
Behaviors and Layers in Spoken Dialogue Systems

Pontus Ẅarnest̊al
Dept. of Computer Science

Linköping University
ponjo@ida.liu.se

Abstract

The classical view of artificial intelligence (AI) is tied down by a number
of problems. These problems indicate that it might be fruitful to approach AI
applications, including spoken dialogue systems, in an alternative way. This
paper overviews current attempts to apply the idea of layered behavior-based
architectures in dialogue system development. It is concluded that there are
both theoretical insights and practical advantages to be made with a layered
behavior-based approach to dialogue system design.

1 Introduction

The currently dominating view of dialogue systems is inherited from classical ar-
tificial intelligence (AI) approaches. This means that most dialogue systems today
adheres to the classical AI model depicted in Figure 1. What this model suggests is
that intelligence is a matter of transforming perceptual data to a meaningful mental
representation of the world inside the agent. This representation is manipulated
with one or more cognitive processes so that a set of actions (or plans) is produced.
These actions are then translated into some effector(s); such as setting motor speed
for robots, or generating a sentence in the case of dialogue systems. Throughout
this paper I use the term “classical” to denote this symbol manipulation approach to
systems. Whereas the classical AI approach has allowed researchers from both the
AI, NLP and Psychology fields to focus on one aspect of “intelligence”, the model
as a whole has some critical faults, which are summarized below. Entire books
and series of books have been written on this issue, so this paper can only give a
glimpse of the problems involved. For more detailed arguments on this issue, see
e.g. [16]. It is important to note that this controversy is not only a theoretical one. It
is also a matter of practical design work, which becomes increasingly important as
we advance the field of dialogue system development. Some of the issues that used

1



Figure 1: The classical AI model. From Pfeiffer and Scheier [16].

to be more theoretical in nature (e.g. arguing for massive parallelism since this is
a “biological” aspect of intelligence found in the human brain), are now becom-
ing more important in engineering dialogue systems as we deal with multimodal
continuous feedback and realistic response times etc. Some especially important
difficulties with the classical AI program for dialogue systems are:

• Perception, action, and cognition separation fallacy: the sense-think-act cy-
cle is not a correct model in all cases. It is for example known that perception
is guided by internal configuration and expectations. The famous McGurk
effect is one example of this. Other examples of this include the neurobio-
logical observation that neurons receive as much as 80 percent of their input
from other neuronsand only 20 percent from external stimuli. Furthermore;
many actions require constant perceptual feedback for control, without re-
quiring cognitive effort.

• Lack of robustness: Traditional systems are brittle to noise and unexpected
input. Natural intelligence is characterized by “graceful degradation” for
noisy input and can perform adequately even if certain components are im-
paired. This is related to the lack of generalization capabilities of classical
systems. In real-world situations no two situations are ever the same, so
some sort of generalization is required for robust behavior.

• Long processing and delays: Any system functioning in dynamic surround-
ings must be able to react quickly. Because the sense-plan-act model pro-
cesses all information centrally we end up with slow monoliths—even for

2



very small domains. In natural language dialogue, this issue is extremely
important, since unexpected delays on the order of milliseconds are notice-
able and can even change the meaning of the communicative act. “The frame
problem” is often brought up in this context, and puts a finger on a disturb-
ing issue. How can a central model or representation of a dynamic world be
kept updated? Any proposition my change at any time, which makes it very
hard for a central representation and accompanying logical inference engine
to function correctly in real-time.

• Another philosophical nightmare is the symbol-grounding problem, which
refers to how symbols relate to the real world. Symbols put in a system by
a human programmer can never be “true” symbols from the point of view
of the system since the mapping between symbol and real-world object is
grounded by human cognition/intelligence. Some theorists claim that sym-
bols need to be grounded in terms of the system’s implementation and per-
ceptual/cognitive system (see [16]).

