P(P=F|O=T) = 0.6

P(P=T|O=F) = 0.15 P(P=F|O=F) = 0.85
F P(F=T|D=T, P=T) = 0.1 P(F=F|D=T, P=T) = 0.9

P(F=T|D=T, P=F) = 0.03 P(F=F|D=T, P=F) = 0.97
P(F=T|D=F, P=T) = 0.08 P(F=F|D=F, P=T) = 0.92
P(F=T|D=F, P=F) = 0.001 P(F=F|D=F, P=F) = 0.999

Figure 3. A Bayesian network with four variables

A BN may incorporate  some of our prior  beliefs
about the presence or absence of causal relations.
In this case, for instance, F may be caused by D or
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P  (or  both);  O  may  cause  D  and/or  P.  (O
probably also have causes, but they fall outside
the  universe  of  this  particular  network.)  The
values of the prior beliefs may be trained from
date, if available, or estimated by experts. 

3.2.5 Using a Bayesian network: Inference
A  BN  may  be  used  for  many  things.  For
instance,  in Figure  3,  we already have (prior)
conditional probabilities for D and P given O.
From  those,  we  can  (without  observing
anything)  calculate  the  unconditional,  or
marginal,  probability  of  D  and  P  as  well  (in
which case O is said to be 'marginalized out').

More  often,  however,  a  BN  is  used  for
probabilistic  inference,  the  computation  of  the
probabilities of a set of random variables after
having gained information (evidence) about the
values of some other set of variables. Before we
receive evidence, the BN represents our a priori
belief about the system that it models; after we
have done so, the network may be updated to
denote our a posteriori beliefs. 

Inferences  are  possible  in  the  'causal'  (top-
down reasoning, from root to leaf or cause to
effect)  as  well  as  in  the  'diagnostic'  direction
(bottom-up reasoning, from leaf to root or effect
to cause) (Murphy (2001)).

In the situation pictured in Figure 3, we may
for instance look out of the window and note
that Ann indeed parks illegally today. That is,
we receive  hard evidence  that P =  true (or  'the
variable P is instantiated to True'). The evidence
may be used to calculate (updated) probabilities
for causes (O) as well as effects (F) of P. In other
cases, we may only receive soft evidence, that is,
the  added  knowledge  that  the  probability
distribution  of  P  has  been  changed  (for
instance,  to  accommodate  new hard  evidence
for some other variable). See Fenton (2004) for
some other tutorial examples of BN usage. 

The updating of probabilities in light of new
evidence, be it soft or hard, is known as  belief
propagation. This is a demanding task (NP-hard,
in the general case); in fact, belief propagation
as a concept has been around much longer than
efficient  algorithms to  perform it.  Among the
recent  breakthroughs  of  the  field  are  new
algorithms built  on groundwork by Lauritzen
and Spiegelhalter. These permit quick updates
of many BNs occurring in practice, containing
many thousands  of  nodes.  Zweig  and Russel

(1998)  report  to have trained models  with up to
500000  parameters.  See  Murphy  (2002)  for  an
overview of the algorithms. 

3.2.6 Learning BNs
A BN is completely defined by its topology and its
conditional  independence  parameters.  It  is
possible to learn both from data, although learning
topology  (graph  structure)  is  much  harder  than
numeric  parameter  optimization  (i.e.,  what  for
well-known models such as HMMs is referred to
as  'training').  Furthermore,  the  structure  to  be
learned  may  contain  hidden  variables,  which
additionally adds to the task.

Learning  BNs  is  a  huge  subject,  and  it  falls
entirely  outside  the  limited  scope  of  this  paper.
See  for  instance  the  overviews  Murphy  (2002),
Heckerman  (1995),  and  Heckermans  chapter  in
Jordan (1998).

3.2.7 Tools, other applications
Although Bayesian networks  are  a  rather  recent
approach in  ASR,  they have been put  to  use  in
many  other  different  areas.  Other  practical
applications  include  spam  filtering  for  e-mail
(Sahami  (1998)),  troubleshooters  for  non-
experienced  computer  users,  and  medical
diagnosis systems (Stephenson (2000)). 

3.3 Dynamic Bayesian Networks 
The Bayesian networks discussed so far all specify
a certain point in time – they are static. They need
to be extended in order  to  account for  temporal
processes  such  as  speech  (or,  more  generally,
sequences  of  any  kind,  for  instance  DNA  or  n-
grams  –  for  the  latter,  see  Section  4.3).  This  is
commonly  accomplished  by  a  straightforward
extension. 