These problems indicate that it might be fruitful to approach dialogue system de-
sign in an alternative way. Within the broader AI community thebehavior-based
andlayered approachhas served as an alternative to the classical approach for the
past decade. Especially within Robotics, this approach has been very successful
and remedies some of the problems of the classical approach outlined above. For
a more detailed discussion, see e.g. [16]. However, for higher cognitive functions
(e.g. realistic natural language dialogue) than those typically considered within
the Robotics community (which a lot of times revolves around avoiding obstacles
or finding energy loading stations), the approach has not yet been applied to any
wide extent. The reasons for this are unclear, but one issue is scalability (the step
from avoiding obstacles to engaging in conversations is quite big). Furthermore,
classical NLP has a tradition of dealing with ontological relationships, knowledge
sources, logical formalisms, and high-level planning. More low-level types of phe-
nomena in conversation has not received as much interest as e.g. NL interfaces
to databases. This paper is an attempt to overview current attempts to apply these
ideas to dialogue system development, and discuss the possibilities for a layered
approach in dialogue system design. In the reminder of this paper, I will focus on
the layered approachto behavior-based architectures. There are other ways than
layers to implement behavior-based design, and I will touch upon some of these as
they arise. However, covering them all is far beyond the scope of this paper.

The rest of the paper is organized as follows: First, the layered approach is
described, starting with the general software engineering notion of layers, before
narrowing in on layers in the behavior-based AI field in section 2. In section 3, I

3



Figure 2: The software engineering view of a layered architecture. From Garlan
and Shaw [10].

give an overview of the use of the layered approach in multimodal dialogue sys-
tems. Finally, I conclude with a discussion of the material and describe some prac-
tical and theoretical implications for modeling dialogue in layered, behavior-based
systems in section 4.

2 Layered Approaches

In order to come to terms with the “layered approach” we will first take a software
engineering view of what constitutes a layered architecture (section 2.1). Then we
focus on layered initiatives within the AI community. A suitable starting point here
is the subsumption architecture, which represents the first change from the classical
approach towards behavior-based AI (section 2.2). We then deal with some more
recent architectures, aiming at resolving higher-level cognitive functions such as
natural language and memory in section 2.3.

2.1 The Software Engineering View

A general characteristic of layered systems is that they are organized hierarchically.
Each layer provides service or information to the layer above it and serves as a
client to the layer below. The connection between layers are defined by protocols,
determining how layers will interact [10]. Figure 2 shows the layered architecture
style. Outside the world of NLP and Language Engineering (LE), the most widely
used application of layers are (a) layered communication protocols such as the

4



TCP/IP stack, and (b) operating systems, where the kernel runs in one layer, and
user space and processes reside in layers above.

According to Garlan and Shaw [10, page 11], layered systems support the fol-
lowing properties:

1. design based on different levels of abstraction (i.e. supporting a divide-
and-conquer strategy of partitioning complex problems into incremental and
manageable steps)

2. enhancement (since each layer only interacts withat mostthe surrounding
two layers, changes in one layer affect at most two other layers)

3. reuse (i.e. different implementations of a layer can be used interchangeably,
allowing for designs of reusable layer interface standards in a framework)

Layers are of course not a silver bullet. There are some disadvantages one must
be aware of, and not all kinds of systems are suitable for the layered approach.
Performanceconsiderations need to be taken, even if a system can be structured
in layers. That is, a system may require close coupling between low-level and
high-level layers due to computational performance, such as large search tasks etc.
This may thus violate theenhancementproperty above.Designconsiderations are
also important, since some systems conceptually are hard to model in this manner.
Finding the right level of abstraction for the different layers is a non-trivial de-
sign issue. For example, communications layers sometimes need to bridge several
layers—an unhealthy sign since this violates both theenhancementand thereuse
advantages mentioned above. It may even violate thedesignproperty depending
on the complexity of the problem the system aims to solve.

2.2 The Subsumption Architecture

The subsumption architecture was proposed by Rodney Brooks in 1986 [3], but
was made famous in two papers from 1991 [4, 5], and is the prime example of
the behavior-based view that contrasts against the classical view of intelligence.
Brooks’ papers are written from an engineering perspective, and deals with fun-
damental robotics such as moving and avoiding obstacles. High-level cognition
in the systems is not considered, and the approach is only validated for simplistic
behavior. Despite of this, the approach is still of high interest and has been the
subject of general discussions on cognitive theory.

The most interesting part of the architecture—and underlying design philosophy—
is that it is entirely based on sensor-motor couplings in autonomouslayers, without
a central representation or planning mechanism as classical AI systems would em-
ploy. Each layer corresponds to abehavior(such as moving forward, avoiding

5



Figure 3: An example subsumption architecture. From Pfeiffer and Scheier [16].

obstacles, detect food, etc.). In other words, the layered style is implemented since
behaviors are organized hierarchically. This means that higher-level behaviors can
subsumelower-level layers by inhibition or modification. Figure 3 shows an in-
stantiation of the subsumption architecture. Another crucial point is thateachlayer
reacts to outside stimuli. There is hence no single, central flow of information in
the way a classical AI system would normally be built. The architecture thus sup-
portsconcurrency, since information is processed in parallel by all layers. This
also means that each layer can run on its own, since it reacts directly on outside
stimuli. (However, a robot running only on e.g. a “detect food”-behavior would
not be able to avoid obstacles if such a layer were missing!)

The subsumption architecture is able to respond quickly to changes in the en-
vironment. Since each layer runs in parallel with the others, the system as a whole
does not execute behaviors based on out-dated and irrelevant information. Another
important aspect of the subsumption architecture—as well as other behavior-based
approaches—is the reliance ofemergent behavior. That is, the observed behavior
of the complete system is not put there by the hand of any programmer. Rather, it
is by invoking simple, local rules that the system exhibit complex behavior. One
common example of emergence is flocking behavior where agents in a flock follow
very simple rules such as staying close to neighbors and facing the same direction
as the closest neighbor, but without colliding. The result of these three simple rules

6



is surprisingly coherent and dynamic flocking behavior as seen in swarms of insect,
or in fish schools.

From a methodological perspective, the subsumption architecture supports evo-
lutionary reuse. The underlying philosophy for this claim is that once a layer (i.e.
behavior) has been built (and debugged/tested), it can be reused without change.
The parallel from evolutionary biology is that once “nature” has found a solution
(such as the design of the mammalian eye) it is reused as is over and over again.
Even though this claim may seem a bit stretched, it still implies an evolutionary
aspect of software development. The subsumption architecture can thus be viewed
as a natural platform for evolutionary software development.

The subsumption architecture has to my knowledge not been used for higher-
level cognitive functions such as natural language interaction and dialogue. Indeed,
Thórisson [19] points out that behavior-based architectures such as the subsump-
tion architecture, often are specified at a very low level in the sensor-action control
modules. This makes it hard—if not impossible—to build large systems in this
way.

2.3 Other Layered Approaches

Many researchers have proposed other behavior-based architectures since Brooks.
Among them, Maes’ competence modules and spreading activation network [14]
is well-known, and interesting to mention, since it is behavior-based, butnot a
layered architecture. This architecture differs from subsumption since there is no
hierarchical control. Instead, there are a number of perception, action, and goal
nodes that are connected to each other. The nodes specify how much linked nodes
must activate before firing. This allows for both goal-initiated (top) as well as
perception-initiated (bottom) activation.

There are several other behavior-based and layered approaches around (cf.
SOAR [15] and ACT-R [1]), but they will not be dealt with in any detail in this
paper. In summary, they all perform well in terms of fast action selection and some
of them allow various forms of learning. However, Thórisson [19, page 2] notes
that these types of architectures often lack methods to deal with external and inter-
nal time-constraints and planning. Furthermore, some of them have a reputation of
having huge overheads in terms of learning to program and implement them1.

In retrospect, the main long-standing contribution of the behavior-based AI
community is that there now is an almost universal agreement that some types
of intelligence is best modeled in this way. But in order to come to terms with
the kind of intelligence required for natural and realistic spoken dialogue systems

1Bryson [6] even reports that programming SOAR is “teaching by brain surgery” (page 53).

7



something else is probably needed. In particular, this seems to be true from an en-
gineering and design point of view. Note Thórisson’s argument above; and the fact
that Steels’ non-hierarchical, massively parallel approach [18] was abandoned for
engineering reasonssince it was not practical for each behavior to model all other
behaviors, even though the theory seemed sound from a biological perspective [6].

In light of this, it is understandable that a lot of hybrid, layered systems have
flourished since. A traditional way to implement such an architecture is through
a three-layer solution, which includes behavioral, executive, and planning layers,
e.g. [17, 6, 2]. The behavioral layer is reactive, much like purely behavior-based
solutions; the executive layer often consists of precoded plans which are selected
more or less reactively; and the planning layer is a traditional deep planner that be-
longs to the classical AI tradition. The top-level planner often takes into account the
middle layer’s representations, instead of acting directly on the behavioral primi-
tives in the base layer.