Dynamic  Bayesian  Networks  (DBNs)  are
Bayesian networks which include  directed  edges
pointing in the direction of time (Bilmes (2001)).
The  structure  and  parameters  are  assumed  to
repeat  for  each  time  slice  (i.e.,  the  process  is
assumed  to  be  stationary),  so  the  conditional
probabilities associated with Xi[t], 1 <= t <= T, are
tied.  In  fact,  DBNs can be seen  as "unrolling"  a
one-frame  network  for  T  time  steps  (Friedman
(1998))  and  adding  time-dependencies,  in  effect
creating a BN of size N x T. 

If  the  processes  modelled  are  assumed  to  be
Markovian  (”the  future  is  conditionally
independent  of  the  past  given  the  present”,  i.e.,
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dependency edges are only permitted between
time frame t and t+1), it is enough to specify the
initial  network  (Figure  4a)  and  the  edges
connecting  two  consecutive  time  slices  (a  so
called 2TBN, Figure 4b) and then repeat them
as necessary (Figure 4c, for four time slices).

However,  DBNs can be used also to model
non-Markovian processes, by permitting longer
dependency edges (Deviren (2004); see Section
4.3.3 for an example).

Fig. 4. Illustration of a DBN representation and the
unrolling mechanism (from Deviren (2004), after
Friedman (1998)) (a) Initial network. (b) Transition
network. (c) Unrolled DBN for four time slices.

4. Examples of DBNs in ASR

4.1 Dynamic BNs and ASR
Most current ASR systems are based on HMMs.
In  comparison  to  these,  DBNs  offer  a  more
general  and  flexible  framework  to  model,
factor,  and  compute  joint  probability
distributions  (JPDs)  among random  variables.
In  contrast  to  HMMs,  a  DBN  permits  each
speech frame to be associated with an arbitrary
set of  random variables. Thus,  by introducing
variables representing, say, the positions of the
articulators,  the speaker's  sex,  the  speech rate
etc,  a  DBN has the  potential  of  decomposing
state  representations  into  more  meaningful
components.  This  way of  factoring  JPDs may
make  more  meaningful  state  representations

possible,  including  causal  relationships  (and,
although this  claim  has  been  made  before,  as  a
side effect perhaps make better use of the expert
phonetic  knowledge,  once  again  inviting
phoneticians  into  a  field  long  dominated  by
statisticians).  Transitional  behaviours  can  be
described with submodels  sharing variables over
time,  which  is  a  useful  representation  of
coarticulation.  Furthermore,  DBNs  may  have
exponentially  fewer  parameters  than  standard
HMMs.  This  permits  parameter  estimation  with
less data and higher computational efficiency, and
missing data is handled gracefully (Zweig (1998);
Daoudi (2002); Deviren (2002, 2004)).

4.2 Emulating an HMM-based ASR
According  to  its  proponents,  DBNs  offer  many
advantages  to  HMMs.  Still,  it  may  be  useful  to
start out with a DBN-based emulation of a plain
HMM-based system. In this way, we may expect
the same performance as that of an ordinary HMM
system (at the cost of somewhat higher complexity
and  perhaps,  but  not  necessarily,  some
computational  overhead). Once this machinery is
in  place,  the  richer  semantic  representation
provided  by the  framework may be explored  in
different directions.

There  are  efficient  and  general-purpose
algorithms  available  for  inference.  These
algorithms do not depend of the topology of the
network, and so testing different structures could
largely  be  done  by  restructuring  the  network
rather than rewriting code. 

Expressing  an  HMM-based  ASR  system  in  a
DBN  can  be  done  in  several  ways.  A  naïve
approach may come out like the one in Figure 5
(bottom). Note the very different meanings of the
similar symbols for the DBN and the HMM (top):
variables  vs.  states,  explicit  vs.  implicit  time
representation, conditional dependencies vs. state
transitions.

This version is simple but insufficient. Non-zero
probabilities will be assigned to illegal sequences
(such as repeating the phone of the first state in all
speech  frames).  Furthermore,  parameters  are
shared  between  all  frames.  This  means  that
reoccurring phones in a word, such as the first and
second vowel in 'digit' in Figure 5, will share not
only output probabilities,  which is  fine,  but also
transition  probabilities,  which  is  problematic.
Instead, the first occurence should have non-zero
probability  for  the  transition  to  the  /j/  state  and
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zero  probability  for  the  transition  to  the  /t/
state, and the second occurence should have the
figures reversed. 

Zweig (1998) solves both these problems by
using  one  (deterministic)  'Position'  variable,
holding the position of the phone in the word,
and  another  (also  deterministic)  'Transition'
variable,  holding  a  true/false  value  for  the
transition from one phone to another. A typical
DBN implementation of a HMM may come out
as something like Figure 6 (see Zweig (2003) or
Zweig & Russell (1998) for details). 

4.3 DBN-based models for ASR
This section mentions very briefly a few recent
papers on DBN-based models for ASR. Several
other  important  topics,  such  as  speaker  rate,
speaker  accent,  or  noise  modeling,  are  not
touched  here;  the  examples  given  are  only

meant to convey an idea of  the flexibility  of  the
framework.  Many  suggestions  originate  from
Zweig (1998).  We particularly refer to this paper
for more examples (and illustrations).

4.3.1 Modeling articulation with DBNs
There  have  been  many  attempts  to  incorporate
articulatory  models  in  HMM-based  systems.
Zweig (1998) mentions several reasons why this is
better done with DBNs (in  short:  mappings and
models  are stochastic  rather  than rule-based and
can  be  learned  rather  than  hand-coded;  and
general-purpose  algorithms  are  available  for
learning and inference). 

The articulator variables and their ranges in fact
constitute something like a stochastic phonological
production theory. While such a theory certainly is
very far from complete, ASR performance may be
improved  with  a  less  complete  version.

8(10)

Fig. 5. An HMM model of
the word 'digit' (top) and
a naïve DBN represen-
tation for a particular
token of the same word
(from Zweig (2003)). 
Note the difference in
semantics for the legends:
In the HMM, there is only
implicit time represen-
tation; unfilled nodes de-
note intermediary states
and shaded nodes initial
and final states; arcs
represent state transition
probabilities; dashed
lines denote emission
probabilities. In the DBN,
the time representation is
explicit (seven frames, for
this token); unfilled nodes
represent hidden and
filled nodes observed
variables; arcs denote
conditioning relationships

Fig. 6. An improved DBN
emulation of the HMM in
Figure 5 (from Zweig (2003)),
here representing a six-frame
occurrence of the word 'digit' .
Again, filled nodes are
observed, unfilled nodes are
hidden 
.
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Stephenson et al. (2000) describes a system for
isolated  word  recognition,  employing  a  DBN
model  with  one  additional  auxiliary  variable
representing  the  state  of  the  articulators  (see
Figure  7).  Measured  articulatory  data  may be
present  during  training  but  most  likely  are
absent during recognition; however, the system
does  not need to  observe  the  variable  during
recognition  to  exhibit  performance
improvements. The paper reports a decrease in
WER by 10%  (for  four  discrete  values  of  the
added variable), compared to the acoustics only
system.

4.3.2 Modeling pitch and energy with DBNs
Stephenson  also  (2002)  describes  a  (partly)
successful attempt to include pitch and energy
in  an  ASR  system.  While  these  features  are
notoriously difficult to model (most attempts to
do  so  in  the  past  have  lead  to  performance
degradation), Stephenson suggests an approach
that  treats  them  as  auxiliary  variables  and
marginalizes them out when not contributing to
recognition  performance  (due  to  noise  in
estimation  or  modeling).  This  is  rather
straightforward  to  formulate  within  the  DBN
framework  (but  very  much  less  so  with
HMMs).  The  results  reported  lie  around  the
baseline,  but  compared  to  earlier  attempts  to
consider  pitch and energy,  this  might  still  be
regarded  as  encouraging.  The  authors  claim
that the results ”demonstrate the validity of the
approach”. 

4.3.3 Language modeling with DBNs
Leaving  articulation  and  acoustics  aside,  DBNs
have  been  employed  for  statistical  language
modeling.  In  fact,  the  commonly  employed  n-
gram  and  n-class  models  are  just  particular
(generally non-Markovian) instances of DBNs. N-
class  models  are  particularly  useful  to  assist  n-
grams  in  handling  missing  data.  Deviren  et  al.
(2004) describes an interesting attempt to combine
both into a single model. For a French newspaper
corpus, they report a perplexity reduction of 2.4 %
when the traditional bigram model is replaced by
a DBN model where a word also depends on the
syntactic  classes  of  the  two previous  words.  All
linguistic units are handled in one procedure.

The DBN structure described is built manually;
however,  according  to  the  authors,  a  future
objective  is  to  automatically  extract  the  best
dependence  relations  between  a  word  and  its
context, i.e., automatically inferring the model that
best explains the data. 

5. Conclusions
Bayesian networks and their temporal counterpart
Dynamic  Bayesian  networks  offer  a  rich
probabilistic framework for many fields. For ASR,
where  they  have  only  recently  been  deployed,
they may among other things provide a powerful,
unifying  probabilistic  framework;  efficient,
general-purpose  algorithms  for  inference  and
learning;  learning  from  data  and/or  expert
knowledge;  and  representational  and
experimental flexibility.
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Fig. 7. A DBN for isolated word recognition (from Stephenson (2000), after Zweig (1998)). Filled nodes are always observed,
grey nodes are observed in training, unfilled nodes are hidden. The DBN represents the word 'cat'. It uses an articulatory
auxiliary variable and hence represents an acoustic-articulatory model. Removing the articulator variable and the dashed
edges turns the DBN into a representation of an HMM acoustic model, cf Figure 6.
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