3 Layered Dialogue Systems

The layered and behavior-based approach to dialogue system construction is very
limited. This ties into the observation that the notion of layers can mean differ-
ent things. Even though the general—software engineering—notion of layers have
been used in several architectures adhering to the classical paradigm, implementa-
tions of a more dynamic behavior-based layer approach are rare.

This section briefly describes two such approaches.

3.1 Reactive, Process Control and Content Layers

The Ymir system [19] is a hybrid architecture that consists of three layers as shown
in Figure 4. It is focused on communication and models speech, intonation, body
language and facial gesture. The three layers are: reactive, process control, and
content. Each layer contain perception and decision modules. Response times are
very important in natural language communication, as a pause or delay can change
the entire meaning of an utterance depending on context. The reactive layer has
very short response times (in the 150–500 ms range) in order to provide realistic
gaze fixation or blinking etc. Processing time increases in the higher layers. The
top-most layer—the content layer—even have infinite response times. The content
layer consists of topic information in knowledge bases. The output of the layers
is processed by a fourth main component, the Action Scheduler, which prioritizes
and morphs action requests from the three layers.

8



Figure 4: Principal layers and components of the Ymir architecture. From [19].

Implementations of Ymir display a nice set of characteristics that are not usu-
ally found in traditional dialogue systems:

• there is a non-rigid interruptible quality of the behaviors2.

• gestures and body language (including facial gestures) are integrated with
the communication content, without artificial communication protocols.

• behaviors run concurrently at the expected times and without unnatural de-
lays.

• miscommunication and speech overlaps are handled in a “natural” way, by
using stops and restarts.

In summary, the Ymir model is inspired by the behavior-based philosophy—even
if it does not go “all the way” as it relies on high-level planning—and this renders
it with some of the expected qualities that classical systems seem to have a hard
time to conquer. Recently, the Ymir architecture has been enhanced with a more
elaborate turn-taking model [20]. This work addresses the fact that each participant
in an ordinary dialogue may take 2–3 communication decisions every second. One
interesting aspect of this work is that it assumes no protocol, or implementation of
turn-takingrules.

3.2 Content and Interaction Layers

Another example of a multi-layer approach to spoken dialogue systems is presented
by Lemon et al. [13]. This work is inspired by (a) communication layers as pre-

2Note that this is different from barge-in, which is a general way to just skip the reminder of a
system utterance.

9



sented by Clark [7], and (b) robot architectures as outlined in the behavior-based
AI field. As they put it [13, page 169]:

We view the process of natural interaction with a dialogue participant
as analogous to the interaction with a dynamic environment: dialogue
phenomena arise which need to be negotiated (as a new obstacle must
be avoided by a robot).

The proposal is a two-layer architecture that separates interaction-level phe-
nomena from content and context management and conversation planning.

The main benefit is that the interaction layer makes use of low-level signals to
provide more natural and robust interactions between dialogue systems and human
participants in a way that the content layer is not able to do solely. This is supported
by a number of findings in psycholinguistic literature that stresses the importance
of asynchronous interaction-level processing in realistic and natural dialogue.

Examples of interaction-level phenomena handled by systems implementing
this architecture include: realistic timing and turn-taking, immediate grounding
and thus more realistic (continuous) feedback, barge-in management, and NP se-
lection (anaphora management).

Unfortunately, no user evaluation data is available yet, but the approach nev-
ertheless seems promising for end-users since it addresses issues that are handled
badly with most other dialogue systems.

4 Discussion

4.1 The Layer Terminology

During the course of this work, I have realized that layers mean very different
things for different people. The traditional software engineering view of layers dif-
fers a bit from e.g. Brooks’ notion of a layer. Software engineers may for example
view the user interface as the top layer (final abstraction of a low-level operat-
ing system or hardware communication protocols), whereas a “user interface” in
robotics is constituted by the sensors (and motors) of each layer. In fact, one of
the claimsagainstusing layers in the view of Garlan and Shaw [10] is the fact
that users may want to directly interact at different levels (layers) of abstraction.
If the user interface is viewed as the top layer, such a design is only feasible if
we bridge several layers. On the other hand, in subsumption layers this claim sort
of falls between chairs, since each layer interacts directly with the environment.
I draw one conclusion from this: an architecture is not easy to separate from a
design methodology. In fact, I would go as far as saying that an architectureis a

10



manifestation of design knowledge and practice. Thus, the notion of a layer in one
“mind-set” (e.g. communication protocols or operating system kernels) is based on
the context and problem inherent of exactly that mind-set (and not in the context of
artificial intelligence). Therefore, it may be hazardous to focus on the termlayer
as opposed to the underlying design philosophy that can roughly be summarized in
behavior-based design.

4.2 Practical Issues: Language Engineering

Design-wise, the layered approach (with Brooks’ evolutionary twist) implies some
issues that fit nicely with theconstructionof knowledge-intensive systems such
as dialogue systems. By starting out by iteratively designing complete behavior
modules that can then incrementally be added to a complete system seems like a
sound way to build dialogue systems efficiently. Such evolutionary methodology
has been found to be suitable for dialogue system development in general [11, 9].

This ties in with the idea ofsoftware reuse, that has long been an issue for
software engineering [8]. Within Language Technology research groups, this issue
has been neglected due to several reasons. For one, the groups are usually rather
small with interests spanning large areas. Secondly, personnel are not usually soft-
ware engineers. This means that the field is theory-heavy, with an unbalanced
practice (the practical aspect is even sometimes dismissed as “implementation de-
tails”). However, by acknowledging LE as a complementing field of Language
Technology, to the more theory-dense NLP field, we may be able to incorporate
things that at first glance seems like “implementation details”, but that might turn
out to be highly interesting stuff—such as the qualities of Ymir shows. Further-
more, we could expect to get bothreusableandrobustmodules and systems in this
way, which is an important point from both an engineering as well as a usability
perspective.

With today’s computers it is also possible to design for and implement concur-
rency, as most programming languages have easy-to-use thread APIs.

In summary: Ranging from the overall methodology (evolutionary, agile de-
velopment) to advantages of software reuse, and all the way to low-level details
such as concurrent programming ease-of-use, the practicalities seem to satisfy the
LE part of language technology.

4.3 Theoretical Issues: Towards a Theory of Cognition

The theoretical part is—not surprisingly—trickier to resolve. Pfeiffer and Scheier [16]
and the proponents of embodied cognitive science are convinced that the behavior-
based (and related areas) are necessary in order to advance the task of explaining

11



cognition and intelligence.
Whereas the hybrid approach sketched in section 2.3, and exemplified by the

architectures mentioned in section 3, seems to be a happy marriage between the
best of two worlds, one of the central themes from the behavior-based camp—
namelyemergence—is lost in a hybrid architecture simply because it lies in the
very nature of emergencenot to provide any handle or interface for the top layer
to operate on. It is an open question what this means for a theory of cognition and
AI. On the one hand a lot of work is put into traditional planners, but on the other
it is hard to neglect the power and potential importance of emergent behavior in
any cognitive theory. This is thus a crucial area of AI research with, ultimately,
implications for natural language studies—and if NLP researchers are not carrying
out the work; who will?

Communication management and interaction-level phenomena seem to benefit
from the hybrid approaches examined above. As we strive to build conversational
interfaces and address usability issues such as ease-of-use and natural qualities,
there is a need to take dynamic interaction qualities such as timing and continuous
feedback into account. These qualities seem to be handled nicely.

Until now, the mainstream in dialogue system construction has relied on plan-
ning and more AI-flavored approaches, which have been successful to a certain
extent, and we should obviously try to use and reuse as much of these theories as
possible.

Can we then expect more realistic behavior of spoken dialogue systems? I
believe that a layered approach, that could separate content from interaction and let
different layers handle each of them, provides a positive answer to this question.
Indeed, the kind of problems that low-level behavior-based layering seems to be
particularly suitable for, are in fact related to the problems classical AI thus far has
had trouble coping with (see section 1).

I also believe we can expect to gaintheoretical insightin dialogue interaction
and communication by focusing on interaction and communicative layers in com-
bination with the traditional approach. But by addressing interaction-level phe-
nomena with behavior-based layering we may also achieve higheracceptance for
practical dialogue system use, since it would seem like issues such as better feed-
back management would increase usability and naturalness of dialogue system in-
teraction.

Leaving the hybrid approach for a moment, one of the interesting issues of ap-
proaching dialogue system design more radically, is that of scalability: The purely
behavior-based, layered approach is known to work for low-level specifications of
real-world robots. But how well does it scale? How big is the step to language and
dialogue? It is an open question, and there are many skeptics, e.g. [12].

In the meantime, NLP and LE practitioners can choose to approach the issues

12



in (at least) four different ways: (1) they can choose to ignore the problems with the
classical approach and continue to advance the mainstream classical approach, or
(2) they can be pragmatic about it and use a hybrid approach (or whatever works)
for any given application problem and not care too much about a unified, coherent
cognitive theory; (3) they can be pessimistic about it and abandon the whole of
AI research, and focus on building natural language systems thatsupporthuman–
human communication, or (4) they can be optimistic and pioneer things that have
been avoided thus far in classical AI research.

Whatever view one decides to take, it is clear that natural language researchers
at least ought to keep informed about advances made in the behavior-based camp.

References

[1] J. R. Anderson.Rules of the Mind. Lawrence Erlbaum Associates, 1993.

[2] R. P. Bonasso, R. J. Firby, E. Gat, David Kortenkamp, D. Miller, and
M. Slack. Experiences with an architecture for intelligent, reactive agents.
Journal of Experimental and Theoretical Artificial Intelligence, 1997.

[3] Rodney A Brooks. A robust layered control system for a mobile robot.IEEE
Journal of Robotics and Automation, pages 14–23, 1986.

[4] Rodney A. Brooks. Intelligence Without Reason. InProceedings of Interna-
tional Joint Conference of Artificial Intelligence’91, pages 569–595, 1991.

[5] Rodney A. Brooks. Intelligence Without Representation.Artificial Intelli-
gence Journal, 47:139–159, 1991.

[6] Joanna Bryson.Intelligence By Design. PhD thesis, Massachusetts Institute
of Technology, 2001.

[7] Herbert H. Clark.Using Language. Cambridge University Press, 1996.

[8] Hamish Cunningham. A definition and short history of language engineering.
Journal of Natural Language Engineering, 5(1):1–16, 1999.

[9] Lars Degerstedt and Pontus Johansson. Evolutionary Development of Phase-
Based Dialogue Systems. InProceedings of the 8th Scandinavian Conference
on Artificial Intelligence, pages 59–67, Bergen, Norway, 2003.

[10] David Garlan and Mary Shaw. An Introduction to Software Architecture.
Advances in Software Engineering and Knowledge Engineering, Series on
Software Engineering and Knowledge Engineering, 2:1–39, 1993.

13



[11] Pontus Johansson, Lars Degerstedt, and Arne Jönsson. Iterative develop-
ment of an information-providing dialogue system. InProceedings of the
7th ERCIM Workshop on User Interfaces for All: Universal Access Special
Theme, pages 29–36, Chantilly, France, 2002.

[12] David Kirsh. Today the earwig, tomorrow man? In Margaret A. Boden, ed-
itor, The Philosophy of Artificial Life, Oxford Readings in Philosophy, chap-
ter 8, pages 237–261. Oxford University Press, 1996.

[13] Oliver Lemon, Lawrence Cavedon, and Barbara Kelly. Managing dialogue
interaction: A multi-layered approach. InProceedings of the 4th SIGdial
Workshop on Discourse and Dialogue, pages 168–177, 2003.

[14] Pattie Maes. How to do the right thing.Connection Science Journal,
1(3):291–323, 1989.

[15] Alan Newell.Unified Theories of Cognition. Harvard University Press, Cam-
bridge, Massachusetts, 1990.

[16] Rolf Pfeiffer and Christian Scheier.Understanding Intelligence. The MIT
Press, 1999.

[17] Reid Simmons, Trey Smith, M Bernardine Dias, Dani Goldberg, David Her-
shberger, Anthony (Tony) Stentz, and Robert Michael Zlot. A layered ar-
chitecture for coordination of mobile robots. InMulti-Robot Systems: From
Swarms to Intelligent Automata, Proceedings from the 2002 NRL Workshop
on Multi-Robot Systems. Kluwer Academic Publishers, May 2002.

[18] Luc Steels. A case study in the behavior-oriented design of autonomous
agents. In Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W.
Wilson, editors,From Animals to Animats, pages 445–452. MIT Press, 1994.

[19] Kristinn R. Th́orisson. Layered, modular action control for communicative
humanoids. InComputer Animation ’97, pages 134–143, Geneva, Switzer-
land, June 5–6 1997.

[20] Kristinn R. Th́orisson. Natural turn-taking needs no manual: Computational
theory and model, from perception to action. In B. Granström, D. House, and
I. Karlsson, editors,Multimodality in Language and Speech Systems, pages
173–207. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

14


